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ABSTRACT

The electronic structure of nanostructures is almost universally addressed by the
nstandard model" of effective-mass k-p envelope function approach. While
eminently successful for quantum wells, this model breaks down for small
structures, in particular, for small dots and wires. Until recently, it was impractical
to test the "standard model” against more general approaches that allow for many-
band (I-X-L) coupling. However, it is now possible, due to special tricks, to apply
the all-band plane-wave pseudopotential method to 10* - 10* atom nanostructures.
This shows (I) how the "standard model" fails, in some cases, (ii) how size effect
lead to a reduction in dielectric constants and to band gaps that differ from what is
expected in effective-mass theory, (iii) the emergence of a "zero-confinement state”
in 2D films, (iv) that small dots of I1I-V materials have an indirect gap that converts
to direct above the critical size, (v) how the spectra of CdSe dots evolve from the
bulk, and (vi) how the electron-hole Coulomb energy is overestimated by the
effective-mass wavefunctions.

1 Introduction

Optoelectronic applications' often exploit electronic properties of artificial
heterostructures, such as superlattices and quantum wells, with characteristic
dimensions of 100 A. Their electronic properties could, in principle, be interpreted
using the same tool applied successfully to bulk solids, namely, a complete band
structure. Nanostructure single-particle energies and wave functions would then be
solutions to

22
(2= + vin)u(n) = ep(r) - (1
2m

where V(r) is the total three-dimensional atomistic potential, including all effects of
the interfaces between materials A and B for the A/B heterostructures. V(r) could be
computed self-consistently from the occupied states using, e.g., density functional
theory, or it could be approximated as a superposition of screened atomic potentials,
Le.,
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for atom species i at basis site d, in cell R. Because of the very large number of
monolayers spanning ~100 A nanostructures, they have until very recently’ been
beyond the reach of such direct electronic structure calculations [Egs. (1)-(2)], the
conventional computational effort for which scales as the cube of the number of
atoms. The spectroscopy of nanostructures was instead interpreted using an approach
so common that we term it the "standard model": either the simple effective-mass
approximation (EMA), or the k-p method together with the envelope-function approx-
imation (EFA). The kp approach uses a perturbation theory description of band
dispersion for pure A or B within a small set of near-edge bands identified as
physically relevant. Although it has been eminently successful in a variety of appli-
cations', often overlooked formal restrictions on the standard model, compromise its
description of an A/B heterostructure. The fact that its parameters are usually fit to
experimental data has also made it difficult to appraise these limitations. In this paper
I first describe some interesting differences between the electronic properties of nano-
structures as described by direct pseudopotential diagonalization [Egs. (1)-(2)] ys. the
more approximate "standard model". I then use the pseudopotential model to discuss
some properties of dots, wires, and films.

2 Method of Calculation

In the direct pseudopotential approach?, Egs. (1)-(2) are solved explicitly.
The screened atomic pseudopotentials {v,} are fit to measured bulk band structure,
deformation potentials, and effective masses, to the measured surface work functions,
and to the calculated local-density-approximation (LDA) wavefunctions of the bulk.
This new-generation "semiempirical pseudopotentials"® thus have LDA-quality wave-
functions (and matrix elements), yet the energies are realistic, so no "LDA error”
occurs. We use the potentials of Refs. 2, 4, 5, and 6 for Si2, GaAs/AlAs*, CdSe’, and
InP®, respectively. The wavefunctions {y,} are expanded in a plane-wave basis in a
supercell geometry, using the same cut-off energy as used in fitting the pseudopoten-
tials to the bulk properties. The surface dangling-bonds are passivated by a saturating
pseudopotential. The eigenvalue problem (1) is solved via the "folded spectrum
method"? that allows one to find eigensolutions in a given "energy window" (e.g.,
near-edge), rather than being forced by the orthogonality principle to find all
eigensolutions. This trick thus enables us to calculate for 1,000-10,000 atom nano-
structures the near-edge energies and wavefunctions exactly, with a computational
cost comparable to that of =10 atom unit cells, using conventional methods.
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For comparison, we have also solved the 8-band k-p equations for super-
lattices. We use the implementation of Baraff and Gershoni et al.”, except that the
input Luttinger parameters are recalculated from our semiempirical pseudopotentials.
This assures that the comparison of the electronic structure of superlattices between
k-p and the direct pseudopotential diagonalization reflects the differences in the
methods, not in the inputs.

3 kp vs. Direct Diagonalization Results for (001)(AlAs),/(GaAs), Superlattices

Unlike the "standard model", our 'plane-wave basis direct diagonalization
approach’ includes all-band couplings and, at the same time, envelope function or
effective-mass approximations are avoided. Such direct single-particle calculations of
the electronic properties of small quantum structures (superlattices, films, and dots)
have produced®” novel features that escaped the standard 8-band k-p approach. For
(001)(GaAs), /(AlAs), superlattices, such unexpected features include:

4 (I) The even-odd oscillations of the energies of L-folded state R(L) and
X(L) with the period n, ~

(i1) The red shift ("deconfinement") of the I'(I") conduction band at short
periods,

(iii) The interaction, repulsion, and crossing of the two lowest conduction
bands (") and r(x.) ([-folded and X -folded, respectively) at a critical superlattice
period n, -

(iv) The significant quantitative overestimate of the position of the T'(T")
conduction band with respect to direct diagonalization,

(v) Significant quantitative underestimate of the position of the hh2 and split-
off bands with binding energies >200 meV*, including incorrect out-of-plane
dispersion and position of avoided crossing,

(vi) Omission of the spin-splitting for the in-plane dispersion of the valence
bands®, and

(vii) Overestimation of the mass-anisotropy my/m, at I" for both electrons and
holes®?.

While it was generally expected that the "standard model" will fail for small
nanostructures (e.g., short-period superlattices), direct diagonalization studies®® have
shown that the situation is not so simple. For example, the #k1 and /h1 valence band
energies of (GaAs),/(AlAs),(001) superlattices are accurately described by the "stan-
dard model” even down to the n = 1 monolayer superlattice limit, while the
conduction bands at I'" and X are poorly described even at n =20. This is so because
the standard k-p model describes poorly the strong coupling of bulk X, and I, at the
superlattice conduction band minimum. On the other hand, the coupling between the
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bulk X,, and I, at the superlattice valence band maximum (also described poorly)

happens to be weak, so its misrepresentation is inconsequential. Incorrect description
of inter-valley coupling of folded states is also the reason for the significant errors
made by the k'p model in describing the values of the effective-mass tensor, the
deformation potential'® and the wavefunction'’ of InP/GaP superlattices.

4 Direct-indirect Crossover for GaAs Dots, Wires, and Films

c properties of (a) AlAs-embedded

In this section we conrast the electroni
s, and dots using our direct pseudopo-

and (b) free-standing GaAs quantum films, wire

GaAs quantum films
FIG. 1. Band-edge energies of AlAs-

embedded (solid lines) and free-standing
(dashed lines) GaAs quantum films,
{top) and quantum dot (bottom) as a
function of thickness. The shaded area
denotes the GaAs bulk band gap. From
Ref. 13.
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intrinsically indirect (type-I
alignment in real space). In the
case of small, AlAs-embedded
quantum structures, the CBM
originates from the X,_con-
duction state that is localized in
the AlAs matrix, leading to a
type-II alignment in real space
(insert to Fig. 2). Large GaAs
quantum structures, on the other
hand, have a direct band gap,
with the CBM originating from
the GaAs T, state (type-I in real
and reciprocal space). Thus, for
both free-standing and AlAs-
embedded GaAs quantum
structures we predict an indirect
- direct transition as the size
increases; the critical size for
this transition (Table I) is larger
in AlAs-embedded than in free-
standing quantum structures.

FIG. 2. The VBM and CBM energies of
an isolated GaAs cylindrical quantum
wire embedded in an AlAs matrix,
calculated with the pseudopotential
method, are shown as a function of the
wire diameter (solid dots connected by
line). The CBM energy of a periodic
square array of GaAs wires in AlAs is
also shown (dashed line); the period of
the array is D = 57 A. Insets show the
wave-function amplitude of the VBM
and the CBM. From Ref. 12.
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Table I. Critical sizes (in ML) for the indirect
and AlAs-embedded GaAs quantum fi

-~ indirect crossover in free-standing

Ims, wires, and dots. From Ref. 16.

Film Wire Dot
Free-standing 8 14 >15
AlAs-embedded 13 25 >15
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citonic band gap of CdSe dots® with
-hole Coulomb term (solid dots) differ

considerably from the
results with this term
(crosses). The
dielectric constant
(Fig. 3a) is
significantly different
form the bulk value,
Note (Fig. 3b) how the
EMA over-estimates
considerably the
observed band gap.,

We attribute
this good agreement to
the use of a realistic
microscopic
hamiltonian [Egs. (1)-
(2)].

FIG. 3. CdSe quantum dot
dielectric constant (a) and
exciton energies (b). The
solid line in (a) is the fitted
result of Eq.(1). The
experimental data and the
effective mass (EMA) curve
in (b) are from Ref. 15 while
the calculations are from Ref.
5
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6 The Exciton Coulomb Energy of Si, GaAs, and CdSe Quantum Dots

The excitonic energy for nanostructures contains a single-particle band-gap
part EgaR™ (in the absence of electron-hole interaction), as well as electron-hole
contributions, including Coulomb E,,,~R". In the single particle approximation

W, (r) P ()2

2
[4
= & d3r d*r 3
coul Sf |rh‘re| € h ( )

where {r, and , are hole and electron single-particle wavefunction. In bulk and in
partially confined systems E,,, = 0, but in dots, it can be large. Given the significant
difference between EMA and the microscopic (pseudopotential) wavefunctions, we
have decided to calculate E_,,, from both. The results'® are shown in Table II. It
shows that the EMA overestimates the Coulomb energy by as much as 50%, and that
eE_,,; has a sublinear dependence on 1/R.

Table II. Calculated Product of Dielectric Constant € by the Coulomb Energy using
Pseudopotential and EMA Wavefunctions

System size 5
A) € Efpu e EEM

Spherical Si Dots:

14.2 2.67 3.65
17.2 2.00 3.00
203 1.74 2.53
Rectangular GaAs Dots:

8.0 2.84 4.84
12.0 2.12 323
16.0 1.70 242
20.0 1.42 1.93
24.0 1.19 1.61
28.0 1.05 1.38
320 0.94 1.21
4.0 0.70 1.08
Cubic CdSe Dots:

7.7 3.50 573
153 2.08 2.87
23.0 1.49 1.91
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A direct pseudopotential approach can be used to predict quantitatively many

electronic properties of semiconductor nanostructures in agreement with experiment,
but sometimes in conflict with simpler effective-mass and k-p results.
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