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The k•p method combined with the envelope-function approximation is the tool most commonly used to
predict electronic properties of semiconductor quantum wells and superlattices. We test this approach by
comparing band energies, dispersion, and wave functions for GaAs/AlAs superlattices and quantum wells as
computed directly from a pseudopotential band structure and using eight-bandk•p. To assure equivalent
inputs, all parameters needed for thek•p treatment are extracted from calculated bulk GaAs and AlAs pseudo-
potential band structures. Except for large exchange splittings in the in-plane dispersion for thin superlattices,
present in pseudopotential calculations but absent from thek•p results, we find generally good agreement for
heterostructure hole bands within;200 meV of the GaAs valence-band maximum. There are systematic errors
in band energies and dispersion for deeper hole bands~all other than hh1 and lh1! and significant qualitative
and quantitative errors for the conduction bands. Errors for heterostructure conduction states which are derived
from the zinc-blendeG point diminish as length scales increase beyond;20 ML, while significant errors
persist forL- andX-derived states. ForbulkGaAs and AlAs, eight-bandk•p bands agree well with pseudo-
potential results very near the zinc-blendeG point ~wherek•p parameters are fit! but the first GaAsX point
conduction band is.26 eV too high with respect to the pseudopotential result. We show that this inadequate
description of thebulk band dispersion is the principal source ofk•p errors in theseheterostructures. A
wave-function projection analysis shows thatk•p errors for heterostructures simply reflect corresponding
errors for the bulk constituents, weighted by the amount that such bulk states participate in heterostructure
states.

I. INTRODUCTION

Optoelectronic applications1 often exploit electronic prop-
erties of artificial heterostructures, such as superlattices and
quantum wells, with characteristic dimensions of 100 Å.
Their electronic properties could, in principle, be interpreted
using the same tool applied successfully to bulk solids,
namely, a complete band structure. Nanostructure single-
particle energies and wave functions would then be solutions
to

F p̂2

2m0
1V~r !Gc~r !5«c~r !, ~1!

whereV(r ) is the total three-dimensionalatomisticpotential,
including all effects of the interfaces between materialsA
andB for theA/B heterostructures.V(r ) could be computed
self-consistently from the occupied states using, e.g., density
functional theory, or it could be approximated as a superpo-
sition of screened atomic potentials,2,3 i.e.,

V~r !5(
i ,R

v i~r2R2di ! ~2!

for atom speciesi at basis sitedi in cell R. If V(r ) is
periodic,4 the wave function is of Bloch form

cnk~r ![exp@ i ~k•r !#unk~r !, ~3!

with «5«n(k). To solve Eq.~1!, the wave function is gen-
erally expanded in a set of variationally complete basis func-
tions, e.g., plane waves:

cnk~r !5exp@ i ~k•r !# (
uGu,Gmax

cn,k~G!exp@ i ~G•r !#. ~4!

One computes matrix elements ofV(r ) in this basis, and
diagonalizes Eq.~1! using iterative minimization5 or tech-
niques linear in3 the atom number. The cutoff parameter
Gmax is varied to achieve practical convergence of«n(k).

Because of the very large number of monolayers spanning
;100 Å nanostructures, they have until very recently3 been
beyond the reach of suchdirect electronic structure calcula-
tions @Eqs. ~1!–~4! above#, the conventional computational
effort for which scales as the cube of the number of atoms.
The spectroscopy of nanostructures is instead interpreted6

using an approach so common that we term it the ‘‘standard
model’’: thek•p method together with the envelope-function
approximation~EFA!. The k•p approach7,8 uses a perturba-
tion theory description of band dispersion for pureA or B
within a small set of near-edge bands identified as physically
relevant. In the EFA, the form used for the wave function in
the heterostructure assumes that envelope functions vary on
a scale much larger than the lattice constant of eitherA or
B. The sole remnant of the atomisticV(r ) is an abrupt jump
in material properties at theA/B interface. Thek•p1EFA
combination can be an extremely concise representation of
heterostructure electronic properties, usually requiring only
material parameters for the pure bulk materialsA andB and
dimensions and orientations of theA andB regions. In par-
ticular, the computational effort is essentially independent of
the number of atoms in the system.

Although it has been eminently successful in a variety of
applications,9,10 often overlooked formal restrictions on the
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standard model, compromise its description of anA/B het-
erostructure. The fact that its parameters are usually fit to
experimental data has also made it difficult to appraise these
limitations. In contrast to the direct approach of Eqs.~1!–~4!,
the standard model~a! omits discrete crystal symmetries,
e.g., point-group symmetry differences between an odd and
even number of layers inAnBm superlattices

11 or thin films;12

~b! usually assumes a constant potential in each region and
neglects the spatial dependence of wave functions transverse
to the heterostructure modulation direction;~c! attempts to
describe nanostructure wave functions in terms of a few
Bloch states, neglecting their differences in materialsA and
B; and~d! can describe band dispersion only in an~unspeci-
fied! region near the heterostructure zone center.

Other methods have been applied to heterostructures, e.g.,
the tight-binding approach.13 Although it preserves an atom-
istic description, like thek•p approach it suffers from a
variationally limited, very small set of basis functions and a
microscopically undefined potential. Furthermore, previous
comparisons of the standard model with the tight-binding
method13,14 have generally suffered from the fact that mate-
rial parameters were drawn from different sources. For mod-
eratem andn, AnBm superlattices andAn /B quantum wells
provide a convenient opportunity to test the standard model
against the direct approach,providedthe parameters required
by the former are calculated from the latter. Using AlAs-
GaAs heterostructures as examples, in this paper we contrast
k•p1EFA and direct diagonalization@Eqs. ~1!–~4!# for
trends in ~i! band energies,~ii ! wave function amplitudes,
and ~iii ! band dispersion.

II. THE k –p1EFA ‘‘STANDARD MODEL’’

A. Representing bands of bulk materials

For pure bulk crystals, the cell-periodic partunk(r ) @Eq.
~3!# of the Bloch function in Eq.~1! obeys the equation

F p̂2

2m0
1V~r !1

\

m0
k•p̂1

\2k2

2m0
G unk~r !5«n~k! unk~r !.

~5!

Since the states$unk0(r )% at k[k0 form a complete set for
any function periodic in the lattice,15 we may use them as a
basis forunk(r ):

unk~r !5(
n8

N

bn8un8k0~r !, ~6!

whereN is the number of such states used. Inserting into Eq.
~5!, we find7,8 the matrix equation,

(
n8

N H F«n~k0!2«n~k!1
\2

2m0
~k22k0

2!Gdn,n8
1

\

m0
~k2k0!•pn,n8J bn850. ~7!

The effects ofV(r ) are now encoded in the momentum~di-
pole! matrix elements

pn,n8[^unk0up̂uun8k0&. ~8!

Nonparabolic dispersion of bandn is thus entirely due to
statesn8 to which it is coupled by dipole matrix elements at

k0 . Although Eq. ~7! includes terms only through second
order ink, if diagonalized using a sufficiently large number
N of zone-center Bloch states$unk0(r )%, it would exactly

predict the full ~nonparabolic! band dispersion throughout
the Brillouin zone. Thus, Eq.~7! is equivalent to solving Eq.
~1!, provided each uses a converged basis. We term this, in
principle, exact parametrization of the full band structure of
Eq. ~7! the ‘‘k0 representation.’’ Conventional approxima-
tions for semiconductors7,8 use k050[G, but make two
simplifying assumptions.

~1! Truncation/degenerate perturbation theory:The set of
zone-center states of Eq.~6! is truncated16 to those N
strongly coupled by the off-G perturbation (}k) in Eq. ~7!.
Equation ~7! becomes anN3N matrix, the elements of
which include terms through second order in Cartesian com-
ponents ofk. For a III-V zinc-blende semiconductor, the
three p-derived valence states degenerate atG are usually
augmented by the first conduction state atG. Including spin-
orbit effects doubles the number of states retained to 8; this
we shall term the ‘‘eight-band bulkk•p model,’’ used below.
Conventional Luttinger parameters$g j% ~Appendix! are lin-
ear combinations of the$pn,n8% renormalized by Lo¨wdin per-
turbation theory and simplified using symmetry.17

~2! Fitting. Had one calculated the$pn,n8% of Eq. ~8!, or
with Luttinger parameters, the band structure could have
been predicted for specifiedk by diagonalizing Eq.~7!. Ana-
lytic secondk derivatives of the resulting band eigenvalues
«n(k), evaluated atG, would yield band effective masses in
terms of the these parameters. UnlessN of Eq. ~6! is large
enough,17 however, band properties can be very poor;18 such
effects have been partially examined19–21within thek•p ap-
proach. The severity of theN truncation20 in ~i! is mitigated
by the central feature of conventionalk•p approaches: in-
stead ofcomputingthe $pn,n8% or $g j%—which reflect the
atomistic crystal potentialV(r )—they arefit to observed
band properties,22 such as the band gap and@001# and @111#
band masses atG. The basis truncation above has the fol-
lowing importantphysicalconsequences:~i! nonparabolicity
is difficult to treat systematically, so that bands of pure bulk
materials will be valid, in principle, only ‘‘near’’ theG point;
~ii ! bands generally cease to obey Bloch symmetries, such as
«n(k1G)5«n(k) for band n and reciprocal lattice vector
G. This often introduces unphysical ‘‘out of zone’’ solutions,
which must be detected and eliminated;23 ~iii ! bands which
do not derive from the zinc-blendeG point are poorly de-
scribed. The inadequacy of anN58 basis means that a con-
ventionalk•p prediction for, e.g., the lowest GaAs conduc-
tion band atX would be so high in energy as to be physically
meaningless~see Fig. 2 below!. An additional set of restric-
tions on the standard model follow from the conventional
description ofheterostructures, described next.

B. Describing heterostructures

The parametrization of Sec. II A may be applied to each
of the materialsA andB making up anA/B heterostructure.
For a spatially inhomogeneous system, mostk•p1EFA ap-
proaches are based on the formalism of Luttinger and
Kohn,15 which treated the response of a homogeneous crystal
to a weak, slowly varying external perturbing potential. Un-
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der flat band conditions, theA andB regions are assumed
bulklike, and the wave function, e.g., in materialA, takes the
form

c~r !5 (
n51

N

Fn
A~r !unG

A ~r !, ~9!

where theFn
A(r ) are envelope functions and the zone-center

states$unG(r )% are formally different in materialsA andB.
The sum runs over theN states retained in thek•p descrip-
tion, defining a multiband EFA. By construction,15,24 theFn
have Fourier components restricted to the first Brillouin zone
of theA or B constituents and are thus fairlyslowly varying.
The derivation of the partial differential equations and
boundary conditions obeyed by the envelope functions are
thoroughly reviewed by Burt.24 Virtually all k•p1EFA cal-
culations have of necessity assumed thesameset$unG(r )% of
zone-center states in both materials.24 In the flat band ap-
proximation, one recovers a Schro¨dinger-like equation of the
form25

(
n51

N

H~r ,k!nmFm~r !5«Fn~r !. ~10!

Here the argumentr indicates simply that material param-
eters depend on the chemical identity of the heterostructure
region. A piecewise constant functional form is usually as-
sumed for lamellar systems. In abulkmaterial,kj is identi-
fied as a component of the specified Bloch wave vector; in a
heterostructure, the replacement15 kj→2 i¹ j converts Eq.
~10! into a system ofN coupled partial differential equations.
The prescription for guaranteeing a Hermitian matrix when
materials parameters depend on position, and the appropriate
boundary conditions to be imposed at interfaces, are re-
viewed in Ref. 25.

The conventional EFA thus introduces additional restric-
tions on the physical description:~i! The envelope functions
should be slowly varying. This assumption may be violated
for sufficiently thin heterostructures, raising questions about
accuracy.~ii ! The assumption of a weak, slowly varying per-
turbation would appear dubious in abruptA/B semiconduc-
tor heterostructures and short-period superlattices.~iii ! Ne-
glect of differencesin the zone-center states$unG(r )% in A
andB appears to limit26 the EFA to heterostructures of elec-
tronically similar materials.

III. CALCULATIONAL APPROACH

A. Strategy

The procedure we use to compare, on an entirely equiva-
lent footing, results of the ‘‘direct’’ approach@Eqs. ~1!–~4!#
with those of thek•p1EFA ‘‘standard model’’@Eqs.~7!–~9!#
is as follows.First, we use the direct approach, implemented
within the empirical pseudopotential method, to compute
band structures, including band gaps, effective masses, and
spin-orbit splittings, forbulkGaAs and AlAs. The choice of
modern empirical pseudopotentials to describe the atoms in
the primitive cell is an issue of implementation, not of prin-
ciple. The small lattice mismatch between these materials
was neglected in all calculations, eliminating the need to
specify deformation potentials and elastic properties.Second,
we equate pseudopotentialcalculatedeffective masses with

their formal expressions in the 838 Kane model and extract
Luttinger parameters~see the Appendix!. These suffice to
specify all matrix elements used fork•p calculations within
the standard 838 model. Finally, we use these
pseudopotential-derived Luttinger parameters and gaps as in-
put to k•p1EFA calculations of band structures and enve-
lope functions for ~AlAs!n~GaAs!n superlattices and
~GaAs!n/AlAs quantum wells. The results are compared with
direct pseudopotential calculations@Eqs. ~1!–~4!# for the
same structures. Computational details are given below.

B. Direct method: Computational details

Pseudopotentials.For the screened atomic pseudopoten-
tials v i(r ) in Eq. ~2!, we use the recently developed empiri-
cal pseudopotentials of Ma¨der and Zunger2 for Ga, Al, and
As. These properly include the spin-orbit interaction and
have the following properties:2 ~i! they adequately reproduce
measured electronic properties of bulk GaAs and AlAs and
the scattering properties of Ga and Al in a variety of envi-
ronments;~ii ! wave functions are close to self-consistent lo-
cal density approximation computed wave functions;~iii !
they permit an absolute energy scale, so we may refer het-
erostructure eigenvalues to those in GaAs by simple subtrac-
tion. k•p1EFA calculations naturally refer heterostructure
energy levels to the band edges of the pure constituents;~iv!
the As potential depends on the number of Ga and Al nearest
neighbors, thereby including most charge transfer and inter-
face effects; and~v! they are algebraically simple even when
including the spin-orbit interaction.

Geometries.In the calculations reported below, we con-
sider ~AlAs!n~GaAs!n superlattices~with 1<n<20) and
~GaAs!n/AlAs quantum wells ~with 1<n<10) based on
@001#-orientation tetragonal unit cells. To represent GaAs
quantum wells in an AlAs barrier, we use periodic
~GaAs! n~AlAs!m superlattices withm large enough to effec-
tively isolate GaAs wells. Note thatn1mmust beevenfor a
perfect@001# superlattice described via atetragonalcell: as-
sume that we occupy primitive cellp of an @001#
(AC)m(BC)n superlattice of cationsA andB and anionsC
in accordance with tetrahedral coordination. This works for
n1m5even, but forn1m odd, the last anion layer in cell
p will be directly below the first anion layer in cellp11,
inconsistent with tetrahedral coordination for the first cation
layer in cellp11. This defect would introduce spurious im-
purity levels in the gap; thus,m must be odd~even! if n is
odd ~even!. We usem520 for evenn andm519 for odd
n. To verify convergence withm for, e.g., ~GaAs! 5~AlAs!

19, we examined the spurious bandwidths of the lowest con-
duction and highest valence bands along the line between the
zone center and zone edge along the@001# direction~Fig. 1!.
These are,0.2 meV and,0.02 meV, respectively, and this
choice form is thus large enough to remove numerical arti-
facts of the supercell geometry for near-edge bands.

Method of direct solution.A conjugate gradient program,
using a plane wave basis and the pseudopotentials described
above, was used to solve Eqs.~1!–~3!. The only convergence
parameter is the number of plane waves used to describe the
Bloch wave function @Eq. ~4!#; a kinetic energy cutoff
Gmax
2 5 5 Ry was used. This direct approach suffers from

none of the restrictions to which the standard model is sub-
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ject. In particular,~a! since zinc-blende GaAs and AlAs are
correctly described throughout the zinc-blende Brillouin
zone, heterostructureX-derived bands will also be correctly
described;~b! band dispersion throughout the heterostructure
Brillouin zone may be computed with the same accuracy as
for a zinc-blende material, since we use a fixed plane wave
cutoff; ~c! all features of wave functions, with oscillations of
all wavelengths permitted by Bloch’s theorem, are included;
~d! for a specified wave vectorq, all bands—not simply
those which are derived directly from the three valence band
and one conduction-band state retained in the 838 k–p
description—may be examined. For these reasons, we refer
to the direct calculations below as an ‘‘all band pseudopoten-
tial’’ or ABP approach.

C. The standard model: Computational details

We use an 838 k•p1EFA method described in detail by
Baraff and Gershoni25 and reviewed by Gershoniet al.,22 but
use Luttinger parameters fit to ourcalculatedpseudopoten-
tial bulk bands for GaAs and AlAs; see the Appendix.
Pseudopotential-derived Luttinger parameters and effective
masses differ somewhat from accepted values,22,27,28 al-
though the range of the latter may be large.28 Our purpose is
to compare in detail predictions of twotheoretical ap-
proaches, using precisely equivalent inputs, not to exactly
reproduce experimental data.

In the formalism of Baraff and Gershoni,25 the wave func-
tion of the heterostructure is of the form in Eq.~9!, where the

eight zone-center states$unG(r )%, in principle, differ in
GaAs and AlAs. These differences are retained insofar as
they enter matrix elements and affect, via material param-
eters, boundary conditions at interfaces between the two
materials,25 but are not included otherwise. The Kane
parameter8 B8, identically zero for systems with inversion
symmetry, is assumed zero. The envelope function for band
n is expanded forboth A andB regions in supercell recip-
rocal lattice vectors appropriate to rectangular geometry:

Fn~r !5 (
j lm

NxNyNz

F jlm
~n!

1

ALxLyLz
3exp@2p i ~ jx/Lx1 ly /Ly1mz/Lz!#, ~11!

relying on Fourier representability to include the jump dis-
continuities in material properties atA/B interfaces. The
boundary conditions applied to Eqs.~9! and ~10! are dis-
cussed in detail in Refs. 22 and 25. Since theFn are in
general complex, both oscillatory and decaying contributions
to each envelope function are naturally included, circum-
venting the need to explicitly include both.29 For all of the
geometries we consider, the system is uniform transverse to
the superlattice or quantum well stacking direction, so the
dimensionsLx andLy are irrelevant and convergence is de-
termined only by the number of Fourier componentsNz re-
tained. For specifiedk, superlattice band energies and enve-
lope functions are found from eigenvalues and eigenvectors
of an 8Nz square matrix. We have usedNz575; even for the
extreme short-period~AlAs! 1~GaAs! 1 superlattice, eigenval-
ues change by less than 0.2 meV on reducingNz to 25.

IV. COMPARISONS OF ‘‘STANDARD MODEL’’
AND DIRECT CALCULATIONS

@001# ~AlAs!n~GaAs!n superlattices and~GaAs!n/AlAs
quantum wells are conveniently described as tetragonal
primitive cells. The Brillouin zone is shown in Fig. 1, where
we use an overbar to indicate heterostructure states. We
specify band energies forbulk zinc-blende AlAs and GaAs
using conventional double group, i.e., relativistic, notation,
but label heterostructure states via the zinc-blende Brillouin
zone point from which they derive. The stateḠ(Xz), for
instance, is an@001# heterostructure state at the tetragonal
zone centerḠ derived from a zinc-blendeX point state,
which folds toḠ due to the longer@001# repeat distance. An
arbitrary wave vectorq in the tetragonal zone can be re-
solved into componentsqi along the stacking direction and
an ~‘‘in-plane’’ ! componentq' perpendicularto it. The zinc-
blendeL point folds30 to the tetragonalX̄ point for evenn
and toR̄ for oddn, while the tetragonalM̄ points are derived
from the zinc-blendeX points in thex-y plane. We use be-
low the notation SM to indicate standard model eight-band
k•p1EFA results and ABP to indicate those of our direct, all
band pseudopotential calculations.

A. Bands of bulk GaAs and AlAs

Since we consider@001#-based heterostructures, we exam-
ine first the bands ofbulk GaAs and AlAs along the zinc-
blende G-X@001# direction. Figure 2 shows the bands of
AlAs and GaAs obtained from direct pseudopotential calcu-

FIG. 1. Brillouin zone for tetragonal description of GaAs-AlAs
@001# superlattices and quantum wells. Panel~a! shows high-
symmetry points and panel~b! the orientation ofx andy axes with
respect to the prism cross section. The crystal primitive cell along
thez axis is of lengthLz , anda is the zinc-blende lattice constant.
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lations ~solid lines! and within the eight-bandk•p approach
~dashes!, using pseudopotential-determined Luttinger param-
eters. On this scale,k•p results appear parabolic; for GaAs,
they agree with the correct dispersion of ABP bands to
within 50 meV only up to 12%, 18%, 14%, and 14% of the
distance towardX for the electron, heavy-hole, light-hole,
and split-off bands, respectively; yet larger discrepancies oc-
cur farther fromG. In particular, the GaAsk•p X6c state is
26 eV higher than the correct ABP value, so that anyG6c
2X6c coupling is unphysically negligible ink•p.

B. ABP electronic structure
of „AlAs…n„GaAs…n†001‡ superlattices

We begin by establishing overall trends withn for @001#
~AlAs!n~GaAs!n conduction-band states, using pseudopoten-
tial results~Fig. 3!. We note the following.

~i! At the ~AlAs! n~GaAs! n superlattice zone center,
Ḡ(G6c) states derive mostly from the zinc-blende GaAs
conduction-band minimumG6c state, whileḠ(Xz) states de-
rive mostly30 from the zinc-blende firstX6c,z and second
X7c,z conduction states atX. For even ~odd! n Ḡ(X6c,z)
@Ḡ(X7c,z)# states have the same symmetry as theḠ(G6c)
state, so they couple and repel one another.30 Since zinc-
blendeX7c states lie.0.5 eV higher in energy, symmetry
effects are most pronounced for evenn. Because zinc-blende
X states are all higher in energy than the GaAsG6c state, this
coupling pushesdown the Ḡ(G6c) state. This opposes the
upward shift due to confinement~approximately}1/n2).
This competition between potential~symmetry! and kinetic
effects results in a bending over of theḠ(G6c) state and a
nonmonotonicḠ(Xz)/Ḡ(G6c) splitting for smalln. Repulsion
with the higher energyḠ(X7c,z) state~not shown! strongly
depresses the energy of theḠ(G6c) state for n51.
Symmetry-induced repulsions rapidly attenuate asn in-
creases and confinement effects dominate.

~ii ! A transition fromḠ(Xz) to Ḡ(G6c) as the lowest con-
duction band occurs near the critical period31,32 nc57, as
indicated by the gray circle~experimentally this cross over is
found33 nearn511, but the degree of interfacial abruptness

is unclear!. Figure 4 shows the square moduli of wave func-
tions for the valence-band maximum~VBM ! and
conduction-band minimum~CBM! at Ḡ on either side of this
transition. We display such results averaged over the trans-
verse dimensions of the primitive cell, to facilitate later com-

FIG. 2. Dispersion of bulk AlAs and GaAs bands between the
zinc-blendeG andX points (D direction!: ABP calculations~full
lines! and eight-bandk•p ~dashes!. Relativistic labels atG andX
and conventional names for valence bands are used. Note quasipa-
rabolic behavior ofk•p bands. Gray filled circles show reciprocal
lattice vectors, which for the~AlAs!5~GaAs!5 superlattice fold to
the superlattice zone centerḠ.

FIG. 3. All band pseudopoten-
tial ~ABP! conduction-band ener-
gies for @001# ~AlAs!n~GaAs!n su-
perlattices at high-symmetry
points~see Fig. 1! as a function of
periodn. Overbars indicate super-
lattice states, which derive from
the zinc-blende state given in pa-
rentheses. Band energies forbulk
AlAs and GaAs~Fig. 2! appropri-
ate to the limitn→` are given at
right. The energy zero is taken at
the bulk GaAs conduction-band
minimum G6c state. A transition
from Ḡ(Xz) to Ḡ(G6c) as the low-
est conduction band occurs near
the critical period nc57 ~gray
circle!.
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parisons with envelope functions. We note that~a! for n57
both electrons and holes are localized primarily within the
GaAs region, while forn56 electrons are found with com-
parable probabilities in both regions. Forn,6 ~not shown!
the CBM is more strongly localized in the AlAs region,
while the VBM remains GaAs-like, confirming that this band
crossing marks a transition for the GaAs/AlAs system from a
type II ~electrons and holes localized in different spatial re-
gions! to a type I superlattice~electrons and holes localized
in the same spatial region!. Also, ~b! the CBM shows promi-
nent peaks34 ~indicated by asterisks! near GaAs/AlAs inter-
faces.

~iii ! The nonfoldingM̄ (Xx,y) states shown in Fig. 3 are
relatively insensitive ton and slowly approach the bulk AlAs
X6c state for very largen.

~iv! The zinc-blendeL-derived pointsR̄(L) ~for odd n)
and X̄(L) ~for evenn) oscillate30 strongly for smalln and
asymptotically approach the GaAsL6c conduction-band
minimum for largen.

~v! Then51 superlattice is indirect via theR̄ point, while
the n52, 3, 4, and 6 superlattices are pseudodirect via the
Ḡ(Xz) point, coupled to the VBM by weak dipole matrix
elements typical of folded-in states. Curiously, forn55, the
Z̄ point, 2.3 meV belowḠ(Xz), is the conduction-band mini-
mum.

Effects~i!–~v! areall absent from the ‘‘standard model.’’
In particular, the nonmonotonic dependence of band energies
on n @~i! and ~iv! above# is mandated in the pseudopotential
approach by changes in point group symmetries11 with n.
Input parameters to the two classes of calculations emphasize
profound physical differences in the symmetries retained:
The ABP approach requires specification of microscopic ato-
mistic quantities, i.e., primitive translation vectors for the
structure, the identity and coordinates of all atoms within the
primitive cell, and pseudopotentials for all distinct atom
types. Standard model calculations require only the hetero-
structure orientation andcontinuumproperties: the length of
each region, and material parameters for pure GaAs and
AlAs. The standard model is thus entirely oblivious to even/
odd symmetries and their effects on energetics. It would,
moreover, accept without protest geometries which in an ato-
mistic description would yield defect levels in the gap@e.g.,
@001# ~AlAs!m~GaAs!n superlattices with tetragonal unit cells
for m1n odd, discussed in Sec. III B#.

We emphasize that the standard model describes ad-
equately only the Ḡ(G6c) conduction states;X- and
L-derived states (M̄ , R̄, and X̄ in Fig. 3! are so high in
energy as to be absent. SinceḠ(G6c) is the conduction-band
minimum only forn>7, only for suchn can SM predictions
bequalitativelycorrect. The extent to which there isquanti-
tativeagreement for this range is established in the next sec-
tion.

C. ABP and standard model predictions for †001‡ superlattices

1. Band energies atḠ

Figure 5 compares ABP and SM near-edge band energies
at Ḡ for ~AlAs!n~GaAs!n superlattices as a function ofn.

Relevant band energies of the bulk constituents are shown at
right. For conduction bands only the lowestḠ(G6c) and
Ḡ(Xz) states are shown.

We find that~i! the standard modelmissesseveral addi-
tional, folded-in electron states~discussed below!in the en-
ergy window; ~ii ! the symmetry-induced nonmonotonicity
~Sec. IV B! in the ABPḠ(G6c) curve for smalln is beyond
the reach of the SM; and~iii ! the SM overestimates the en-
ergy of theḠ(G6c) state by an amount shown by the shaded
region in panel~a!.

For valence bandswith a binding energy&200 meV
agreement between SM and ABP calculations is very good:
~i! the ABP hh1/lh1 splitting, including a maximum at
n.9, is very closely tracked, although~ii ! the first SM split-
off s-o state lies 6–8 meV below the corresponding ABP
curve for alln, except near band crossings, and crosses the
hh2 state betweenn55 andn56 in the ABP calculations,
but shifts up by 1 ML in SM calculations;~iii ! for n*10,
agreement for the hh2 state is also very good, though by
n55, it is ;80 meV too low in the SM;~iv! deeper into the
valence-band SM energies aretoo deep.

FIG. 4. Zone-center ABP wave functions on either side of the
Ḡ(Xz) to Ḡ(G6c) crossing for@001# ~AlAs!n~GaAs!n superlattices.
Solid lines depict planar-averaged square moduli of the conduction-
band minimum~CBM! Bloch state, while dashed lines show corre-
sponding quantity for the valence-band maximum~VBM ! hh1 state;
normalization is chosen to give probability per monolayer. For
n57 @panel ~b!# electrons and holes are both localized primarily
within the GaAs region, while forn56 @panel ~a!#, electrons are
found with a greater probability in the AlAs regions. Integer mono-
layer labels correspond to As~Ga/Al! layers forn56 (n57). For
electron states, note prominent peaks near interfaces~asterisks!.
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2. Near-edge wave functions atḠ

Is the good agreement between the pseudopotential and
the standard model approaches for near-edge hole states, but
poor agreement for theḠ(G6c) state, reflected in the quality
of the corresponding wave functions? Figure 6 shows the
square moduli of wave functions for theḠ(G6c) electron
state and near-edge hole states atḠ for n55 ~left column!
andn510 ~right column!; ABP planar-averaged wave func-
tions are shown as solid lines. For states whoseenergy~Fig.
5! is well described by the standard model envelope func-
tions closely average the upper and lower envelopes of Bloch
states. The obvious exception is then55 Ḡ(G6c) electron
state, for which the ABP wave function shows prominent
interfacial peaks~indicated by asterisks in Figs. 4 and 6!
absent from the SM.

3. In-plane and out of plane band dispersion

Since finite-temperature measurements and optical spec-
troscopy probe a finite region about the zone center, we next
consider band dispersion away fromḠ. Using the notation of
Fig. 1, we examine dispersion for wave vectorsqi along the
superlattice repeat (z) axis and in-plane wave vectorsq'

perpendicular to it.
Figure 7 compares, forq'[0, dispersion of near-edge

bands between theḠ andZ̄ points of the tetragonal Brillouin
zone for the~AlAs!5~GaAs!5 superlattice, below the type II
to type I transition described above. In this direction, the spin
degeneracy is preserved, i.e., each band displayed is twofold
degenerate. In the energy window shown,~i! there are three
additional conduction bands missing from the SM, because
of its gross overestimate of folded-inḠ(D) state energies.

The qualitative nature of each band atḠ is labeledG ~pri-
marily GaAs-like!, A ~primarily AlAs-like!, or M ~mixed
over both regions!; ~ii ! there is a;65 meV upward shift~see
Fig. 5! of the Ḡ(G6c) state, although its dispersion is well
described by the SM forqia/2p&0.05; ~iii ! while the dis-
persion of the lh1 and hh1 valence bands@panel~b!# is well
described up to the zone boundary, the ABP split-off (s-
o1) and hh2 bands show an avoided crossing at
qia/2p.0.04 which occurs in the SM as a simple crossing
at qia/2p.0.055;~iv! the hh2 band,;80 meV too deep at
Ḡ in the SM ~Fig. 5!, is ;40 meV too deep atZ̄.

Band dispersion asq' moves toward theM̄ point ~for
qi[0) is shown in Fig. 8. In this direction symmetry permits
the lifting of the spin-up vs spin-down degeneracy, resulting
in a doubling of the number of ABP bands seen in Fig. 7.
With our Kane parameter choice35 B8[0, however, this de-
generacy isnot lifted in the standard model. Unlike along the
Ḡ→Z̄ line ~Fig. 7!, conduction bands all disperse quadrati-
cally, despite a band crossing atq'a/2p.0.05. The hh1
bandwidth@panel~b!# is much greater than towardZ̄, and, as
for the s-o1 band, is strongly split by the spin-orbit interac-

FIG. 5. Comparison of ABP and SM band energies for
~AlAs!n~GaAs!n superlattices. Only the lowestḠ(G6c) and Ḡ(Xz)
conduction and near-edge valence bands are shown as a function of
n. Shading in~a! indicates SM error forḠ(G6c) state. Dashed lines
@panel~b!, lower right# show band connectivity near crossings.

FIG. 6. Square moduli of Bloch states and envelope functions
for near-edge states atḠ for ~AlAs!5~GaAs!5 ~left column! and
~AlAs!10~GaAs!10 ~right column! superlattices predicted from ABP
~solid lines! or standard model~SM, dashed lines! calculations.
Panels in each column are in order of decreasing band energy; note
correspondence with sequence in Fig. 5. A spatial overtone structure
characteristic of the zinc-blende state from which superlattice states
derive is evident in heavy-hole, light-hole, and split-off ABP wave
functions. Odd~even! n superlattices have inversion symmetry
about planes containing Ga~As! atoms. Note peaks on GaAs side of
interfaces for electron states~asterisks!.
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tion. In contrasting ABP and the SM, we note that~i! the spin
splitting is nonzero and significant in the ABP results for
valence bands;35 ~ii ! apart from the shift discussed earlier,
once again, dispersion of theḠ(G6c) electron band is well
described forq'a/2p&0.05; ~iii ! despite an underestimate
of the band energy which increases withq' , the SM repro-
duces a shallow minimum of thes-o1 band at
q'a/2p.0.08; ~iv! even forn55, band dispersion is quite
anisotropic. The ABP values formi /m' at Ḡ are, for ex-
ample,.3.4 for the hh1 state and.0.95 for the Ḡ(G6c)
electron state. The corresponding SM values are 4.4 and 1.3,
respectively; the anisotropy of effective masses is thus exag-
gerated within the SM.

Bands for the ~AlAs!10~GaAs!10 superlattice naturally
show much less dispersion withqi ~not shown! than for the
~AlAs!5~GaAs!5 case. Figure 9 shows better agreement be-
tween SM and ABP results forq' ~in-plane! dispersion of
valence bands, primarily because ABP spin-orbit splittings
are smaller for the~AlAs!10~GaAs!10 case, similar to the
large-n damping of odd-evenn oscillations for conduction-
band states seen in Fig. 3.

Based on the calculations for~AlAs!n~GaAs!n superlat-
tices presented above, we may conclude that~i! for hh1 and
lh1 bands, except for complete omission of spin splittings
with in-plane dispersion, the standard model closely repro-
duces ABP results. Substantial ABP-predicted spin splittings
of the s-o1 band forq'Þ0 may be experimentally detect-
able and represent a significant error in the standard model

even for hole bands;~ii ! for electron bands, agreement is
generally restricted to a region about theḠ point, with a
systematic overestimate of theḠ(G6c) state exceeding 20
meV forn510, but falling to less than 4 meV forn520. All
X-derived states are missed for alln.

D. ABP and standard model predictions for quantum wells

We have also carried out detailed ABP and eight-band
k•p1EFA standard model calculations for~GaAs!n/AlAs
quantum wells; for smalln, these model the properties of
isovalent ‘‘ d-layer’’ systems. These represent a more strin-
gent test of the standard model because the AlAsX6c state,
which now dominates confinement in the system, will be
poorly described byk•p.

1. Band energies atḠ

Figure 10 shows energies atḠ for ~GaAs!n/AlAs quantum
wells as a function of the GaAs well thicknessn, analogous
to those for superlattices in Fig. 5. Only the lowestḠ(G6c)
and Ḡ(Xz) conduction states are shown. A number of differ-
ences with respect to the superlattice case~Fig. 5!, are ap-
parent: ~i! the lowest Ḡ(Xz) conduction band is approxi-
mately pinned for alln at the energy of the bulk AlAsX6c
state, confirming convergence of our description of the quan-
tum well geometry;~ii ! this circumstance shifts the crossover
of Ḡ(Xz) to Ḡ(G6c) as the conduction-band minimum from
nc.7 for ~AlAs!n~GaAs!n superlattices to nc.9 for
~GaAs!n/AlAs quantum wells. Figure 11, analogous to Fig. 4
for superlattices, confirms the corresponding shift to larger
n of the spatial localization~type II to type I! transition. A

FIG. 7. For ~AlAs!5~GaAs!5 superlattice, comparison of ABP
and SM dispersion of near-edge conduction and valence bands be-
tweenḠ and Z̄ points of tetragonal Brillouin zone~see Fig. 1!. In
this direction, the spin degeneracy is preserved, i.e., each band dis-
played is twofold degenerate. Open triangles indicate states which
are derived from zinc-blende states folded in from theD direction.
For electron states,G andA indicate localization primarily in GaAs
or AlAs, while M indicates substantial mixing over both regions.

FIG. 8. In-plane dispersion of near-edge conduction and valence
bands towardM̄ from the Ḡ point of the tetragonal Brillouin zone
for ~AlAs!5~GaAs!5 superlattice. The spin degeneracy is broken in
this direction in ABP~but not SM! calculations; symbols are as in
Fig. 7.
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slight increase~with respect to that for the superlattice ge-
ometry! in the number of monolayers required for the type II
to type I transition for the quantum well geometry has been
noted by Mäder, who used an empirical tight-binding
Green’s function approach;36 ~iii ! the energy of theḠ(G6c)
state rises steeply as the quantum well thickness is reduced,
while for the superlattice case@Fig. 5~a!# the energy for this
state flattens out. This reflects electron confinement in the
GaAs well to smaller thicknesses than possible for the super-
lattice geometry;~iv! valence-band behavior is generally
similar to the superlattice case@Fig. 5~b!#, except that both
hh1 and lh1 states are concave downward functions ofn in
the quantum well case. Our results are very similar to those
of Mäder36 and of Boring and Gil.37

In contrasting ABP and standard model results, it is evi-
dent that~i! agreement for valence bands is restricted to the
hh1 and lh1 states, except for largern than shown, and~ii ! a
systematic overestimate of theḠ(G6c) state remains.

2. Quantum well band dispersion

As expected when there is very little overlap between
GaAs-derived states in adjacent wells, we find virtually no
dispersion withqi for near-edge quantum well bands. Dis-
persion with the in-plane wave vector componentq' , analo-
gous to Fig. 8 for the~AlAs!5~GaAs!5 superlattice, is shown
in Fig. 12. Toward theM̄ point, we find forconductionbands
that ~i! there is a;75 meV overestimate of theḠ(G6c) en-
ergy; ~ii ! the SM and ABP give electron effective masses
mel* /m0.0.14 and 0.19, respectively, for theḠ(G6c) state at
Ḡ; ~iii ! there are several bands folded from theD direction
completely missing from the SM description.38 For valence
bands, we find that~i! close agreement between ABP and SM

results for the hh1 and hh2 bands ceases past
q'a/2p.0.05 or so, due to SM omission of spin-orbit split-
ting. SM and ABP hh1 effective masses atḠ are 0.32 and
0.38, respectively;~ii ! s-o and hh2 bands are poorly de-
scribed by the SM because of strong spin-orbit splitting, al-
though the dispersion of the ABPs-o band is tracked.

V. DISCUSSION: ORIGINS OF k –p FAILURES

The specific results for@001# GaAs/AlAs heterostructures
above demonstrate the following: Forelectronstates,~i! the
eight-bandk•p1EFA standard model essentially neglects,
because of an inadequate description of dispersion,X- and
L-derived states for all superlattice and quantum well thick-
nesses. This omission makes the SMqualitativelywrong for
those GaAs/AlAs systems in whichX point-derived states
constitute the conduction-band minimum; we defer to Sec.
VI a more general discussion of its validity. Even if the het-
erostructure conduction-band minimum derives from zinc-
blendeG points, omission of non-G states may be important
insofar as they affect interpretation of transport or high pres-
sure properties. Using zinc-blendeX- andL-point band en-
ergies and masses, one could, in principle, include these
states together withG states in simple effective mass~one
band at a time! calculations. Alternatively, choice of a longer
zinc-blende primitive cell~e.g., a doubling along the@001#
direction so that theX point would fold toḠ) could be used
to append such states to the standard model. However, both
approaches do not permit such states to couple to other
states.~ii ! The SM omits odd-even energy oscillations re-
flecting discrete crystal symmetries; and~iii ! the SM overes-
timates the energy of theḠ(G6c) state by an amount which
falls with n from hundreds of meV, still exceeding 10 meV

FIG. 9. As in Fig. 8, but for~AlAs!10~GaAs!10 superlattice. Note
poor SM description ofḠ(G6c) dispersion beyondq'a/2p.0.05,
but good agreement for near-edge hole states.

FIG. 10. As in Fig. 5, but for~GaAs!n/AlAs quantum wells.
Note ~i! Ḡ(G6c) behavior appreciably different than in Fig. 5;~ii !
valence-band behavior generally similar to Fig. 5. The crossing of
Ḡ(G6c) and Ḡ(X6c,z) states occurs nearnc.9 ~gray circle!.
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until GaAs thicknesses of;40 Å. Forvalencestates,~i! the
SM is generally good for hh1 and lh1 bands, but deteriorates
deeper into the valence band and away from the zone center
Ḡ; ~ii ! neglects spin splittings when the spin degeneracy is
lifted, e.g., for in-plane dispersion. With respect to the ABP,
the standard model overestimates electron and hh1 effective
massesmi for dispersion along@001# and underestimates the
effective massm' describing in-plane dispersion.

A. Projections onto zinc-blende states

The standard model attempts to describeA/B heterostruc-
ture bands via a small number of bands of the bulk constitu-
entsA andB. To analyze the SM failures noted above, we
will therefore proceed as follows:First, we show how to
project superlattice wave functions atḠ onto a complete set
of zinc-blende bands;second, we demonstrate this projection
technique using computed ABP superlattice wave functions.
This establishes the composition of realistic superlattice
states using an approach free of the SM errors.Finally, we
examine the placement of ABP and SM superlattice states in
light of this decomposition and the already noted standard
model errors forbulkGaAs and AlAs.

The decomposition of superlattice wave functions is car-
ried out as follows.Ḡ states of an (AC)n(BC)n@001# super-
lattice are derived39 from zinc-blende states at thesuperlat-
tice reciprocal lattice vectors Gj52p j /na, for
j50,1,2,. . . ,n along the zinc-blendeG-X (D) line:

uc
Ḡ

SL
&5(

s

`

(
Gj

as,Gj
ucs,Gj

ZB &. ~12!

TheGjÞ0 fold to Ḡ in the superlattice geometry; these are
shown for the~AlAs!5~GaAs!5 case as gray circles in Fig. 2.
The projection on zinc-blende bands at Gj ~the state
ucs,Gj

ZB &) is thus

PsGj
[ z^cḠ

SLucs,Gj

ZB &u2[uas,Gj
z2. ~13!

The net contribution of zinc-blende bands to the projection,
is therefore

Ps[(
j50

n

PsGj
; ~14!

Ps thus measures how completely a particular superlattice
state derives from zinc-blende bands. If we retainNb dif-
ferent bands in our description, the quantity

P[(
s51

Nb

Ps ~15!

measures the extent to which the set retained is complete
(P[1), i.e., adequately describes the superlattice state. We
emphasize the difference between the number of zinc-blende
bandsused in the projections and the number of~Bloch!
statesused. A single zinc-blendeband, for example, gives
rise to 2n distinct states~or 4n including spin splitting! at
the superlattice zone center:G0 andGn ~at the ends of the
band in the zinc-blendeD direction! each occur once, while
G1•••Gn21 each occur twice. This ‘‘level structure’’ and the
band/state distinction is important to understand errors made
by the standard model.

FIG. 11. As in Fig. 4, but for~GaAs!n/AlAs quantum wells.
Note the shift, with respect to the superlattice case, in the number of
GaAs monolayersn required to make the system type I (n.9 vs
n.7).

FIG. 12. Dispersion of near-edge conduction and valence bands
toward theM̄ point from the Ḡ point of the tetragonal Brillouin
zone for a~GaAs!5/AlAs quantum well. The spin degeneracy is
broken in this direction. Note shift ins-o SM band, with respect to
ABP and poor SM description of hh1 and hh2 dispersion beyond
q'a/2p.0.07.
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B. Analysis of ABP results via projections

Because near-edge GaAs/AlAs heterostructure states are
often derived largely from GaAs bands, for convenience we
project on zinc-blende GaAs states. Due to the great similar-
ity of GaAs and AlAs, results would be very similar had
AlAs Bloch states been used. We emphasize that a large
projection onto GaAs for a superlattice state neednot imply
that the state is necessarily derived from a GaAs state; a
comparison of projections onto both GaAs and AlAs states
and examination of the wave function would be necessary
for this conclusion.

1. Type II to type I transition

The two lowest heterostructure states atḠ are derived
mostly ~Fig. 3! from the zinc-blendeG6c and.X6c,z points.
Partial projections onto GaAsG and X conduction-band
states~i.e., atGj52p j /na for j50 andj5n only! suffice to
confirm the crossing of these two heterostructure states at
critical thicknesses shown in Figs. 5 and 10. In Table I, we
give such projections for superlattices and quantum wells on
either side of the crossing, the signature of which is a sharp
increase in theG character of the lowest heterostructure con-
duction band associated with a sharp increase in theX char-
acter of the second conduction band. For both superlattices
and quantum wells, however, the strongly mixed character of
the conduction-band minimum just below the transition, evi-
dent in Figs. 4 and 11, is clear from the projections. For
smallern the heterostructures are more clearly type II, with
electrons localized in AlAs regions.

2. Character of superlattice states via projections

We use the~AlAs!5~GaAs!5 superlattice as a detailed ex-
ample and examine via projections three issues, in order of
their quantitative importance: ~a! dispersion of a
projected-on zinc-blende band~see Fig. 2!, i.e., PsGj

vs

Gj ; ~b! mixing of different zinc-blende bands in the super-
lattice, measured by 12Ps ; and ~c! completenessof the set
of zinc-blende bands retained, using the quantityP above.
We will project ontoNb510 zinc-blende GaAs bands: the
~spin split! first and second conduction bands40 denoted CB1
and CB2, and the heavy-hole~hh!, light-hole ~lh!, and split-
off (s-o) valence bands; these labels are used in Tables II
and III. Spin-up and spin-down components of each zinc-
blende state both contribute to the projection.41,42 Table II

shows, for the lowest two superlattice conduction states and
the highest seven valence states, contributions from theGj

above. The label used for a superlattice state~e.g., hh1! re-
flects the zinc-blende band~e.g., hh!, which dominates its
projection: a large value ofPs is ex post factojustification
for this label.

For superlatticevalencestates atḠ, we find that~i! hh1,
lh1, ands-o1 states are derived mostly from the zinc-blende
G point (G0), while hh2 and lh2 states are derived mostly
fromG1 , etc., in agreement with the expected level structure
discussed above~for hh2 and lh2, we use the labelsa and
b to distinguish the two superlattice states derived from the
G1 zinc-blende state!; ~ii ! in all cases there are significant
contributions from nondominantGj . hh1, lh1, ands-o1
states have monotonicallydecreasingcontributions fromGj
Þ0, since GaAs valence bands disperse monotonically from
G @Fig. 2~b!#. ~iii ! 12Ps exceeds 5% for thes-o1 and deeper
valence-band states, suggesting that mixing of different zinc-
blende bands occurs in these superlattice states.

For superlatticeconduction bandsat Ḡ, ~i! the Ḡ(G6c)
state has onlya.80% projection on the GaAsG point
([G0), with contributions;20% as large from otherGj ,
which depend nonmonotonically onj , reflecting the disper-
sion of the first ABP conduction band of GaAs;~ii ! 12Ps

exceeds.6% for theḠ(G6c) state, suggesting higher GaAs
conduction-band contributions.

Table III shows, for the same states as in Table II, the
quantity Ps @Eq. ~14!# describing contributions ofdifferent
zinc-blende bands to a superlattice state, andP @Eq. ~15!#,
measuring basis set completeness. We note that~i! for all
nine superlattice states the five GaAs bands included are es-
sentially complete, i.e.,P is very near 1;~ii ! mixingbetween
zinc-blende hh, lh, ands-o states in the superlattice is suffi-
cient to account for virtually all of the 12Ps deficits noted
above for deeper superlattice valence states. Thus, heavy-
hole, light-hole, and split-off zinc-blende bands suffice to
describe superlatticevalencestates very well.~iii ! Interest-
ingly, only the Ḡ(G6c) state—putatively described by
k•p—has an appreciable (;5%! contribution from a state
~the GaAs second conduction band! outsidethe set retained
in the eight-bandk•p approach.~iv! Table III also permits
partial evaluation of the extent of heavy hole/light hole~in-
terband! mixing in the ~AlAs!5~GaAs!5 superlattice. It is of-
ten stated43 that interfaces in heterostructures cause mixing
of bulk valence-band states. Such mixing, however, isob-

TABLE I. ABP projectionsPsGj
@Eq. ~13!# of superlattice~SL! and quantum well~QW! lowest two

conduction states atḠ ~labeledḠ(1) and Ḡ(2)! onto zinc-blende GaAs first conduction-band states atG and
X, labeled ‘‘GaAs state projected on.’’ These confirm the crossing ofḠ(G6c) and Ḡ(X6c,z) states, and an
associated type II to type I transition, in each system. GaAs states are labeled as bands5CB1(Gj ) with
conventional relativistic labels~Fig. 2! in brackets.

SL state atḠ GaAs state projected onn in ~AlAs!n~GaAs!n SL n in ~GaAs!n/AlAs QW

6 7 8 9

Ḡ(1) CB1(G) @G6c# 0.352 0.746 0.148 0.438

Ḡ(1) CB1(X) @X6c,z# 0.268 ,0.001 0.381 , 0.002

Ḡ(2) CB1(G) @G6c# 0.290 ,0.001 0.263 ,0.001

Ḡ(2) CB1(X) @X6c,z# 0.622 0.699 0.224 0.579
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servedonly44 at finite values of the in-plane wave vector
q' , where it is attributed44 to nonparabolicities of the zinc-
blende valence bands. Using an empirical pseudopotential
approach, Edwards and Inkson45 have examined hole states
in GaAs/AlAs double barrier and multiple quantum well
structures. They find pairs of lh-hh resonances in the trans-
mission coefficient which they trace to thedifferencesin the
cell-periodic functionsunG(r ) in GaAs and AlAs@see Eq.
~9!#. They note that the behavior they find for finiteq' is
qualitatively similar to that atḠ, suggesting that mixing is
important there. For our calculations atḠ, which fully retain
such differences in the GaAs/AlAsunG(r ), such mixing is
extremely small for the hh1 and lh1 states, although the
mixed character of deeper valence bands increases.

3. Analysis of standard model errors via projections

The previous section implies thatprovidedthe dispersion
of each bulk band is properly described, as is the case for the
pseudopotential GaAs band structure of Fig. 2, a relatively
small number of near-edge zinc-blende bands is sufficient to
quantitatively describe the heterostructures above in terms of

projections. If so, why is the standard model unsatisfactory
for superlattice conduction and deep hole bands? Figure 2
and the projections in Table II permit a reassessment of the
k•p1EFA errors noted above. We will show that most errors
may be traced simply to a poork•p description of band
dispersion inbulk zinc-blende bands, and hence of the posi-
tion of zinc-blende states which mix in the heterostructure
due to zone folding. Although applied to the
~AlAs!5~GaAs!5 superlattice, our explanations provide a gen-
eral framework for understanding the weaknesses of the
k•p1EFA approach.

Zone-center superlattice states which are derived mostly
from zinc-blendeG ([G0) states we expect will be well
described by the standard model, sincek•p bands are fit
there. These include the hh1, lh1, ands-o1 hole bands~al-
though the last is poorly described by the SM in the quantum
well geometry!. Deeper hole bands~hh2, lh2a, etc.!, how-
ever, are derived mostly~Table II! from GjÞG zinc-blende
statesoutsidethe quadratic region where thek•p fit is good
~see Fig. 2! and will be poorly described~Fig. 2! by the SM
for moderaten. Such bands will be foundtoo deepin the
valence band, as seen in Figs. 5,7–10, and 12. Because the
quadratic region islargest for the GaAs heavy-hole band,
however, the SM reproduces ABP results for the hh2 band
quite well forn*10 in Fig. 5.

k•p curves in Fig. 2 for the first bulk GaAs conduction
band are already 280 meVhigher than their ABP counter-
parts by the pointG1 . As a result, since contributions from
GjÞ0 are important~Table II!, standard model predictions
for the Ḡ(G6c) heterostructure conduction bandsmustbe too
high, as observed in Figs. 5, and 7–12.

As the GaAs thickness in a heterostructure increases,
those points along the zinc-blende GaAsD direction which
fold to the heterostructure zone centerḠ move closer to the
zinc-blendeG point, eventually well into the region where
k•p adequately represents the zinc-blende band structure. At
the same time, the number of such points increases, and
eventually near-edge heterostructure bands atḠ will all be
well described by the standard model, as seen, e.g., in Fig. 5
for largen.

Based on the observations above, we can trace the rela-
tively poor behavior of the standard model for systems with
thin GaAs regions to aninadequate description of the disper-
sion of bands of the constituent zinc-blende compounds at
the wave vectors relevant to zone folding. As we saw in Sec.
II, a quantitative description of the dispersion of asingle
band in thek0 representation@Eq. ~7!# on which thek•p
approach is based, depends on retaining a sufficientlylarge
number of zone-center Bloch states. Recent empirical
pseudopotential tests18 show that*30 zone-center states~in-
cluding spin! are sufficient to quantitatively reproduce the
full zone dispersion of near-edge zinc-blende bands.

The eight-bandk•p approach used above for zinc-blende
materials thus correctly focuses attention on four spin-split
bands, but does not retain enough zone-centerstatesto ad-
equately describe their dispersion for systems with GaAs re-
gions&40 Å thick, to the accuracy required by experimental
spectroscopic resolution (&10 meV!.

VI. SUMMARY AND CONCLUSIONS

Recently developed empirical pseudopotentials permit a
complete, accurate description of bulk zinc-blende semicon-

TABLE II. ABP projectionsPsGj
@Eq. ~13!# of ~GaAs!5~AlAs!5

superlattice states atḠ onto zinc-blende GaAs band at
Gj52p j /5a along theD (G-X) direction.G0 andG5 correspond to
ZB G andX points. TheGj are shown as filled circles in Fig. 2.

GL GaAs
state band G0 G1 G2 G3 G4 G5 SumPs

Ḡ(G6c) CB1 0.796 0.083 0 0.047 0.017 0 0.943

Ḡ(Xz) CB1 0 0 0.004 0.000 0.032 0.954 0.990

hh1 hh 0.843 0.154 0.001 0.000 0 0 0.998
lh1 lh 0.925 0.057 0 0 0 0 0.982
s-o1 s-o 0.800 0.008 0 0 0 0 0.808
hh2-a hh 0 0.894 0.039 0 0 0 0.933
hh2-b hh 0.143 0.811 0.016 0.000 0 0 0.970
lh2-a lh 0 0.927 0.020 0 0 0 0.947
lh2-b lh 0.044 0.775 0.010 0 0 0 0.829

TABLE III. ~GaAs!5~AlAs!5 superlattice~SL! near-edge states
at Ḡ resolved into net contributionsPs @Eq. ~14!# from bulk zinc-
blende GaAs bands. Deviation from 1 ofP ~5sum of row entries!
measures the extent to which the five spin-split zinc-blende bands
retained adequately represent the SL state.

SL state atḠ GaAs band SumP

CB2 CB1 hh lh s-o

Ḡ(G6c) 0.053 0.943 0 0 0 0.996

Ḡ(Xz) 0.007 0.990 0 0 0 0.997

hh1 0 0 0.998 0.002 0 1.000
lh1 0 0 0.001 0.982 0.009 0.992
s-o1 0 0 0.051 0.137 0.808 0.996
hh2-a 0 0 0.933 0.035 0.030 0.998
hh2-b 0 0 0.970 0.024 0.001 0.995
lh2-a 0 0 0.029 0.947 0.020 0.996
lh2-b 0 0 0.011 0.829 0.153 0.993
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ductors. From such calculations for GaAs and AlAs we
extracted the Luttinger parameters required for an 838
multibandk•p1EFA description of~AlAs!n~GaAs!n super-
lattices and~GaAs!n/AlAs quantum wells. We directly con-
trasted predictions of an all band pseudopotential approach,
which includes all bands and their dispersion throughout the
zone and predicts wave functions with full Bloch symmetry,
with predictions of an 838 multibandk•p1EFA approach.
We examined band energies, wave functions, and dispersion
for both methods and surveyed the general weaknesses of the
standard modelk•p1EFA description using the all band
pseudopotential results as a gauge.

Our analysis shows that the standard model errors for het-
erostructure states primarily reflectk•p errors in the bulk
constituents, weighted by the amount by which bulk states
participate in the heterostructure state. This simple, general
statement permits us to determine when the standard model
can be expected to work well for heterostructures:~a! when
heterostructure states are derived from bulk stateswell de-
scribed byk•p, i.e., from states near the zinc-blendeG point;
~b! when k•p errors in the bulk arelarge ~e.g., forL or X
points!, but such states do not occur with significant ampli-
tude in heterostructure states in the near-edge energy range
of interest. Situation~a! is seen to occur for near-edge heavy-
and light-hole superlattice states@Fig. 5~b!# deriving from
bulk GaAs near-G states„well described forka/2p&0.2
@Fig. 2~b!# by k•p…. Situation~b! occurs for heterostructures
for which bulk X and L point conduction bands are well
above the G point conduction-band minimum, e.g.,
InGaAsP/InP or InAs/GaAs systems and~type I! GaAs/
AlGaAs systems. Our analysis also shows whenk•p errors
are expected to be large. Examples include
^111&-orientation superlattices of direct gap constituents with
small zinc-blendeL-G splittings. In such systems there is a
significant mixing of zinc-blendeL character into hetero-
structure zone-center states. Franceschettiet al. have re-
cently shown,46 for example, that thek•p model gives an
incorrect dependence of the electron effective mass on the
degree of̂ 111& ordering in GaP/InP structures, due to the
failure to describeG-L coupling. It is interesting to note that
if one considers a quantum filmin vacuum~i.e., not sup-
ported by a barrier material!, effective mass approach errors
are very large,47 even near the valence-band maximum. Ap-
plication of the standard model thus requires careful exami-
nation of the position of the consituent materials band edge
states, the valence- and conduction-band offsets, and the ori-
entation and thickness of the heterostructure.
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APPENDIX: EXTRACTING LUTTINGER
PARAMETERS FROM BULK PSEUDOPOTENTIAL

BAND STRUCTURE CALCULATIONS

This appendix describes how empirical pseudopotential2

results for bulk GaAs and AlAs were fit to extract Luttinger
parameters suitable for use in superlattice and quantum well
calculations using the eight-bandk•p1EFA approach. Band
parameters measured experimentally or extracted from all
band pseudopotential~ABP! calculations for bulk GaAs and
AlAs and Luttinger parameters are compared and the incom-
pleteness of the Luttinger parametrization is discussed
briefly.

Within the 838 Kane model commonly used to represent
the bands of bulk III-V semiconductors, as parametrized by
Gershoniet al.,22 near-edge band effective masses are related
to the Luttinger parameters as follows:

Smel

m0
D 21

5a1
EP

Eg

~Eg1
2
3 D0!

~Eg1D0!
, ~A1a!

Sms2o

m0
D 21

5g12
1

3

EP

Eg

D0

~Eg1D0!
, ~A1b!

Smhh@001#

m0
D 21

5g122g2 , ~A1c!

Smlh@001#

m0
D 21

5g112g2 , ~A1d!

Smhh@111#

m0
D 21

5g122g3 , ~A1e!

Smlh@111#

m0
D 21

5g112g3 . ~A1f!

In Eqs.~A1! theg i are Luttinger parameters,Eg is the energy
gap between the highest valence band and lowest conduction
band at G, D0 is the spin-orbit splitting, and
Ep[2m0 /\

2P2 ~with P[2 i\/m0^supxux&) is the energy
scale measuring the importance of the dipole matrix element
coupling the valence-band maximum and the conduction-
band minimum atG. Effective masses for nondegenerate
states are isotropic atG.

TreatingEg andD0 as experimentally known, Eqs.~A1!
constitute six equations in the five unknownsg1 , g2 , g3 ,
EP , anda. We thus have both an overdetermined system
and a simple check of the consistency of the description.
This overdetermination of parameters is an illustration of
how the Kane model, even in principle, cannot be exact; we
return to this issue below.

To extract the parameters above, we carried out bulk em-
pirical pseudopotential calculations~Sec. III B! for zinc-
blende GaAs and AlAs, neglecting the small lattice param-
eter mismatch between them. The resulting bulk band
energies atG establishedEg andD0 . Effective masses were
found via the expressionDE.\2/2m* (Dk)2, whereDk and
DE are the deviations from the band extremum ink space
and in energy. Energy shifts were tabulated on ak grid of
points aboutG with Cartesian components spaced apart by
Dk50.012p/a. With the spin-orbit interaction included,
zinc-blende bands expanded aboutG may be nonparabolic.7

@001# and@111# band effective masses atG were determined
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simply from theDE at the first grid point, since no terms
linear inDk were observed in our fits.

To compute band energies for heterostructures, we require
one additional parameter, which isnot a property of a pure
material in isolation. This is the valence-band offset
(DV) VBM between the two materials~Table IV!. The process
of generating the pseudopotentials used in our calculations2

naturally includes theexperimentalvalue for the valence-
band offset. Table IV gives band parameters for GaAs and
AlAs and the Luttinger parameters extracted by solving the
first five of Eqs.~A1!. Columns labeled22,27Gershoni, Henry,
and Baraff ~GHB! and Ram-Mohan, Yoo, and Aggarwal
~RYA! give an indication of the variation in parameters used
in k•p1EFA calculations, although band effective masses,
for example, are relatively insensitive48 to Luttinger param-
eters. From our calculated values, we can examine some as-
pects of the consistency of the Luttinger description of bulk
bands. In the@111# direction, for example, the light- and

heavy-hole effective masses depend@Eq. ~A1!# only on the
Luttinger parametersg1 and g3 , both of which are known
from fitting five of the six equations above to the six~calcu-
lated! band effective masses. We will, for convenience, re-
gard the equation formlh@111#/m0 as a check on the pre-
sumed values ofg1 and g3 . We thus have an error in the
@111# light-hole effective mass of

Dmlh

mlh
ABP5H 22.1%, GaAs

10.16%, AlAs.

Thus the assumptions made in the 838 Kane model param-
etrization for bulk GaAs and AlAs are quite well obeyed by
the ABP bands. The effect on band properties of the number
N of states retained@Eq. ~6! of the text# in the description has
been examined by a number of authors.19–21One often finds
large quantitative differences in the values of the Luttinger
parameters obtained.

*Permanent address: Department of Physics, Colorado School of
Mines, Golden, CO 80401; electronic address:
dmwood@physics.mines.edu

1See, e.g.,Nanostructures and Quantum Effects, Springer Series in
Materials Science Vol. 31~Springer-Verlag, Berlin, 1994!.
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