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GaAs quantum structures: Comparison between direct pseudopotential
and single-band truncated-crystal calculations

Alberto Franceschetti and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

(Received 12 October 1995; accepted 3 January )1996

A single-band approach for semiconductor clusters which accounts for the nonparabolicity of the
energy bands was recently used by Rama Krishna and Frigsh¥r Rama Krishna and R.A.
Friesner, Phys. Rev. Letb7, 629(1991)]. We compare the results of this meth@tnoted here as
single-band truncated-crystal, or SBTC, approximatisith a direct pseudopotential band-structure
calculation for free-standing hydrogen-passivated GaAs quantum films, wires, and dots. The direct
pseudopotential calculation, which includes coupling between all bands, shows that isolated GaAs
quantum films, wires, and dots have an indirect band gap for thicknesses below 16, 28, and at least
30 A (8, 14, and at least 15 ML respectively; beyond these critical dimensions the transition
becomes direct. A comparison of the SBTC approximation with the direct pseudopotential
calculation shows thdt) the confinement energy of the valence-band maximum is overestimated by
the SBTC method, because the zero-confinement character of this state is nediectiu:
confinement energy of thie-derived conduction staf@lirect band gapis slightly overestimated by

the SBTC approximation, mainly because of the assumption of infinite potential barriers at the
boundariesiii) the confinement energy of thé-derived conduction staténdirect band gapis
severely underestimated by the SBTC meth@d) while the SBTC approximation predicts
“guantum deconfinement(i.e., reductionof gap as size is reducgtbr the direct gap of thin GaAs
quantum wires, such effect is not present in the direct pseudopotential calculatioh99&®
American Institute of Physic§S0021-960626)00114-7

I. INTRODUCTION ductionof gap as size is reducetbr small cluster size$js
) ] absent in the EMA description.
The one-band effective-mass approximati&MA) has While the SBTC method is relatively straightforward

been widely used to predict optical and electronic properties, computationally fast, the physical justification for the

of semiconductor nanostructuresn the case of semicon- nderlying single-band approximation is unclear, at least in
ductor clusters embedded in organic solvents or colloid h

. case of quantum wires and dots. In fact, while it has been
suspensions, however, the agreement of the calculated ba@ﬂeowﬁi that in a two-dimensiona(2D) quantum film the

gap with experiment turns out to be rather poor, especially . . - I
: Lo one-dimensional zero boundary conditiasnishing wave

for small cluster size$This disagreement can be traced back . - - . "

, . function atz=0 andz=L) can be approximately satisfied by
to the fact that the EMA neglects) the nonparabolic energy : ) L
dispersion of the band-edge states, &ndthe coupling be- expa!ndmg the f|_Im wave function in terms of_bulk wave
tween different bulk states introduced by the lack of transla]cunCtIonS belonging to the same bulk band, this has never
tional invariance. been proved for quantum wires or quantum dots, where one

To account for nonparabolicity effects within a single- needs to match boundary conditions in two and three dimen-

band approach, Rama Krishna and Frie¥fenave recently sioqs, respectively. Thu;, althou.gh. the single-band approxi-
used a band structure formalism, denoted here as single-baftftion becomes exact in the limit of very large clusters,
truncated-crystalSBTC) approximation, in which the cluster Nterband coupling is expected to play a significant role in
energy levels are represented by those of an extended, peR@nometer-size clusters. _ o

odic bulk solid, evaluated at special wave vecthtssatis- A previous pseudopotential calculation for indirect-gap
fying the particle-in-a-box quantization rules. The mappingSi clusters showed that the SBTC approximation severely
of the cluster energy levels onto the bulk band structure waynderestimatethe band gap! e.g., by as much as 1 eV
first proposed in the 1970'6Refs. 6 and Y in the tight- for a diameter of 15 A. We report here on a systematic com-
binding context. The novelty of the method proposed byParison of the SBTC approximation with a direct pseudopo-
Rama Krishna and Friesner consists of the use of empiricgential calculation for GaAs quantum films, wires, and dots
pseudopotentials to calculate the bulk band structure. A commidenoted in the following as quantum structyred/e find
parison between SBTC and EMA results for the direct bandhat (i) the confinement energy of the valence-band maxi-
gap of GaAs spherical cluste(gig. 1) demonstrates thdt) mum (VBM) is overestimatedby the SBTC method, because
the EMA band gap is overestimated with respect to theof the zero-confinement character of this staiig;the con-
SBTC band gap, andi) a remarkable feature of the SBTC finement energy of th€-derived conduction-band minimum
results, i.e. the existence of “quantum deconfinemgnt>  (CBM) is slightly overestimatedoy the SBTC approxima-
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bond, which is passivated by a hydrogen atom located along
GaAs spherical quantum dots the direction of the dangling bond itself. In the case of the
2 |. . . : (001) surface(which we assume to be As terminatedach

: As atom has two dangling bonds, which are passivated by a
pair of hydrogen atoms. To avoid interaction between the
hydrogen atoms located along tfL0] chains, we tilt each
pair of hydrogen atoms around th&l0] axis. The effect of

this hydrogen-like potential is to remove the surface states
from the band gap and to decouple the band-edge states from
surfacelike states.

Since the quantum structures considered here contain
hundreds, or even thousands, of atoms per unit cell, conven-
- . - . tional diagonalization techniques are not practical for solving

0 0 40 60 80 100 the eigenvalue problem. Instead, the band-edge states of the
Dot radius (A) guantum structures are obtained using the folded spectrum
rrlethod}2 which searches for the ground state of the operator
FIG. 1. Energy of thalirectband gap of GaAs spherical quantum dots as a (H— €,¢)2, Where H=—1/2V2+ Vgs is the pseudo-
LU”C“‘IJ_Z Cl’_f ”;e dgt fadiuz_ as fUb'iSPeddbydRaﬁmatK”Sh”a a”dl':filé?mf _thHamiItonian of the quantum structure aag; is an arbitrary
0l Ine o sccorig I sandars efectye s cacuaton Wireference energy. The ground state of this operator is the
ted in both cases. eigenstate ofH closest in energy to the reference level
€ref; DY choosinge,s in the band gap, one obtains the band-
edge states of the quantum structure, with the same accuracy
tion, mainly because of the assumption of infinite potentialachieved in a conventional diagonalization of the Hamil-
barriers at the boundarie§ii ) the confinement energy of the tgnian.
X-derived conduction staténdirect gap is severelyunder- The hydrogen-passivated GaAs quantum structure is em-
estimatecby SBTC; (iv) while the SBTC approximation pre- pedded in vacuum, and the quantum structirevacuum
dicts quantum deconfinement for the direct gap of thin GaAssupercell” is repeated periodically. The size of the vacuum
quantum wires, such effect is not present in the directegion is increased until the effect of the spurious interaction
pseudOpOtential CaICUIation, and is therefore an artifact of thgetween quantum structures on the energy levels becomes
SBTC approximation. negligible. Using(artificial) periodic boundary conditions,
the quantum structure wave function can be conveniently
expanded in a plane wave basis set:

30 F

25

20

15

Direct band gap energy (eV)

Il. METHODS
A. Direct diagonalization

In the direct diagonalizatiofDD) approach we solve for W(r)= z c(G)e'Cr, (3)
the single-particle Schdinger equatior(in atomic units: G

[— 11292+ Vos(N)14i(r) = & ¢i(r), .Y

where Vod(r) is the total pseudopotential of the quantumwhere the sum runs over the reciprocal lattice vectors of the
structure. Vg is described here by the sum of screenedsypercell. The same energy cutoBf (=5 Ry) used in Ref.
atomic pseudopotentials centered at the atomic positiongl to generate the atomic pseudopotentials is adopted in the
Rn: supercell calculation, in order to assure consistent band gaps
in the limit of large quantum structures. The functional
Vos(N =2 v,(r—Ry). (2 (Yl(H—€e)?) is minimized with respect to the coeffi-
" cientsc(G) using a preconditioned conjugate-gradients algo-
For Ga and As atoms we use the nonrelativistic atomiaithm. The matrix-by-vector producH — e | ), which oc-
pseudopotentials developed by ta and Zungel! Usinga  curs in the calculation of the conjugate gradients, is
plane-wave basis set with an energy cutff;=5 Ry, these efficiently performed using a double-space formalism: the
pseudopotentials are carefully fitted to measured interbankinetic energy part is calculated in reciprocal space, where
transition energies and effective masses of bulk GaAs, and the kinetic energy operator is diagonal, while the potential
the work function of thg110) surface. In particular, the cal- energy part is calculated in real space, where the potential
culated direct band gapl'¢s, - I'1c transition is 1.52 eV, energy operator is diagonal. Optimized fast Fourier trans-
while the energies of the indirett;s, - X;. andI'y5, - L;.  forms are used to switch from reciprocal space to real space
transitions are 2.00 and 1.81 eV, respectively. The danglingnd vice versa. Since only the band-edge states are explicitly
bonds at the surface of the quantum structure are passivatediculated, the overall computational effort scales as
using hydrogenic pseudopotentials. In the caséltf) and  O(N log N), whereN is the number of atoms, as opposed to
(110) surfaces, each Ga or As atom has only one danglinghe N® scaling of conventional diagonalization techniques.

J. Chem. Phys., Vol. 104, No. 14, 8 April 1996
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‘ EMA ‘ ‘ Bulk band structure ‘ (SBTCJ GaAs quantum films

Band edge energies (eV)

VBM

FIG. 2. Schematic illustration of the conventional EN1&ft column and of
the SBTC approximatiofiright column for a 2D quantum film. The solid
lines in the central part of the figure represent the bulk band structure in the
direction perpendicular to the film orientation. According to the SBTC ap-
proximation, the film energy levels at the zone center are extracted from the
bulk band structure calculated at seleck&dwave vectors, denoted by dia-
mond shapes on the abscissa. In the EMA, the film energy levels are ob-
tained with the additional approximation of parabolic bulk bafdsshed 5 10 15 20 25
lines). The shaded areas denote the forbidden gaps. Note that because of the Film thickness (ML's)
parabolic approximation the band gap is larger in the EMA than in the
SBTC approximation. The SBTC approximation is superior to the EMA as
no parabolicity of the dispersion relation is assumed. FIG. 3. (a) Band-edge energies arit) band-gap energy of free-standing,
hydrogen-passivated GaA410) quantum films as a function of the film
thickness(in ML's), according to a direct pseudopotential calculatisolid
. . . lines) and to the SBTC approximatioiaashed lines The bulk band gap is
B. Single-band truncated-crystal approximation denoted by the shaded area in pé@t The vertical arrow indicates the
h)é—»l" crossover of the conduction-band minimum.

Band gap energy (eV)

The same Ga and As atomic pseudopotentials used in t
direct minimization procedure are applied to the calculation
of the bulk band structure, in order to extract the quantum

strgcture e[,‘ﬁ,fgy levels accord!ng to .the SBTC scheme. Det'ogether with the conventional EMA, for a 2D quantum film.
not!ng by e, "(K) the energy dlspers!é?l of the bulk band_ Two steps are involved in the practical implementation of the
n, in the. SBTSCBTgpprommat_lon one introduces an effectiveggrc approximation(i) a set of wave vectorie* is selected
HamiltonianH ™"~ by replacing the wave vectdrwith the  500ording to the particle-in-a-box quantization conditions:
operator—iVv: (i) the energy levels of the quantum structure are approxi-
HSBTC= (bulk(—jv). (4)  mated by the eigenvalues of the bulk solid calculated at these

selectedk* points. Note that in the SBTC method, as well as

Note that the SBTC Hamiltonian reduces to the conventionailn the EMA, the zone centd? point is always excluded from
effective-mass Hamiltonian whesj"(k) is parabolic. Thus,  ne set ofic* points, thus providing an explanation for the

the non-parabolicity of the energy bands is fully included inpanq.gap increase in quantum structures relative to the bulk
the SBTC approximation. The Scliinger equation for the (see Fig. 2

SBTC Hamiltonian is solved assuming zero boundary condi-
tions at the surface of the quantum structure. Therefore, the
eigenfunctionsof the SBTC hamiltonian coincide with the lll. RESULTS AND DISCUSSION

effective-mass envelope functions satisfying the same We will consider free-standing, isolated GaAs quantum
boundary conditions. Theigenvaluesof the SBTC Hamil-  films (2D), quantum wires(1D), and quantum dot$0D),
tonian, on the other hand, are given by the bulk energy levelsomparing the results of the SBTC approximation to those
calculated at selecteki* points in the first Brillouin zone obtained by direct diagonalization.

satisfying the particle-in-a-box quantization rules. For ex- )

ample, in the case of a rectangular quantum box of sizéA" Quantum films
L., L,, L; one hask*=mx(n,/L{,n,/L,,n3/L3), where We start by considering a case where the single-band
Ny, Ny, N3 are nonzero integer quantum numbers. approximation is knowt® to work well, namely a 2D free-

The SBTC method is schematically illustrated in Fig. 2,

J. Chem. Phys., Vol. 104, No. 14, 8 April 1996
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TABLE I. Critical sizes(in ML's) for the X—T" crossover in GaAs quantum
GaAs quantum films films, wires, and dots, according to the direct pseudopotential calculation
(DD) and to the single-band truncated-crystal approximat®BTC).

DD SBTC
Film 8 10
Wire 14 20
Dot >15 >15

pseudopotential results and in the SBTC approximation
there is no quantum deconfinement in either Eheerived
state or theX-derived state: the energy of these states in-
creases monotonically as the film thickness decreases.

Conduction band energy (eV)

Film thickness (ML’s)

FIG. 4. Energy of theX-derived andl-derived conduction states of GaAs .
quantum films. The critical size for the occurrence of ¥we- T transition, B. Quantum wires

as obtained from the direct diagonalization and from the SBTC approxima- Wi ider GaA t . ith
tion, is denoted by a solid circle and a dashed circle, respectively. € now consider S quantum wires with square cross

section; the surface planes are oriented in(i®) and(110
directions, and the wires are periodic in {f@1] direction.
The k* points satisfying the particle-in-a-box quantization

standing GaAs quantum film oriented in tel0) plane. The rules are

set ofk* points satisfying the particle-in-a-box quantization
rule is given by

ki =m/\2L (1,-1,0), (5

where L is the film thickness and is a nonzero integer. wherelL is the wire thickness in thgl10] and[110] direc-
According to the SBTC method, the film eigenvalug¥”  tions andl, m are nonvanishing integers.
are approximated by the bulk band energies calculated at The band-edge energies at the zone center of the one-
thesek* points. dimensional Brillouin zone, obtained using the direct diago-
The band-edge energies at the zone center of the twazalization approach and the SBTC approximation, are com-
dimensional Brillouin zone, calculated with the SBTC ap- pared in Fig. a) as a function of the wire sizZe. The VBM
proximation and with the direct pseudopotential approachgonfinement energy is overestimated by the SBTC method,
are compared in Fig.(d) as a function of the film thickness because the wave function retains a zero-confinement com-
L (note that in the110) directions 1 GaAs ML= 2.0 A). In ponent. Furthermore, the CBM energy is significantly under-
the “exact” pseudopotential calculation the VBM of the estimated by the SBTC approximation. Hox 14 ML's the
quantum film is a zero-confinement stiféwhose energy is CBM wave function derives from th¥;, valley; for wider
almost independent of the film thickndss The conduction- wires the CBM becomes H,.-derived state, according to
band minimum originates from th&,. valley for L<8 the direct pseudopotential calculation. The SBTC method, on
ML's, while it becomes d’; derived state foL.>8 ML's; the other hand, predicts the CBM to belike up toL~20
the X—T crossover is evident in Fig.(8 from the change ML’s (see also Table)l The SBTC band gaj-ig. 5b)] turns
of slope of the energy vs thickness curve. The SBTC apeut to be in relatively good agreement with the direct diago-
proximation gives a good overall description of the near-nalization,because the errors in théBM and CBM ener-
edge states of GaAs quantum films, but fails to describe thgies[Fig. 5a)] tend to cancel
zero-confinement nature of the VBM, and slightly overesti-  The energies of the X-derived and I'-derived
mates the CBM confinement energy. Figui®)3hows the conduction-band states are shown in more detail in Fig. 6 as
band gap as a function &f. The SBTC band gap is overes- a function of the wire thicknesks. According to the SBTC
timated typically by~0.2 eV forL<15 MLs. approximation, the energy of the directl’derived
The X-derived andl"-derived conduction-band energies conduction-band state shows a turnaround-aZ7 ML's (de-
are shown in more detail in Fig. 4 as a function of the film confinement effegt This effect is not present in the direct
thicknessL. We see that the SBTC error in energy is largerpseudopotential calculation. While the extent of the decon-
for the I'-derived state than for th&-derived state. The finement effect depends on the details of the pseudopotential,
X—T" crossover is clearly visible in this figure; it is pre- our calculations demonstrate that in this case the turnaround
dicted to occur at. ~8 ML's by the direct diagonalization is an artifact of the SBTC approximation.
method (~13 ML’ for a GaAs/AlAs quantum welf), and The X—TI' crossover of the CBM, which occurs at
atL~10 ML's by the SBTC approximatiofsee also Table L~14 ML's according to the direct pseudopotential calcula-
[). Note that for 2D quantum filmgboth in the “exact” tion, is illustrated in Fig. 7, where the CBM wave function

Fm=m/\2L (I+m,1—m,0), (6)

J. Chem. Phys., Vol. 104, No. 14, 8 April 1996
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GaAs quantum wires GaAs quantum wires

Band edge energies (eV)
Conduction band energy (eV)

Wire thickness (ML’s)

FIG. 6. Energy of theX-derived andl"-derived conduction states of free-
standing GaAs quantum wires. The critical size for the occurrence of the
X—T transition, as obtained from the direct diagonalization and from the
SBTC approximation, is denoted by a solid circle and a dashed circle, re-
spectively. Note the absence of quantum deconfinement in the direct pseudo-
potential calculation.

Band gap energy (eV)

energy is overestimated by SBTC, while the CBM confine-
ment energy is significantly underestimated. Because of this
cancellation, however, the SBTC gfigig. 8b)] is in good
agreementat least forL=5 ML’s) with the direct pseudo-
potential calculation.

Wire thickness (ML's)

FIG. 5. (a) Band-edge energies arftd) band-gap energy of free-standing |\v IMPROVING THE SBTC APPROXIMATION
GaAs(110) X (110 quantum wires as a function of the wire thicknéiss

ML's), according to a direct pseudopotential calculatisolid lineg and to ~ A. Extended SBTC approximation
the SBTC approximatiodashed lines The bulk band gap is indicated by .
the shaded area in pa#). The vertical arrow indicates thé—T" crossover The GaAs quantum structures considered here have an

of the conduction-band minimum. indirect (X,.-derived CBM at small sizes, because the light-
massI',.-like state is pushed up by quantum-confinement
effects faster than the heavier-magg-like state. The SBTC
amplitude is plotted in thé110) X (110 plane forL = 13  approximation severelynderestimateshe confinement en-
MLs and L = 15 MLs. The change of symmetry of the ergy of theX-derived CBM of small quantum wires and dots
CBM wave function is evident in Fig. 7. [Figs. Ha) and 8a)]. This is a consequence of the fact that

C. Quantum dots

. . . GaAs quantum wi ‘
We finally consider GaAs quantum boxes with rectangu- ‘ ACS qrianim s

lar shape, elongated in thgd01] direction. The surface
planes are oriented in tH&10), (110, and(001) directions.
We havelL;7p=L10=L andLyy;= \/EL, and thek* points ..

are given by

Kfmn=m/\2L (I+m]l-mn), )

wherel, m, n are nonvanishing integers.

The band-edge energies obtained using the SBTC ap
proximation and the direct pseudopotential approach are
compared in Fig. &) as a function of the dot size. The
complete pseudopotential calculation predicts an indirect
(X-derived conduction-band minimum in all the size range _ _ _

nsidered here. As the size increases. however. the CB G. 7. CBM wave function of free-standing GaAs quantum wires. The
CQ ) ) T . ave function amplitude, averaged along the wire direction, is plotted in the
will eventually become a direcl;-derived state. As in the (11

! ' (110) X (110 plane. Note the change of symmetry in going fréanL=13
case of quantum wires, we see that the VBM confinementiLs to (b) L=15 MLss.

s@@BEo

J. Chem. Phys., Vol. 104, No. 14, 8 April 1996



A. Franceschetti and A. Zunger: GaAs quantum structures 5577

GaAs quantum dots GaAs quantum wires
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%
5 GaAs quantum dots
g
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o
=
5 ~
e 3
k4
10 1 1 1 1 1 1 ::,b
4 6 8 10 12 14 o
[
Dot thickness (ML’s) %0
=
3
FIG. 8. (a) Band-edge energies ar{t) band-gap energy of free-standing
GaAs (110 X (110) X (001) guantum boxes as a function of the box g0 B -
thickness(in ML's), according to a direct pseudopotential calculatisolid L L L L L L
lines) and to the SBTC approximatiolashed lines The bulk band gap is 4 6 8 10 12 14

indicated by the shaded area in p@xt The band gap of the quantum box
differs from the one shown in Fig. @aken from Ref. 4 because only the
direct (I"-derived band gap is shown there.

Dot thickness (ML’s)

FIG. 9. Band-edge energies @ GaAs quantum wires angh) GaAs quan-
tum dots, according to the direct pseudopotential calculatsatid line9
the SBTC method picks up ontyne(or a few, if degeneraje  and to the E-SBTC approximatiduiashed lines

k* point(s) in the Brillouin zone as the CBM wave vec(sy;

in general, this approximation is insufficient to satisfy zero

boundary conditions in quantum wires and dots. This errogreatly improved over the SBTC method, and the error is
can be partially corrected by introducing an “extended” comparable to the case of quantum films. Note that in the
single-band truncated-crystalE-SBTQ approximation, ~case 0f(110) quantum films(where only points along the
where each conduction-band valley is treated independentlly - X* line fold into the zone centgthe SBTC and E-SBTC
from the others. This method was first discussed by Zhanggpproximations give identical results for the zone-center
Yeh and Zungérin the case of Si quantum films. Denoting band gap.

by ko the wave vector of a particular vall#y(e.g., 'y,

Ter X, Xic, etc), in the E-SBTC approximation wé)
apply the particle-in-a-box quantization rules to the
(k—kg) wave vectorjii) calculate the quantized wave vec- In the standard SBTC approximation the set of particle-
torsk* corresponding to the lowest allowed particle-in-a-boxin-a-boxk* wave vectors is obtained assuming zero bound-
indexes [e.g., k* =kg+m(=1/L,,*1/L,,=1/L;) in the ary conditions, corresponding to an infinite potential barrier
case of a rectangular quantum Bo%ii) average over the outside the quantum structure. In reality, however, the poten-
bulk band energies calculated at thédepoints(which are, tial barrier is finite, and it is related to the work function of
in general, nondegeneratdhe results of this approach, in- the quantum structure. In the finite-well single-band
cluding theX;. andI';. conduction-band valleys, are shown truncated-crystalF\W-SBTQ approximation the finite poten-
in Fig. Aa) for qguantum wires and in Fig.(B) for quantum tial well is taken into account in the quantization of tk&
dots (dotted lineg. Except for the extreme limit=3 ML's, wave vectors. For example, in the case(d10) quantum
the agreement with the direct diagonalization results idilms Eq.(5) is replaced, for each valley,, by

B. Finite-well SBTC approximation

J. Chem. Phys., Vol. 104, No. 14, 8 April 1996
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SBTC tends to overcorrect the error in the confinement en-
ergy of the CBM, which is now slightly underestimated.

GaAs quantum films

-2.0 T T T T

ACKNOWLEDGMENTS

The authors are grateful to Professor Rama Krishna for
useful comments and suggestions. This work was supported
by the U.S. Department of Energy, OER-BES, under Grant
No. DE-AC36-83CH10093.

L. Brus, IEEE J. Quantum ElectronQE-22 9, 1909 (1986; M.G. Ba-
wendi, M.L. Steigerwald, and L.E. Brus, Annu. Rev. Phys. Chéin477
(1990; U. Woggon and S.V. Gaponenko, Phys. Status Solidi8B, 285
(1995.

2See, for example, A.D. Yoffe, Adv. Phy42, 173(1993.

5 10 15 20 25 zM.V. Rama Krishna and R.A. Friesner, Phys. Rev. L&%. 629 (199)).
) . R M.V. Rama Krishna and R.A. Friesner, J. Chem. PI85.8309(1991).
Film thickness (ML's) 5A. Tomasulo and M.V. Rama Krishn@npublishedl
SA. Zunger, J. Phys. @, 96 (1974.
J— 7 . .

FIG. 10. Band-edge energies of Ga@d0) quantum films as a function of (I_) KB_',IEK anlghl" SIS<aIa, Céel‘_:g_' ;épshg;.?g#(?of(i??& PLKggulra an(é

the film thickness, as obtained from the direct pseudopotential calculation L+ KUnne, Phys. Status Solidi 88, 537 ( .8* - Kunne, L. Skala, an

(solid line) and from the FW-SBTC approximatigashed ling O. Bilek, Czech. J. Phys. B9, 1030(1979; O. Bilek, L. Skala, and L.

Kunne, Phys. Status Solidi BL7, 675(1983; L. Kunne, L. Skala, and O.
Bilek, ibid. 118 173(1983.
8S.B. Zhang and A. Zunger, Appl. Phys. Le8, 1399(1993; S.B. Zhang,
_ C.-Y. Yeh, and A. Zunger, Phys. Rev.4B, 11204(1993; C.-Y. Yeh, S.B.
* — -+ —
k ko_ 77/\/5(1’ 1,0), (8) Zhang, and A. Zungeibid. 50, 14405(1994).
wheren is the smallest nonvanlshlng solution of the Imp|ICIt L.W. Wang and A. Zunger, ilNanocrystalline Semiconductor Materials,

Band edge energies (eV)

L

. edited by P.V. Kamat and D. MeiséElsevier, New York, in pregs
equation 10The results of Rama Krishna and Friesner agree with experimphtal

L (Zm*V _ 7]2) 1/2 toluminescenceata, that invo_lves, most likely, gap states._'EihBorption

tar( 77_) — 0Y0 ) (9) threshold energy, however, is higher than the photoluminescence energy
2 n (although lower than the direct band gap of Siligsee, for example, D.J.
_ Lockwood, Solid State Commur@2, 101 (1994; D.J. Lockwood and

Heremyj is the effective mass of the valldg, in the [110] A.G. Wang,ibid. 94, 905(1995. The results of the direct pseudopotential
direction, andV, is the finite potential barriefin atomic calculation of Ref. 9 agree very well with this absorption data.

0 i
units). The former is obtained directly from our pseudopo-,<A; Mader and A. Zunger, Phys. Rev. &, 17393(1994.

- ) : | - 12| W. Wang and A. Zunger, J. Chem. Phyk00, 2394 (1994; J. Phys.
tential calculation for bulk GaAs, while the latter is obtained chem.98 2158(1994.

as the difference between the work function and the energ}{?we make the assumption here that the energy dispesiditk) of the
of the bulkk, valley, calculated with respect to the VBM. bulk bandn can be described by an analytic function Idf, k7, and
Note that ifV,— o from Eq.(9) we obtainy— /L, and the k2. This is always true for the zinc-blende structure.

; ; : 1%The zero-confinement character of the valence-band maximum is a prop-

FW _SBTC approximation reduces to the E-SBTC approxi erty of free-standing 2D quantum films, where the VBM wave function is
mation. ) o ) ] ) required to vanish at the boundaries. When a film is embedded in a barrier
The FW-SBTC approximation is illustrated in Fig. 10 in  semiconductor, e.g., GaAs in AlGaAs, no zero-confinement state occurs.

the case of GaA$110) quantum films. The agreement with See, for example, A. Franceschetti and A. Zunger, Phys. Ré2, B4 664
the “exact” pseudopotential results is slightly improved with 15(1995'

. . A. Franceschetti and A. Zungéunpublisheg
respect to the standard SBTC approximatioampare with  167he k, wave vectors of th,. valleys are located along tf - X lines

Fig. 3@], especially for.>8 MLs. However, the FW- of the Brillouin zone at a distance 0.855¢2a) from the zone center.

J. Chem. Phys., Vol. 104, No. 14, 8 April 1996



