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The k-p method combined with the envelope-function approximation is the tool most commonly used to
predict electronic properties of semiconductor quantum wells and superlattices. We test this approach by
comparing band energies, dispersion, and wave functions for GaAs/AlAs superlattices and quantum wells as
computed directly from a pseudopotential band structure and using eightkbgndTo assure equivalent
inputs, all parameters needed for thep treatment are extracted from calculated bulk GaAs and AlAs pseudo-
potential band structures. Except for large exchange splittings in the in-plane dispersion for thin superlattices,
present in pseudopotential calculations but absent fronk theresults, we find generally good agreement for
heterostructure hole bands within200 meV of the GaAs valence-band maximum. There are systematic errors
in band energies and dispersion for deeper hole béaltisther than hhl and Ihland significant qualitative
and quantitative errors for the conduction bands. Errors for heterostructure conduction states which are derived
from the zinc-blendd” point diminish as length scales increase beyen20 ML, while significant errors
persist forL- and X-derived states. Fdoulk GaAs and AlAs, eight-banll- p bands agree well with pseudo-
potential results very near the zinc-blendepoint (wherek-p parameters are fibut the first GaAsX point
conduction band is=26 eV too high with respect to the pseudopotential result. We show that this inadequate
description of thebulk band dispersion is the principal source lofp errors in theseneterostructuresA
wave-function projection analysis shows tHatp errors for heterostructures simply reflect corresponding
errors for the bulk constituents, weighted by the amount that such bulk states participate in heterostructure
states.

I. INTRODUCTION
zﬂnk<r)=exm[i<k~r)]m;G cnk(G)exdi(G-1)]. (4

X

Optoelectronic applicatioh®ften exploit electronic prop-

erties of artificial heterostructures, such as superlattices andne computes matrix elements W{r) in this basis, and
quantum wells, with characteristic dimensions of 100 A.diagonalizes Eq(1) using iterative minimizatiohor tech-
Their electronic properties could, in principle, be mterpretedniques linear ifi the atom number. The cutoff parameter
using the same tool applied successfully to bulk sqlidsGmaX is varied to achieve practical convergencesgfk).
nam_ely, a co.mplete band strut_:ture. Nanostructure smgle— Because of the very large number of monolayers spanning
particle energies and wave functions would then be solutions. 1o A nanostructures they have until very recéhtigen

to beyond the reach of sudirect electronic structure calcula-
p? tions [Egs. (1)—(4) abovd, the conventional computational

erV(r) Y(r)=ei(r), (1)  effort for which scales as the cube of the number of atoms.

0 The spectroscopy of nanostructures is instead intergreted

using an approach so common that we term it the “standard

model”: thek - p method together with the envelope-function

including all effects of the interfaces between materials approximation(EFA). The k- p approach® uses a perturba-
andB for the A/B heterostructured/(r) could be computed P L b appr . P
tion theory description of band dispersion for pukeor B

self-consistently from the occupied states using, e.g., densit\xl. . : - .
: . : ithin a small set of near-edge bands identified as physically
functional theory, or it could be approximated as a superpo- g
" ) hha relevant. In the EFA, the form used for the wave function in
sition of screened atomic potentidldj.e., .
the heterostructure assumes that envelope functions vary on
a scale much larger than the lattice constant of either
V(r)=§ vi(r—R—d;) (2)  B. The sole remnant of the atomistit{r) is an abrupt jump
’ in material properties at thA/B interface. Thek-p+EFA
combination can be an extremely concise representation of
heterostructure electronic properties, usually requiring only
material parameters for the pure bulk materialandB and
da(r)=exdi(k-r)Jup(r), (3) dimensions and orientations of theandB regions. In par-
ticular, the computational effort is essentially independent of
with e=¢,(k). To solve Eq.(1), the wave function is gen- the number of atoms in the system.
erally expanded in a set of variationally complete basis func- Although it has been eminently successful in a variety of
tions, e.g., plane waves: applications1? often overlooked formal restrictions on the

whereV(r) is the total three-dimensionatomisticpotential,

for atom species at basis sited; in cell R. If V(r) is
periodic? the wave function is of Bloch form
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standard model, compromise its description ofAdiB het-
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ko. Although Eq.(7) includes terms only through second

erostructure. The fact that its parameters are usually fit tgrder ink, if diagonalized using a sufficiently large number
experimental data has also made it difficult to appraise thesq of zone-center Bloch statefai,, (r)}, it would exactly
O )

limitations. In contrast to the direct approach of E{3—(4),

the standard modefa) omits discrete crystal symmetries,
e.g., point-group symmetry differences between an odd an

even number of layers iA,B,, superlattice¥ or thin films:2

(b) usually assumes a constant potential in each region a
neglects the spatial dependence of wave functions transver

to the heterostructure modulation directidis) attempts to

describe nanostructure wave functions in terms of a fe

Bloch states, neglecting their differences in materfaland
B; and(d) can describe band dispersion only in@mspeci-
fied) region near the heterostructure zone center.

Other methods have been applied to heterostructures, e.

the tight-binding approach Although it preserves an atom-
g g |liak% thek - p app?oacf? it suffers from a Ponents ofk. For a lll-V zinc-blende semiconductor, the

istic description,

variationally limited, very small set of basis functions and a
microscopically undefined potential. Furthermore, previous*
comparisons of the standard model with the tight-binding
method®* have generally suffered from the fact that mate-
rial parameters were drawn from different sources. For mo

eratem andn, A,B,, superlattices and,/B quantum wells

predict thefull (nonparabolif band dispersion throughout
e Brillouin zone. Thus, E(?7) is equivalent to solving Eq.

1), provided each uses a converged basis. We term this, in
inciple, exact parametrization of the full band structure of
. (7) the “k, representation.” Conventional approxima-

fions for semiconductof§ use ko=0=T", but make two

v\f,implifying assumptions

(1) Truncation/degenerate perturbation theohe set of
zone-center states of EdB) is truncated® to those N
strongly coupled by the off* perturbation ¢<k) in Eq. (7).

guation (7) becomes arNXN matrix, the elements of
vhich include terms through second order in Cartesian com-

three p-derived valence states degeneratd aare usually
ugmented by the first conduction statd atincluding spin-
orbit effects doubles the number of states retained to 8; this
we shall term the “eight-band bulk- p model,” used below.

gconventional Luttinger parametefy;} (Appendiy are lin-

ear combinations of thfp,, -} renormalized by Lwdin per-

provide a convenient opportunity to test the standard moddirbation theory and simplified using symmetfy.

against the direct approagbrovidedthe parameters required

(2) Fitting. Had one calculated thip, /} of Eq. (8), or

by the former are calculated from the latter. Using AlAs- With Luttinger parameters, the band structure could have
GaAs heterostructures as examples, in this paper we contrd&€n predicted for specifiedby diagonalizing Eq(7). Ana-

k-p+EFA and direct diagonalizatiojEgs. (1)—(4)] for
trends in(i) band energies(ii) wave function amplitudes,
and (iii ) band dispersion.

Il. THE k -p+EFA “STANDARD MODEL"
A. Representing bands of bulk materials

For pure bulk crystals, the cell-periodic part(r) [Eq.
(3)] of the Bloch function in Eq(1) obeys the equation

62 3 2k2
?O‘FV(r)'f‘ m_okp+ Z_rno unk(r):‘gn(k) unk(r)'

2
&)
Since the statef@unko(r)} at k=k, form a complete set for

any function periodic in the latticE,we may use them as a

basis forup(r):

N
Unk(1) = 2, Byl (7). (6)

Iytic secondk derivatives of the resulting band eigenvalues
e,(k), evaluated af’, would yield band effective masses in
terms of the these parameters. Unlés®f Eq. (6) is large
enought’” however, band properties can be very ptsuch
effects have been partially examirt&d within the k- p ap-
proach. The severity of thi truncatiorf® in (i) is mitigated

by the central feature of conventionklp approaches: in-
stead ofcomputingthe {p, -} or {y;}—which reflect the
atomistic crystal potentiaV(r)—they arefit to observed
band propertie$ such as the band gap af@01] and[111]
band masses di. The basis truncation above has the fol-
lowing importantphysicalconsequencesi) nonparabolicity

is difficult to treat systematically, so that bands of pure bulk
materials will be valid, in principle, only “near” thé&' point;

(i) bands generally cease to obey Bloch symmetries, such as
en(k+G)=¢,(k) for bandn and reciprocal lattice vector
G. This often introduces unphysical “out of zone” solutions,
which must be detected and eliminatédjii) bands which
do not derive from the zinc-blendg point are poorly de-
scribed. The inadequacy of &~ 8 basis means that a con-

whereN is the number of such states used. Inserting into Eqventionalk- p prediction for, e.g., the lowest GaAs conduc-

(5), we find*® the matrix equation,

h 2 2
> || En(ko) = en0+ 5 (=) o

h
+m—(k_k0)'pn’nr]bnr:0. (7)
0

The effects oV (r) are now encoded in the momentuydi-
pole) matrix elements
pn,n’E<unko|ﬁ|un’k0>'

8

Nonparabolic dispersion of bamu is thus entirely due to

tion band atX would be so high in energy as to be physically
meaninglesgsee Fig. 2 beloyv An additional set of restric-
tions on the standard model follow from the conventional
description ofheterostructuresdescribed next.

B. Describing heterostructures

The parametrization of Sec. Il A may be applied to each
of the materialsA andB making up anmA/B heterostructure.
For a spatially inhomogeneous system, mogv+EFA ap-
proaches are based on the formalism of Luttinger and
Kohn!® which treated the response of a homogeneous crystal

statesn’ to which it is coupled by dipole matrix elements at to a weak, slowly varying external perturbing potential. Un-
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der flat band conditions, th& and B regions are assumed their formal expressions in theX88 Kane model and extract
bulklike, and the wave function, e.g., in matergltakes the  Luttinger parametergsee the Appendjx These suffice to

form specify all matrix elements used fir p calculations within
N the standard 88 model. Finally, we use these
P(r)= 2 Fﬁ(r)uﬁr(r), (9) pseudopotential-derived Luttinger parameters and gaps as in-
n=1

put to k- p+EFA calculations of band structures and enve-
I]ope functions for (AlAs),(GaAs, superlattices and
(GaAs,/AlAs quantum wells. The results are compared with
direct pseudopotential calculation&qgs. (1)—(4)] for the
same structures. Computational details are given below.

where theFﬁ(r) are envelope functions and the zone-cente
states{u,r(r)} are formally different in material& andB.
The sum runs over thH states retained in thie- p descrip-
tion, defining a multiband EFA. By constructioh?*the F,
have Fourier components restricted to the first Brillouin zone

of the A or B constituents and are thus faijowly varying B. Direct method: Computational details
The derivation of the partial differential equations and
boundary conditions obeyed by the envelope functions arg|
thoroughly reviewed by Bu#? Virtually all k-p+EFA cal-
culations have of necessity assumedshmeset{u,r-(r)} of
zone-center states in both materi#idn the flat band ap-
proximation, one recovers a Schinger-like equation of the
form?®

Pseudopotentialsi-or the screened atomic pseudopoten-
sv;(r) in EqQ. (2), we use the recently developed empiri-
cal pseudopotentials of Mar and Zungérfor Ga, Al, and
As. These properly include the spin-orbit interaction and
have the following propertie5(i) they adequately reproduce
measured electronic properties of bulk GaAs and AlAs and
the scattering properties of Ga and Al in a variety of envi-
N ronmentsj(ii) wave functions are close to self-consistent lo-
nzl H(r k) nmFm(r)=eFq(r). (100 cal density approximation computed wave functiofig:)
they permit an absolute energy scale, so we may refer het-
Here the argument indicates simply that material param- erostructure eigenvalues to those in GaAs by simple subtrac-
eters depend on the chemical identity of the heterostructuréion. k-p+EFA calculations naturally refer heterostructure
region. A piecewise constant functional form is usually as-energy levels to the band edges of the pure constituémjs;
sumed for lamellar systems. Inbailk material,k; is identi-  the As potential depends on the number of Ga and Al nearest
fied as a component of the specified Bloch wave vector; in aeighbors, thereby including most charge transfer and inter-
heterostructure the replacemefit kj——iV; converts Eq. face effects; andv) they are algebraically simple even when
(10) into a system oN coupled partial differential equations. including the spin-orbit interaction.
The prescription for guaranteeing a Hermitian matrix when Geometriesln the calculations reported below, we con-
materials parameters depend on position, and the appropriaséder (AlAs),(GaAg, superlattices(with 1=<n=<20) and
boundary conditions to be imposed at interfaces, are refGaA9,/AlAs quantum wells(with 1<n<10) based on
viewed in Ref. 25. [001]-orientation tetragonal unit cells. To represent GaAs
The conventional EFA thus introduces additional restric-quantum wells in an AlAs barrier, we use periodic
tions on the physical descriptiofi) The envelope functions (GaAs ,(AlAs),, superlattices withm large enough to effec-
should be slowly varying. This assumption may be violatedtively isolate GaAs wells. Note that+ m must beevenfor a
for sufficiently thin heterostructures, raising questions abouperfect[001] superlattice described viatatragonalcell: as-
accuracy(ii) The assumption of a weak, slowly varying per- sume that we occupy primitive celp of an [001]
turbation would appear dubious in abruptB semiconduc- (AC),(BC), superlattice of cations andB and anionsC
tor heterostructures and short-period superlattiG@g. Ne-  in accordance with tetrahedral coordination. This works for
glect of differencesin the zone-center statdsi,r(r)} in A n+m=even, but forn+m odd, the last anion layer in cell
andB appears to limf the EFA to heterostructures of elec- p will be directly below the first anion layer in cep+1,

tronically similar materials. inconsistent with tetrahedral coordination for the first cation
layer in cellp+ 1. This defect would introduce spurious im-
. CALCULATIONAL APPROACH purity levels in the gap; thusn must be oddeven if n is
odd (evern. We usem=20 for evenn and m=19 for odd
A. Strategy n. To verify convergence wittm for, e.g., (GaAs 5(AlAs)

The procedure we use to compare, on an entirely equivase, We examined the spurious bandwidths of the lowest con-
lent footing, results of the “direct” approacfEgs. (1)—(4)]  duction and highest valence bands along the line between the
with those of thek- p+EFA “standard modelTEgs.(7)-(9)] ~ Zone center and zone edge along tb@1] direction(Fig. 1).
is as follows First, we use the direct approach, implemented These are<0.2 meV and<0.02 meV, respectively, and this
within the empirical pseudopotential method, to computechoice form is thus large enough to remove numerical arti-
band structures, including band gaps, effective masses, arf@cts of the supercell geometry for near-edge bands.
spin-orbit splittings, foulk GaAs and AlAs. The choice of ~ Method of direct solutionA conjugate gradient program,
modern empirical pseudopotentials to describe the atoms idsing a plane wave basis and the pseudopotentials described
the primitive cell is an issue of implementation, not of prin- above, was used to solve E¢$)—(3). The only convergence
ciple. The small lattice mismatch between these material®arameter is the number of plane waves used to describe the
was neglected in all calculations, eliminating the need tdBloch wave function[Eq. (4)]; a kinetic energy cutoff
specify deformation potentials and elastic proper@ezond  GZa.= 5 Ry was used. This direct approach suffers from
we equate pseudopotentigdlculatedeffective masses with none of the restrictions to which the standard model is sub-
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eight zone-center statefu,r(r)}, in principle, differ in
, GaAs and AlAs. These differences are retained insofar as
‘XZ . they enter matrix elements and affect, via material param-
R eters, boundary conditions at interfaces between the two
= materials®® but are not included otherwise. The Kane
parametét B', identically zero for systems with inversion
oX. symmetry, is assumed zero. The envelope function for band
Al n is expanded foboth A andB regions in supercell recip-
M rocal lattice vectors appropriate to rectangular geometry:
N NyN, " 1
— n
Fn(r) “Em Fjlm m

Xexd2mi(jx/Ly+ly/Ly+mZL,)], (11)

@ oA

relying on Fourier representability to include the jump dis-
continuities in material properties /B interfaces. The
boundary conditions applied to Eq&®) and (10) are dis-
cussed in detail in Refs. 22 and 25. Since the are in
general complex, both oscillatory and decaying contributions
to each envelope function are naturally included, circum-
venting the need to explicitly include both.For all of the
geometries we consider, the system is uniform transverse to
the superlattice or quantum well stacking direction, so the
dimensiond., andL, are irrelevant and convergence is de-
termined only by the number of Fourier componeNtsre-
tained. For specifie#, superlattice band energies and enve-
FIG. 1. Brillouin zone for tetragonal description of GaAs-AlAs lope functions are foqnd from eigenvalues and eigenvectors
[001] superlattices and quantum wells. Par{e) shows high- of an &\, square matrlx. We have useti=75;.even.for the
symmetry points and pané) the orientation ok andy axes with ~ €Xtreme short-perio@AlAs) ;(GaAs ; superlattice, eigenval-
respect to the prism cross section. The crystal primitive cell along/€S change by less than 0.2 meV on redudihgo 25.
the z axis is of lengthL,, anda is the zinc-blende lattice constant.

(b)

IV. COMPARISONS OF “STANDARD MODEL”
ject. In particular,(a) since zinc-blende GaAs and AlAs are AND DIRECT CALCULATIONS

correctly described throughout the zinc-blende Brillouin [001] (AlAs),(GaAs, superlatiices andGaAs,/AlAs

zone, heterostructurg-derived bands will also be correctly uantum wells. are conveniently described as tetragonal
described{b) band dispersion throughout the heterostructureld@n" o y - 9
grlmltlve cells. The Brillouin zone is shown in Fig. 1, where

Brillouin zone may be computed with the same accuracy a(\_f\ve use an overbar to indicate heterostructure states. We

for a zinc-blende material, since we use a fixed plane wav . i .
cutoff; (c) all features of wave functions, with oscillations of Sp?c'fy band energies fanilk zmc—b_lende AI/_—\s_, apd GaAs
using conventional double group, i.e., relativistic, notation,

all wavelengths permitted by Bloch's theorem, are InCIUOIGdbut label heterostructure states via the zinc-blende Brillouin

(d) for a specified wave vectoq, all bands—not simply } s .
those which are derived directly from the three valence bandon€ point from which they derive. The stal§X,), for
instance, is af001] heterostructure state at the tetragonal

and one conduction-band state retained in th€88k-p - - -
description—may be examined. For these reasons, we reféPne centerl’ derived from a zinc-blend&X point state,

to the direct calculations below as an “all band pseudopotenwhich folds toI” due to the longef001] repeat distance. An
tial” or ABP approach. arbitrary wave vectolg in the tetragonal zone can be re-

solved into components; along the stacking direction and
an (“in-plane”) componeny, perpendicularto it. The zinc-
o _ blendeL point folds® to the tetragonakK point for evenn

We use an &8 k- p+EFA method described in dzeztall by and toR for oddn, while the tetragonall points are derived
Baraff and Gershofi and reviewed by Gershoet al,?2 but from the zinc-blendeX points in thex-y plane. We use be-
use Luttinger parameters fit to oualculatedpseudopoten- o the notation SM to indicate standard model eight-band

tial bulk bands for GaAs and AlAs; see the Appendix.| ., EFa results and ABP to indicate those of our direct, all
Pseudopotential-derived Luttinger parameters and effectivg,q pseudopotential calculations.

masses differ somewhat from accept%d vafizéé?® al-

though the range of the latter may be lafg@ur purpose is

to compare in detail predictions of twtheoretical ap- A. Bands of bulk GaAs and AlAs

proaches, using precisely equivalent inputs, not to exactly Since we considdi001]-based heterostructures, we exam-

reproduce experimental data. ine first the bands obulk GaAs and AlAs along the zinc-
In the formalism of Baraff and Gershofiithe wave func-  blende I'-X[001] direction. Figure 2 shows the bands of

tion of the heterostructure is of the form in E§), where the  AlAs and GaAs obtained from direct pseudopotential calcu-

C. The standard model: Computational details
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lations (solid lineg and within the eight-ban#- p approach
(dashey using pseudopotential-determined Luttinger param
eters. On this scald- p results appear parabolic; for GaAs,

they agree with the correct dispersion of ABP bands to

within 50 meV only up to 12%, 18%, 14%, and 14% of the
distance towardX for the electron, heavy-hole, light-hole,

and split-off bands, respectively; yet larger discrepancies oc-

cur farther fromlI'. In particular, the GaA&-p Xg. State is
26 eV higher than the correct ABP value, so that dhy
— Xgc coupling is unphysically negligible ifx-p.

B. ABP electronic structure
of (AlAs),(GaAs),[001] superlattices

We begin by establishing overall trends withfor [001]

(AlAs),(GaAs, conduction-band states, using pseudopoten-

tial results(Fig. 3). We note the following.

__ (i) At the (AlAs),(GaAs, superlattice zone center,
I'(T'e.) states derive mostly from the zinc-blende GaAs
conduction-band minimur'g, state, whilel'(X,) states de-
rive mostly’® from the zinc-blende firsq. , and second
Xz¢,, conduction states aX. For even(odd n I'(Xec 2)
[['(X7.,)] states have the same symmetry as I#q.)
state, so they couple and repel one anoth&ince zinc-
blende X, states lie>0.5 eV higher in energy, symmetry
effects are most pronounced for euvenBecause zinc-blende
X states are all higher in energy than the GdAs state, this
coupling pusheglown the I'(I'g;) state. This opposes the
upward shift due to confinementapproximately «1/n?).
This competition between potentidymmetry and kinetic
effects results in a bending over of th¢l's.) state and a
nonmonotonid’(X,)/T'(I'g.) splitting for smalln. Repulsion
with the higher energy'(X;. ) state(not shown strongly
depresses the energy of thE(I'g,) state for n=1.
Symmetry-induced repulsions rapidly attenuate rasin-
creases and confinement effects dominate.

(i) A transition fromI'(X,) to I'(I'g.) as the lowest con-
duction band occurs near the critical pertbtf n,=7, as
indicated by the gray circleexperimentally this cross over is
found®® nearn=11, but the degree of interfacial abruptness

’ABP results for (AlAs) (GaAs) , [001] superlattices
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Eigenvalue above GaAs l"8v V)
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Distance along A direction
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FIG. 2. Dispersion of bulk AlAs and GaAs bands between the
zinc-blendel’ and X points (A direction: ABP calculations(full
lines) and eight-bandk- p (dashes Relativistic labels al” and X
and conventional names for valence bands are used. Note quasipa-
rabolic behavior ok-p bands. Gray filled circles show reciprocal
lattice vectors, which for théAlAs)s(GaAss superlattice fold to
the superlattice zone centEr

is uncleaJ. Figure 4 shows the square moduli of wave func-
tions for the valence-band maximumVBM) and
conduction-band minimunCBM) atI" on either side of this
transition. We display such results averaged over the trans-
verse dimensions of the primitive cell, to facilitate later com-

FIG. 3. All band pseudopoten-
tial (ABP) conduction-band ener-

400

300

gies for[001] (AlAs),(GaAs,, su-
perlattices at  high-symmetry
points(see Fig. 1 as a function of
periodn. Overbars indicate super-

Bulk limits

GaAs Lg.

200

—— T
T M(X )

{

100

Conduction band energy (meV)

R(L )sn odd
X(L), n even

lattice states, which derive from
the zinc-blende state given in pa-
rentheses. Band energies foulk
AlAs and GaAs(Fig. 2) appropri-
ate to the limith—o are given at
right. The energy zero is taken at
the bulk GaAs conduction-band
minimum g, state. A transition
from I'(X,) to I'(I'g.) as the low-
est conduction band occurs near

AlAs Xg,

GaAs Fg.

5 10 15

Superlattice period n

the critical period n.=7 (gray
circle).

20
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parisons with envelope functions. We note ttgtfor n=7

. L o ABP results for (AlAs) (GaAs) [001 latti
both electrons and holes are localized primarily within the results for (AlAs),(GaAs), (001 superla ces}

T ' T [ T l T | T I T
GaAs region, while fon=6 electrons are found with com- @ _ (AlAs)(GaAs)
03 —CcBM@D .

"""" VBM (r) A .':"-‘ n Typé n

parable probabilities in both regions. Fo 6 (not shown
the CBM is more strongly localized in the AIAs region,
while the VBM remains GaAs-like, confirming that this band 02
crossing marks a transition for the GaAs/AlAs system from a

type Il (electrons and holes localized in different spatial re-

gions to a type | superlatticéelectrons and holes localized 0.1

in the same spatial regi@mlso, (b) the CBM shows promi- g

nent peak¥ (indicated by asterisksnear GaAs/AlAs inter- 'S RPREAY VAN

faces. 3 g 00 T T, .V T
(iii) The nonfoldingM (X, ,) states shown in Fig. 3 are & 0 2 4 6 8 10 1

relatively insensitive ta and slowly approach the bulk AlAs % 03 _(b) (AlAs).(GaAs), |

Xgc State for very largen. _ £ Typel
(iv) The zinc-blendel-derived pointsR(L) (for odd n) ~ i ]

and X(L) (for evenn) oscillaté® strongly for smalln and 02} i o -
asymptotically approach the GaAkg. conduction-band i ’
minimum for largen. _

(v) Then=1 superlattice is indirect via thHe point, while
then=2, 3, 4, and 6 superlattices are pseudodirect via the -

0.1 \ Y E:' N

I'(X,) point, coupled to the VBM by weak dipole matrix 0.0 A
elements typical of folded-in states. Curiously, for 5, the s ‘4 66"‘“8 1ol f;’“ .
Z point, 2.3 meV below’(X,), is the conduction-band mini- Monolayers along superlattice primitive cell
mum.

Effects(i)-(v) areall absent from the “standard model.” g, 4. zone-center ABP wave functions on either side of the
In particular, the nonmonotonic dependence of band energiggx ) to T_(Fec) crossing for[001] (AlAs),(GaAs),, superlattices.
onn [(i) and(iv) abovd is mandated in the pseudopotential solid lines depict planar-averaged square moduli of the conduction-
approach by changes in point group symmetfisgith n. band minimum(CBM) Bloch state, while dashed lines show corre-
Input parameters to the two classes of calculations emphasizponding quantity for the valence-band maxim(/BM ) hh1 state;
profound physical differences in the symmetries retainednormalization is chosen to give probability per monolayer. For
The ABP approach requires specification of microscopic aton=7 [panel(b)] electrons and holes are both localized primarily
mistic quantities, i.e., primitive translation vectors for the within the GaAs region, while fon=6 [panel(a)], electrons are
structure, the identity and coordinates of all atoms within thefound with a greater probability in the AlAs regions. Integer mono-
primitive cell, and pseudopotentials for all distinct atom layer labels correspond to A&Ga/Al) layers forn=6 (n=7). For
types. Standard model calculations require only the heterdzlectron states, note prominent peaks near interfeserisks
structure orientation andontinuumproperties: the length of
each region, and material parameters for pure GaAs angelevant band energies of the bulk constituents are shown at
AlAs. The standard model is thus entirely oblivious to eVe”/right. For conduction bands only the loweB({T's.) and

odd symmetries and their effects on energetics. It WOU|dF_(XZ) states are shown.

moreover, accept without protest geometries which in an ato- : . _ -

mistic description would yield defect levels in the dapg., tiorYz\;Ie mg;gi;(lélghcetrs:]ar;?;:ﬂggf::elzssigﬁrﬂeagg[

[001] (AlAs),,(GaAs, superlattices with tetragonal unit cells - o . .

for m+n odd, discussed in Sec. IllB ergy wmdoyv, (if) the symmetry-induced nonmonotommty
We emphasize that the standard model describes adS€c- IV B)in the ABPT(I') curve for smalin is beyond

equately only the F_Lrec) conduction states:X- and the reach of the SM; andii) the SM overestimates the en-

L-derived statesNI, R, and_)z in Fig. 3 are so high in ©rgy of.thel“(l“m) state by an amount shown by the shaded

energy as to be absent. SinEdq.) is the conduction-band "€9ion in panela). _ o

minimum only forn=7, only for suchn can SM predictions For valence bandswith a binding energy=200 meV _

be qualitativelycorrect. The extent to which theregsianti- ~ agreement between SM and ABP calculations is very good:

tative agreement for this range is established in the next sedi) the ABP hhl/lhl splitting, including a maximum at
tion. n=9, is very closely tracked, althoudh) the first SM split-

off s-0 state lies 6—8 meV below the corresponding ABP
curve for alln, except near band crossings, and crosses the
C. ABP and standard model predictions for[001] superlattices = hh2 state between=5 andn=6 in the ABP calculations,
but shifts up by 1 ML in SM calculationgjii) for n=10,
agreement for the hh2 state is also very good, though by
Figure 5 compares ABP and SM near-edge band energigs=5, it is ~80 meV too low in the SM(iv) deeper into the
at I' for (AlAs),(GaAs, superlattices as a function af. valence-band SM energies amo deep

1. Band energies al'
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FIG. 5. Comparison of ABP and SM band energies for 0.1
(AIAs)n(_GaAs)n superlattices. Only the lowedt(I's.) and I'(X,) _ Y AL 4 B DO ALY i
conduction and near-edge valence bands are shown as a function of AT GaAs — T AIAT] [FAIAS]  GaAs  [PAIAT]
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n. Shading in(a) indicates SM error fof'(I'g;) state. Dashed lines

Distance along superlattice primitive cell (monolayers)
[panel(b), lower righf show band connectivity near crossings.

FIG. 6. Square moduli of Bloch states and envelope functions
for near-edge states dt for (AlAs)s;(GaAss (left column and

Is the good agreement between the pseudopotential andiAs),o(GaAs,, (right column superlattices predicted from ABP
the standard model approaches for near-edge hole states, lgstlid lines or standard mode(SM, dashed lingscalculations.
poor agreement for thE(I'g.) state, reflected in the quality Panels in each column are in order of decreasing band energy; note
of the corresponding wave functions? Figure 6 shows th&orrespondence with sequence in Fig. 5. A spatial overtone structure
square moduli of wave functions for the(T's.) electron cha_rac?erlst!c of the zinc-blende s_,tate from which s_uperlattlce states

ey _ derive is evident in heavy-hole, light-hole, and split-off ABP wave

state and near-edge hole stated dbr n=5 (left column funcii 0dd It h : .

dn=10 (right column); ABP planar-averaged wave func- unctions. (eve_ﬁ_ n superlattices have inversion symmetry
an 2 . about planes containing GAs) atoms. Note peaks on GaAs side of
tions are shown as solid lines. For states wharsergy(Fig.

. . interfaces for electron statéasterisk
5) is well described by the standard model envelope func- . o

tions closely average the upper and lower envelopes of Blocithe qualitative nature of each bandTais labeledG (pri-
states. The obvious exception is the=5 I'(I'g;) electron  marily GaAs-like, A (primarily AlAs-like), or M (mixed
_state, f(_)r which Fhe_ ABP wave fun_ction_ shqws prominentgver both regions (i) there is a~65 meV upward shiftsee
interfacial peaks(indicated by asterisks in Figs. 4 and 6 Fig. 5 of the I'(T's.) State, although its dispersion is well
apsent from the SM. described by the SM fogja/2m=0.05; (i) while the dis-
persion of the Ih1 and hhl valence bamfdanel(b)] is well
described up to the zone boundary, the ABP split-aff (
Since finite-temperature measurements and optical spe¢l) and hh2 bands show an avoided crossing at
troscopy probe a finite region about the zone center, we nextja/2w=0.04 which occurs in the SM as a simple crossing
consider band dispersion away frdi Using the notation of ~atgja/2w=0.055;(iv) the hh2 band~80 meV too deep at
Fig. 1, we examine dispersion for wave vectgfsalong the I in the SM(Fig. 5), is ~40 meV too deep af.
superlattice repeatz] axis and in-plane wave vectocs Band dispersion ag, moves toward theM point (for
perpendicular to it. q;=0) is shown in Fig. 8. In this direction symmetry permits
Figure 7 compares, foq, =0, dispersion of near-edge the lifting of the spin-up vs spin-down degeneracy, resulting
bands between thé andZ points of the tetragonal Brillouin in @ doubling of the number of ABP bands seen in Fig. 7.
zone for the(AlAs)s(GaAss superlattice, below the type 1l With our Kane parameter chofteB’ =0, however, this de-
to type | transition described above. In this direction, the spirgeneracy isitlifted in the standard model. Unlike along the
degeneracy is preserved, i.e., each band displayed is twofold— Z line (Fig. 7), conduction bands all disperse quadrati-
degenerate. In the energy window shouinthere are three cally, despite a band crossing qt a/2w=0.05. The hhl
additional conduction bands missing from the SM, becaus&andwidth[panel(b)] is much greater than towa# and, as
of its gross overestimate of folded-i(A) state energies. for thes-0l band, is strongly split by the spin-orbit interac-

2. Near-edge wave functions ar

3. In-plane and out of plane band dispersion
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. ) FIG. 8. In-plane dispersion of near-edge conduction and valence
FIG. 7. For (AlAs)s(GaAss superlattice, comparison of ABP 545 towarav from theT point of the tetragonal Brillouin zone
and SM dispersion of near-edge conduction and valence bands bg;, (AlAs)s(GaAss superlattice. The spin degeneracy is broken in

tweenI” and Z points of tetragonal Brillouin zonésee Fig. 1 I thjs direction in ABP(but not SM calculations; symbols are as in
this direction, the spin degeneracy is preserved, i.e., each band digig 7,

played is twofold degenerate. Open triangles indicate states which
are derived from zinc-blende states folded in from theirection.

For electron state§ andA indicate localization primarily in GaAs
or AlAs, while M indicates substantial mixing over both regions.

even forhole bands;(ii) for electron bands, agreement is
generally restricted to a region about tRepoint, with a
systematic overestimate of tH&I'g.) state exceeding 20

tion. In contrasting ABP and the SM, we note thiathe spin M€V forn=10, but falling to less than 4 meV for=20. All
splitting is nonzero and significant in the ABP results for X-derived states are missed for all

valence band® (ii) apart from the shift discussed earlier,

once again, dispersion of tH&I's.) electron band is well D. ABP and standard model predictions for quantum wells
described forq, a/27r=<0.05; (iii) despite an underestimate  \we have also carried out detailed ABP and eight-band
of the band energy which increases wifh, the SM repro- .4+ EFA standard model calculations fdGaAs,/AlAs
duces a shallow minimum of thes-0l band at guantum wells; for smalh, these model the properties of
q,a/27=0.08; (iv) even forn=>5, band dispersion is quite isoyalent* 5-layer” systems. These represent a more strin-
anisotropic. The ABP values fam;/m, atI' are, for ex-  gent test of the standard model because the Al@sstate,
ample,=3.4 for the hhl state ane=0.95 for theI'(I's;) =~ which now dominates confinement in the system, will be
electron state. The corresponding SM values are 4.4 and 1.8oorly described b - p.

respectively; the anisotropy of effective masses is thus exag- o

gerated within the SM. 1. Band energies al’

Bands for the(AlAs),o(GaAsg,, superlattice naturally . =
show much less dispersion witfjy (not shown than for the Figure 10 ShC_)WS energies Etfor (GaA_Q”/AIAS quantum
(AIAS)5(GaAS; case. Figure 9 shows better agreement be\_/veIIs as a function of.the GaAs well thickness analogous
tween SM and ABP results fa, (in-plane dispersion of (© those for superlattices in Fig. 5. Only the low¥l s)
valence bands, primarily because ABP spin-orbit splittingsandI'(X;) conduction states are shown. A number of differ-
are smaller for the(AlAs),((GaAs,, case, similar to the €nces with respect to_the superlattice céSig. 5), are ap-
largen damping of odd-evem oscillations for conduction- parent: (i) the lowestI'(X;) conduction band is approxi-
band states seen in Fig. 3. mately pinned for alh at the energy of the bulk AIAXg,

Based on the calculations f¢AIAs),(GaAs, superlat- state, confirming convergence of our description of the quan-
tices presented above, we may conclude thafor hhl and  tum well geometry(ii) this circumstance shifts the crossover
Ihl bands, except for complete omission of spin splittingsof I'(X,) to I'(I'g.) as the conduction-band minimum from
with in-plane dispersion, the standard model closely repron.=7 for (AlAs),(GaAs, superlattices ton.=9 for
duces ABP results. Substantial ABP-predicted spin splittingsGaAs,/AlAs quantum wells. Figure 11, analogous to Fig. 4
of the s-01 band forg, #0 may be experimentally detect- for superlattices, confirms the corresponding shift to larger
able and represent a significant error in the standard model of the spatial localizatioritype Il to type ) transition. A
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FIG. 9. As in Fig. 8, but fofAlAs);o(GaAs, superlattice. Note FIG. 10. As in Fig. 5, but forGaAs,/AlAs quantum wells

poor SM description ol (I'g,) dispersion beyond), a/2ar~0.05 Note (i) IT(FGC) behavior appreciably different than in Fig. &i)
but good agreement for neBz;r-edge hole states + o valence-band behavior generally similar to Fig. 5. The crossing of

I'(T's;) andI'(Xec ,) States occurs neaw,=9 (gray circle.

slight increase(with respect to that for the superlattice ge- results for the hhl and hh2 bands ceases past
ometry) in the number of monolayers required for the type Il ¢, a/27=0.05 or so, due to SM omission of spin-orbit split-
to type | transition for the quantum well geometry has beenjng SM and ABP hh1 effective massesTatare 0.32 and
noted by Maler, who used an empirical tight-binding g 33 respectively{ii) s-0 and hh2 bands are poorly de-
Green's function approact(iii) the energy of thd'(I'sc)  scribed by the SM because of strong spin-orbit splitting, al-

state rises steeply as the quantum well thickness is reduceghough the dispersion of the ABRo band is tracked.
while for the superlattice cag€ig. 5a)] the energy for this

state flattens out. This reflects electron confinement in the
GaAs well to smaller thicknesses than possible for the super-
lattice geometry;(iv) valence-band behavior is generally  The specific results fdi001] GaAs/AlAs heterostructures
similar to the superlattice ca$€ig. 5b)], except that both above demonstrate the following: Felectronstates i) the
hhl and Ihl states are concave downward functions of  eight-bandk-p+EFA standard model essentially neglects,
the quantum well case. Our results are very similar to thoseecause of an inadequate description of dispersierand
of Mader® and of Boring and Gif’ L-derived states for all superlattice and quantum well thick-
In contrasting ABP and standard model results, it is evi-nesses. This omission makes the §Walitativelywrong for
dent that(i) agreement for valence bands is restricted to thehose GaAs/AlAs systems in whick point-derived states
hhl and Ihl states, except for largethan shown, andii) a  constitute the conduction-band minimum; we defer to Sec.

V. DISCUSSION: ORIGINS OF k- p FAILURES

systematic overestimate of th&I'g.) state remains. VI a more general discussion of its validity. Even if the het-
erostructure conduction-band minimum derives from zinc-
2. Quantum well band dispersion blendel” points, omission of nof- states may be important

insofar as they affect interpretation of transport or high pres-

As expected when there is very little overlap betweensyre properties. Using zinc-blende and L-point band en-
GaAs-derived states in adjacent wells, we find virtually noergies and masses, one could, in principle, include these
dispersion withg for near-edge quantum well bands. Dis- states together witli" states in simple effective magsne
persion with the in-plane wave vector component analo-  hand at a timgcalculations. Alternatively, choice of a longer
gous to Fig. 8 for th&AlAs)s(GaAss superlattice, is shown  zinc-blende primitive celle.g., a doubling along thgo01]
in Fig. 12. Toward thev point, we find forconductionbands  direction so that the& point would fold toI') could be used
that (i) there is a~75 meV overestimate of thE(I's;) en-  to append such states to the standard model. However, both
ergy; (i) the SM and ABP give electron effective massesapproaches do not permit such states to couple to other
my/my=0.14 and 0.19, respectively, for thgI'¢.) state at  states.(ii) The SM omits odd-even energy oscillations re-
T; (iii ) there are several bands folded from thedirection ~ flecting discrete crystal symmetries; afiid) the SM overes-
completely missing from the SM descriptidhFor valence timates the energy of thE(I'g.) state by an amount which
bands, we find thai) close agreement between ABP and SMfalls with n from hundreds of meV, still exceeding 10 meV
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o toward theM point from theI’ point of the tetragonal Brillouin
FIG. 11. As in Fig. 4, but fo(GaAs/AlAs quantum wells  zone for a(GaA9s/AlAs quantum well. The spin degeneracy is
Note the shift, with respect to the superlattice case, in the number fyoken in this direction. Note shift is-o SM band, with respect to
GaA§ monolayers required to make the system typed£9 vs  ABP and poor SM description of hhl and hh2 dispersion beyond
n=7). ~
g, a/27=0.07.

untiI'GaAs thicknesses of 40 A. Forvalencestates i) the The G, 1, fold to T in the superlattice geometry; these are
SM is generally good for hh1 and Ih1 bands, but deteriorategnown for the(AlAs)s(GaAss case as gray circles in Fig. 2.
deeper into the valence band and away from the zone centegy,o projection on zinc-blende bansl at G; (the state
I'; (i) neglects spin splittings when the spin degeneracy i:le?3 )) is thus :

lifted, e.qg., for in-plane dispersion. With respect to the ABP, S5

the standard model overestimates electron and hhl effective psG_E|<¢§L| 2= as g [ (13
massesn, for dispersion alon§001] and underestimates the . ! !
effective massn, describing in-plane dispersion. The net contribution of zinc-blende basdo the projection,

is therefore
A. Projections onto zinc-blende states

n

The standard model attempts to desc#$® heterostruc- P=2, Psg;: (14)
ture bands via a small number of bands of the bulk constitu- 1=0
entsA andB. To analyze the SM failures noted above, we p_ thus measures how completely a particular superlattice
will therefore proceed as followsFirst, we show how to  state derives from zinc-blende basd If we retain N, dif-
project superlattice wave functions Btonto a complete set ferent bands in our description, the quantity
of zinc-blende bandsecondwe demonstrate this projection Np
technique using computed ABP superlattice wave functions. p= 2 p
This establishes the composition of realistic superlattice =1
states using an approach free of the SM errbisally, we
examine the placement of ABP and SM superlattice states ifieasures the extent to which the set retained is complete
light of this decomposition and the already noted standardP=1), i.e., adequately describes the superlattice state. We
model errors fobulk GaAs and AlAs. emphasize the difference between the number of zinc-blende

The decomposition of superlattice wave functions is carbandsused in the projections and the number (8loch)
ried out as followsI states of an AC),(BC),[001] super- statesused. A single zinc-blendband for example, gives

lattice are derive®d from zinc-blende states at trsmiperlat-  fise to 2 distinct states(or 4n including spin splitting at
tice reciprocal lattice vectors G;=2mwj/na, for the superlattice zone centéd, and G,, (at the ends of the

(15

j=0,1,2,...,n along the zinc-blend&-X (A) line: band in the zinc-blenda direction each occur once, while
o G;---G,_1 each occur twice. This “level structure” and the
SLy _ 7B band/state distinction is important to understand errors made
= . 12
l¥r) Es gj aS'GJMSG (12 by the standard model.
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TABLE |. ABP projectionsP.s [Eq. (13)] of superlattice(SL) and quantum wel(QW) lowest two
conduction states dt (labeledI™® and'®) onto zinc-blende GaAs first conduction-band stateE aind
X, labeled “GaAs state projected on.” These confirm the crossing(dfs;) andI'(Xe. ,) states, and an
associated type Il to type | transition, in each system. GaAs states are labeled as=@Bd(G;) with
conventional relativistic labeld=ig. 2) in brackets.

SL state af” GaAs state projected onn in (AlAs),(GaAs,, SL n in (GaAs ,/AIAs QW
6 7 8 9
r® CB1() [Te.] 0.352 0.746 0.148 0.438
re CB1(X) [Xec.2] 0.268 <0.001 0.381 < 0.002
re CB1(T) [Tec] 0.290 <0.001 0.263 <0.001
r@ CB1(X) [Xec.2] 0.622 0.699 0.224 0.579
B. Analysis of ABP results via projections shows, for the lowest two superlattice conduction states and

Because near-edge GaAs/AlAs heterostructure states af@e highest seven valence states, contributions fromGhe
often derived largely from GaAs bands, for convenience wedbove. The label used for a superlattice state., hh] re-
project on zinc-blende GaAs states. Due to the great similaflects the zinc-blende bang.g., hi, which dominates its
ity of GaAs and AlAs, results would be very similar had Projection: a large value dPs is ex post factgustification
AlAs Bloch states been used. We emphasize that a larg®r this label. _
projection onto GaAs for a superlattice state naetimply For superlatticevalencestates af’, we find that(i) hh1l,
that the state is necessarily derived from a GaAs state; #1, ands-ol states are derived mostly from the zinc-blende
comparison of projections onto both GaAs and AlAs stated” point (Go), while hh2 and Ih2 states are derived mostly
and examination of the wave function would be necessarjrom G, etc., in agreement with the expected level structure

for this conclusion. discussed abovéor hh2 and |h2, we use the labedsand
b to distinguish the two superlattice states derived from the
1. Type Il to type | transition G; zinc-blende stade (ii) in all cases there are significant

— . contributions from nondominan®;. hhl, Ihl, ands-ol
The two lowest heterostructure statesla@re derived  giat05 have monotonicalljecreasingcontributions fromG;
mostly (Fig. 3) from the zinc-blendd’s, and=Xe, points. g gince GaAs valence bands disperse monotonically from
Partial projections onto GaA$ and X conduction-band I' [Fig. 2b)]. (iii ) 1— P, exceeds 5% for the-o1 and deeper

statedi.e., atG;=2mj/nafor j=0 andj=n only) suffice 10\ 5ience-band states, suggesting that mixing of different zinc-
confirm the crossing of these two heterostructure states jonde bands occurs in these superlattice states.

critical thicknesses shown in Figs. 5 and 10. In Table |, we For superlatticeconduction bandsat T, (i) the T'(T's)
give such projections for superlattices and quantum wells O te has onlya~80% projection on tﬁe GaA§ poﬁicnt
either side of the crossing, the signature of which is a shar?EG ), with contributions~20% as large from othe@;
increase in thd" character of the lowest heterostructure Con'whicﬁ aepend nonmonotonically qn reflecting the dis;])ér-

duction band associated with a sharp increase irXtlohar- : ' . N
acter of the second conduction band. For both superlatticessIon of the first ABP_conduction band of GaA&i) 1-Ps

and quantum wells, however, the strongly mixed character o?xceeds_=6% for theI‘(_FGC_) state, suggesting higher GaAs
the conduction-band minimum just below the transition, evj-conduction-band contributions. .
dent in Figs. 4 and 11, is clear from the projections. For Tat_)le Il shows, for the same states as in Ta_lble Il, the
smallern the heterostructures are more clearly type II, withq.u"’mt'ty Ps [Eq. (14)] describing F)Oﬂtl’lbuthﬂS oflifferent
electrons localized in AlAs regions. zmc—ble.nde bands to a superlattice state, BnEq. (15)],
measuring basis set completeness. We note (iheor all

nine superlattice states the five GaAs bands included are es-
sentially complete, i.eR is very near 1{ii) mixing between

We use thgAlAs)s(GaAss superlattice as a detailed ex- zinc-blende hh, |h, and-o states in the superlattice is suffi-
ample and examine via projections three issues, in order dfient to account for virtually all of the 4 P, deficits noted
their quantitative importance: (a) dispersion of a  above for deeper superlattice valence states. Thus, heavy-
projected-on zinc-blende ban@ee Fig. 2 i.e,, Psg vs  hole, light-hole, and split-off zinc-blende bands suffice to
Gj; (b) mixing of different zinc-blende bands in the super- describe superlatticealencestates very well(iii) Interest-
lattice, measured by-1Pg; and(c) completenessf the set ingly, only the I'(I's;) state—putatively described by
of zinc-blende bands retained, using the quanfitabove. k-p—has an appreciable~<5%) contribution from a state
We will project ontoN,=10 zinc-blende GaAs bands: the (the GaAs second conduction baralitsidethe set retained
(spin splif first and second conduction bafitidenoted CB1 in the eight-bandk-p approach iv) Table Il also permits
and CB2, and the heavy-ho{lh), light-hole (Ih), and split-  partial evaluation of the extent of heavy hole/light héle
off (s-0) valence bands; these labels are used in Tables Berband mixing in the (AlAs)s(GaA9s superlattice. It is of-
and IIl. Spin-up and spin-down components of each zincten statetf that interfaces in heterostructures cause mixing
blende state both contribute to the projectidf? Table Il of bulk valence-band states. Such mixing, howevemrks

2. Character of superlattice states via projections
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TABLE II. ABP projectionsPsg [Eq. (13)] of (GaAgs(AlAs)s  projections. If so, why is the standard model unsatisfactory
superlattice states afl’ onto zinc-blende GaAs band at for superlattice conduction and deep hole bands? Figure 2
G;=2mj/5a along theA (I'-X) direction.G, andGs correspond to ~ and the projections in Table Il permit a reassessment of the
ZB I" andX points. TheG; are shown as filled circles in Fig. 2. k-p+EFA errors noted above. We will show that most errors
may be traced simply to a podkt-p description of band
GL GaAs dispersion inbulk zinc-blende bands, and hence of the posi-
state band G, G, G, G; G, Gs SumP, tion of zinc-blende states which mix in the heterostructure
— due to zone folding. Although applied to the
I'(Te) CBL1 0.796 0.083 0 0.047 0.017 0  0.943 (AlAs);(GaAss superlattice, our explanations provide a gen-
(X, ¢C€BlL 0 0 0.004 0.000 0.032 0.954 0.990 eral framework for understanding the weaknesses of the
hh1 hh 0.843 0.154 0.001 0.000 O 0 0.998 k-p+EFA approach.

Ih1 Ih 0925 0057 O 0 0 0 0.982 Zone-center superlattice states which are derived mostly
s0l s-0 0.800 0.008 0 0 0 0o o808 from zinc-blendel' (=G,) states we expect will be well
described by the standard model, sidcep bands are fit
::;z :E 0 ;)43 %?ﬁ %%3196 O%OO OO 00 069:730 there. These include the hhl, |hl, aswd1 hole bandgal-
Ih2-a h 0 0927 0020 O 0 0 0.947 though the last is poorly described by the SM in the quantum
well geometry. Deeper hole bandéh2, Ih2a, etg, how-
th2-b lh~0.044 0.775 0.010 0 0 0 0829 oyer are derived mostlgTable 1l) from G;#I" zinc-blende
statesoutsidethe quadratic region where the p fit is good
4 o ) (see Fig. 2 and will be poorly describe@Fig. 2) by the SM
servedonly?** at finite values of the in-plane wave vector for moderaten. Such bands will be fountbo deepin the
q, , where it is attributef to nonparabolicities of the zinc- yglence band, as seen in Figs. 5,7—10, and 12. Because the
blende valence bands. Using an empirical pseudopotentigjuadratic region idargest for the GaAs heavy-hole band,
approach, Edwards and Ink$drnave examined hole states however, the SM reproduces ABP results for the hh2 band
in GaAs/AlAs double barrier and multiple quantum well quite well forn=10 in Fig. 5.
structures. They find pairs of Ih-hh resonances in the trans- k-p curves in Fig. 2 for the first bulk GaAs conduction
mission coefficient which they trace to tdéferencesn the  band are already 280 meNgher than their ABP counter-
cell-periodic functionsu,r(r) in GaAs and AlAs[see Eq. parts by the poinGG;. As a result, since contributions from
(9)]. They note that the behavior they find for finigg is  G;#0 are importaniTable Il), standard model predictions
qualitatively similar to that al”, suggesting that mixing is for theI'(I'g;) heterostructure conduction banaisistbe too

important there. For our calculationslat which fully retain ~ Nigh, as observed in Figs. 5, and 7-12. )
such differences in the GaAs/AlAs, (r), such mixing is As the GaAs thickness in a heterostructure increases,

extremely small for the hhl and Ihl states, although thdn0S€ points along the zinc-blende GaAsdirection which
mixed character of deeper valence bands increases. fold to the heterostructure zone cenfemove closer to the

zinc-blendel” point, eventually well into the region where

k-p adequately represents the zinc-blende band structure. At

the same time, the number of such points increases, and
The previous section implies thptovidedthe dispersion eventually near-edge heterostructure bandf atill all be

of each bulk band is properly described, as is the case for thgell described by the standard model, as seen, e.g., in Fig. 5

pseudopotential GaAs band structure of Fig. 2, a relativelyfor largen.

small number of near-edge zinc-blende bands is sufficient to Based on the observations above, we can trace the rela-

quantitatively describe the heterostructures above in terms afvely poor behavior of the standard model for systems with

thin GaAs regions to aimadequate description of the disper-

TABLE lIl. (GaAss(AlAs)s superlattice(SL) near-edge states sion of bands of the constituent zinc-blende compounds at

atT resolved into net contributionB, [Eq. (14)] from bulk zinc-  the wave vectors relevant to zone foldiAdg we saw in Sec.

3. Analysis of standard model errors via projections

blende GaAs bands. Deviation from 1 Bf(=sum of row entries I, a quantitative description of the dispersion ofsangle
measures the extent to which the five spin-split zinc-blende bandband in thek, representatiofEq. (7)] on which thek-p
retained adequately represent the SL state. approach is based, depends on retaining a sufficiése
— number of zone-center Bloch states. Recent empirical
SL state af’ GaAs band Sunt pseudopotential tesfsshow that=30 zone-center staté-
cB2 CBL hh h <o cluding sp!nj are sufficient to quan_utatlvely reproduce the
full zone dispersion of near-edge zinc-blende bands.
F_(Fec) 0.053 0.943 0 0 0 0.996 The eight-band - p approach used above for zinc-blende
T(X,) 0.007 0990 O 0 0 0.997 Materials thus correctly .focuses attention on four spin-split
hhi 0 0 0.998 0.002 0 1.000 bands but does not retain enough zone-cergtatesto ad-

0.001 0982 0009 0992 €duatelydescribe their dispersion for systems with GaAs re-

lh1 0 0 ( : ) _
s-0l 0 0 0051 0137 0808 0.996 gions=<40 A thick, to the accuracy required by experimental
hh2-a 0 0 0933 0.035 0030 0.998 spectroscopic resolution(10 me\).

hh2b 0 0 0970 0.024 0001 0.995 VI. SUMMARY AND CONCLUSIONS

lh2-a 0 0 0.029 0.947 0.020 0.996

Ih2-b 0 0 0.011 0.829 0.153 0.993 Recently developed empirical pseudopotentials permit a

complete, accurate description of bulk zinc-blende semicon-
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ductors. From such calculations for GaAs and AlAs we APPENDIX: EXTRACTING LUTTINGER
extracted the Luttinger parameters required for ax88 PARAMETERS FROM BULK PSEUDOPOTENTIAL
multibandk - p+EFA description of(AlAs),(GaAs, super- BAND STRUCTURE CALCULATIONS

lattices andGaAs,/AlAs quantum wells. We directly con- this appendix describes how empirical pseudopoténtial
trasted predictions of an all band pseudopotential approachegyits for bulk GaAs and AlAs were fit to extract Luttinger
which includes all bands and their dispersion throughout thyarameters suitable for use in superlattice and quantum well
zone and predicts wave functions with full Bloch symmetry, cgiculations using the eight-bakdp+EFA approach. Band
with predictions of an &8 multibandk - p+EFA approach. parameters measured experimentally or extracted from all
We examined band energies, wave functions, and dispersidiand pseudopotenti@hBP) calculations for bulk GaAs and
for both methods and surveyed the general weaknesses of thg¢As and Luttinger parameters are compared and the incom-
standard modek-p+EFA description using the all band pleteness of the Luttinger parametrization is discussed
pseudopotential results as a gauge. briefly.

Our analysis shows that the standard model errors for het- Within the 8x8 Kane model commonly used to represent
erostructure states primarily reflektp errors in the bulk the bands of bulk Ill-V semiconductors, as parametrized by
constituents, weighted by the amount by which bulk state$>ershoniet al,?? near-edge band effective masses are related
participate in the heterostructure state. This simple, generd® the Luttinger parameters as follows:

statement permits us to determine when the standard model m 1 Eo (Eq+ 2A)
can be expected to work well for heterostructur@s:when <_e' —at — Q—A (Ala)
heterostructure states are derived from bulk statel de- Mo By (Eg+Ao)

scribed byk - p, i.e., from states near the zinc-bleridgoint; mg_o| * 1Ep A

(b) whenk-p errors in the bulk ardarge (e.g., forL or X ( m ) “NMT3E. m (Alb)
. . A . o g (Eg 0

points, but such states do not occur with significant ampli-

tude in heterostructure states in the near-edge energy range (mm{001]> 71_ > (Alc)

of interest. Situatioria) is seen to occur for near-edge heavy- mq BRAERECE C

and light-hole superlattice statébig. 5(b)] deriving from m[001]| 2

bulk GaAs neal- states(well described forka/27=0.2 ('h—) =1y1+2%,, (A1d)

[Fig. 2(b)] by k- p). Situation(b) occurs for heterostructures Mo

for which bulk X and L point conduction bands are well mp 1117 71

above the I' point conduction-band minimum, e.g., (m—()) =71~273, (Ale)

InGaAsP/InP or InAs/GaAs systems aritype ) GaAs/

AlGaAs systems. Our analysis also shows whkep errors (mm[lll]) _1_ ) (A1f)

are expected to be large. Examples include mg —NTeYs

(111)-orientation superlattices of direct gap constituents with
small zinc-blendd.-I" splittings. In such systems there is a
significant mixing of zinc-blendd. character into hetero-
structure zone-center states. Franceschadt@l. have re- = 5lo 0 o ;

cently showrf'® for example, that thé-p model gives an Ep=2mo/% P. (W'th.P:_'ﬁ/m0<S| pX|X>.) Is the energy
incorrect dependence of the electron effective mass on the-aleé measuring the importance of the dipole matrix element
degree of(111) ordering in GaP/InP structures, due to the cOUPling the valence-band maximum and the conduction-
failure to describd™-L coupling. It is interesting to note that band minimum a.tl“. Effiective masses for nondegenerate
if one considers a quantum filnm vacuum(i.e., not sup- states are isotropic at. .

ported by a barrier materjaleffective mass approach errors  1'€atingEq and A, as experimentally known, EqA1)

are very largé even near the valence-band maximum. Ap-Constitute six equations in the five unknowps, v, 7s,
plication of the standard model thus requires careful examiEp, a@nd a. We thus have both an overdetermined system
nation of the position of the consituent materials band edg&nd @ simple check of the consistency of the description.

states. the valence- and conduction-band offsets. and the 0;{_his overdetermination of parameters is an illustration of
entation and thickness of the heterostructure. how the Kane model, even in principle, cannot be exact; we

return to this issue below.

To extract the parameters above, we carried out bulk em-
pirical pseudopotential calculation&Sec. Il B) for zinc-
blende GaAs and AlAs, neglecting the small lattice param-

We thank David Gershoni for providing his eight-band eter mismatch between them. The resulting bulk band
k-p+EFA computer code and for useful discussions abougnergies at’ establishedy andA,. Effective masses were
its use, Kurt Maler and Ron Maurer for many useful sugges-found via the expressioAE=#%2m* (Ak)2, whereAk and
tions, Alberto Franceschetti and Lin-Wang Wang, and Sverrd E are the deviations from the band extremumkirspace
Froyen for suggestions about heterostructure state proje@nd in energy. Energy shifts were tabulated ok grid of
tions and the conjugate gradient program. This work wagoints aboutl” with Cartesian components spaced apart by
supported by the Office of Energy Research, Materials SciAk=0.0127/a. With the spin-orbit interaction included,
ence Division, US Department of Energy Grant No. DE-zinc-blende bands expanded abbumay be nonparabolit.
AC36-83CH10093. [001] and[111] band effective masses Btwere determined

In Egs.(Al) the y; are Luttinger parameterg, is the energy
gap between the highest valence band and lowest conduction
band at I', Ay is the spin-orbit splitting, and

ACKNOWLEDGMENTS
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TABLE IV. Band parameters for GaAs and AlAs used as inputkfgp calculationsii) as computed from
bulk pseudopotential band structure calculatichBP) including spin-orbit(ii) extracted by Gershorit al.
(Ref. 22 from experiment; andiii) as used by Ram-Mohagt al. (RYA) (Ref. 27; mq is the free-electron
mass. For each set the corresponding parameters of(&tjsare also given.

Parameter GaAs AlAs

ABP Gershoni RYA ABP Gershoni RYA
Eq= Egap (€V) 1.5288 1.519 1.521 3.0505 3.0995 3.031
Ag (eV) 0.3411 0.341 0.34 0.314 0.300 0.275
(AV) vay (€V) +0.500 +0.499 0.460 =0.000 =0.000 =0.000
mg/My 0.0831 0.0665 .0593 0.152 0.150 0.129
mp/Mg [001] 0.386 0.340 0.377 0.457 0.478 0.478
my/mg [001] 0.109 0.094 0.091 0.200 0.208 0.208
Mp/Mg [111] 0.948 0.816 0.952 1.087 1.149 1.149
my,/mg [111] 0.0952 0.0809 0.0791 0.161 0.166 0.166
mg /Mg 0.208 0.178 0.172 0.309 0.312 0.294
Y1 5.895 6.790 6.850 3.60 3.45 3.45
Vo 1.652 1.924 2.10 0.70 0.68 0.68
V3 2.420 2.782 2.90 1.34 1.29 1.29
Ep (eV) 27.4 28.8 25.7 354 25.7 211
@ -4.79 -2.76 1.00 -4.68 -1.38 1.00

simply from the AE at the first grid point, since no terms heavy-hole effective masses depdidj. (A1l)] only on the

linear in Ak were observed in our fits. Luttinger parametery; and yz, both of which are known
To compute band energies for heterostructures, we requirieom fitting five of the six equations above to the $otalcu-

one additional parameter, which et a property of a pure lated band effective masses. We will, for convenience, re-

material in isolation. This is the valence-band offsetgard the equation fom;[111]/m, as a check on the pre-

(AV) ygm between the two materia(Sable V). The process sumed values ofy; and y;. We thus have an error in the

of generating the pseudopotentials used in our calculdtiong111] light-hole effective mass of

naturally includes theexperimentalvalue for the valence-

band offset. Table IV gives band parameters for GaAs and Amy, _ —2.1%, Gaas

AlAs and the Luttinger parameters extracted by solving the mne | +0.16%, AlAs.

first five of Egs.(Al). Columns labeled?’ Gershoni, Henry,

and Baraff (GHB) and Ram-Mohan, Yoo, and Aggarwal Thus the assumptions made in th& 8 Kane model param-

(RYA) give an indication of the variation in parameters usedetrization for bulk GaAs and AlAs are quite well obeyed by

in k-p+EFA calculations, although band effective massesthe ABP bands. The effect on band properties of the number

for example, are relatively insensitftfeto Luttinger param- N of states retainefEq. (6) of the texi in the description has

eters. From our calculated values, we can examine some alseen examined by a number of authtts?! One often finds

pects of the consistency of the Luttinger description of bulklarge quantitative differences in the values of the Luttinger

bands. In the[111] direction, for example, the light- and parameters obtained.
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