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A simple analytic model of point-ion electrostatics has been previously proposed@R. Magri, S. -H. Wei, and
A. Zunger, Phys. Rev. B42, 11 388~1990!# in which the magnitude of the net chargeqi on each atom in an
ordered or random alloy depends linearly on the numberNi

(1) of unlike neighbors in its first coordination shell.
Point charges extracted from recent large supercell~256–432 atom! local density approximation~LDA ! cal-
culations of Cu12xZnx random alloys now enable an assessment of the physical validity and accuracy of the
simple model. We find that this model accurately describes~i! the trends inqi vs Ni

(1) , particularly for fcc
alloys, ~ii ! the magnitudes of total electrostatic energies in random alloys,~iii ! the relationships between
constant-occupation-averaged charges^qi& and Coulomb shiftŝVi& ~i.e., the average over all sites occupied by
either A or B atoms! in the random alloy, and~iv! the linear relation between the site chargeqi and the
constant-charge-averaged Coulomb shiftV̄i ~i.e., the average over all sites with the same charge! for fcc alloys.
However, for bcc alloys thefluctuationspredicted by the model in theqi vsVi relation exceed those found in
the LDA supercell calculations. We find that~a! the fluctuations present in the model have a vanishing
contribution to the electrostatic energy.~b! Generalizing the model to include a dependence of the charge on
the atoms in the firstthree (two) shellsin bcc ~fcc! — rather than the first shell only — removes the
fluctuations, in complete agreement with the LDA data. We also demonstrate an efficient way to extract charge
transfer parameters of the generalized model from LDA calculations on small unit cells.

I. INTRODUCTION

The structural stability of alloys and compounds is deter-
mined by the kinetic, electrostatic, and exchange-correlation
contributions to the total energy. In first-principles calcula-
tions based on Hartree-Fock or on density functional theory,
the electrostatic portion of the total energy is characterized in
terms of the electronic charge densityr(r ) and the nuclear
chargeszi . For systems with uniquely specified nuclear po-
sitions $Ri% and charges$zi%, the charge density is a well-
defined quantity as is the electrostatic~el! portion of the total
energy:
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Indeed, in many previous calculations on ordered
structures1–8 and ‘‘supercell’’ models of random alloys,9,10

there are well-defined$Ri ;zi%, so the electrostatic energy
was obtained from Eq. ~1!. However, in simpler
approaches,11–15 one approximates the electrostatic energy
by replacing the continuous charge densityr(r ), with ficti-
tious point chargesqi at each sitei . For a system withN
sites, the electrostatic or Madelung (M ) energy is
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, ~2!

whereRi j is the distance between sitesi and j . The Made-
lung energy may also be written

EM5
1

2N(
i
qiVi , ~3!

whereVi is the Coulomb shift at sitei due to all charges
other thanqi :

Vi5(
jÞ i

qj
Ri j

. ~4!

The point charges are obtained by partitioningr(r ) into
‘‘domains’’ ~spheres, polyhedra, etc.! and integrating the to-
tal charge in each domain. However, because there is not a
unique way to partition a three-dimensional space, the point
charges are not uniquely defined.

For periodic systems~e.g., ordered structures with a
primitive cell or random structures defined by
supercells5,9–11,16–18! where all sitesi are defined as distinct
entities~not as averages! andqi andRi are specified,EM can
be readily computed from Eq.~2! using, for example, the
Ewald method. In most statistical approaches to alloys~e.g.,
the coherent potential approximation, or CPA! ~Ref. 19!
however, one attempts a description of a random alloy with-
out a specification of alldistinct sites i but rather some av-
erages overi . In such approaches one calculates the Made-
lung energy of the random alloy by determining the
configurationally averaged correlation between charges
^qiqj&, and using
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. ~5!

Until 1990, all CPA-based models for alloy energies have
assumed uncorrelated charges
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^qiqj&5^qi&^qj&, ~6!

which leads to a vanishing electrostatic energy for the ran-
dom alloy,

^EM&R50, ~7!

on account of electroneutrality. This approximation@Eq. ~6!#
was based on the expectation that a random~i.e., uncorre-
lated! distribution ofatomson sites would lead to an equally
random distribution ofcharges, i.e., the charge on an atom in
a given alloy is a property of the atom, irrespective of its
environment. Equation~7! has been assumed in many CPA-
based calculations19–24 involving the total energy of random
alloys. Magriet al.11 subsequently criticized this approach as
being physically implausible, since the assumption of uncor-
related charges@Eq. ~6!# means that anA atom surrounded
locally by onlyA atoms will have the same charge as anA
atom surrounded byB atoms; chemical intuition suggests,
however, that the charge on a site will depend on the identity
of atoms in its environment because charge transfer is
present only betweendissimilar sites.

Magri et al.11 noted that in a random alloy, even though
the occupationof site i is independent of the occupation of
other sites by definition, thechargeson a site do depend on
the occupations of other sites. These authors therefore pro-
posed a simple model to describe the magnitude of point
charges in disordered~and ordered! alloys: The magnitude of
the charge on a site is linearly proportional to the number
Ni
(1) of unlike nearest neighbors surrounding that site. With

this charge model, Magriet al.. went on to demonstrate that
even for the case of a random alloy with completely uncor-
related atomic occupations, charge correlations exist in the
alloy and these correlations lead to a nonzero Madelung en-
ergy.

Subsequent to the proposal of Magriet al.,11 the charge
model has been used in many contexts:

~i! Lu et al.10 showed that LDA calculations on ordered
compounds produced charge densities which, when inte-
grated inside muffin-tin spheres, gave point charges which
reproduced the behavior of the model. They also examined5

the effect of the ensuing electrostatic energy of the random
alloy on the sign of the ordering energy.

~ii ! Abrikosov et al.25 and Johnson and Pinski13 derived
corrections to the CPA total energy which introduced charge
correlations in random alloys. These corrections were shown
to be consistent with the charge model of Magriet al. Sev-
eral authors subsequently used these corrections in total-
energy CPA calculations to determine lattice constants and
formation energies of random metallic alloys, finding signifi-
cant effects due to charge correlations: Johnson and Pinski13

estimated the total-energy contribution due to charge corre-
lations to be 21.25,25.3, and 27.7 mRy/atom for
Cu0.5Zn0.5, Cu0.5Au0.5, and Ni0.5Al 0.5 alloys, respectively.
~Typical values of alloy formation energies are;10–20
mRy/atom.! Korzhavyiet al.. found26 that the energetic con-
tribution due to charge correlations for Al0.5Li 0.5 is 216.0
mRy/atom, which results in a change ofsign in the formation
energy of Al-Li alloys.

~iii ! Borici and Monnier12 used the charge model to study
the segregation behavior of a semi-infinite random Madelung
lattice. For semi-infinite surface geometries, these authors

found that charge correlations lead to monotonic surface seg-
regation profiles and a segregation of the minority species to
the surface. On the other hand, for thin-film geometries
charge correlations lead to oscillatory surface segregation
profile, and an enrichment of the majority species on the
surface.

~iv! Wolverton and Zunger14 determined the ground state
long-range order and the high-temperature short-range order
of fcc-, bcc-, and sc-based alloys due to electrostatic effects.
These authors also showed1,14 how the charge model could
be analytically mapped onto a cluster expansion, which al-
lowed for the efficient and accurate determination of energies
of any ordered or disordered configuration without the use of
Ewald methods.

~v! Ruban et al.15 compared the energies of charge-
correlated CPA calculations with ordered compound LDA
calculations to determine the optimum prefactor for the elec-
trostatic energy for Cu-Au and Ni-Pt alloys. The energetic
contribution due to charge correlations was again found to be
significant: For instance, for random Cu75Au25 alloys, elec-
trostatic contributions to the total energy were found to lower
the mixing energy by a factor of;3-6 relative to CPA cal-
culations with a complete neglect of charge transfer effects.

The charge model ansatz of Magriet al. was thus far
tested by comparing its charges$qi% with those found in
small-unit-cell (<16-atom! LDA calculations, and also for
only one lattice-type fcc. Recently, much larger LDA super-
cell calculations became available16 for fcc- and bcc-based
alloys. These calculations combine a locally self-consistent
muffin-tin scheme with a massively parallel computer en-
abling LDA calculations on 256- and 432-atom supercells
for random Cu-Zn alloys.17,18 Faulkneret al..17,18 have used
the charge density from these large LDA supercells to exam-
ine the behavior of point charges$qi% in random Cu-Zn al-
loys, finding interesting relations between charges and cer-
tain potentials. Here we determine to what extent the simple
charge model is able to describe the electrostatic properties
of complicated large scale~256–432-atom! LDA based cal-
culations. We find that the model works very well for fcc
lattices, but that in bcc lattices, where the first few coordina-
tion shells are near to one another, the charge on a site is
correlated with the occupations ona fewneighboring shells,
not just one. The effects of such corrections to the total elec-
trostatic energŷEM&R are small, however.

II. SIMPLE CHARGE MODEL

Consider anA12xBx alloy with N sites and a nearest-
neighbor coordination numberZ. The model of Magri
et al.11 is based on the assumption that the excess charge on
a site depends only on the identity of itsfirst neighbors. If an
A atom on a central site is surrounded purely byZ atoms of
typeA, the charge is taken to be zero. If it is surrounded by
Z atoms of typeB, the charge is maximal, 2Zl. For inter-
mediate occupations of the first coordination shell, we as-
sume a linear interpolation between these two limits. For-
mally, we then write this charge as

qi5l(
k51

Z

@Ŝi2Ŝi1k#, ~8!
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where the pseudospinŜi is 21 ~11! if an A(B) atom is
located at sitei . ~The set of variablesŜi for all sitesi defines
the configurations.! Ŝi1k indicates the occupation of theZ
lattice sites which are nearest neighbors toi , and hence the
summation in Eq.~8! indicates the number of unlike nearest
neighbors surrounding the sitei . l is a constant which indi-
cates the magnitude of the charge transfer and is an undeter-
mined parameter of the model. Thus, the charge model will
give trends in the behavior of physical properties, but will
not give numerical values of properties without some input
value ofl.

Several questions may be asked concerning the parameter
l: ~1! Should l be explicitly composition dependent?~2!
Shouldl be explicitly volume dependent? Since the equilib-
rium volume is a function of composition in size-
mismatched alloys, an explicit volume dependence ofl
would lead to an implicit composition dependence. It is im-
portant to physically distinguish between these two depen-
dences.~3! Should the values ofl be extracted from large-
unit-cell or small-unit-cell alloys, i.e., doesl contain mostly
short-range or long-range information? Values ofl have
been estimated by LDA calculations,10,13,18 ranging from
small-unit-cell ordered compounds (;8–16 atoms!, up to
large LDA simulations of random alloys (;200–400 at-
oms!. For computational simplicity, one should know
whether it is equally valid to extract values ofl from or-
dered or random alloys, and whether one can even use
smaller cells (;2–4 atoms! than have been currently used.

We next examine the physical consequences of charges
which obey Eq.~8!. We then compare these consequences
with results of LDA supercell calculations in order to assess
the physical validity of the model. With regard to the ques-
tions raised above, we demonstrate that the simple charge
model represents well the charge transfer ofdifferentunre-
laxed configurations at acommonvolume. If more than one
volume is considered~e.g., for a lattice-mismatched alloy at
more than one composition!, the parameter of the modell
would presumably need to be explicitly volume dependent
~implicitly composition dependent!. Also, we find that values
of l extracted from 2–4-atom LDA calculations agree favor-
ably with those extracted from much larger 200–400-atom
LDA calculations, thereby resulting in a drastic computa-
tional simplification.

III. PHYSICAL CONSEQUENCES
OF THE CHARGE MODEL

A. Average charges

The average chargeon all sites, ^q& is defined as

^q&5
1

N(
i
qi . ~9!

Combining this with Eq.~8! gives^q&50, as guaranteed by
global charge neutrality. However, what is more interesting
is the constant-occupation average^q&A ~or ^q&B), i.e., the
average charge of all sites occupied byA (B) atoms. This
constant-occupation average is a function of the configura-
tion s and compositionx, and we can analytically derive this
quantity for any arbitrary configuration. The definition of
^q&A is

^q&A5
1

NA
(
i
qiG i

A , ~10!

whereNA is the number ofA atoms ins andG i
A is the Flinn

operator such thatG i
A 5 1 if site i is occupied by anA atom,

andG i
A 5 0 otherwise. The Flinn operator is given byG i

A 5

(12Ŝi)/2. Thus

^q&A5
l

2NA
(
i

(
k

~Ŝi2Ŝi1k2Ŝi
21Ŝi Ŝi1k!

52
Zl

2~12x!
~12P̄!, ~11!

whereP̄ is the nearest-neighbor~NN! pair correlation func-
tion, i.e., the lattice average ofP i , j5Ŝi Ŝj for i and j NN. A
similar analysis gives

^q&B5
Zl

2x
~12P̄!. ~12!

In addition, the differenceD in constant-occupation-
averaged charges is given by

D5^q&B2^q&A52Zl
12P̄

12^S&2
, ~13!

where^S&52x21. Equations~11!, ~12!, and ~13! are quite
general and apply to any configuration~ordered, random, or
partially ordered!. These expressions may be evaluated in
various classes of configurations which are interesting.

Random alloys: We define a random alloy as one in which
the occupation variables Sˆ i are uncorrelated, i.e.,
P̄i , j5^Si&^Sj&[(2x21)2. As we will see below, this does
not imply that thecharges qi are uncorrelated. In a random
alloy, we have

^q&A522Zlx; ^q&B52Zl~12x!; D52Zl.
~14!

Interestingly,D for random alloys is independent of alloy
compositionx.

Short-range ordered alloys: Short-range order~SRO!
measures the extent to which there are atom-atom correla-
tions in a disordered alloy. The relation between the nearest-
neighbor Warren-Cowley SRO parameter (a) andP̄ is

a5
P̄2^S&2

12^S&2
. ~15!

This expression combined with Eqs.~11! and ~12! and ~13!
gives the constant-occupation-averaged charges for alloys
possessing some degree of SRO:

^q&A522Zlx~12a!; ^q&B52Zl~12x!~12a!;

D52Zl~12a!. ~16!

So, the difference in chargesD should increase in an order-
ing type alloy (a,0) relative to the random values, but
should decrease in a clustering type alloy (a.0).

Long-range ordered alloys: Long-range order~LRO!
gives an indication for the relative population ofA or B
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atoms on a given sublattice. The extent of LRO in an alloy
may be described by~one or more! LRO parametersh. For
example, for an alloy atx51/2 with a single LRO parameter
0<h<1 ~and no correlations between atoms on the same
sublattice!, P̄(h)5h2P̄(1), so for anystate of LRO at
x51/2,

^q&A~h!52Zl@12h2P̄~1!#,

^q&B~h!5Zl@12h2P̄~1!#,

D~h!52Zl@12h2P̄~1!#. ~17!

For example, in CsCl (B2)-type ordering,P̄(1)521; thus
as the degree of LRO increases,D increases due to the in-
creased number of unlike nearest neighbors.

B. Constant-occupation-averaged Coulomb shifts,
ŠV‹A and ŠV‹B

The Coulomb shiftVi @Eq. ~4!# averaged over all sites
^V& is zero~just as^q& is zero! due to global neutrality. A
more interesting quantity is the constant-occupation average
of the Coulomb shifts on all sites occupied byA atoms in a
random alloy,

^V&A5
1

NA
(
i

^ViG i
A&, ~18!

where the latter brackets denote a configurational average.
This expression can be evaluated to give

^V&A5
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2xZl

R1
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~19!

whereR1 is the nearest-neighbor distance and in the second
equality of Eq.~19!, we have used the orthonormal proper-
ties of the products ofŜi .

27 Similarly for B atoms,

^V&B52
2~12x!Zl

R1
. ~20!

C. Relation between constant-occupation-averaged charge
and Coulomb shift

From Eqs.~14! and ~19!, we have the following relation
between constant-occupation-averaged charge and Coulomb
shift, as predicted by the charge model:

^V&A,B5
2^q&A,B

R1
. ~21!

D. Charge-charge correlation functions

The charge-charge correlation function between sitesi
and j is given by

^qiqj&5
1

N(
m51

N

qi1mqj1m

5l2FZ2P̄i , j2ZS (
k51

Z

P̄i1k, j1 (
k851

Z

P̄i , j1k8D
1 (

k51

Z

(
k851

Z

P̄i1k, j1k8G . ~22!

The sums overk (k8) are over the nearest neighbors of site
i ( j ). Equation~22! is generally valid for any configuration
and any composition. For random alloys~i.e., alloys with
uncorrelated site occupations!, the charge correlations for the
mth shell ^q0qm& have been previously derived5 and are
given by

^q0q0&54x~12x!l2~Z1
21Z1!,

^q0q1&54x~12x!l2~22Z11K1!,

^q0qm&54x~12x!l2~Km!; m.1. ~23!

In these expressions,Zm is the coordination of themth shell
~i.e., Z1[Z), andKm is the number of nearest-neighbor at-
oms shared by sitesi and i1m. As found by Magriet al.,11

Eq. ~23! demonstrate that even when theoccupationsof sites
are uncorrelated, thechargeson these sites, obeying Eq.~8!,
are correlated.

E. Electrostatic energies of random alloys

Using the charge-charge correlations in Eq.~23!, one can
obtain the electrostatic energies of random alloys which are a
consequence of the charge model. These energies of random
alloys have been derived previously for fcc-, bcc-, and sc-
based alloys.11,14 The energies of fcc and bcc-based random
alloys are given by

^EM&R
fcc/E0524x~12x!0.739 518 1. . . ,

^EM&R
bcc/E0524x~12x!0.345 775 2. . . , ~24!

whereE05(16l)2/2R1.

F. The q2V relation between charges and Coulomb shifts

For a completely random alloy, we may analytically de-
rive ~Appendix A! a relation between the chargesqi and
Coulomb shiftsVi from the charge model: In the model of
Eq. ~8!, the magnitude of the charge on a sitei surrounded
byNi

(1) unlike neighbors in the first shell does not depend on
the spatial configuration of the Ni

(1) and is
uqi@Ni

(1)#u52lNi
(1) . The Coulomb shiftVi@Ni

(1)# on a site
surrounded byNi

(1) unlike nearest neighbors on the other
hand, does depend in the model of Eq.~8! on the spatial
configuration of theNi

(1) unlike atoms aroundi and also
depends on more distant neighbors. If weaverageover all
sites havingNi

(1) unlike neighbors, we find analytically~Ap-
pendix A! the linear relation between the chargeqi@Ni

(1)#
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and the constant-charge-averaged Coulomb shiftV̄i@Ni
(1)#

~i.e., an average over all sites with the same charge, and
hence with the sameNi

(1)):

qi@Ni
~1!#}V̄i@Ni

~1!#, ~25!

whereg ~in Ry21) is the slope of this linear relation,

g fcc~x51/2!50.132R1 ,

gbcc~x51/2!50.163R1 . ~26!

Note thatV̄i is a constant-charge average~still leaving the
Ni
(1) dependence!, in contrast to the constant-occupation av-

eraged̂ V&A . To evaluate thefluctuationsin Vi(Ni
(1)) about

V̄i , we perform large-unit-cell simulations for a single, ran-
domly selected configuration. Equal numbers of atomic types
A andB (x51/2! are distributed at random over the 256 fcc
sites and 432 bcc sites of the simulation cell. Point charges
$qi% are then assigned by the model of Eq.~8!. Using the
Ewald method, we then calculate the Coulomb shiftsVi @Eq.
~4!# for each site in the cell. This gives aqi vsVi relation for
the charge model.

IV. COMPARISON: SIMPLE MODEL
VS LDA SIMULATIONS

Recently,17,18 large scale LDA supercell calculations~256
and 432 atom! have been performed for Cu-Zn alloys with
Cu and Zn atoms placed randomly on the fcc or bcc lattice
sites of the supercell. These calculations utilize a multiple
scattering framework, and are locally self-consistent: The
charge density associated with each atom is constructed by
considering only the electronic multiple scattering processes
in a finite spatial region~several neighboring shells! centered
at that atom. These LDA calculations also use the muffin-tin
approximation: The charge within the Wigner-Seitz cell sur-
rounding each sitei ~volumeV i) is made of a spherically
symmetric portion r i(r )5rMT

i (r ) inside each muffin-tin
sphere (r,RMT

i ) and is equal to a constantr0 in the inter-
stitial region between spheres. Point charges are then ex-
tracted from the muffin-tin charge density by performing the
following integral:

qi54pE
0

RMT
rMT
i ~r !r 2dr1r0FV i2

4p

3
~RMT

i !3G2zi .

~27!

The calculations are carried out for unrelaxed geometries,
thus each of the 256 or 432 atoms has an equivalent Wigner-
Seitz cell. Cu and Zn have a very small electronegativity
difference, so the Madelung energy is quite small in Cu-Zn
alloys, and could be more susceptible to any errors in the
calculation. Cu-Zn is, therefore, a critical test of any charge
model, as the electrostatic effects in this system are quite
subtle. An alloy system with more robust charge transfer
~larger electronegativity difference! could, therefore, be of
interest in comparing magnitudes of electrostatic energies,
charges, and other properties.

Differences of;2% are cited17 between LDA calcula-
tions using bcc cells of 256 and 432 sites, and hence indicate
a typical error due to using a finite-sized supercell. An addi-

tional consideration is that one, single configuration is con-
sidered rather than a configurational average. Thus, in com-
paring properties of the charge model with those of LDA
supercell calculations, only disparities of more than a few
percent should be considered meaningful.

A. Dependence of charges
on the nearest-neighbor environment

The prediction of the model of Eq.~8! for the dependence
of charge on the number of unlike-nearest neighbors is clear:
It is a linear relation. The charges predicted by this simple
model ~open circles! are compared with those obtained in
extensive LDA supercell calculations~crosses! ~Ref. 18! in
Fig. 1. A least-squares fit to the LDA supercell data gives
values of the parameterl:

l fcc50.008 19, lbcc50.011 76. ~28!

The LDA calculations demonstrate that~i! the linear predic-
tion of the model is accurate for fcc alloys, but~ii ! for bcc
alloys, as recognized by Faulkneret al.,17,18 there are fluc-
tuations about the straight line. Recall that in an fcc structure
the distances from the origin to thenth shell areR1,

FIG. 1. Charge versus the number of unlike nearest neighbors.
Shown are the predictions of the charge model of Eq.~8! and
the results of LDA supercell calculations of Ref. 18. Values ofl
@Eq. ~28!# were obtained by a least-squares fit to the LDA supercell
data.
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1.414R1, and 1.732R1 for n51,2,3, while for bcc these dis-
tances areR1, 1.155R1, and 1.633R1. Thus, the bcc structure
shows a weaker distinction between first and second neigh-
bors. We consider below~Sec. V! possible generalizations of
the charge model for bcc alloys which account for these fluc-
tuations by extending the linear relation~8! to more than one
coordination shell.

B. Relation between constant-occupation-averaged charge
and Coulomb shift

Both the charge model of Eq.~8! and the LDA supercell
calculations result in a relationship between the constant-
occupation-averaged charges^q&A and ^q&B @Eq. ~14!# and
the constant-occupation-averaged Coulomb shifts^V&A and
^V&B @Eq. ~19!# of the form

^V&A,B5
2^q&A,B
Reff

. ~29!

According to Eq.~21!, the charge model of Eq.~8! gives
Reff5R1 ~whereR1 is the nearest-neighbor distance!. Values
of Reff /R1 for the charge model and for the LDA supercell
calculations are compared in Table I. The simple charge
model of Eq.~8! reproducesReff /R1 of the LDA supercell
calculations~0.97 and 1.02 for fcc and bcc, respectively! to
within a few percent.

In Eq. ~14!, it is shown that the simple charge model
predicts that the differenceD in constant-occupation-
averaged charges is independent of composition. The LDA
supercell results~Fig. 3 of Ref. 17! also show thatD depends
very little on composition, in agreement with the model pre-
diction.

The difference between constant-occupation-averaged
chargesD(h) for the charge model was also derived as a

function of LRO parameter in Eq.~17!. The charge model
prediction is thatD(h) should increase for the LROB2 alloy
relative to the random alloy by a factorDB2(1)/D(0)52.
The LDA calculations17 show that the introduction of LRO
does increaseD from a value of 0.200 66 for the random
alloy to 0.251 78 for the B2 ordered alloy, giving
DB2(1)/D(0)51.25, somewhat smaller than but qualita-
tively consistent with the prediction of the charge model. In
considering the disparity between the magnitude of
DB2(1)/D(0) of the simple charge model and that of LDA,
one should remember that in the latter, point charges are
defined by a nonunique partitioning of space.

The influence of SRO onD was derived for the charge
model in Eq.~16!, where it was shown that ordering type
SRO~as found in Cu-Zn alloys! should increaseD relative to
the random alloy. The introduction of SRO in the LDA su-
percell calculations17 increasesD from 0.200 66 for a ran-
dom simulation to 0.205 54 in a simulation with some degree
of SRO. This increase is again consistent with the predic-
tions of the charge model.

C. The q2V relation between charges and Coulomb shifts

The large supercell LDA calculations find a linear rela-
tionship between the chargesqi on individual sites and the
Coulomb shiftsVi on those sites. The simple charge model
of Eq. ~8! predicts @Eq. ~25!# a linear behavior between
charge and constant-charge-averaged Coulomb shift, in
agreement with the LDA supercell calculations. The slope
g of this linear relation is compared with the slopes from the
LDA supercell calculations in Table I.~Note that both charge
and Coulomb shift are proportional to the parameterl of the
model, and thus, the slopeg is independent ofl.! The rela-
tive slopeg/R1 of the model (20.132) is within a few per-
cent of the LDA supercell results for fcc alloys

TABLE I. Comparison of physical properties of random alloys which are a consequence of~a! the charge
model of Eq.~8!, ~b! the generalized charge model of Eq.~34!, and~c! those obtained from LDA supercell
simulations of Refs. 17,18. In cases~a! and ~b!, we assign charges to sites according to a given model@Eq.
~8! or ~34!# and then calculate the Coulomb shiftVi @Eq. ~4!# by applying the Ewald method to the assigned
charges.

Reff /R1 g/R1 ~Ry21*a.u.21) ^EM&R ~mRy/atom!

fcc (x51/2!

Model — analytic 1.00 20.132 22.60
Model — 256 atoms 1.06 20.130 22.52
Model — 16 atom SQS 0.99 20.134 22.60
LDA supercell — 256 atoms 0.97 20.123,20.127 22.61
Gener. model — 256 atoms 1.02 20.120 22.55
Gener. model — 16 atom SQS 1.03 20.118 22.52

bcc (x51/2!

Model — Analytic 1.00 20.163 22.57
Model — 432 atoms 0.98 20.155 22.64
LDA supercell — 432 atoms 1.02 20.114,20.116 22.67
Gener. Model — 432 atoms 1.19 20.119 22.34
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(20.12560.002), while for bcc alloys, the slope of the
model (20.163) is too large in magnitude relative to the
LDA result (20.11560.001).

The relationship betweenqi and the distinct Coulomb
shift Vi ~not the constant-charge-averagedV̄i) as obtained in
the simple model of Eq.~8! is shown in Fig. 2, where it is
contrasted with the results of the LDA calculations of Ref.
18. The fluctuations in Coulomb shift about the average lin-
ear behavior ofqi andVi are quite small in the fcc random
alloy, but are substantial in the bcc alloy. We have next
determined the effect of these fluctuations on the electro-
static energŷ EM&R of the random alloy: If the linear rela-
tion Eq. ~25! between charge and Coulomb shift~neglecting

fluctuations! is used in Eq.~3! to compute the random alloy
energy, we recover precisely the same energyincluding fluc-
tuationsderived in Eq.~24!. Thus, although the fluctuations
in Vi are graphically impressive~Fig. 2!, the energetic con-
sequence of these fluctuations is strictly zero, simply indicat-
ing that the fluctuations in Coulomb shift are symmetrical
about the average linear behavior.

D. Charge-charge correlations functions

The simple charge model predicts specific values for the
charge-charge correlations of random alloys given in Eq.
~23!. The quantitative results of the LDA supercell for these

FIG. 2. Charges versus Cou-
lomb Shifts as predicted by
the charge model of Eq.~8! using
the values ofl and R1 given in
Eqs. ~28! and ~30!. Also shown
are the results of LDA supercell
calculations of Ref. 18.

FIG. 3. Charge-charge correlation functions for randomx51/2 alloys. Shown are the correlations of the simple charge model and the
generalized charge model for fcc and bcc lattices. For the simple charge model, the analytic results of Eq.~23! are plotted while the
correlations of the fcc~bcc! generalized charge model are obtained from a 16 384~8 192!-atom simulation, configurationally averaged over
20 configurations. Correlation functions are shown normalized tol1

2.
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correlations are a bit unclear: In Ref. 18, the authors note that
for 256-atom LDA supercell calculations, the nearest-
neighbor correlations are sizeable, but they also note that the
values beyond the nearest-neighbor shell are smaller than the
predictions of the model, although these values are not too
well known due to the relatively small size of the simulation
cell. When larger LDA supercell simulations become avail-
able, a comparison of charge-charge correlations from LDA
supercell with the predictions of Eq.~23! ~and those of the
generalized charge model described below! would be of in-
terest. The analytic values of the charge-charge correlation
functions of Eq.~23! are plotted in Fig. 3. We have also
compared these analytic values with those obtained from our
large-unit-cell simulations of the charge model~not shown!.
Although the correlations for the nearest-neighbor shell are
robust with respect to unit cell size, the correlations for the
more distant third, fourth, fifth shells are extremely sensitive
to the size of the simulation cell: For a single fcc 256-atom
simulation, one can even find third- and forth-neighbor cor-
relations which have an opposite sign relative to the exact
analytic values. Even for very large~16 384-atom! fcc simu-
lations configurationally averaged over 20 configurations, the
third- and fourth-neighbor correlations may differ from the
analytic values by;10%. Thus, in order to compare the
LDA charge-charge correlations for random alloys with the
analytic results of the simple charge model, the size of the
LDA supercell calculations would have to be significantly
increased.

E. Coulomb energy of random alloys

The Madelung energy of the simple charge model for a
random alloy is given in Eq.~24! in terms of the parameter
l and the nearest-neighbor distanceR1. If we use the nu-
merical values forl given in Eq. ~28! and the nearest-
neighbor distances used in the LDA supercell calculations
for Cu-Zn alloys,

R1
fcc54.879 a.u.; R1

bcc54.763 a.u., ~30!

we obtain the electrostatic energies of the simple charge
model for Cu-Zn:

^EM&R~ fcc;x50.5!522.60 mRy/atom,

^EM&R~ fcc;x50.7!522.18 mRy/atom,

^EM&R~bcc;x50.5!522.57 mRy/atom. ~31!

These values are compared with the Cu-Zn LDA supercell
values18 in Table I:

^EM&R~ fcc;x50.5!522.61 mRy/atom,

^EM&R~ fcc;x50.7!522.20 mRy/atom,

^EM&R~bcc;x50.5!522.67 mRy/atom. ~32!

For all cases, the prediction of the simple model is extremely
accurate: the model energies fall within 0.1 mRy of the LDA
supercell calculations. Although the model of Eq.~8! was
shown to have significant fluctuations in theq2V relations

~Fig. 2!, these fluctuations have a vanishing contribution to
the Coulomb energy, and thus the model produces accurate
energetics.

F. Approximating sarge random supercells
by small-cell ‘‘special quasi random’’ structures

Our foregoing discussions were based on~either LDA or
Ewald! simulations of rather large supercells~e.g., 256–432
atom!. We next examine the extent to whichspecially se-
lected small cells can mimic larger, nonspecially selected
cells. Special quasirandom structures~SQS’s! ~Ref. 9! are
small-unit-cell structures which are constructed in such a
way so that structural~not charge-charge! correlation func-
tions P̄SQSmatch as closely as possible those of the random
alloy (P̄SQS;P̄random) for several neighboring shells. In this
way the SQS is a small-unit-cell ordered structure which
mimics the random alloy. It is interesting to see how the
charge model calculation of a small-unit-cell SQS compares
with the large scale 256-atom simulations described above.

We have performed an Ewald calculation for a 16-atom,
fcc-based SQS structure~denoted SQS-16! with point
charges taken from the charge model of Eq.~8!. Structural
information for SQS-16 is given in Appendix B. The result-
ing Reff /R1, g/R1, ^EM&R , and theq2V relation for the
SQS-16 are collected in Table I, where they are compared
with analogous calculations using a~randomly selected! 256-
atom cell. We see that the 16-atom SQS calculation matches
the 256-atom simulation for all properties to within a few
percent. Also, the electrostatic energy of the SQS-16
^EM&SQS/E0520.740 compares much more favorably with
the exact value of20.7395 than does the energy of the 256-
atom simulation^EM&R

2562atom/E0520.716. Thus, for the
case of electrostatic energies, the 16-atom SQS provides a
more accuratedepiction of the random alloy than does a
single, randomly selected 256-atom configuration. It would
be interesting to compare the LDA energies of the SQS-16
with those of larger, but randomly selected supercells.17

V. GENERALIZATIONS OF THE MODEL

A. Summary of successes and failures of the simple model

We have thus far ascertained the physical predictions of
the simple, nearest-neighbor charge model of Eq.~8!, and
compared them with the results of large LDA supercell cal-
culations of Refs. 17 and 18. In many cases, the simple
charge model accurately predicts the electrostatic properties
of LDA:

~i! The behavior of charge versus nearest-neighbor envi-
ronment is reproduced well by LDA calculations of fcc-
based alloys@Fig. 1~a!#.

~ii ! The proportionality Reff /R1 between constant-
occupation-averaged chargêq&A,B and Coulomb shift
^V&A,B of the model is the same as that of LDA to within a
few percent~Table I!.

~iii ! For fcc alloys, the linearq2V relation of LDA is
well reproduced~including fluctuations! by the model~Fig.
2!. The model value for the slopeg/R1 of theq2V relation
in fcc alloys is within a few percent of LDA~Table I!.
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~iv! The Coulomb energies of the model are extremely
accurate with respect to the LDA values~to within 0.1 mRy/
atom!.

~v! The slope of theq2V relation,g, in Fig. 2 is the same
for A andB. The LDA supercell calculations also show simi-
lar slopes (g/R1) for charges on Cu (20.123) or Zn
(20.127) atoms in the fccx51/2 alloy, or for Cu
(20.114) or Zn (20.116) atoms in the bccx51/2 alloy.

~vi! The slope of the chargeversusnumber of unlike near-
est neighbors~Fig. 1! are negatives of one another. LDA
supercell calculations~for fcc alloys! support this~Fig. 1!.

~vii ! In the impurity limit, the model predicts that the
charge onA embedded in pureB is equal~in magnitude! to
that ofB embedded in pureA,28

u^q&A~x→1!u5u^q&B~x→0!u52Zl. ~33!

The LDA supercell calculations also show this behavior~see
Fig. 1! for an atom surrounded completely by unlike neigh-
bors. Note that neither the simple model nor the LDA super-
cell simulations include the effects of atomic relaxations,
which could likely eliminate the degeneracy of Eq.~33!. @To
describe relaxed configurations, it is anticipated that more
parameters~e.g., bond lengths! would need to be introduced
into the model.#

~viii ! l is composition independent in the charge model;
values ofl ~Table I of Ref. 18! extracted from the LDA
supercell calculations also demonstrate thatl is not sensitive
to concentration. We reiterate that the charge model de-
scribes only unrelaxed configurations at a fixed volume. For
lattice-mismatched systems, alloys of different composition
will have different volumes, and the charge transfer will de-
pend on this volume. To model this effect,l should be ex-
plicitly volume dependent. Thisexplicit volume dependence
would lead to animplicit dependence ofl on composition.
~Presumably, this implicit composition dependence is not
seen in the LDA supercell data of Ref. 18 due to the fact that
the system studied, Cu-Zn, has a relatively small lattice mis-
match.! However, this should not be confused with anex-
plicit composition dependence ofl.

Although there are many cases of agreement between the
predictions of the charge model@Eq. ~8!# and the electrostat-
ics of large LDA calculations, certain discrepancies arise in
these comparisons:

~i! The LDA calculations show that the charge is not a
single-valued function when plotted versus the number of
unlike nearest neighbors~Fig. 1!. Although there is not much
width to the distribution for fcc alloys, there is a significant
width for bcc alloys. Also demonstrated by Fig. 1 is that
charges in the model of Eq.~8! are quantized since the num-
ber of unlike nearest neighbors must be an integer. The LDA
calculations~particularly for bcc! show no such quantization.

~ii ! The slope of theq2V relation (g/R1) for bcc alloys
~Table I! is significantly larger in magnitude in the model
(20.163) than in the LDA calculations (20.115).

~iii ! There are significant fluctuations about a linear
q2V relation obtained by the charge model; however, the
LDA calculations show a nearly perfect linear relation with
no fluctuations~Fig. 2!. The fluctuations of the charge model
are especially pronounced for bcc alloys.

B. Generalizing the model

The charge model of Eq.~8! is based on the obvious
chemical fact that atomic charge results from chargetrans-
fer, and that the latter depends on the identity of theneigh-
bors, since charge transfer does not occur between chemi-
cally equivalent sites. Thus,qi should depend on the local
environment of sitei . Magri et al.11 took first neighbors to be
the ‘‘leading order’’ contribution to the local environment,
and for the case that Magriet al. treated — fcc alloys — we
have seen that the charge model provides an adequate de-
scription of electrostatics. However, alloys based on different
lattice types can have different structural environments, in
terms of coordination numbers and neighbor distances: In the
fcc lattice there is a significant ‘‘gap’’ between the distance
of the first coordination and that of the second. In bcc, how-
ever, the ‘‘gap’’ is after the second shell. This suggests that
one generalization of the charge model which would affect
bcc and fcc alloys differently is to allow the charges in the
model to be dependent on more distant neighbor shells.
Thus, instead of requiring the charges to be a function of the
number of unlikenearestneighbors, we define ageneralized
charge modelin which charges are a function of the number
of unlike nearest neighborson the first several shells sof
neighbors:

qi5(
s

ls (
ks51

Zs

@Ŝi2Ŝi1ks
#. ~34!

For this generalized charge model, the charge on a sitei is
linearly proportional to the generalized number of neighbors,
Ñ:

Ñ5(
s
Ni

~s!
ls

l1
, ~35!

whereNi
(s) is the number of unlike neighbors in thesth shell

for the atom at sitei . In this ‘‘generalized’’ charge model of
Eq. ~34!, there areS parameters, whereS is the number of
shells included.

To determine the parameters of the generalized charge
model, we have fit~via a least-squares procedure! the
charges of the LDA supercell calculations to Eq.~34! includ-
ing five shells. The parametersls are zero, for all intents and
purposes, fors.2 in fcc and s.3 in bcc. Within these
ranges, we found

l1
fcc50.00 745, l2

fcc/l1
fcc50.214, ln.2

fcc /l1
fcc;0,

l1
bcc50.00 786, l2

bcc/l1
bcc50.660,

l3
bcc/l1

bcc50.0645, ln.3
bcc /l1

bcc;0. ~36!

C. Testing the generalized model

We show in Figs. 3, 4, and 5 results for generalized fcc
~bcc! charge models including the first two-~three-! neigh-
bors shells with these values ofls : Figure 3 shows the
charge-charge correlations of randomx51/2 alloys predicted
by the simple charge model of Eq.~8!, and the generalized
charge model of Eq.~34!. Although there are currently no
LDA results with which to compare~due to the size of the
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current LDA supercells!, we note that the generalized charge
model changes the sign of the second-neighbor correlation in
both fcc and bcc relative to the simple model. It would be
interesting to compare these correlations with those of LDA
when larger supercell calculations become available.

The chargeqi versusthe generalized number of neighbors
Ñ is shown in Fig. 4 for LDA and for the model of Eq.~34!.
For fcc alloys, the corrections induced by generalizing the
charge model are small since the original model of Eq.~8! is
already very good. The predictions of the generalized charge
model fit the LDA supercell data extremely well even for bcc
alloys, where the nearest-neighbor model of Eq.~8! was
lacking.

Figure 5 shows the relation between chargeqi and Cou-
lomb shiftVi of the generalized charge model, comparing the
results with LDA. Like LDA, the generalized charge model
predicts a linear relation betweenqi andVi with almost no
fluctuations. Furthermore, the slope of these linear relations
are in excellent agreement with the LDA supercell data
~Table I!, provided that cutoffs for fcc and bcc are at second-
and third-neighbor shells, respectively. Thus, the generalized
charge model of Eq.~34! rectifies all of the discrepancies
noted above~Sec. V A! between model and LDA calcula-

tions. @The fcc model for nearest neighbors only is already
accurate with respect to LDA calculations~Figs. 1 and 2!,
thus generalizing the fcc charge model to first and second
neighbors does not produce a large effect.# In Fig. 6, we
show the values of the parametersls versus distance of the
shell s. One can see that the parameters are reasonably well
fit by an exponential function,

ls5
l1R1

Rs
e2~Rs2R1!/R0, ~37!

with a decay length ofR050.34R1. This suggests that in an
alloy the net charge on each site is screened effectively in a
very short range.

Since the generalized charge model predicts a linear
q2V relation in disordered alloys, with almost no fluctua-
tions, one can also obtain a generalized model of theCou-
lomb shiftsin an alloy

Vi}g/R1S (
s

ls (
ks51

Zs

@Ŝi2Ŝi1ks
# D . ~38!

Thus, the Coulomb shifts, like the charges, depend only on
the occupation of the first few neighboring shells.

D. Extracting values ofl from LDA: Supercell-size dependence

We have demonstrated the validity of the generalized
model of point charges and shown how the parameters of the
modells may be extracted from large-unit-cell LDA calcu-
lations. However, the models of point charges~both the
simple and generalized models! assume that thephysical
mechanismunderlying excess charge on a site is the same for
ordered and random alloys. This suggests that the values of
ls could be obtained from small-unit-cell calculations. For
computational simplicity, one should know whether it is
equally valid to extract values ofls from ordered or random
alloys, and whether one can use LDA calculations of small
cells (;2–4 atoms! to extract the values ofls . To this end,
we have complemented the large-unit-cell LDA calculations
of Faulkneret al.17 on random bcc Cu-Zn alloys by perform-
ing calculations of severalordered small-unit-cellbcc-based
Cu-Zn ordered compounds. We use the linearized augmented
plane wave ~LAPW! method.29 The ordered structures
considered are all bcc superlattices: Cu1Zn1 ~001!,
Cu2Zn2 ~111!, Cu2Zn2 ~001!, Cu2Zn1 ~001!, Cu3Zn1
~111!, and Cu1Zn1 ~101!. All of these compounds have 2–4
atoms/cell and the first five are commonly referred to by
their Structurbereicht designations:B2, B32, B11, C11b ,
andD03, respectively. In the LAPW calculations, we have
used the exchange correlation of Wigner.30 The muffin-tin
radii are chosen to be equal~2.2 a.u.! for both Cu and Zn.
Brillouin-zone integrations are performed using the equiva-
lent k-point sampling method.31 Since the charge model is
appropriate only for charges in unrelaxed geometries at fixed
volume, all computations were done in ideal geometries at a
single volume (a55.56 a.u.!, even though several composi-
tions are considered. The excess charges were extracted from
the LAPW calculations by integrating the charge density in-
side the muffin-tin spheres and dividing the interstitial
charge evenly between the atoms in the unit cell.17

FIG. 4. Charge versus number of generalized neighborsÑ
Eq. ~35!. Shown are the predictions of the generalized charge model
of Eq. ~34! using the values ofls fit to large-unit-cell LDA calcu-
lations given in Eq.~36!. Also shown are the charges of the LDA
large-unit-cell calculations of Ref. 18.
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The LAPW charges for the six small-unit-cell compounds
calculated were fit to a form of the generalized charge model
of Eq. ~34! with first–third neighbor shells. The parameters
of the generalized model fit to these small-unit-cell calcula-
tions,

l1
bcc50.006 80, l2

bcc/l1
bcc50.609, l3

bcc/l1
bcc50.131,

~39!

agree well with those fit to large-unit-cell data@Eq. ~36!#:32

The parameters of Eq.~39! fit to small-unit-cell LDA calcu-
lations lead to aq2V relation which is linear, with no fluc-

tuations, and has a slope ofg/R150.112, compared with
g/R150.119 for the parameters of the generalized model fit
to large-unit-cell LDA data. The charges extracted from
small-unit-cell LDA calculations are shown in Fig. 7 as a
function of generalized number of neighborsÑ @using the
values ofls in Eq. ~39!#. These calculations demonstrate that
the parameters of the generalized model may be determined
from calculations of several small-unit-cell ordered com-
pounds in unrelaxed geometries at fixed volume. If one

FIG. 5. Charge versus Cou-
lomb shift as predicted by the gen-
eralized charge model of Eq.~34!
using the values ofls and R1

given in Eqs.~36! and ~30!.

FIG. 6. Charge transfer parametersls of generalized model of
Eq. ~34! as a function of distance. Also shown is a fit to the param-
eters to the exponential function of Eq.~37!. The fitted value is
R050.34R1.

FIG. 7. Charge versus number of generalized neighborsÑ
Eq. ~35!. Shown are the predictions of the generalized charge model
of Eq. ~34! using the values ofls fit to small-unit-cell data given in
Eq. ~39!. Also shown are the charges of the LAPW small-unit-cell
calculations of the present work.
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wishes to assess the explicit volume dependence of the pa-
rameters, one only needs to repeat these types of calculations
at a few different volumes. We have performed such volume-
dependent calculations ata55.36 anda55.75~in addition to
the a55.56 calculations described above!, and find that the
values ofl only have a slight volume dependence in this
range: The value ofl1 at a55.36 is about 6% larger in
magnitude thanl1 ata55.75. Also, in this volume range the
ratiosl2 /l1 andl3 /l1 vary by less than their uncertainty
due to the fit.

VI. CONCLUSIONS

Recent17,18 large scale~256–432-atom! LDA supercell
calculations of Cu12xZnx random alloys allow us to exam-
ine the adequacy of simple models describing the depen-
dence of point charges in disordered alloys on the atomic
environment. We find that a model in which the excess
chargeqi on an atom in an ordered or random alloy depends
linearly on the numberNi

(1) of unlike neighbors in its first
coordination shell correctly describes the trends in charge
versus number of unlike nearest neighbors~particularly for
fcc alloys!, the magnitudes of Coulomb energies in random
Cu12xZnx alloys, and the relationships betweenconstant-
occupation-averagedchargeŝ qi& and Coulomb shiftŝVi&
in the random alloy. However, for bcc alloys thefluctuations
predicted by the model in theqi vs Vi relation exceed those
found in the LDA supercell calculations. Although we found
that the fluctuations present in the model have a vanishing
contribution to the electrostatic energy, generalizing the bcc
~fcc! model to include a dependence of the charge on the
atoms in the firstthree (two) shells~rather than the first shell
only! removes the fluctuations from the model, in complete
agreement with the LDA data.

Other possible generalizations of the charge model in-
clude:~i! nonlinearities in the charge as a function of number
of neighbors and~ii ! charges which depend not only on the
numberof nearest neighbors, but also on the particular ar-
rangement of the neighbors. This type of dependence would
lead to not only pair correlations among charges, but also
multibody correlations. Currently, there are no indications
that these types of generalizations are warranted.
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APPENDIX A: ANALYTIC DERIVATION OF THE
qi2V̄ i RELATION WITHIN THE CHARGE MODEL

OF EQ. „8…

Here we derive theq2V relation predicted by the charge
model@Eq. ~8!#, averaging over any fluctuations. Consider a
randomA12xBx alloy at x51/2 with nearest-neighbor coor-
dination Z1 and anA atom at a central site, denoted by

A(0). ~There is no loss of generality by choosing this atom
to be A.! The charge onA(0) has the distribution
qM522Ml (M50,Z1) with the probability

rM5
1

2Z1 S Z1M D . ~A1!

Therefore, the energy of the random alloy is

^EM&5
1

2 (
M50

Z1

rMqM(
m

1

Rm
qm~M !, ~A2!

where qm(M ) is the sum of charge on themth shell sur-
roundingA(0) under the constraint that there areM B(1)
atoms on the nearest-neighbor shell.Rm is the distance of the
mth shell atom fromA(0). ^EM& can also be written as

^EM&5
1

2 (
M50

Z1

rMqMV̄M , ~A3!

whereV̄M is the Coulomb shift on the central site, averaged
over all configurations where there areM B(1) atoms on the
nearest-neighbor shell. Thus, we need to determineV̄M as a
function ofqM522Ml, where

V̄M5(
m

1

Rm
qm~M !. ~A4!

In order to computeV̄M , we first need to computeqm(M ).
First shell: For the nearest-neighbor shell,m51,

q1~M !5Mq1
B1~Z12M !q1

A . ~A5!

For theZ1 nearest neighbors of an atom in this first shell, one
is A(0), K1 are also nearest neighbors ofA(0), and
Z̃5Z12K121 are remaining. For eachA(1), theprobabil-
ity that it hasn B neighbors~i.e., with charge22nl), l of
them come from atoms which are not neighbors ofA(0) is

rn,l
A~1!5S Z̃

l
D 1

2Z12K121

SMK D S Z1212M

K12K D
S Z121

K1
D , ~A6!

whereK5n2 l and the following inequalities must be satis-
fied:

0<n<Z121,

0< l<n; l<Z̃,

0<n2 l<K1 ,

n2 l<M ,

K12~n21!<Z1212M . ~A7!

Similarly, for eachB(1), the probability that it hasn A
neighbors~i.e., with charge 2nl), l of them which are not
neighbors ofA(0) is
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rn,l
B~1!5S Z̃

l
D 1

2Z12K121

S Z12M

K D S M21

K12K D
S Z121

K1
D , ~A8!

whereK5n2 l21 and the following inequalities must be
satisfied:

1<n<Z1 ,

0< l<n21; l<Z̃,

0<n212 l<K1 ,

n212 l<Z12M ,

K12~n212 l !<M21. ~A9!

Combining Eqs.~44!–~48!, we have

q1~M !5~Z12M ! (
n50

Z121

22nl(
l50

n

rn,l
A~1!

1M(
n51

Z1

2nl (
l50

n21

rn,l
B~1! , ~A10!

wherern,l
A(1) andrn,l

B(1) are subject to the constraints~A7! and
~A9!.

More distant-neighbor shells:Form.1,

qm~M !5
Zm
2

@qm
A1qm

B #. ~A11!

Atoms on themth shell haveZ1 nearest neighbors,Km of
them are also nearest neighbors ofA(0). Therefore,

rn,l
A~m!5S Z12Km

l D 1

2Z12Km

SMK D S Z12M

Km2K D
S Z1Km

D , ~A12!

whereK5n2 l and the following inequalities must be satis-
fied:

0<n<Z1 ,

0< l<n; l<Z12Km,

0<n2 l<Km ,

n2 l<M ,

Km2~n2 l !<Z12M , ~A13!

and

rn,l
B~m!5S Z12Km

l D 1

2Z12Km

S Z12M

K D S M

Km2K D
S Z1Km

D ,

~A14!

whereK5n2 l , subject to the following constraints:

0<n<Z1 ,

0< l<n; l<Z12Km ,

0<n2 l<Km ,

n2 l<Z12M ,

Km2~n2 l !<M . ~A15!

Combining Eqs.~A11!–~A15!, we have

qm~M !5
1

2
Zm(

n50

Z1

2nl(
l50

n

@rn,l
B~m!2rn,l

A~m!#, ~A16!

wherern,l
A(m) and rn,l

B(m) are subject to the constraints~A13!
and~A15!. Note thatqm(M )50 for any shell which does not
share nearest neighbors withA(0) ~i.e., Km50). Using the
above derived values ofq1(M ) andqm(M ) in Eq. ~A4!, we
may determineV̄M as a function ofqM522Ml, and as a
function ofM this relation is precisely linear, with no fluc-
tuations:

qM}V̄M . ~A17!

APPENDIX B: STRUCTURAL INFORMATION
FOR SQS-16

The ideal ~unrelaxed! fcc-based SQS-16 structure
(A8B8) has orthorhombic symmetry and primitive lattice
vectors

a5S 12 , 12,0Da; b5~1,21,2!a; c5~1,21,22!a.

~B1!

The 16 atomic positions, in Cartesian coordinates, are

A:~0,0,0!a,

B:S 12,0,12Da,
A:S 12 ,2 1

2
,1Da,

B:S 1,2 1

2
,
3

2Da,
A:S 1,2 1

2
,2

3

2Da,
A:~1,21,21!a,

B:S 32 ,21,2
1

2Da,
A:S 32 ,2 3

2
,0Da,
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B:S 12 ,2 1

2
,21Da,

A:S 1,2 1

2
,2

1

2Da,
B:~1,21,0!a,

A:S 32 ,21,
1

2Da,
A:S 12,0,2 1

2Da,

B:S 12 ,2 1

2
,0Da,

B:S 1,2 1

2
,
1

2Da,
B:~1,21,1!a. ~B2!

The SQS-16 structure matches the first seven pair correlation
functions of the randomx51/2 alloy exactly.
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