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" FIRST PRINCIPLES AND SECOND PRINCIPLES
. (SEMIEMPIRICAL) PSEUDOPOTENTIALS

 Alex Zunger
= National Renewable Energy Laboratory, Golden, CO 80401

y Abstract: Screened, transferable atomic pseudopotentials were developed 30 years ago
i by M. L. Cohen by adjusting the potential to reproduce the observed bulk electronic en-
i ergies (the “Empirical Pseudopotential Method” or EPM). These potentials are extremely
b ‘ useful in interpreting and guiding the spectroscopy of (a few atoms/cell) bulk materials. The
= recent emergence of detailed spectroscopy of (~ 1000-atom) semiconductor nanostructures
" has created a significant demand for pseudopotentials combining EPM-quality energy levels
with LDA-quality wavefunctions. The reason is that for such systems LDA approaches are
: =— both too costly and insufficiently accurate, while effective mass-based approaches lack de-
p tailed band structure information. We can now improve upon the traditional EPM by a two
; ,'.- step process: First, we invert a set of self-consistently determined screened LDA potentials
&= for a range of bulk crystal structures and unit cell volumes, thus determining spherically-
e symmetric and structurally-averaged atomic potentials (SLDA). These potentials reproduce
1 the LDA band structure to better than 0.1 eV, over a range of crystal structures and cell
~ volumes. Second, we adjust the SLDA to reproduce observed excitation energies. We find
that the adjustment represents but a small perturbation over the SLDA potential, so that the
ensuing fitted ”semiempirical Pseudopotential method” (SEPM) potential still reproduces a
"h“ > 99.9% overlap with the original LDA wavefunctions despite the excitation energies being
distinctly non-LDA. We illustrate the method to Si and CdSe in a range of crystal struc-
. tures, finding excellent agreement with the experimentally determined band energies, optical
spectra, €2(E), static dielectric constants, deformation potentials, and, at the same time,
LDA-quality wavefunctions.

1. INTRODUCTION: THE BASIC IDEOLOGY

The “Empirical Pseudopotential Method” (EPM) developed by Marvin Cohen
~ and collaborators [1, 2, 3] marked an historic milestone in bringing together
the spectroscopy of interband transitions in solids with the quantum structure
of the solid. The formalism was elegant and simple: The Schrodinger equation
. for band i at wavevector k was written in terms of a lattice sum over sites a
. at R, of screened atomic pseudopotentials vgp), Whose principal Fourier
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components were adjusted to fit the positions of the main energy bands:

—%Vz * RZ vEpp(r — Ra) p i (r) = €1 ¥ (r)- (1)

The calculated band energies and the ensuing predicted optical response ea(w)
quickly became the main tool for interpreting the electronic structure of many

solids in terms of transferable atomic quantities v§p ().
In the density functional approach(4, 5], on the other hand, one treats a
Schrodinger equation with a distinct, non-transferable (self-consistently deter-

mined) screening potential Vg xc:

{—gvz + Vo) + Vch[P(l‘)]} o) = eg Vo) @)

Here, V..:(r) is a fixed external (possibly pseudo) potential determining the
chemical and structural identity of the system, and p(r) = 3 ;" |#:[® is the
charge density of all occupied single particle states ;. The external potential
can be written [6, 7] as a sum of a nonlocal part and a local part

Vezt (I‘) = vnonlocal (l') + viocul (I‘) = IA/rmnh:lcui (l') o o E Z v}(’c:) (11‘ T Ral) (3)
a Ra

and each of these terms can be represented as a sum over atoms a at lat-
tice sites R, of fixed atomic pseudopotentials [1]. (We use V and v to de-
note, respectively, crystalline and atomic potentials). While Vezt(r) can be
constructed explicitly for each system once and for all, simply by summing =
over fixed atomic potentials, the (Coulomb + exchange + correlation) screen-
ing potential Vizxc[p(r)] is not a linear sum over atomic quantities, and must 4
be obtained separately for each physical system without any system-to-system
transferability. Thus, the EPM approach of Eq. (1) and the LDA approach of
Eqs. (2)-(3) represent different views on the same problem: the first approach |
represents the solid in terms of screened and transferable atomic quantities,
emphasizing the spectroscopy of the solid, while the second approach focuses ;
on self-consistently determined system-dependent quantities, emphasizing the
ground state properties (e.g., charge densities) of the solid. 7
Having developed in 1975-77 in collaboration with Art Freeman at North-
western a first-principles total-energy approach for solids [8], I was biased to- 1
wards the second (density functional) view. Thus, when I eame to work with i
Marvin Cohen at Berkeley in the fall of 1977, I decided to “take a step back- |
wards” relative to the EPM approach of Eq. (1), and determine the bare atomi€ *
pseudopotential of Eq. (3) not from fitting experiment but rather from a mi-

croscopic quantum model of the atom. Continuing the work I started in 1976 &

at Northwestern [9] with Sid Topiol and Mark Ratner, Marvin and I extracte®
the bare pseudopotential v3, [rather than the screened vgpy, of Eq. (1)] from :
an atomic [rather than a solid state] LDA equation:

{=39+ 45200 + Vixolol} xur) = e X O}
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The ensuing v, represented perhaps the earliest LDA-based “first principles
pseudopotential” [6, 9]. We immediately applied it to total energy and band
structure calculations of bulk Si [6] and bulk Mo and W [10]. These early first
principles LDA pseudopotentials, analogous to what Luis Kahn and William
Goddard had done earlier in the context of the Hartree-Fock theory [11], were
subsequently improved by Kerker [12] and by Haman, Schluter and Chiang [13].

Our results [6, 7, 10] of 1978-79 created a dilemma: On one hand, our pseu-
dopotentials produced (in conjunction with the just developed pseudopotential
total energy method [7]) remarkable agreement with the measured ground state
properties of Si, Mo, and W, yet the excited state properties (e.g., the Si band
gap) were far inferior to what had been achieved earlier with the EPM. In the
intervening 15 years we have “learned to live” with this dichotomy—we use
first-principles LDA pseudopotentials whenever we need accurate ground state
properties, and we use the EPM, empirical tight-binding or ab initio quasipar-
ticle calculations whenever we need accurate spectroscopy.

It is now becoming clear that this ‘solution’ has its own problems. High
resolution spectroscopy, especially of quantum (dot/wire/film) nanostructures
shows that transition matriz elements (thus, wavefunctions) need to be ac-
curately determined to explain the rich spectrocopy of such structures [14].
Unfortunately, the EPM is not trained to do so. There is thus a contemporary
need to produce EPM-like, transferable pseudopotentials that represent well the
excited state energies, having, at the same time, LDA-quality wavefunctions.
Such pseudopotentials can then be used to understand the fascinating proper-
ties of the ~ 1000-atom nanostructures for which the LDA is both too costly
and insufficiently accurate, while the effective-mass band approach is inappro-
priate when these structures are too small. Figure 1 illustrates the calculated

(15] optical absorption spectra of spherical Si particles containing up to 1500
atoms.

cw3STEBEHER

Optical Absorption Spectra  E2(E}

* (a\:’) ] [ 7]
Figure 1: Optical absorption €2(E) of spherical Si quantum dots saturated

by hydrogens, as obtained from new semiempirical pseudopotentials. Vertical
arrows denote the minimum gap. From Ref. [15].

Such calculations are now easily performed with the new generation of
(semi)empirical pseudopotentials to be described here. What made such ©(103)
A%om nanostructure calculations feasible was the realization [15] that if one
Deeds to know only the near band-gap states, it is not necessary to solve Eq. (1)




e ¥ ik

176

(which, because of the orthogonality condition forces one to solve for all eigen-
states below the physically interesting near-gap states). Instead, one can ‘fold’
the spectrum of Eq. (1) about a reference energy €,.s so that the lowest energy
solutions of

2
(“%Va + Vepm — frcf) '»bik(r) = (C.‘k - Ere.f)2 Yk (r) (5)

are the states closest to €..;. By placing this ‘pointer’ €. s inside the gap, one
is guaranteed to find the VBM or CBM without spending effort looking for the
few thousand lower energy levels. This “folded spectrum method” (and the
generalized moment method [15] used to calculate Fig.1) enables O(10%) atom
calculations with an effort that is linear in the system’s size, provided one has
i1 a good Vepas.

5 L. W. Wang and I have recently worked on the problem of finding a good
Vepm using a two-step process [16]. First, we have explored the possibility of
constructing from Eqs. (2)-(3) transferable and fired (i.e., screened) spherical
and local atomic potentials v®(r) such that the solutions of

(=59 + Vnontocat(®) + 10 30 (Ir — Ra}ic() = &)~ (6)

a R,

reproduce to within a good approximation the solutions of the LDA Egs. (2)-(3),
i.e, ¥; will have large overlaps with ¥; and & will be close to ¢;. For simplicity,
the nonlocal LDA potential V,..,,,;omg(r) is kept the same in Egs. (2)-(3) and in

Eq. (6). In the second step, we introduce changes into v® such that the energy
levels & will match ezperiment (rather than LDA) while the wavefunctions v
will still maintain a high (> 99%) overlap with the LDA wavefunctions.

Our first step involves two approximations: First, while Vg xo(r) of Eq. (2)
can be written rigorously as a sum of non-spherical, atom-centered potentials,
we use instead in Eq. (6) a spherical representation. Second, while Vi xc[p(r)]
is system dependent [through the system’s p(r)], we will assume that the v*(r)
of Eq. (6) are fixed atomic potentials and hence transferable from one system
to the other. The combined nonspherical and nontransferability error will be
examined by comparing the solutions {e;, 1;} of Eqgs. (2)-(3) with the solutions
{&,;} of Eq. (6) for a few systems covering a range of coordination numbers
and volumes. At this step we have a spherical (S) and approximately transfer-
able LDA potential vs L pa(r) which we will term “SLDA”. We will show that
this potential provides good approximations to the LDA results for bulk systems
in that the band structures are reproduced to within better than 0.1 eV over
a considerable energy range. Thus, the SLDA approach, like the LDA itself,
suffers from poor reproduction of the observed excitation energies. Therefore,
in the second step we will empirically adjust v, ,(r) to reproduce the ez-
perimentally observed excitation energies. The amount of adjustment needed
(and its momentum dependence) will be explicit indicators of “LDA errors” in |
the Kohn-Sham effective single-particle potentxa.l It is interesting to note that
relatively minor changes are required in vg- Lpa(r) to reproduce the observed ez-
citation energies. Thus the resulting wavefunctions retain a large overlap with
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LDA wavefunctions. This approach yields what we term the “second princi-
ples”, or “semiempirical pseudopotential method” (SEPM).

This procedure permits simple, non-iterative electronic structure calcula-
tions [via Eq. (6)] for ~ 1000-atom nanostructures [15). This approach is
analogous to the EPM [1, 2]. Unlike the EPM, in which »(®) (r) was adjusted to
fit the single-particle excitation spectra, our approach produces also a large (in
practice ~ 99.9%) overlap < Pilv; > with the LDA wavefunctions, while repro-
ducing ezperimental excitation energies. Furthermore, unlike the EPM, which
produces only discrete form factors and is hence suitable only for a particular
crystal structure and lattice constant, we will develop a continuous vg’g pum(T)
which can be used for different structures and volumes with good transferability.
In essence, instead of using the LDA equation of an isolated atom [Eq. (4)] to
generate atomic pseudopotentials (6,9,11-13] we will use the LDA equations of
periodic solids [Eqs. (2)-(3)] to extract effective, screened solid state potentials
v(®(r) [Eq. (6)]. This approach affords a systematic procedure for generating
transferable effective potentials from a set of bulk LDA calculations, retaining
LDA-like wavefunctions but adjusting the potential to produce accurate excita-
tion energies. I will illustrate the method for a covalent solid (Si) and for a more
ionic case (CdSe), considering in each case a number of crystal structures and
a range of unit cell volumes, thus providing information on the transferability
of these potentials.

2. CONSTRUCTION OF SEMIEMPIRICAL PSEUDOPOTENIALS
FROM BULK LDA CALCULATIONS

2.1 The spherical LDA potential (SLDA)

Any periodic total potential such as Vet +Vy xc of Eq. (2) can be rigorously
expressed as a sum over atom-centered non-spherical functions. For example,
the local part of the total LDA potential for crystal structure o can be written

as
Vipa® =V + Ve = 3 o5 - Rao),  (7)

o

where vﬁ:’,ﬁ (r) is a non-spherical potential that can be expanded as
vEBRE) = 3o of5) (el) Kue), ®)
i

where K () are the Kubic harmonics of angular momentum ! for crystal struc-
ture o. For the diamond structure, for example, the symmetry-allowed ! values
are 0,34 ... In the following, we will introduce two simplifying approximations
Intended to remove the dependence of v{%70(r) on angular momentum ! and
on the crystal structure o:

(i) The spherical approzimation: We retain only the spherically-symmetric
(=0 part of Eq. (8). This means that we will write Eq. (7) without the
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vector notation, i.e,

=33 v§i P - Ragl), (9)

o RG b

where the subscript “SLDA” denotes “spherically approximated LDA”. We de-
fine as G, the reciprocal lattice vectors of structure o with unit cell volume
2 and as V(@) the Fourier transform of V(r). The a-th sublattice structure

! factors of structure o is
i

S@)(G,) =% 3 ¢GeRa, (10)
Ra.c

- To implement the spherical approximation, we will first solve Egs. (2)-(3)
( ‘, within the LDA (using ab initio nonlocal pseudopotentials) for a set of structures
and unit cell volumes denoted collectively by {c}, finding the self-consistent
Fourier coefficients VIECB 1(Go) of Eq. (7). We then [following Eq. (9)] attempt

the equality i
ViPA(Gy) = Zsm(G ) v§EBA(Ge]) (11)

‘ for each structure ¢ and reciprocal lattice vector G, and find the real-valued
g | ufgigAﬂG.,D. The solution is not always exact (or even possible) because the
¥ matrix of the linear equations Eq. (11) could be singular. A simple example

is when 5(*°)(G,) = 0 but V{%),(G,) # 0. These are the “forbidden re-
flections”. For these G, values, v(s"'L’”D)A(|G,|) is either approximated [when
§(@9)(G,) # 0, but the determinent is singular] or not calculated at all [when :
S(=7)(G,) = 0]. We fit the points {v(S‘EQAﬂGa[), |G|} for a given structure

o to a parametrized form

a,o o0 —(g—an)?/b3
eaalg)= ZCéLD)A(n) emlamen)/in, (12)

(it) The structural average approrimation: We will average over a number
of different structures {¢}. Thus, we perform the replacement

.(S'C:[}.‘J)A( ) < & Ug?DA(T) >, : (13)

where the angular brackets denote “structural average”. To implement the E
structural average of step (ii), we include in the fit of Eq. (12) all structures
{o}. The resulting curve (now dropping the superscript o) can be written as:

u(SQBDA (g = Z ng)m(n) e—(g=an)?/02 (14)

At this stage we have a spherically-symmetric and structural-averaged, screeneé
atomic LDA potential ug L) pa; this will be called SLDA in the following discus-
sions. We will examine the effect of the tota.l error by solving the band structure

of Eq. (6) [replacing v(*)(jr - Ral) by u§7p4(Ir — Ra|)] and comparing the |
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resulting eigenvalues ¢;, wavefunctions ¥; and related properties with those ob-
tained by solving self-consistently the original LDA Eqs. (2)-(3) for the same
structures.
2.2 Using the SLDA to construct the “semiempirical
pseudopotential method” (SEPM)

Our next task is to adjust the SLDA potential of Eq. (14) so that the
ensuing wavefunctions of Eq. (6) will still retain a high overlap with the LDA
wavefunctions of Eqgs. (2)-(3), yet the eigenvalues will fit the ezperimental (or
quasiparticle calculated) excitations. In this process, the ab initio nonlocal
potential Vioniocat(r) of Egs. (3) and (6) is kept unchanged as in the reference
LDA calculations. Furthermore, we use the same analytical form of Eq. (14)
for both u(S‘?D 4(g) and ugg P (@) the coefficients will change from cg‘;’u a(n)
to C53 par(n) while b, and ¢, will be kept fixed.

The fit to the observed excitations is done as follows. If P; denotes the phys-
ical property that we wish to reproduce and M, . =9P, /60,(,“) is its derivative
with respect to the fitting coefficients C{* of Eq. (14), we will minimize the
“cost function”

2
F=3 w (P.-”” ~PPA_SM:, AGS.“’) + D 1AC P Wy , (15)
i n,a n,a

where AC!Y = chs pu(n) — Cé'?p 4(n) are solutions of the linear equations
Eq. (15) and w; and w, , are predetermined weight functions. As will be shown
later, the changes from C’é‘}'_{D 4(n) to Cé"g pum(n) are rather small, thus, the use
of a linear representation Eq. (15) for the fitting process is adequate. This
closeness of "g'a'a:‘i)‘PM(Q) to ug?o 4(q) implies that many properties of SEPM
follow that of SLDA. These include wavefunctions, deformation potentials, the
transferability between different structures, etc.

3. APPLICATIONS TO BULK CdSe AND Si

In this section we will apply the approach outlined in Sec. II to covalent Si
and to partially ionic CdSe, thus covering a range of semiconductor systems.

3.1 Calculating the spherical LDA potential (SLDA)

Using ab initio pseudopotentials [17] and the Ceperley-Alder exchange cor-
relation function as parameterized by Perdew and Zunger (18], we have per-
formed self-consistent LDA calculations for five CdSe and five Si systems. The
five CdSe systems are: (1) the wurtzite structure with atomic volumes [l dne
and 0.944Q§95¢; (2) the zincblende structure with atomic volume Q§45¢; (3)
the rocksalt structure with atomic volumes 0.805'45¢ and QFS¢. Here NG4S
18 the experimental equilibrium volume per atom of wurtzite CdSe at ambi-
¢t pressure (lattice constants a=4.3Aand cfa = §\/§). Note that both the
Wurtzite and the zincblende structures have coordination number of four, while
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rocksalt is sixfold coordinated. The five Si systems are: (1) the diamond struc-
ture with atomic volumes Q§* and 0.9205"; (2) the simple cubic structure with
atomic volume 0.8225%; (3) the B-tin structure with atomic volume 0.7203*
and c/a ratio 0.552; and (4) the simple hexagonal structure with atomic vol-
ume 0.6905* and c/a ratio 0.94. Here, 5" is the measured cell volume per
atom of diamondlike Si at ambient pressure (lattice constants a = 5.434). The
diamond structure of Si is a fourfold coordinated semiconductor, while Si in the
simple hexagonal structure is an eightfold coordinated metal.

The self-consistently screened LDA potentials VI%) 4(G.) are used to solve
for v%%), in Eq. (11). The solutions vfg'i'g ,(|Gs|) vs |G,| for CdSe and Si are
shown as the diamond symbols in Fig. 2.

The important result demonstrated in Fig. 2 is that ug}j“D)A(lG,l) for dif-
ferent structures and unit cell volumes all fall on a nearly universal curve. The
structurally averaged and least square fitted curves u(;g pa(q) of Eq. (14) are
shown in Fig. 2(a)-(c) as solid lines. The fit is excellent.

To examine the overall accuracy of the SLDA, we compare the band struc-
tures obtained using in Eq. (6) ufg"g palg) with the band structure obtained in
direct LDA calculations. Table I shows the RMS and maximum band energy
differences between SLDA and LDA calculations of Si. Here we include

o
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Figure 2: The spherical LDA (SLDA) potential vg’zg 4(|G<|) as obtained by

inverting the self-consistent bulk LDA calculations on five crystal structures and -

cell volumes. Diamond symbols show the numerical results obtained by solving
Eq. (11) for all five structures. Solid lines represent least square fits of all
the diamond symbols using the analytic expression of Eq. (14). Dashed lines
represent the empirically adjusted potential (SEPM) fit to the experimental
excitations. For CdSe, we give the symmetric v©¢ +v5¢ potential as well as the
antisymmetric v“¢ — v5¢ part. From Ref. [16].
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Table 1: RMS and maximal band structure error ef2P4 — e£P4 (in meV) for
Si systems. We include in the statistics most high symmetry states, (e.g, L, T',
X and K for the diamond structure) and average over band energies up to ~4
eV above the CBM or Fermi level. The SLDA wvs LDA error in the hydrostatic
deformation potential in column four is about 18% and the relative error of the
phonon deformation potentials in column five is about 14%. The BC8 and fecc
structures were not included in the fit of the SLDA potential, so the results are

pure predictions.
Struct.: Diam. Diam. Diam. Def. diam. sc
Volume: D 0.920% {N)} - {0920} {R+6}-{R} 0820
RMS error: 46 69 59 66 10
max error: 97 136 201 176 22
Struct.: sh B-tin BC8 fce
Volume: 06990 07290 09190 07290
RMS error: 16 15 75 75
max error: 43 41 270 122

the high symmetry points for each structure (e.g, L, T, X and K for the dia-
mond structure) and all eigenstates up to ~4 eV above the conduction band

minimum for semiconductors and ~4 eV above the Fermi energy for metals.

The average SLDA vs LDA energy difference is about 60 meV. Notably, the

energy errors for simple cubic, simple hexagonal and f-tin structures are much

smaller (~ 15 meV) than those for the diamond structure. The hydrostatic

deformation potential difference between SLDA and LDA is about 18% for the

diamond structure. Table I also gives the energies of the diamond structure
with randomly displaced Si atoms (by 10% of the bond length). The error in
the phonon deformation potential is about 14%. Table I also shows predictions
for additional crystal structures, not used in our fits. These include the fourfold
coordinated BCS structure [19], which has eight Si atoms per unit cell and an
atomic volume of 0.91Q5%. The average SLDA vs LDA band energy error is
75 meV, only slightly larger than the errors for the structures included in the
fit. We also tested the simple face centered cubic structure, which is a 12-fold
coordinated system with an atomic volume of 0.72Q5*. The average SLDA vs
LDA energy error is also 75 meV.

To summarize the energy errors, we can say that the spherical and struc-
turally averaged potential ufgag palq) reproduces the original self-consistent LDA
band energies to within ~ 0.1 eV or better for a range of different crystal struc-
tures, including those not used in its construction.

We next discuss the accuracy of uf.-;? palg) in reproducing LDA wavefunc-
tions and related properties. To this end, we have calculated the overlap be-
tween the SLDA wavefunctions ¢; [Eq. (6)] and the LDA wavefunctions i
[Egs. (2)-(3)]- The results for CdSe in the wurtzite structure and for Si in the
diamond structure show that for both systems the average overlap < ¥:l¥i >

(over states of a few special k points and within 4eV above the CBM) is above -

99.99%, while the minimum overlap is about 99.97%. This agreement is excel-
lent.
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A more stringent test of wavefunction quality is to compare the momentum
matrix elements M;; =< 4; |B|¥s >, since a small change in the wavefunction
can lead to a large change in this quantity. We find that M;; calculated by the
SLDA is very close to the LDA values with typical errors less than 1%.

In summary, the wavefunctions, transition matrix elements (and actually
also the dielectric constants) obtained with the spherical and structural av-

eraged atomic potential u‘(g"g pa(g) reproduce the original self-consistent LDA
calculations extremely well.

3.2 Using the SLDA potential to construct the SEPM

We next will fit u{%) 4(q) to get the semiempirical potential u(;g. Par(q) us-
ing Eqgs. (14) and (15). The resulting u.(g‘g. par(g) is shown as dashed lines in
Fig. 2(a) and (b) for CdSe and in Fig. 2(c) for Si. The change from ug’fp 4(9)
to ugg pm (@) [Fig. 1(a)-(c)] is very small. Figure 3 shows the difference
usc’E)P M — USip4 in momentum Space on an enlarged scale. Note that the

change is confined to ¢ < 3 au~!. the main LDA error in the potential is

an underestimation (overestimation) of the low-momentum components in the
cation (anion).

3.3 SEPM results and comparison with the traditional EPM

In this section, we will show our SEPM results and compare them with
the results of traditional Bergstresser and Cohen [20] local empirical pseudopo-
tential for CdSe and with the Chelikowsky and Cohen [21] nonlocal empirical
pseudopotential for Si. The comparison is done for (a) the band structure, (b)
the wavefunctions (c) the optical properties.

(a) SEPM band energies: The fitted experimental quantities P; and their
SEPM results are listed in Table II for CdSe and in Table III for Si. To see
the modification from SLDA to SEPM, we also listed the physical quantities
calculated from SLDA. For Si, our SEPM band structure has a similar quality as
the (already accurate) Chelikowsky-Cohen nonlocal empirical pseudopotential
(note below, however, the different quality of wavefunctions). For CdSe, our
SEPM result represent an improvement especially for the upper valence band
width, compared to the Bergstresser-Cohen local empirical pseudopotential.
Note that both the hydrostatic and phonon deformation potential of the SEPM
closely follow those of the LDA and the SLDA. This is one of the advantage
of using SLDA as our starting potential in the fitting procedure. The SEPM
inherits many of the correct properties of the SLDA (hence LDA) without
explicit fitting.

(b) SEPM wavefunctions: We examine the average overlap for all states
up to CBM + 4 eV. For CdSe, the overlap of the Bergstresser-Cohen wave-
function with the LDA wavefunction is on average only 97%, the minimum
overlap being 92%. The overlap of the SEPM wavefunction with LDA (and
SLDA) wavefunction is 99.8% on average, the minimum being 99.5%. For Si,
the Chelikowsky-Cohen nonlocal EPM wavefunction overlap with LDA result
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Table 2: Comparison for CdSe of band energies (in eV), band gap E, (in eV)
and effective masses (in units of electron mass) as obtained in the (i) LDA, (ii)
experiment (references will be given in publication [16]), (iii) LDA with spher-
ically symmetric local potential (SLDA), (iv) the semiempirical SEPM and (v)
the traditional empirical pseudopotential method (EPM) [20]. Unless otherwise
stated, the assumed structure is wurtzite and the energies are measured from
top of the valence band I'g,(A). ZB and RS denote the zincblende and rocksalt
structures, respectively. Quantities denoted by asterisk show particularly noted

improvement in SEPM relative to EPM.

CdSe LDA Exptl. SEPM SLDA EPM
Iy gu[work func.] -6.29 —5.35 -5.24 -4.61 -
Cry. Field Split.  0.031  0.025  0.027* 0.052 -0.076
Spin-Orb. Split. 046  0.43 0.40  0.43 -
E, 073 174 172 073 178
'3y -427 =520 —4.06* -459 -2.53
g -0.83 -1.20 -0.84 -091 -0.58
| S 311 430 396 3.00 424
| P 6.45 8.5 712 626 7.75
e -1219  -11.4 -12.08* -12.27 -14.73
M. — My, 4.04 5.2 488 407 510
M. 3.39 4.5 417 327 490
M}, 483  6.25 523 471 641
My, 635  7.50 695 624 7.73
My, -0.74 -1.20 -0.81 -090 -0.55
Ms, -1.39 -1.70 -1.35* -1.59 -0.70
M;, 174 -245 =179 -198 -1.17
M, 255 =320 -251* -2.87 -1.51
Mj, -3.65 -3.60 —3.37° -394 -2.36
Mi, -419 -4.90 -3.88* 450 -2.70
me(]]) 007 0.3 013 007 018
me(L) 0.08 0.3 016 008 0.17
mya(ll) 164 130 183  1.26 -
mya(Ll) 018 036 029 0.15 -
myp(L) 0.20 0.9(?) 044  0.21 -
E, (ZB) 070  1.68 1.59  0.59 -
Xi1c—Z4 (RS) -062 070 0.69 - -0.80 -

-0.60 0.70 0.69 -0.82 =
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Table 3: Comparison for Si of band energies (in eV), band gap E, (in eV)
and effective masses (in units of electron mass) as obtained in the (i) LDA,
(ii) experiment, (iii) LDA with spherically symmetric local potential (SLDA),
(iv) the semiempirical SEPM and (v) the traditional empirical pseudopotential
method (EPM) [21]. The energies are measured from top of the valence band
I'25y. Spin-orbit interaction is omitted. mgf)_ x(h) and ml(f)_ £ (h) stand for the
non-spin-coupled effective hole mass [defined as (hk)? /2AE] in the T' — X and
I" — L directions, where i denotes the band degeneracy.

Si LDA Exptl. SEPM SLDA EPM
[a50y[work func.] -5.2  —-49 490 -4.74 =
Tie -11.92  -12.5 -11.79 -11.98 -12.36
Dige 255 335 301 270 342
T2 314 415 412 375 416
), 283 -29 278 293 -2.88
X 062 113 126 076 1.14
Lo -9.58  -93 952 964 .9.90
696 —68 -6.83 -7.06 -7.10
Lss -117  -12 118  -125 -1.23
Ly 147 204 196 158 234
Liss 330 39 38 352 434
By 051 1124 1.114 0630 1.009
Bin -442  —448 426 -455 -4.47
my(e) 097 092 093 092 088
mr(e) 019 019 021 019 019
m® (k) 026 034 031 027 031
m () 017 015 019 018 020
m | (h) 054 069 064 059 074
m® | (h) 011 011 015 013 012

for 99.4% on average, the minimum being 98.7%. On the other hand, the over-
lap of SEPM wavefunction with LDA (and SLDA) wavefuntion is 99.97% on
average, the minimum being 99.90%. Thus, SEPM wavefunctions are 10 times
closer to their LDA counterparts than the traditional EPM wavefunctions.

Furthermore, the matrix elements | < ®ilpls > > of SEPM follow closely
the LDA and SLDA results. On the other hand, we find that the some matrix
elements of the traditional EPM’s differ from the LDA results by a factor of
two.

(c) SEPM optical properties: The SEPM density of states and the dielectric
constants e;(E) are shown in Fig. 4 for CdSe and Fig. 5 for Si. The density
of states compares very well with the experimental data, especially the peak
Positions. For CdSe, however, there are a number of discrepancies caused by the
Deglect of the Cd 4d orbitals in our pseudopotential treatment: (i) The width
of the CdSe upper valence band in Fig. 4(a) is smaller than the experimental
value. Thig js partly caused by our neglect of the Cd 4d states. Because of
P-d coupling, the 4d state will push up the top of the valence band resulting in

e A —
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an increased upper valence band width. (ii) The optical absorption spectrum
€2(E) of CdSe agrees very well with the experimental data [24] for the peak
positions. However, in the E ~ 14 eV region, the experimental e, (E) has larger
values than the SEPM results. This too is because we have neglected the Cd
4d states in our CdSe SEPM calculations. The 4d electrons has a contribution
to e2(E) right in the 14 eV region[25].

For Si, the SEPM e;(E) misses the first peak apparent in the experimental
result [26]. This peak comes from a large excitonic effect in the Si system, which
cannot be described by our single electron representation. (The same is true
for all other single electron methods including LDA and traditional EPM).

4. CONCLUSIONS

Our principal results are:
(i) First-principles structure factors for a range of crystal structures, coordina-
tion numbers, and unit cell volumes of a given compound all fall on a simple,
nearly universal curve, with little scatter (diamond symbols in Fig. 2). This
constitutes an ex post facto modern explanation of Marvin Cohen'’s 30 year old
EPM idea.
(ii) Spherically-symmetrized and structurally-averaged LDA structure factors
(SLDA given by the solid lines in Fig. 2) reproduce the full LDA band structure
(Tables I and II) to within ~0.1 eV or better over a range of crystal structures.
(ili) The corrections in the SLDA potential needed to reproduce observed ex-
citation energies are both systematic and small (Fig. 3). Thus the resulting
wavefunctions retain a large overlap with the original LDA wavefunctions.
Our procedure of empirically fitting the SLDA to obtain the SEPM can
be contrasted with the ab initio GW correction to LDA results [27]: both ap-
proaches change the LDA potential, such that the ensuing band energies agree
with the experimental results. Our SEPM wavefunctions have larger than 99.9%
overlap with the LDA wavefunctions. This provides some insight into a long-
standing puzzle: as reported by Hybertson et al. [27], the GW single particle
wavefunction also has larger than 99.9% overlaps with the LDA wavefuntion
(this has, apparently, never been understood). Since in both modifications of
LDA (GW and SEPM), the ensuing wavefunctions have > 99.9% overlaps with
the original LDA wavefunction, the reason for this must be rather general, and
not a unique property of the GW correction. The reason might be that the
original LDA band energies are close enough to the experimental results, so
that small Hamiltonian modifications AH are enough to correct them by first
order perturbation Ae; = < ;| AH|y); > without changing the wavefunctions.
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