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We present the results of a first-principles fully self-consistent study of the electronic properties of cubic
boron nitride in the local-density formalism using our previously published numerical-basis-set linear
combination of atomic orbitals scheme. The resulting band structure shows considerable disagreement with
previously published orthogonalized-plane-wave, augmented-plane-wave, and pseudopotential studies. A
detailed study of the ground-state properties of the system, such as x-ray scattering factors, cohesive energy,
equilibrium lattice constant, and their behavior under pressure, yields very good agreement with available
experimental data. Reasonably good agreement is obtained for excited state properties determined by optical
and x-ray absorption measurements. The bonding characteristics in this prototype of III-V compounds are
discussed in detail and compared with results of our previous study of its isoelectronic homopolar analog,
diamond, and with studies on the hexagonal graphitelike modification of BN.

I. INTRODUCTION

The extraordinary properties of cubic boron
nitride have been the subject of intense experimen-
tal investigations since its discovery in 1957 by
Wentorf.! The simplest III-V compound, it is iso-
electronic and isostructural with diamond. Its
hardness matches that of diamond® while its effec-
tive ionic charge is the highest of all known III-V
compounds.?** Like carbon, BN crystallizes in
two forms, a cubic zinc-blende and an hexagonal
(graphite-like) structure. These properties make
a comparative study of these compounds particu-
larly interesting. We have previously studied the
electronic properties of diamond®*® in the local-
density formalism (LDF)" *® using our first-prin-
ciples self-consistent numerical-basis-set linear
combination of atomic orbitals (LCAO) method.®’ *°
In particular, we have investigated the band struc-
ture, charge distribution (as measured by x-ray
scattering factors), cohesive energy, equilibrium
lattice constant, behavior under pressure, and
the bonding characteristics induced by the various
electron exchange and correlation potentials per-
taining to the local-density formalism. In this
study, we extend our investigation to the isoelec-
tronic cubic boron nitride in an attempt both to
understand the electronic structure features in the
heteropolar zinc-blende system and to test further
the applicability of the LDF to quantitative de-
scriptions of covalent-ionic systems.

The crystal structure of cubic boron nitride has
been established by Wentorf* (lattice constant a
=3.615+0.001 Aat 25°C). Its optical properties
in the infrared region have been studied by Gielisse
et al.® and recently by Chrenko!! who has also investi-
gated itsultraviolet absorption spectra. Some pre-
liminary results have also been published by Phillip
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and Taft'? and Halperinand Katzir.'* The spectra of
the core levels have been studied by means of x-ray
emission spectroscopy.'*”*® The distribution of
electrons inthe ground state recently has been studied
by Weiss by means of x-ray crystallography.

Theoretical studies™ ™ of the electronic struc-
ture of cubic BN include the work of Kleinman and
Phillips'® using a pseudopotential technique in
which the heteropolar antisymmetrie potential
(which vanishes in the homopolar diamond case),*®
is treated as a small perturbation on the previously
computed diamond potential. Hamstreet and Fong®®
have indicated that since the basic pseudopotential
cancellation in crystals like BN made up of first-
row atoms is incomplete due to the lack of p char-
acter in the core states, a nonlocal correction to
the pseudopotential is necessary. Adjusting em-
pirically their local and nonlocal pseudopotential
parameters, they obtained a band structure that
differs substantially from that of Kleinman and
Phillips.!® In a subsequent orthogonalized-plane-
wave (OPW) study, Bassani and Yoshimine* have
similarly faced a plane-wave convergence difficul-
ty due to the lack of pseudopotential cancellation
for crystal states having p symmetry. (Their
model employs atomic Hartree-Fock charge den-
sities to represent the crystalline density and the
crystal exchange potential is linearized with re-
spect to the single-site potentials). Wiff and Ke-
own?® and Keown?* have calculated the band struc-
ture of BN using the augmented-plane-wave (APW)
method with a muffin-tin crystal potential in which
the boron and nitrogen potentials were obtained by
linearly scaling the carbon potential and adding a
constant Madelung term (with effective charge
chosen empirically to yield a gap of 8.8 eV)® to
account for the partial ionic character of the sys-
tem.
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TABLE I. The prediction of energy separation between high-symmetry points in the zone
given by various band models: A, indicates the lowest point in the conduction band in the
I'-X direction; WVB1 and WVB2 refer to the width of the lowest (VB1) and highest (VB2) val-
ence bands, respectively, and WVB is the total width of the occupied valence band. Results
are given in eV. Asterisks denote values interpolated from the published figures.

Present
Energy exchange and
difference Emp.? APWP opPwWe Pseudo? correlation
S VP 10.8 8.9 7.6 14.3 10.8
Tyso— Tie 8.4 9.6 8.4 20.0 11.9
Lg,—~Ly, 9.9 11.2 13.4 14.4 14.2
X5, X3¢ 13.8 14.5 13.6* 14.7 18.7
X5, Xy,0 12.7 13.3 9.0 13.4 12.9
Ly ,~Ls,c 15.0 117 11.8 15.4 15.4
| N 7.6 7.2 3.0 10.5 8.7
WVB 27.5 17.8 23.2 17.9 19.1
WVB1 6.8* 4.5 5.0% 5.6 5.1
WVB2 16.5 8.0 12.7* 3.5 9.0

2Empirical (nonlocal) pseudopotential, Ref. 26.

bReference 23.
°Reference 22.
dPperturbative pseudopotential, Ref. 19.

Table I presents the energies of the lowest inter-
band transitions at high symmetry points, the
width of the lowest valence bands (VB1 and VB2,
respectively) and the total width of the occupied
bands predicted by these four models. The agree-
ment between these results is seen to be generally
very poor. The two nonempirical studies (OPW)?
and pseudopotential®® yield results that differ by as
much as 6.7 eV for the direct gap, 7.5 eV for the
indirect gap, and 5.3 eV for the valence band width.
The APW?3+2¢ and the empirical pseudopotential?®
studies which use empirical parameters, as well
as the early semiempirical LCAO studies of Coul~
son et al.?° and Redei®! yield similarly very incon-
clusive and scattered results. This demonstrates
the inherent difficulties in obtaining a reliable
theoretical model for a compound like BN in which
the degree of interatomic charge transfer is inter-
mediate between the purely covalent and purely
ionic limits and a straightforward plane-wave ex-
pansion of the crystal potential is very slowly con-
vergent"’“ on account of the absence of p character
in the core orbitals.

In the present study, we use a first-principles
approach in which the crystal potential is deter-
mined self-consistently with no ad-koc assumptions
and the band Hamiltonian is solved in an extended
LCAO set to determine the band structure, charge
density, behavior under pressure, and cohesive
properties. The bonding mechanism in BN is dis-
cussed in detail and the results compared with
those obtained in our previous study on diamond,’
and with studies on the hexagonal form of BN.2°+3°

II. METHODOLOGY: THE SELF-CONSISTENT
CRYSTAL POTENTIAL

As a first step toward the determination of the
self-consistent (SC) crystal potential in the local-
density formalism, we construct a model charge
density. The individual a-site densities p(F,
{£9Q*}) obtained from the SC solution of the atomic
local-density equation for the assumed central
field (n!) orbital occupation numbers f; and ionic
charge @ are lattice summed to yield the popula-
tion-dependent superposition density puy(T, { /%,
Q@%}), For the particular case where the {f%, @°}
are chosen as the populations and charges of the
ground state atoms, p,,(F, { /%, @*}) constitutes a
superposition of overlapping undistorted single-
site densitites. This quantity is then used to gen-
erate the various components of the local-density
crystal potential: the short-range Coulomb part

skc (0,p(F)) is obtained by solving the associated
Poisson equation and similarly the first approxi-
mation tothe exchange-correlation potential
Ve (p,,,(¥)) is obtained by applying the corres-
ponding local-density functionals”*®*3! directly to
Psp(T). After the lattice summation leading to
VL. (pup(F)) is completed at a large cut-off dis-
tance (17 a.u.), there still remains a long-range
electrostatic “tail” to each of the atomic Coulomb
potentials due to the unscreened ionic charge Q.
The potential due to a lattice of such point charges
is then calculated by the Ewald method® to yield
the long-range Coulomb term ViR (¥). Our initial
crystal potential V***(p,,,(¥)) is given as the sum
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of V& psup(F)) +V3&(pap(F) + VI, (F) and depends
on the assumed set { £%, @} for boron and nitro-
gen and on the lattice structure. The initial guess
for these populations is the neutral atom configur-
ations B°® 1s22s22p! and N° 1s22s%2°, The potential
is calculated in tabular form over a set of 3500 in-
tegration points in the unit cell. Linearization® of
Vie (Pup(F)) with respect to the atomic densities
p7) is avoided, and similarly, no use is made of
spherical approximations®3'2¢ to the total potential
Vsup(psup (F)).

We solve the band problem with this initial poten-
tial in the LCAO representation using our previous-
ly published numerical-basis-set discrete-varia-
tional technique.®*!® We use as basis functions
Bloch states <I>,m(1?, T) formed from accurate nu-
merical solutions X, (7) to the atomic-local-den-
sity equations, again with an assumed population
and charges {f% , @%}. We use numerical orbitals
corresponding to p=1s, 2s, 2p, 3s, and 3p for
both boron and nitrogen; the addition of 3d orbital
was found to introduce negligible changes in the
band structure for energies lower than 16 eV above
the valence band edge.

The Hamiltonian matrix elements in the Bloch
basis are computed by a three-dimensional Dio-
phantine integration scheme® and include all the
multicenter integrals up to an interatomic separa-
tion distance of 16.5 a.u. This summation range,
together with the use of 3500 Diophantine integra-
tion points, assures a stability of 0.05~0.1 eV in
the band eigenvalues in the energy range studied.
The band Hamiltonian is solved for 10 special
points in the irreducible Brillouin zone (BZ)** and
the resulting crystal wave functions at these points
are used to generate the output density, pC,y(f' ). A
smaller set of 6 special BZ points (I'-X-L-W=-A-X)
produced a charge density that differs by less than
1% from that determined by the 10-point sampling.
The output crystal density p.,(F) differs, in the
general case, from our model density py, (¥, { /%,
Q°} both due to the intra-atomic charge redistri-
bution (e.g., promotion of nitrogen 2s charge into
the nitrogen 2p shell) and due to charge flow be-
tween the atoms. To take account of these effects,
we use our charge and configuration SC (CCSC)
procedure.'® We hence minimize the difference
Ap(F) =p,, (F,{ f51, @*}=p.,(F) over the unit-cell
space in the least squares sense by iteratively
varying the set of orbital populations and charges
{75, %}, and recalculate the new single-site den-
sities po(7, { /55, @°}), the basis function x X(¥)
and crystal potential V**(p,, (¥, {75, @°})), cor-
respondingly.

Figure 1 shows the quantity A p(F) obtained after
the first iteration (full line) along the bonding [111]
direction. Along with some buildup of density in
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FIG. 1. Charge-density difference, 2p(T) in a.u., be-
tween the values obtained in the superposition model
and the crystal densities obtained at the first CCSC
iteration (full line) and at the convergence limit of the
CCSC iterations (dashed line).

the interatomic region (indicating some covalent
bond formation), there appear additional sharp
features on the atomic sites themselves due to the
accumulation of extra charge on the electronega-
tive nitrogen atom and some change in the positions
of the boron orbital nodes relative to the super-
position limit. The dashed line in this figure rep-
resents the residual Ap (T) obtained after six iter-
ations. The final electronic configuration obtained
in this way is B 1s%°00250°652p175350- 123013 gpnd N
15200251712 43+52350-083 5004 corresponding to for-
mal net charges of B*°*3*N~°:35, This configuration
indicates some 2s to 2p intra-atomic charge trans-
fer together with a transfer of electronic charge
from the boron s shell to the nitrogen p shell and
some population of the formerly unoccupied atomic
3s and 3p orbitals.

Although this final CCSC configuration constitutes
an “optimal” choice within the basis of exact local
density atomic densitites, it does not simulate the
output crystal density pC,y(F ) very accurately; a
standard deviation of about 0.10e (out of 12 unit-
cell electrons) still marks a substantial difference
between the refined superposition density and the
variationally obtained puy (F). Thus, there are
still non-negligible parts of the crystal density
that are not amenable to accurate representation
by a superposition of optimized atomic-like densi-
ties located around existing atomic sites. To
account for this residual density we proceed to
the second step in self-consistency (“full SC”) by
Fourier transforming the »esidual Ap(F) over a
set of reciprocal-lattice vectors (RLV) and solv-
ing the associated Poisson equation directly in
reciprocal space.® Owing to the smooth character
of the final Ap(¥) (cf. Fig. 1), such a Fourier
series converges rather rapidly (the first 12 stars
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are needed) and does not give rise to the usual con-
vergence difficulties associated with the Fourier
decomposition of the all-electron (core plus val-
ence) density.3®*3 The correction AV(F) to the
Coulomb interelectronic potential thus obtained is
added to the crystal Coulomb potential obtained in
the last CCSC iteration while the refined exchange-
correlation potential . (p,,(¥)) is calculated
directly from p,, () +Ap(¥). The new Hamilton-
ian is diagonalized repeatedly to obtain finally a
negligible Ap(F) (i.e., [ |Ap(F)dr | <10~ 3¢) be-
tween successive iterations,

The final crystal potential is plotted in Fig. 2
along the [ 111] bond direction. It is seen that the
exchange potential constitutes some 40% of the
Coulomb potential in the bond center region while
the correlation part is one order of magnitude
smaller. Both exchange and correlation parts be-
come negligible relative to the Coulomb part at
distances of about 0.2 a.u. from the nuclei. The
long-range electrostatic potential is seen to have
large nonconstant contributions in the bond region
and acts to stablilize the more electronegative
nitrogen site relative to the boron site.

Figure 3 shows the difference in the various po-
tential components between diamond® and BN along
the [111] direction, Both the short-range and the
long-range Coulomb potentials give rise to rather
sizable asymmetric contributions to the potential
difference while the exchange and correlation
terms are less asymmetric. The sizable lowering
of the potential near the nitrogen site causes an
appreciable charge flow to this region and increas-
es the polarity of the system. These appreciable
differences in the SC potentials of diamond and BN
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FIG. 2. Contributions to the self-consistent crystal
potential in cubic BN along the bonding [111] direction.
Note the change in scale for Veorr.

seem to suggest that a first-order perturbation!®?
in AV would not suffice to quantitatively describe
the accompanying differences in their band struc-
ture. In particular, we find that the ratio between
the asymmetric potential Fourier coefficients for
the (111) and (200) reflections is about a factor of
2 smaller than that obtained by Kleinman and
Phillips'® in their perturbative treatment.

III. RESULTS

A. Band structure

The band structure of cubic boron nitride was
calculated with the final SC potential at 24 k points
in the irreducible zone. Figure 4 shows the results
obtained for an exchange only model (i.e., without
the correlation potential®') using an exchange co-
efficient @ of 2 and 1. On the right-hand side we
have indicated by horizontal lines the correspond-
ing free-ion eigenvalues.

The valence band of cubic BN is split into two
parts: a lower (VB1) band and a group of three
higher bands (VB2) separated by a gap of 4.7 and
5.0 eV for @ =% and 1 respectively. The bands are
slightly wider with @ =% (5.3 and 9.2 eV for VB1
and VB2, respectively) than with @ =1 (4.9 and
8.9 eV, respectively). The VB2 band edge (T, ,)
is separated from the conduction bands by an in-
direct gap of 8.5 eV (@ =%) and 8.8 eV (a =1),
while the direct ')y, , = T';5 ;. gap is 10.7 and 11.2
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FIG. 3. Differences between components of the self-
consistent diamond (Ref. 5) and BN potentials. The
black dots mark the positions of the atoms along the
[111] direction.
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band structure of
cubic BN obtained
in the exchange
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and configuration re-
sults (B+0. 35N'0. 35’.
see text).
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eV, respectively. The total width of the occupied
valence bands is about 19 eV in both models.

Figure 5 compares the structure of the valence
bands in the exchange (a=%) and correlation model
with that obtained in the pure-exchange (a=%
model. The main effect of the correlation potential
is to induce a rigid downward shift of about 0.7 eV;
the k-dependent changes are rather small (0.1~
0.2 eV). The width of VB1 and VB2 decrease by
0.2 eV and the indirect gap increases by the same
amount. The width of the various bands and the
energy separation between some high-symmetry
points in the BZ obtained in this refined exchange
and correlation model are summarized in Table 1.
Our self-consistent band structure differs very
considerably from published results; e.g., where-
as the bottom of our conduction band lies on the
I'-X line at k =(0.88, 0.0, 0.0) with secondary mini-
ma at K, . and I';; ., the empirical pseudopotential
study of Hemstreet and Fong?® shows that T, level
is lower than the I'), . level and forms the bottom
of the conduction band.

The available optical data on cubic BN is rather
scarce: a recent absorption study by Chrenko!! in-

X ZW K

z

dicates an indirect minimum band gap of 6.4 +0.5
eV, while a similar value of 6.0+0.5 eV is inferred
from the soft x-ray data of Formichev and
Rumsh.!® The study of Halperin and Katzir'?® indi-
cated the existence of point defects in the material,
giving rise to optical traps at 0.5-2.0 eV below

the conduction threshold, suggesting that the ob-
served values for the indirect gap might be lower
bounds to the intrinsic transition. Our result

(8.7 eV) is larger than the values obtained by
Chrenko!! and Formichev and Rumsh®® but agrees
with the data of Gielisse et al.® (8.8 eV). The
semiempirical LCAO study of Redei®! predicts a
very low threshold for this indirect transition (3
eV) and similar results are obtained by the OPW
studies [3.0 eV (Ref. 22) and 3.4 eV (Ref. 25)]. The
Hartree-Fock results of Euwema et al.?” show a
I'-X gap of 22.6 eV but correlation corrections are
expected to significantly reduce this quantity.

It is interesting to compare this fundamental gap
in cubic BN with the analogous transition in the
graphite-like hexagonal®®**° BN where the observed
gap is 5.8 eV?°'3® and occurs between the P and
P; states in the zone.?®* However, whereas mixed



B-N LCAO’s are permitted by symmetry for the
T');, and X, . band edge states in the zinc-blende
structure, the P; and P, hexagonal states are
Bloch states constructed either of N or B orbitals
and hence the gap is purely heteropolar. (In the
homopolar graphite analog, this gap reduces to
zero due to the inversion symmetry associated
with the equivalent atoms in the unit cell, and gives
rise to its semimetallic properties.) The lattice
constant dependence (e.g., pressure changes or
temperature effects) of the band gap in hexagonal
BN is hence expected®® to be much weaker than the
corresponding dependence in cubic BN on account
of the occurrence of two-center interaction terms
in the I'j; , = X, . transition energy as opposed to
the appearance of one-center (boron and nitrogen)
terms in the analogous transition in the hexagonal
modification.

The calculated value for the K, , =K, . transition
energy (14.6 eV) and the X , ~ X, . energy (12.9
eV) are in good agreement with the large peak ob-
served at 14.5 eV and its low energy shoulder at
about ~13 eV. The transitions between these states
form the fundamental optical band in a large num-
ber of M-V zinc-blende materials,® the energies
of these transitions decreases monotonically with
the increase in electronegativity difference of the
constitutent atoms.

The width of the valence band of BN has been
measured by Formichev and Rumsh!® to be 15.4-
22 eV, a value which brackets our value of 19.1 eV.
The remaining data of Table I still await experi-
mental verification.

Upon comparing our results for BN with those
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previously obtained by the same method for dia-
mond,® we note an increase inthe ionization energy
(from 10.5 to 11.9 eV) and a decrease in the band
width (20.4 to 19.1 eV). Similarly the indirect I'-A
gap increases from 5.45 eV in diamond to 8.7 eV
in BN and the leading L gaps (L], —~L{,and L],
~L,,.) increase from 13.3 and 13.2 eV in diamond
to 14.2 and 15.4 eV in BN, respectively. These
trends are consistent with the increased ionicity of
BNrelative to the covalent diamond case.?®***° The
low-lying conduction bands at the X-point (X, , and
X, o) in BN are split while in diamond they are de-
generate (X, o). The magnitude of this splitting
(5.8 eV) is larger than that obtained in the perturb-
ative pseudopotential study® (1.36 eV) but is com-
parable to the results obtained in the OPW?? and
APW?® studies (4.76 and 3.7 eV, respectively), and
is responsible in part for the lower gap obtained
here relative to the pseudopotential study. We find
that the magnitude of the X, ; to X; . splitting ob-
tained here is rather insensitive to addition of
more diffused basis functions (e.g., the plane-
wave-like 3d orbitals) and hence the deviation ob-
tained from other calculations are not due to diffi-
culties associated with the use of an “atomic-like”
representation.

B. Charge density

To study the bonding mechanism in cubic BN,
we first consider the orbital nature of the occupied
bands. Figures 6 and 7 show the orbital charge
density along the [111] direction of some high-sym-
metry states in VB1 and VB2, respectively. The
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FIG. 6. Orbital charge densities of some high
symmetry states in the lower valence bands
(VBL1) along the [111] direction. The atomic
positions are indicated by full dots.

T, , point at the bottom of VBL1 is a hybrid between
N and B 2s orbitals with a somewhat larger pro-
portion of the former; the higher-lying L, , point
in VB1 contains some B 2p character and only a
small B 2s admixture resulting in an enhanced den-
sity in the bond region. Finally, the X, , point at
the top of VB1 is a N s=B p hybrid which has ap-
preciable amplitude only in the N region. In the
VB2 group of bands one finds an N p—B sp hybrid

at the bottom X; ,; at L, ,, the B s character de-

T T
osol-|! VB2 CHARGE DENSITY Al
| AR
H / \
| / \
. / \
3 oaof|! == Tis,y / (.
s | — S
£ ! — = X3, / |
2 o3ol|! / 1]
w H / \
e | / \
w 1 /
@ | / \
g | / |
T 020 : / -
! / \
| // / |
i / VAN
ok ~ W\
s .~ K
\ el \\
" ==
o I - | N
_E![‘“] [¢] ![HI]

8
DISTANCE ALONG [II1] DIRECTION
FIG. 7. Orbital charge densities of some high sym-

metry states in the upper valence bands (VB2) along the
[111] direction.
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creases in favor of N 2p character; at I, (top
of the band) an almost-pure N 2p state is formed.
The general pattern of orbital densitites in VB1
and VB2 shows a charge buildup in the bond region
characteristic of covalent bonding together with
enhanced amplitudes in the nitrogen region, indi-
cating some ionic character.

A more detailed description of the orbital char-
acter throughout the BZ can be obtained by per-
forming a population analysis®**'**? on the crystal
wave function. Such a procedure can be conven-
iently carried out in the L8wdin technique* in
which one orthogonalizes the Bloch basis set for
different orbital indices u using a symmetric
transformation and identifies the square of the
Blochbasis-set coefficients[C,, J(E)] inthe LCAO
expansion with the pth orbital charge on site a due
to band state |K,j). Figure 8 shows the BZ disper-
sion of the orbital charges summed separately
over the band index j of the lower group of valence
bands (VB1) and the upper group (VB2). These
dispersion curves measure the contribution of
each of the basis orbitals to the total ground state
charge in each of these valence bands. It is seen
that VB1 is a predominantly N 2s band having some
admixture of B 2p character. The degree of hy-
bridization varies considerably across the BZ from
a strong N 2s—-B 2p hybrid along X-W-K to a N 2s—-
B 2s hybrid at I'-L. The upper valence band VB2,
on the other hand, is almost entirely of pure N 2p
character with only a slight amount of B 2p char-
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FIG. 8. Dispersion of the orbital charges 9paj (k) in

the lower (VB1) and upper (VB2) valence bands of cubic
BN.
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acter admixed in along the X-W-K directions.
These trends are borne out by examining the loca-
tion of the free-ion eigenvalues on the scale of the
band structure (cf., Fig. 4). The N 2s eigenvalue
has its energy substantially lowered in the solid
(to the VB1 region) due to the attractive Madelung
well on this negative site. Similarly, a Madelung
stabilization of the N 2p level lowers its energy
into the VB2 bands while the positive-site B 2s and
2p levels are pushed higher in energy (towards the
conduction bands) and thus their admixture into the
VB2 bands is diminished.

A description of the orbital character in the en-
tire occupied manifold is given by the BZ disper-
sion of

- occ -
9y (K) =§; Qs (B)
shown in Fig. 9 together with the dispersion of the

net ionic charge Q4(kK) =2, =Y, 9, (K), where Z,
is the a-site atomic number. The striking feature
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FIG. 9. Dispersion of the Lowdin ground state orbital
charges qua(k) in cubic BN. The dotted line represents
the dispersion of the net charges, Qulk).

of these results is the substantial variation in or-
bital character across the zone: while at the I
point there is a large degree of N 2p character
with only minor B 2p admixture [ which results in
a large charge polarization of @z(T) ==@Q,(T)
=1.55¢], the situation is reversed in the X-W-K
directions and this leads to a low average polarity
[ @s(X-W-K) ==Qy(X-W-K) =0.45¢]. Thus, it is
clear from the above discussion that a simple
assignment of a unique orbital character to any
subgroup of bands?°*2! is impossible. Similarly,
the assignment of a constant s to p hybridization
ratio to all states in the zone, as is currently done
in bond orbital methods,*?*** seems very crude.

Before leaving the subject of the orbital charac-
ter of the bands, some word of caution is in order.
Any partitioning of the three-dimensional charge
density into orbital contributions associated with
particular sites in the solid is not unique and in-
volves a considerable reduction in the information
available from the calculated band structure.
Among the alternative partitioning methods, we
note the Mulliken analysis*' commonly used in
molecular structure calculations*® and the partial-
wave muffin-tin partitioning used in APW*¢ and
multiple-scattering (MS X @) methods.*” While the
square of the wave-function expansion coefficient
on a given atomic site can be unambiguously as-
signed as a contribution of orbital density to this
site, the partitioning of cross terms (involving co-
efficients of more than one site) is rather arbi-
trary. Whereas, in the Mulliken technique such
terms are apportioned equally between the consti-
tuent atoms (and hence one neglects any possible
electronegativity difference), such terms do not
occur in the Léwdin technique because of the or-
thogonality of the basis. Although, both techniques
yield virtually the same results®*'° in homopolar
systems like diamond, having medium to small
intersite overlap, substantial differences may oc-
cur in heterpolar systems like BN. To demon-
strate this point, we show in Fig. 10 the BZ dis-
persion of the calculated Mulliken charges in BN.
While the general pattern of orbital hybridization
is similar to that obtained by the Lwdin method
(Fig. 9) quantitative differences do occur; the
Mulliken analysis generally yields an enhanced
charge polarization (e.g., charges of @z(T)
==Q@y(T) =2.16¢ and an average of 0.86e along
X-W-K) and a lower BZ orbital charge dispersion.
Note, however, that both the Ldwdin and the Mulli-
ken schemes do not involve any shape approxima-
tion to the variational crystal charge density, con-
trary to the situation encountered in the partial-
wave muffin-tin orbital analysis*®*¥ in which a
spherical muffin-tin averaging of the crystal den-
sity is performed.
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FIG. 10. Dispersion of the Mulliken ground state
orbital charges quu(k) in cubic BN. The dotted line re-
presents the dispersion of the net charges, @y(k).

C. Effective charges

It is clear from the above that although a static
partitioning of the crystal density into the atoms
constituting the bond in BN can elucidate the nature
of the hybridization and charge transfer, it does
not lead to a unique picture of the ionic charges.
Moreover, such an approach does not distinguish
between an actual transfer of charge and a simple
overlap of the orbitals of neighboring atoms. In
order to study the dynamical aspects of charge
transfer, we have calculated the effective charge
e¥. Here, one expands the crystal dipole moment
in the atomic displacement in a standard fashion*®
and obtains to second order that the d =0 displace-
ment mode in the [111] tetrahedral directions [i.e.,
displacements of d, =-d_=ga(5, 5, 5) where plus
and minus refer to the two unit cell ions and 6 is
the displacement amplitude] yields the effective
charge®®:

e}=4lim % , (1)
6x*o A
where the unit cell dipole moment for direction A
is given by:

W= 3 2 ZalFuardrd - [ FrBEAE. (@)

Here, T),, refers to the X component of the vector
joining the origin with the site « in the unit cell 7,
am is the X component of the a-site displacement,
and p(F) denotes the variational electronic crystal
density obtained for equilibrium unit cell parame-
ters but for atoms displaced along the symmetry
preserving directions indicated above.

By repeating the band-structure calculation for
three sets of atomic positions related by the
+ga(d, 8, 6) displacements (with 6 =0.001), inte-
grating numerically the corresponding unit cell
dipole moments over a constant (minimum) potential
surface and replacing the limit in Eq. (1) by a fin-
ite difference, we obtain an effective transverse
charge e}(B)=-eX(N)=2.85¢, This result, which
is rather insensitive to small variations in 9, is
stable to within 2% when 3000 Diophantine integra-
tion points are used and is rather close to the ex-
perimental estimate given by Lucovsky ef al.*
(2.47¢). Such a large value of e} indicates that,
contrary to the rather low ionicity inferred from
the static CCSC calculation (B°*3N ™°°%), dynami-
cally more than 90% of the valence charge is po-
larized when the atoms are displaced in an optical
mode. Static ionic charges inferred from bond
orbital schemes?°*%° (in which the ionic charge is
determined from the mixing coefficient of the B
and N sp® hybrid into the ground state, assuming a
constant s-p hybridization ratio for all states)
yielded values in the range of 0.26e-0.50e (with
polarity B¥*N7). Our dynamic calculation yields a
unit cell dipole moment of 4.98 Debye at equilibri-
um which is substantially larger than the calcu-
lated dipole moment of the diatomic BN molecule
(~2.3 Debye®) and suggests larger polarization to
occur in the solid.

Our charge and configuration study suggests that
the intra-atomic charge redistribution effects (i.e.,
the change in p to s populations from the free-atom
values of 0.5 and 1.5 in B and N, respectively to
2.69 and 2.06, respectively, in the CCSC limit) are
dominant over the interatomic charge-transfer ef-
fects (0.35¢). Since these charge redistribution
effects are not observables, it is difficult to assess
the validity of this result. However, it is interest-
ing to note that the study of Kuplyauskis and Yaki-
mavichyus® indicated that only the atomic B and N
wave functions corresponding to an sp® intra-atom-
ic valence excitation, similar to that obtained



here, are capable of reproducing the observed
Compton profile'’; free-atom ground-state func-
tions (B 1s22s22p! and N 1s22s22p°) or the wave
functions corresponding to singly ionized atoms
produce too large values of the low-momentum
Compton components.

D. X-ray scattering factors

X-ray scattering factors provide through the
Fourier transform of the charge density, a direct
measure of the ground-state electronic charge dis-
tribution in the solid. First-principles calculations
of this quantity for diamond and boron nitride are
particularly interesting because: (i) The (222) re-
flection, called “forbidden” for diamond is zero
for a homonuclear tetrahedral compound when the
crystal density is assumed to be given by a super-
position of spherical atomic densities. Its deter-
mination furnishes a direct measure of the devia-
tion of the crystal density from spherical symme-
try around each atomic site. (ii) The magnitude of
the (200) reflection in BN (absent in diamond)
yields an important measure of the asymmetry of
the charge density since it corresponds to the
difference in the single-site atomic structure fac-
tors.

Table II presents the x-ray scattering factors
obtained in the present exchange and correlation
model, the observed values,'” the results of Eu-
wema et al.”" obtained in a crystalline Hartree-
Fock model, and, for comparison, the values ob-
tained by a simple superposition model.

The main conclusions that can be drawn from this
study are: (i) The difference between the values
of the (222) reflection calculated in the direct cry-
stal and atomic superposition models is somewhat
smaller in BN than that obtained in diamond (0, 10e

TABLE II. X-ray scattering factors of boron nitride;
“sup” indicates the results of a superposition of spheri-
cal (neutral) atomic densities while “band” indicates
those from a crystalline calculation.

(h B 1) HFgp* LDFyp HFpu¢® LDFp,, Expt.?

1 1 1 462 442 5.05 4.97  4.92+0.15
2 0 0 140 1.49 1.56 1.58  1.56+0.05
2 2 0 421 414 4.10 417  4.17£0.10
3 1 1 269 2.60 2.52 2.64  2.59+0.10
2 2 2 048 047 0.44 0.57  0.50+0.02
4 0 0 330 3.25 3.20 3.20  3.22:0.10
3 3 1 217 218 2.22 2.16  2.17+0.05
4 2 0 029 0.36 0.28 0.32  0.32+0.01
5 1 1 190 1.96 1.97 1.95 1.96+0.06
3 3 3 19 196 1.97  1.96+0.06

2Hartree-Fock superposition model, Ref. 17.
b Hartree-Fock superposition model, Ref. 27.

17 AB INITIO SELF.CONSISTENT STUDY OF THE ELECTRONIC... 2039

and 0.14¢,% respectively) and indicates a some-
what smaller nonspherical character of the site
charge distribution in BN. (ii) The strong (200)
reflection observed in BN suggests substantial
charge polarization in this system. However, the
rough agreement with this value obtained already
from a superpositron of neutral atom densities
indicates that actual large charge {ransfer between
the two sublattices (as opposed to overlap of the
corresponding wave function) cannot be inferred
from the size of the observed reflection. (iii) The
local density calculation of the scattering factor is
in very good agreement with experiment; for al-
most all reflections, the agreement is within ex-
perimental error. By contrast, the HF crystal
results do not show the same degree of agreement.
It is noted however that our calculated value for the
(222) reflection is somewhat too high, indicating

that our LDF representation of the crystal density

is too anisotropic, relative to the superposition
limit.

E. Behavior under pressure and cohesive properties

To simulate the effect of pressure, we have cal-
culated the band structure for a series of 9 giffer-
ent lattice constants between 3.40 and 3.85 A. The
calculated results shown in Fig. 11 indicate that the
band levels can be grouped into three categories
according to their behavior:

(a) The energies of the valence bands decrease
substantially with decreasing lattice constant and
follow different slopes for the various band states.
There appears to be a direct correlation between
the amount of 2s character in these bands and their
pressure derivative: in the lower valence band
(VB1) the pressure derivative [defined as (de/dp)
==K(de/dIn V)], with the volume compressibility
K approximately 0.24 X 10™*2 dyn/cm?)® ranges from
5.4x 107 eV/bar at T, , (54% N 2s and 46% B 2s)
to 3.6 X 107 eV /bar at X, , (64% N 2s,0% B 2s).
For the higher group of valence bands (VB2) which
have substantially less 2s character (cf. Fig. 8),
the pressure derivative ranges between 2.3 x 107¢
and 3.6 X 10~® eV/bar. Thisbehavior stems from
the stronger lattice constant dependence of the 2s
Hamiltonian matrix elements compared with the 2p
elements. Denoting such a dependence by H;",F (k)
~A R™" where U, v denote Bloch orbitals and «, B
denote atoms, we find at I n=~5.4 for H:;%, n
~4.0 for Hi¢ys, and n~4.8 for HS),, compared
with 2=0.5 and 7=0.2 for Hy;5, and H}} Y, respec-
tively. The B-B interaction is somewhat more
sensitive to lattice constant variation than are the
N-N elements due to the larger extent of the B 2s
orbitals (the overlap of Bloch basis functions at I
are S;32,,=3.6 and SI;Y,,=1.7). Note that the lattice
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FIG. 11. Lattice constant dependence of the band en-
ergies in cubic BN. Full dots indicate calculated points.

constant variation of the valence band eigenvalues
is substantially stronger than that anticipated for
an ionic material (in which this dependence follows
essentially that of the Madelung potential®* due to
the importance of the covalent overlap terms.

(b) The lower conduction band states (e.g., X, .,
T, ,.) show a very small decrease in energy with
lowering of the lattice constant which originates
from a combination of two effects: the small hy-
bridization of N character into these predominantly
B 2p states introduces a partial cancellation in the
electrostatic Madelung terms of the oppositely
charged sublattices (this effect is particularly
strong in pure ionic materials such as LIF).** In
addition, the overlap between the B 2p Bloch func-
tions and B and N 2p Bloch functions is very small
(0.36 and 0.07, respectively) and results in a very
weak lattice constant dependence.

(c) The higher conduction states (I, . and L, )
show a strong increase in energy with decreasing

lattice constant on account of their pronounced B
2s antibonding character. The substantial B-B 2s
overlap (=3.6) makes these states particularly sen-
sitive to lattice constant variations.

To our knowledge, the pressure behavior of the
transition energies in BN have not been measured.
Such measurements would be particularly interest-
ing in this system in view of the variations pre-
dicted here (e.g., about 10 x 107 eV /bar for the
Ty,,—~ I, transition and 0.2 x 107 eV /bar for the
indirect gap Iy, , ~ Amin transition) and the bearing
they have on the bonding picture in this material.

Finally, we compare the major difference in lat-
tice constant behavior between our results for BN
and our previous results for diamond.> We find
that the pressure dependence of valence states is
somewhat weaker in diamond than in BN (e.g., a
pressure coefficient of 3.1X 107® eV /bar for the
T,,, state in diamond as compared with 5.4x 107
eV/bar in BN) while the reverse is true for the
conduction bands. (This probably stems from the
fact that the carbon-carbon interactions are inter-
mediate between the B-B and the N-N interactions
and from the lack of electrostatic Madelung-type
terms in homopolar diamond). The interband I’y ,
-~ T, transition is predicted to have a pressure
coefficient which is about 15 times larger than that
for the I'j;,, = X, . transition in BN, while in dia-
mond the analogous transitions (I,;,,~ I'; c and
T,s,»— X, o) are predicted to be only 7 times lar-
ger. It is interesting to observe that whereas our
calculation for BN indicates an interchange in pos-
ition of the L, . and L, . bands with a 4% reduction
of the equilibrium lattice constant, the same
crossing in diamond appears at a much smaller
reduction in the equilibrium lattice constant (about
<1%).

We close this section by considering the cohesive
properties of BN. We have calculated the total
crystal energy per unit cell directly from the band
charge density, by the method previously de-
scribed.’*'® Repeating this calculation for five
values of the lattice parameters between 3.50 and
3.73 A and interpolating, we find a minimum in
thetotal energy E; at de, =3.652 A of E, = -2149.035
eV/pair. The observed room-temperature lattice
constant of BN is 3.6157 A%'7; the value extrapolated
to 0K is®3.615 Aand hence only 1% smaller than our
result. Toobtainthe cohesive (binding) energy of BN
(relative to ground state neutral atoms), we sub-
tract from E; the sum of atomic total energies ob-
tained by Gunnarsson® in a spin-polarized local-
spin-density formalism® which yields in the non-
spin polarized limit the same functional used here
for the closed shell solid® (E} =-662.9009 and EY
=-1473.3344 eV) to yield a value of 12.8+0.5 eV/
pair. [Our estimated theoretical uncertainty in the
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binding energy (mainly due to the slow convergence
of the total energy integrals with the number of
Diophantine points) is 0.5 eV.] The experimental
value for this quantity is estimated to be 13 eV/
pair.” [In our previous study on diamond we ob-
tained, using Gunnarsson’s atomic calculations, a
binding energy of 15.6 eV /pair (experimental: 15.2
eV/paif and an equilibrium lattice constant of
3.581 A (experimental: 3.567 A).] The agreement
between our calculated results and experiment is

rather good. Further, the observed trend in going
from diamond to the more ionic BN (decrease in
cohesive energy and increase in equilibrium lattice
constant) are reproduced remarkably well.
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