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GaAs quantum structures: Comparison between direct pseudopotential
and single-band truncated-crystal calculations

Alberto Franceschetti and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 12 October 1995; accepted 3 January 1996!

A single-band approach for semiconductor clusters which accounts for the nonparabolicity of the
energy bands was recently used by Rama Krishna and Friesner@M.V. Rama Krishna and R.A.
Friesner, Phys. Rev. Lett.67, 629 ~1991!#. We compare the results of this method~denoted here as
single-band truncated-crystal, or SBTC, approximation! with a direct pseudopotential band-structure
calculation for free-standing hydrogen-passivated GaAs quantum films, wires, and dots. The direct
pseudopotential calculation, which includes coupling between all bands, shows that isolated GaAs
quantum films, wires, and dots have an indirect band gap for thicknesses below 16, 28, and at least
30 Å ~8, 14, and at least 15 ML!, respectively; beyond these critical dimensions the transition
becomes direct. A comparison of the SBTC approximation with the direct pseudopotential
calculation shows that~i! the confinement energy of the valence-band maximum is overestimated by
the SBTC method, because the zero-confinement character of this state is neglected;~ii ! the
confinement energy of theG-derived conduction state~direct band gap! is slightly overestimated by
the SBTC approximation, mainly because of the assumption of infinite potential barriers at the
boundaries;~iii ! the confinement energy of theX-derived conduction state~indirect band gap! is
severely underestimated by the SBTC method;~iv! while the SBTC approximation predicts
‘‘quantum deconfinement’’~i.e., reductionof gap as size is reduced! for the direct gap of thin GaAs
quantum wires, such effect is not present in the direct pseudopotential calculation. ©1996
American Institute of Physics.@S0021-9606~96!00114-7#

I. INTRODUCTION

The one-band effective-mass approximation~EMA! has
been widely used to predict optical and electronic properties
of semiconductor nanostructures.1 In the case of semicon-
ductor clusters embedded in organic solvents or colloidal
suspensions, however, the agreement of the calculated band
gap with experiment turns out to be rather poor, especially
for small cluster sizes.2 This disagreement can be traced back
to the fact that the EMA neglects~i! the nonparabolic energy
dispersion of the band-edge states, and~ii ! the coupling be-
tween different bulk states introduced by the lack of transla-
tional invariance.

To account for nonparabolicity effects within a single-
band approach, Rama Krishna and Friesner3–5 have recently
used a band structure formalism, denoted here as single-band
truncated-crystal~SBTC! approximation, in which the cluster
energy levels are represented by those of an extended, peri-
odic bulk solid, evaluated at special wave vectorsk* satis-
fying the particle-in-a-box quantization rules. The mapping
of the cluster energy levels onto the bulk band structure was
first proposed in the 1970’s~Refs. 6 and 7! in the tight-
binding context. The novelty of the method proposed by
Rama Krishna and Friesner consists of the use of empirical
pseudopotentials to calculate the bulk band structure. A com-
parison between SBTC and EMA results for the direct band
gap of GaAs spherical clusters~Fig. 1! demonstrates that~i!
the EMA band gap is overestimated with respect to the
SBTC band gap, and~ii ! a remarkable feature of the SBTC
results, i.e. the existence of ‘‘quantum deconfinement’’~re-

ductionof gap as size is reduced! for small cluster sizes,8 is
absent in the EMA description.

While the SBTC method is relatively straightforward
and computationally fast, the physical justification for the
underlying single-band approximation is unclear, at least in
the case of quantum wires and dots. In fact, while it has been
shown8 that in a two-dimensional~2D! quantum film the
one-dimensional zero boundary conditions~vanishing wave
function atz50 andz5L) can be approximately satisfied by
expanding the film wave function in terms of bulk wave
functions belonging to the same bulk band, this has never
been proved for quantum wires or quantum dots, where one
needs to match boundary conditions in two and three dimen-
sions, respectively. Thus, although the single-band approxi-
mation becomes exact in the limit of very large clusters,
interband coupling is expected to play a significant role in
nanometer-size clusters.

A previous pseudopotential calculation for indirect-gap
Si clusters9 showed that the SBTC approximation severely
underestimatesthe band gap,10 e.g., by as much as; 1 eV
for a diameter of 15 Å. We report here on a systematic com-
parison of the SBTC approximation with a direct pseudopo-
tential calculation for GaAs quantum films, wires, and dots
~denoted in the following as quantum structures!. We find
that ~i! the confinement energy of the valence-band maxi-
mum ~VBM ! is overestimatedby the SBTC method, because
of the zero-confinement character of this state;~ii ! the con-
finement energy of theG-derived conduction-band minimum
~CBM! is slightly overestimatedby the SBTC approxima-

5572 J. Chem. Phys. 104 (14), 8 April 1996 0021-9606/96/104(14)/5572/7/$10.00 © 1996 American Institute of Physics
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.138.41.170 On: Tue, 14 Jul 2015 11:25:24



tion, mainly because of the assumption of infinite potential
barriers at the boundaries;~iii ! the confinement energy of the
X-derived conduction state~indirect gap! is severelyunder-
estimatedby SBTC;~iv! while the SBTC approximation pre-
dicts quantum deconfinement for the direct gap of thin GaAs
quantum wires, such effect is not present in the direct
pseudopotential calculation, and is therefore an artifact of the
SBTC approximation.

II. METHODS

A. Direct diagonalization

In the direct diagonalization~DD! approach we solve for
the single-particle Schro¨dinger equation~in atomic units!:

@21/2¹21VQS~r !#c i~r !5e ic i~r !, ~1!

where VQS~r ! is the total pseudopotential of the quantum
structure.VQS is described here by the sum of screened
atomic pseudopotentials centered at the atomic positions
Rn :

VQS~r !5(
n
vn~r2Rn!. ~2!

For Ga and As atoms we use the nonrelativistic atomic
pseudopotentials developed by Ma¨der and Zunger.11 Using a
plane-wave basis set with an energy cutoffEcut55 Ry, these
pseudopotentials are carefully fitted to measured interband
transition energies and effective masses of bulk GaAs, and to
the work function of the~110! surface. In particular, the cal-
culated direct band gap (G15v - G1c transition! is 1.52 eV,
while the energies of the indirectG15v - X1c andG15v - L1c
transitions are 2.00 and 1.81 eV, respectively. The dangling
bonds at the surface of the quantum structure are passivated
using hydrogenic pseudopotentials. In the case of~110! and
~11̄0! surfaces, each Ga or As atom has only one dangling

bond, which is passivated by a hydrogen atom located along
the direction of the dangling bond itself. In the case of the
~001! surface~which we assume to be As terminated!, each
As atom has two dangling bonds, which are passivated by a
pair of hydrogen atoms. To avoid interaction between the
hydrogen atoms located along the@110# chains, we tilt each
pair of hydrogen atoms around the@11̄0# axis. The effect of
this hydrogen-like potential is to remove the surface states
from the band gap and to decouple the band-edge states from
surfacelike states.

Since the quantum structures considered here contain
hundreds, or even thousands, of atoms per unit cell, conven-
tional diagonalization techniques are not practical for solving
the eigenvalue problem. Instead, the band-edge states of the
quantum structures are obtained using the folded spectrum
method,12 which searches for the ground state of the operator
(Ĥ2e ref)

2, where Ĥ521/2¹21VQS is the pseudo-
Hamiltonian of the quantum structure ande ref is an arbitrary
reference energy. The ground state of this operator is the
eigenstate ofĤ closest in energy to the reference level
e ref ; by choosinge ref in the band gap, one obtains the band-
edge states of the quantum structure, with the same accuracy
achieved in a conventional diagonalization of the Hamil-
tonian.

The hydrogen-passivated GaAs quantum structure is em-
bedded in vacuum, and the quantum structure1 vacuum
‘‘supercell’’ is repeated periodically. The size of the vacuum
region is increased until the effect of the spurious interaction
between quantum structures on the energy levels becomes
negligible. Using~artificial! periodic boundary conditions,
the quantum structure wave function can be conveniently
expanded in a plane wave basis set:

c~r !5(
G

c~G!eiG•r, ~3!

where the sum runs over the reciprocal lattice vectors of the
supercell. The same energy cutoff (Ecut55 Ry! used in Ref.
11 to generate the atomic pseudopotentials is adopted in the
supercell calculation, in order to assure consistent band gaps
in the limit of large quantum structures. The functional
^cu(Ĥ2e ref)

2uc& is minimized with respect to the coeffi-
cientsc(G) using a preconditioned conjugate-gradients algo-
rithm. The matrix-by-vector product (Ĥ2e ref)uc&, which oc-
curs in the calculation of the conjugate gradients, is
efficiently performed using a double-space formalism: the
kinetic energy part is calculated in reciprocal space, where
the kinetic energy operator is diagonal, while the potential
energy part is calculated in real space, where the potential
energy operator is diagonal. Optimized fast Fourier trans-
forms are used to switch from reciprocal space to real space
and vice versa. Since only the band-edge states are explicitly
calculated, the overall computational effort scales as
O(N logN), whereN is the number of atoms, as opposed to
theN3 scaling of conventional diagonalization techniques.

FIG. 1. Energy of thedirect band gap of GaAs spherical quantum dots as a
function of the dot radius, as published by Rama Krishna and Friesner~Ref.
4! ~solid line! and according to a standard effective-mass calculation with
infinite potential barriers~dashed line!. The exciton binding energy is omit-
ted in both cases.
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B. Single-band truncated-crystal approximation

The same Ga and As atomic pseudopotentials used in the
direct minimization procedure are applied to the calculation
of the bulk band structure, in order to extract the quantum
structure energy levels according to the SBTC scheme. De-
noting by en

bulk(k) the energy dispersion13 of the bulk band
n, in the SBTC approximation one introduces an effective
HamiltonianHn

SBTC by replacing the wave vectork with the
operator2 i“:

Hn
SBTC5en

bulk~2 i“ !. ~4!

Note that the SBTC Hamiltonian reduces to the conventional
effective-mass Hamiltonian whenen

bulk(k) is parabolic. Thus,
the non-parabolicity of the energy bands is fully included in
the SBTC approximation. The Schro¨dinger equation for the
SBTC Hamiltonian is solved assuming zero boundary condi-
tions at the surface of the quantum structure. Therefore, the
eigenfunctionsof the SBTC hamiltonian coincide with the
effective-mass envelope functions satisfying the same
boundary conditions. Theeigenvaluesof the SBTC Hamil-
tonian, on the other hand, are given by the bulk energy levels
calculated at selectedk* points in the first Brillouin zone
satisfying the particle-in-a-box quantization rules. For ex-
ample, in the case of a rectangular quantum box of size
L1 , L2 , L3 one hask*5p(n1 /L1 ,n2 /L2 ,n3 /L3), where
n1 , n2 , n3 are nonzero integer quantum numbers.

The SBTC method is schematically illustrated in Fig. 2,
together with the conventional EMA, for a 2D quantum film.
Two steps are involved in the practical implementation of the
SBTC approximation:~i! a set of wave vectorsk* is selected
according to the particle-in-a-box quantization conditions;
~ii ! the energy levels of the quantum structure are approxi-
mated by the eigenvalues of the bulk solid calculated at these
selectedk* points. Note that in the SBTC method, as well as
in the EMA, the zone centerG point is always excluded from
the set ofk* points, thus providing an explanation for the
band-gap increase in quantum structures relative to the bulk
~see Fig. 2!.

III. RESULTS AND DISCUSSION

We will consider free-standing, isolated GaAs quantum
films ~2D!, quantum wires~1D!, and quantum dots~0D!,
comparing the results of the SBTC approximation to those
obtained by direct diagonalization.

A. Quantum films

We start by considering a case where the single-band
approximation is known6,8 to work well, namely a 2D free-

FIG. 2. Schematic illustration of the conventional EMA~left column! and of
the SBTC approximation~right column! for a 2D quantum film. The solid
lines in the central part of the figure represent the bulk band structure in the
direction perpendicular to the film orientation. According to the SBTC ap-
proximation, the film energy levels at the zone center are extracted from the
bulk band structure calculated at selectedk* wave vectors, denoted by dia-
mond shapes on the abscissa. In the EMA, the film energy levels are ob-
tained with the additional approximation of parabolic bulk bands~dashed
lines!. The shaded areas denote the forbidden gaps. Note that because of the
parabolic approximation the band gap is larger in the EMA than in the
SBTC approximation. The SBTC approximation is superior to the EMA as
no parabolicity of the dispersion relation is assumed. FIG. 3. ~a! Band-edge energies and~b! band-gap energy of free-standing,

hydrogen-passivated GaAs~11̄0! quantum films as a function of the film
thickness~in ML’s !, according to a direct pseudopotential calculation~solid
lines! and to the SBTC approximation~dashed lines!. The bulk band gap is
denoted by the shaded area in part~a!. The vertical arrow indicates the
X→G crossover of the conduction-band minimum.
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standing GaAs quantum film oriented in the~11̄0! plane. The
set ofk* points satisfying the particle-in-a-box quantization
rule is given by

k l*5p/A2L ~ l ,2 l ,0!, ~5!

where L is the film thickness andl is a nonzero integer.
According to the SBTC method, the film eigenvaluese i

film

are approximated by the bulk band energies calculated at
thesek* points.

The band-edge energies at the zone center of the two-
dimensional Brillouin zone, calculated with the SBTC ap-
proximation and with the direct pseudopotential approach,
are compared in Fig. 3~a! as a function of the film thickness
L ~note that in thê110& directions 1 GaAs ML. 2.0 Å!. In
the ‘‘exact’’ pseudopotential calculation the VBM of the
quantum film is a zero-confinement state,8,14whose energy is
almost independent of the film thicknessL. The conduction-
band minimum originates from theX1c valley for L,8
ML’s, while it becomes aG1c derived state forL.8 ML’s;
theX→G crossover is evident in Fig. 3~a! from the change
of slope of the energy vs thickness curve. The SBTC ap-
proximation gives a good overall description of the near-
edge states of GaAs quantum films, but fails to describe the
zero-confinement nature of the VBM, and slightly overesti-
mates the CBM confinement energy. Figure 3~b! shows the
band gap as a function ofL. The SBTC band gap is overes-
timated typically by;0.2 eV forL,15 ML’s.

TheX-derived andG-derived conduction-band energies
are shown in more detail in Fig. 4 as a function of the film
thicknessL. We see that the SBTC error in energy is larger
for the G-derived state than for theX-derived state. The
X→G crossover is clearly visible in this figure; it is pre-
dicted to occur atL;8 ML’s by the direct diagonalization
method (L;13 ML’s for a GaAs/AlAs quantum well15!, and
at L;10 ML’s by the SBTC approximation~see also Table
I!. Note that for 2D quantum films~both in the ‘‘exact’’

pseudopotential results and in the SBTC approximation!
there is no quantum deconfinement in either theG-derived
state or theX-derived state: the energy of these states in-
creases monotonically as the film thickness decreases.

B. Quantum wires

We now consider GaAs quantum wires with square cross
section; the surface planes are oriented in the~11̄0! and~110!
directions, and the wires are periodic in the@001# direction.
The k* points satisfying the particle-in-a-box quantization
rules are

k l ,m* 5p/A2L ~ l1m,l2m,0!, ~6!

whereL is the wire thickness in the@11̄0# and @110# direc-
tions andl , m are nonvanishing integers.

The band-edge energies at the zone center of the one-
dimensional Brillouin zone, obtained using the direct diago-
nalization approach and the SBTC approximation, are com-
pared in Fig. 5~a! as a function of the wire sizeL. The VBM
confinement energy is overestimated by the SBTC method,
because the wave function retains a zero-confinement com-
ponent. Furthermore, the CBM energy is significantly under-
estimated by the SBTC approximation. ForL,14 ML’s the
CBM wave function derives from theX1c valley; for wider
wires the CBM becomes aG1c-derived state, according to
the direct pseudopotential calculation. The SBTC method, on
the other hand, predicts the CBM to beX-like up to L;20
ML’s ~see also Table I!. The SBTC band gap@Fig. 5~b!# turns
out to be in relatively good agreement with the direct diago-
nalization,because the errors in theVBM andCBM ener-
gies @Fig. 5~a!# tend to cancel.

The energies of the X-derived and G-derived
conduction-band states are shown in more detail in Fig. 6 as
a function of the wire thicknessL. According to the SBTC
approximation, the energy of the direct (G-derived!
conduction-band state shows a turnaround atL;7 ML’s ~de-
confinement effect!. This effect is not present in the direct
pseudopotential calculation. While the extent of the decon-
finement effect depends on the details of the pseudopotential,
our calculations demonstrate that in this case the turnaround
is an artifact of the SBTC approximation.

The X→G crossover of the CBM, which occurs at
L;14 ML’s according to the direct pseudopotential calcula-
tion, is illustrated in Fig. 7, where the CBM wave function

FIG. 4. Energy of theX-derived andG-derived conduction states of GaAs
quantum films. The critical size for the occurrence of theX→G transition,
as obtained from the direct diagonalization and from the SBTC approxima-
tion, is denoted by a solid circle and a dashed circle, respectively.

TABLE I. Critical sizes~in ML’s ! for theX→G crossover in GaAs quantum
films, wires, and dots, according to the direct pseudopotential calculation
~DD! and to the single-band truncated-crystal approximation~SBTC!.

DD SBTC

Film 8 10
Wire 14 20
Dot .15 .15
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amplitude is plotted in the~11̄0! 3 ~110! plane forL 5 13
ML’s and L 5 15 ML’s. The change of symmetry of the
CBM wave function is evident in Fig. 7.

C. Quantum dots

We finally consider GaAs quantum boxes with rectangu-
lar shape, elongated in the@001# direction. The surface
planes are oriented in the~11̄0!, ~110!, and~001! directions.
We haveL11̄05L1105L andL0015A2L, and thek* points
are given by

k l ,m,n* 5p/A2L ~ l1m,l2m,n!, ~7!

wherel , m, n are nonvanishing integers.
The band-edge energies obtained using the SBTC ap-

proximation and the direct pseudopotential approach are
compared in Fig. 8~a! as a function of the dot sizeL. The
complete pseudopotential calculation predicts an indirect
(X-derived! conduction-band minimum in all the size range
considered here. As the size increases, however, the CBM
will eventually become a direct,G-derived state. As in the
case of quantum wires, we see that the VBM confinement

energy is overestimated by SBTC, while the CBM confine-
ment energy is significantly underestimated. Because of this
cancellation, however, the SBTC gap@Fig. 8~b!# is in good
agreement~at least forL>5 ML’s! with the direct pseudo-
potential calculation.

IV. IMPROVING THE SBTC APPROXIMATION

A. Extended SBTC approximation

The GaAs quantum structures considered here have an
indirect (X1c-derived! CBM at small sizes, because the light-
massG1c-like state is pushed up by quantum-confinement
effects faster than the heavier-massX1c-like state. The SBTC
approximation severelyunderestimatesthe confinement en-
ergy of theX-derived CBM of small quantum wires and dots
@Figs. 5~a! and 8~a!#. This is a consequence of the fact that

FIG. 6. Energy of theX-derived andG-derived conduction states of free-
standing GaAs quantum wires. The critical size for the occurrence of the
X→G transition, as obtained from the direct diagonalization and from the
SBTC approximation, is denoted by a solid circle and a dashed circle, re-
spectively. Note the absence of quantum deconfinement in the direct pseudo-
potential calculation.

FIG. 7. CBM wave function of free-standing GaAs quantum wires. The
wave function amplitude, averaged along the wire direction, is plotted in the
~11̄0! 3 ~110! plane. Note the change of symmetry in going from~a! L513
ML’s to ~b! L515 ML’s.

FIG. 5. ~a! Band-edge energies and~b! band-gap energy of free-standing
GaAs ~11̄0! 3 ~110! quantum wires as a function of the wire thickness~in
ML’s !, according to a direct pseudopotential calculation~solid lines! and to
the SBTC approximation~dashed lines!. The bulk band gap is indicated by
the shaded area in part~a!. The vertical arrow indicates theX→G crossover
of the conduction-band minimum.
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the SBTC method picks up onlyone~or a few, if degenerate!
k* point~s! in the Brillouin zone as the CBM wave vector~s!;
in general, this approximation is insufficient to satisfy zero
boundary conditions in quantum wires and dots. This error
can be partially corrected by introducing an ‘‘extended’’
single-band truncated-crystal~E-SBTC! approximation,
where each conduction-band valley is treated independently
from the others. This method was first discussed by Zhang,
Yeh and Zunger8 in the case of Si quantum films. Denoting
by k0 the wave vector of a particular valley16 ~e.g., G1c ,
X1c
x , X1c

y , X1c
z , etc.!, in the E-SBTC approximation we~i!

apply the particle-in-a-box quantization rules to the
(k2k0) wave vector;~ii ! calculate the quantized wave vec-
torsk* corresponding to the lowest allowed particle-in-a-box
indexes @e.g., k*5k01p(61/L1 ,61/L2 ,61/L3) in the
case of a rectangular quantum box#; ~iii ! average over the
bulk band energies calculated at thesek* points~which are,
in general, nondegenerate!. The results of this approach, in-
cluding theX1c andG1c conduction-band valleys, are shown
in Fig. 9~a! for quantum wires and in Fig. 9~b! for quantum
dots~dotted lines!. Except for the extreme limitL53 ML’s,
the agreement with the direct diagonalization results is

greatly improved over the SBTC method, and the error is
comparable to the case of quantum films. Note that in the
case of~11̄0! quantum films~where only points along the
G - Xz line fold into the zone center! the SBTC and E-SBTC
approximations give identical results for the zone-center
band gap.

B. Finite-well SBTC approximation

In the standard SBTC approximation the set of particle-
in-a-boxk* wave vectors is obtained assuming zero bound-
ary conditions, corresponding to an infinite potential barrier
outside the quantum structure. In reality, however, the poten-
tial barrier is finite, and it is related to the work function of
the quantum structure. In the finite-well single-band
truncated-crystal~FW-SBTC! approximation the finite poten-
tial well is taken into account in the quantization of thek*
wave vectors. For example, in the case of~11̄0! quantum
films Eq. ~5! is replaced, for each valleyk0 , by

FIG. 8. ~a! Band-edge energies and~b! band-gap energy of free-standing
GaAs ~110! 3 ~11̄0! 3 ~001! quantum boxes as a function of the box
thickness~in ML’s !, according to a direct pseudopotential calculation~solid
lines! and to the SBTC approximation~dashed lines!. The bulk band gap is
indicated by the shaded area in part~a!. The band gap of the quantum box
differs from the one shown in Fig. 1~taken from Ref. 4!, because only the
direct (G-derived! band gap is shown there.

FIG. 9. Band-edge energies of~a! GaAs quantum wires and~b! GaAs quan-
tum dots, according to the direct pseudopotential calculation~solid lines!
and to the E-SBTC approximation~dashed lines!.
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k*5k06h/A2 ~1,21,0!, ~8!

whereh is the smallest nonvanishing solution of the implicit
equation

tanS h
L

2D5
~2m0*V02h2!1/2

h
. ~9!

Herem0* is the effective mass of the valleyk0 in the @11̄0#
direction, andV0 is the finite potential barrier~in atomic
units!. The former is obtained directly from our pseudopo-
tential calculation for bulk GaAs, while the latter is obtained
as the difference between the work function and the energy
of the bulk k0 valley, calculated with respect to the VBM.
Note that ifV0→` from Eq.~9! we obtainh→p/L, and the
FW-SBTC approximation reduces to the E-SBTC approxi-
mation.

The FW-SBTC approximation is illustrated in Fig. 10 in
the case of GaAs~11̄0! quantum films. The agreement with
the ‘‘exact’’ pseudopotential results is slightly improved with
respect to the standard SBTC approximation@compare with
Fig. 3~a!#, especially forL.8 ML’s. However, the FW-

SBTC tends to overcorrect the error in the confinement en-
ergy of the CBM, which is now slightly underestimated.
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