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Abstract  

Empirical pseudopotential plane wave theory is used to study the electronic and optical properties of thousand atom 
hydrogen passivated Si quantum dots, wires and films, The properties studied include: (1) band gap vs. size; (2) band gap vs. 
shape; (3) total electronic density of state and optical absorption spectra; (4) dielectric constant vs. size. The results are 
compared with tight binding and other model calculations. Comparison with recent experimental data is discussed. 

1. I n t r o d u c t i o n  

Effective mass based methods have been used 
traditionally to describe nanostructures. We will treat 
instead nanostructures with the same level of  sophis- 
tication possible for bulk solids, namely an all-band 
pseudopotential technique. We will thus describe the 
electronic structure of  nanostructures in terms of  
solutions to an effective single-particle SchriSdinger's 
equation: 

I2IOi = ~iOi (1) 

1172 where /~  = - g + V(r) and V(r) is the mean-field 
potential. This potential is represented as a superpo- 
sition of  atom-centered quantities: 

g ( r )  = E 'Uatom(r -- Ratom) (2) 
atom 

and the wavefunctions are expanded in plane waves 

Oi(r) = ~ a , ( q )  e iq'r (3) 
q 

Here, {Ratom} are atomic position vectors and ai(q) 
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are variationally determined expansion coefficients 
at the reciprocal lattice vector q of  the supercell. 
Notice that we do not use the effective mass, or the 
envelope function approximation. 

Modelling of  such 103 atom systems using Eqs. 
(1)-(3)  requires three steps: 

First, one needs to model the geometry, i.e., to 
specify {Ratom}. Experimental structural measure- 
ments on > 100 atom Si quantum dots [1] show that 
the atomic positions and the interatomic distances in 
the interior of  the quantum dots are very close to the 
values of  the extended bulk solid. Atomic relaxations 
exist only near the surface. We will model such 
relaxations using first-principle calculations and ex- 
perimental data on the relevant bulk surfaces. 

Second, one needs to calculate the potentials 
Vatom(r). We use for this purpose the empirical pseu- 
dopotential method [2] (EPM). Rather than fit 
Vatom(G i) at a few discrete reciprocal lattice vector 
{G i} of  the primary unit cell (as done in classic bulk 
EPM calculations [2]), we fitted a continuous Vatom(q) 
to a series of  experimental data and to detailed 
first-principles calculations on relevant prototype 
systems. Unlike the case in tight-binding approaches, 
we are able to compare the ensuing potential V(r) 
with screened first-principles local density approxi- 
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mation (LDA) results. Unlike the case with the LDA, 
we are able to obtain experimentally sensible excita- 
tion energies. The pseudopotential fitting procedure 
is described in detail in Ref. [3]. 

The third step involves solving Eq. (1) for a given 
geometry and potential. This is nontrivial for 1000 
atom systems. For most semiconducting systems 
made up of main group elements, one needs about 50 
plane waves per atom. So for N = 1000 atoms, one 
typically has a 50000 × 50000 Hamiltonian prob- 
lem. The conjugate gradient approaches to this prob- 
lem scales as  N 3, so large systems can not be 
treated, if all occupied eigenstates of Eq. (1) are to 
be calculated. However, we may not need all eigen- 
states in order to study, e.g, the threshold optical 
properties of semiconductor quantum structures. 
What one typically needs to know on such systems 
includes: (a) the eigenvalues and eigenfunctions of 
the band edge states (the valence band maximum, 
VBM and the conduction band minimum, CBM); (b) 
the total and local electronic density of states; (c) the 
optical absorption spectra. With these three proper- 
ties calculated, most of the optical characteristics of 
the system can be determined. We have designed 
two new methods [4,5] to calculate these properties. 
First, the 'folded spectrum method' [4] calculates the 
band edge states with an effort that scales as O(N). 
Second, the 'generalized moments method' [5] calcu- 
lates the density of states and optical absorption 
spectra. Full details of these computational methods 
are given in Ref. [4] and [5]. 

2. Application to Si nanostructures 

2.1. Dependence of  the band gap on size for Si 
spheres, cubes and rectangular boxes 

The most commonly addressed question in quan- 
tum dot physics is the size dependence of the energy 
gap. However, experimentally prepared quantum dots 
not only have different sizes, but for each size there 
could be a distribution of shapes. We study here 
three 'prototype shapes': (i) spherical balls, (ii)rect- 
angular boxs [the surfaces are in the (110), (1E0) and 
(001) directions and the lengths of the edges satisfy 
d x = dy = d z / v ~ ]  and (iii) cubic boxes [the surfaces 
are in the (001), (010), (100) directions]., To compare 

the electronic properties of these different prototype 
shapes, we need a consistent definition of the quan- 
tum dot's size. A natural choice is to associate the 
effective size with the diameter of a sphere which 
has the mass density p of bulk Si and contains the 
same number N of silicon atoms as the quantum dot 
in question. Then the diameter is 

d(Nsi)  = (3 / (4~-p ) )1 /3N; /3  - -  3.3685Ns 1/3 (A) 

and the radius R = d/2 .  Using this definition, the 
calculated size dependence of the CBM-VBM band 
gaps of the three prototype quantum dots is depicted 
as symbols and the solid line in Fig. 1. Quite surpris- 
ingly, the three sets of data corresponding to the 
three prototype quantum dot shapes collapse into a 
single, unified curve. Thus, if we measure the effec- 
tive size by d (x Nsli/3 and vary Nsi  , the gaps of all 
prototype shapes (which are not too ~prolate) fall on a 
'universal' curve. Expressing d in A, this curve can 
be fitted as: 

Eg(d)  = 1.167 + 88 .34/d  137 (eV) (4) 

2.2. Quantum dot wavefunctions and the role of  
surface atoms 

It is commonly thought that since the surface-to- 
volume ratio increases rapidly as the quantum dot 
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Fig. 1. CBM-VBM band gap (without Coulomb corrections) 
versus the effective diameter d = 3.3685N~i/3 (,~) for three proto- 
type quantum dot shapes. The symbols ~ ,  + ,  and [] stand for the 
spheres, ( l l 0 )X( l~0)X(001)  rectangular boxes, and (100)x 
(010) x (001) cubic boxes, respectively. The fitted solid line is 
given by Eq. (4). Also shown are the multiband effective mass 
result (EMA) (Ref. [6]) and the result of the method of Rama 
Krishna and Friesner (RKF) (Ref. [7]) [applied here to cubic 
quantum dots with the present Si pseudopotential]. In all cases, the 
excitonic Coulomb energy is excluded. 



352 A. Zunger, L.-W. Wang /Applied Surface Science 102 (1996) 350-359 

decreases, this must imply a greater role of  surface 
effects on the electronic structure. This is true only if 
the wavefunction has an amplitude on the surface 
atoms. We test this next. 

Shown in Fig. 2a,b are the wavefunction square 
of  the CBM and VBM of the rectangular quantum 
box with d = 34.1 A (Nsi = 1035 atoms). The VBM 
and CBM states are found to be localized in the 
interior of  the quantum dot, with zero amplitude on 
the surface. Because of  this and the fact that hydro- 
gen potential is of  very short range, we find that, as 
long as all dangling bonds are passivated, the details 
of  the surface passivating atoms play little direct role 
in the determination of  the wavefunctions, hence the 
band gaps and the oscillator strengths. 

2.3. Comparison of  the band gaps with previous 
calculations 

Fig. 1 compares the results of  two model calcula- 
tions with our direct ( 'exact ' )  calculations. These 
models includes the multiband effective mass ap- 

Fig. 2. Wavefunction square contour plots of the (110)×(130)× 
(001) rectangular quantum box with d = 34.1 A and Nsi = 1035 
viewed from the [001] direction. (a) The CBM wavefunction 
square summed along the z direction. (b) The VBM wavefunction 
square plotted on the z = d z/2 cross section. The crossed circles 
in (b) denote the positions of the silicon atoms on that plane. 

proximation (EMA) of  Takagahara and Takeda [6] 
and the model of  Rama Krishna and Friesner (RKF) 
[71. 

2.3.1. Comparison with the effective mass method 
As could be seen in Fig. 2, the VBM and CBM 

states found in our direct calculations are not surface 
states, hence a comparison with the results of  the 
(surfaceless) EMA is warranted. Our 'exact '  calcula- 
tion result of  Eq. (4) gives a 1 / d  1"37 size scaling, 
while the effective mass model predicts a l / d  2 
scaling. Hence, the parabolic dispersion assumed in 
the EMA is inadequate in the range of quantum dot 
sizes studied here (d  < 40 A), despite the fact that 
mnltiband coupling is correctly included in this EMA 
calculation. Indeed, the effective mass approximation 
(which includes only kinetic energy effects neglect- 
ing explicit potential energy within the dot) exagger- 
ates considerably the increase of  band gap [AEg(d)  
= Eg(d) - E bulk ] with reduced size. Replacing in the 
EMA calculation the infinite wall by a finite barrier 
reduces AEg(d)  and softens the 1 / d  2 scaling. Solv- 
ing the EMA equation for a finite barrier of  height 4 
eV and using an effective mass m* = 0.2m gives a 
10% lower AEg(d)  for d = 40 A and a 15% lower 
AEg(d) for d = 25 A. This reduces the EMA error 
relative to our direct calculations by 20% and 30% 

o 

for d = 40 and 25 A, respectively. The remaining, 
bigger part of  the error must come from (i) the EMA 
Hamiltonian itself, i.e, from the assumption of  
parabolic dispersion, and (ii) possible nonabruptness 
of  the potential well. 

Zunger et. al. [8] have extended the comparison of  
(single band) effective mass vs. pseudopotential 
method to Si wires and films. The results are shown 
in Fig. 3. We see that the EMA overestimates signif- 
icantly the quantum confinement shift A E i ( d ) =  
E l ( d ) -  Ei(bulk) and that the order of  the EMA 
errors is ~AE(box) > ~AE(wire) > ~AE(film) (Fig. 
3b). Note that the error is smallest for 2D films (in 
vacuum), and is probably still smaller in 2D quantum 
wells (embedded in a barrier). This explains partly 
the success of  the EMA in quantum wells, but warns 
against the hope that similar success will be carried 
over to wire and dots. Note also from Fig. 3a that the 
size dependence of  the quantum confinement is the 
weakest fot film (d  -n with n ~ 0.8 compared to 
n -- 1.3 for wires). Thus, if one wants to make a 2 
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Fig. 3. Energy gaps (a), absolute EMA errors in the band gap (b) 
and radiative lifetimes (c) for H-covered Si films, wires and 
boxes. The surface orientations are (]10) for films, (]10)×(110) 
for wires, and (110) × (~10) × (001) for boxes. We use Def f = Oil 0 
for films, Def t = D]] 0 = DI] 0 for wires and Def t = 3.369Ns 1/3 for 
boxes, where Nsi is the number of Si atoms and D110 is the H 
surface layer to H surface layer distance in (11) direction. This 
figure is taken from Ref. [8]. 
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eoV gap Si system, one needs a ~ 5 A film or a "- 20 
A wire or a ~ 32 A dot. 

It is interesting to note that in 2D quantum films, 
the effective mass method leads not only to quantita- 
tive but also to qualitative errors. This is illustrated 
in Fig. 4. While in the EMA the energy levels vary 
monotonically with size, the EPM solutions for 
(001)-oriented quantum films (Fig. 4a) show non- 
monotonic (even-odd) oscillations in the valence 
band energies. The amplitude of these oscillations is 
reduced somewhat when the film's surface is cov- 
ered by hydrogen (Fig. 4b). No oscillations exist in 
(110) oriented films. The EMA fails quantitatively in 
describing the valence band states (in either cases: 
clean or H covered surfaces) for film's thickness 
below ~ 20 ~.. The reason is that the EMA fails to 
recognize the changes in symmetry in going from an 
even to an odd number of atomic layers: EMA has 

only the film thickness as its parameter. The EPM 
solutions of a hydrogen-free (001) quantum film 
exhibit a VBM state whose energy does not change 
with film thickness (see even-layers in Fig. 4a). This 
'zero confinement state' (ZCS) is missing in the 
EMA result. The ZCS corresponds to a cosine-type 
envelope function which is forbidden in EMA. But it 
is allowed in the EPM calculation because the 
boundary condition is satisfied by the Bloch func- 
tion, not by the envelope function. The ZCS energy 
becomes unpinned under H chemisorption (Fig. 4b) 
and in (110) films. It is absent in wires and boxes. 

2.3.2. Comparison with the method o f  R K F  
In the method of Rama-Krishna and Friesner 

(RKF), the cluster eigenvalues E/a°t are approxi- 
mated by bulk band structure energies, Ebulk(k * ) at 
the k *-point of a particle-in-a-box model, i.e E dot --- 
Ebulk(k * ). In general, however, more than one band 
is needed to describe a quantum dot wavefunction. 
Fig. 1 shows that the method of RKF [7] underesti- 
mates the band gap opening A E ( d ) .  The  reason for 
this is the neglect of band mixing. 

It is significant that the single-band approximation 
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Fig. 4. Calculated near-gap energy levels of (001) oriented hydro- 
gen free (a) and hydrogen covered (b) Si films. All states shown 
are bulk-like (i.e., surface states in (a) are omitted). Note the 
oscillations in the highest occupied (VBM) and the next-highest 
occupied ( V - 1 )  valence bands, absent in the EMA description 
(dashed line). The zero-confinement state having a size indepen- 
dent energy is apparent in (a). This figure is taken from Ref. [8]. 
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Fig. 5. Comparison of calculated CBM-VBM band gaps vs. size 
as obtained with different direct calculation methods. The curve 
representing the current results is the fitted curve of Eq. (4). The 
other results are NN-TB (nearest neighbor tight-binding) from 
Ref. [10], TNN-TB (third nearest neighbor nonorthogonal basis 
tight-binding) from Ref. [11], LCAO-LDA from Ref. [12] and 
PW-LDA (plane wave LDA) from Ref. [13]. See text for detail 
discussions. 

subsequently improved their basis set by adding d 
polarization functions basis [14] and applied a 0.6 eV 
rigid upward shift to the calculated results to com- 
pensate the LDA band gap error. Their new results 
agree perfectly with our results. (iii) The two TB 
models differ essentially by a constant shift. Our 
results agree closely with the TNN-TB, indicating 
that longer than nearest neighbor interactions and 
basis set overlap effects are important. 

It is significant that tight-binding methods using 
but a few neighbor matrix elements (e.g NN-TB in 
Fig. 5) underestimate the calculated band gap rela- 
tive to better converged TB calculations (e.g, TNN- 
TB). In this respect we note that the better agreement 
of the TB calculations of Hill and Whaley [15] with 
the very low experimental band gap could represent 
a fortuitous effect of an underconverged TB repre- 
sentation. 

of RKF underestimates the band gap. In a recent 
paper [9], the authors noted that the experimental 
observation of an unusually low band gap for Si dots 
(see Fig. 10 below) supports their model. However, 
improving their model by allowing coupling with 
other bands shifts their band gap upwards signifi- 
cantly (by ~ 0.6 eV for d = 20 A see Fig. 1), thus 
removing the claimed agreement with experiment. 
Further analysis of experiment is thus needed. 

2.4. Density of states and optical absorption spectra 

The total and surface local density of states of the 
spherical quantum dots calculated by the generalized 
moment method are shown in Fig. 6, while Fig. 7 
shows the corresponding optical absorption spec- 
trum. The DOS and optical absorption spectrum of 
the largest spherical dot Si1315H460 already resemble 
some of the features of their bulk counter parts. On 

2.3.3. Comparison with other direct calculations 
Fig. 5 compares our results for Eg vs. d with four 

previous direct calculations: the empirically fitted 
nearest neighbor tight-binding (NN-TB) model of 
Ren and Dow [10], the empirically fitted third neigh- 
bor (nonorthogonal) tight-binding (TNN-TB) model 
of Proot, Delerue and Allan [11], and two LDA 
calculations: one which uses a small LCAO basis 
(LCAO-LDA) by Delley and Steigmeier [12] and 
one which uses a plane wave basis (PW-LDA) by 
Hirao, Udo and Murayama [13] (limited to small 
Nsi < 123 quantum dots). In all calculations, an ideal 
atomic structures was assumed. 

The comparison of Fig. 5 shows the following: (i) 
the PW-LDA calculation underestimates the band 
gap since the intrinsic LDA band gap error was not 
corrected. (ii) The small basis LCAO-LDA results 
appear to be inaccurate. Delley and Steigmeier have 

12oo I s,,3,,H,ool A # 
sool S,-H bond _ / ~  # V 

L su,.~ A n \ J \ CB, M/ ..., 
4oo L LDOS Nr -/ \ I \ ~/~J \VBM I ) / 

O r )  . . ~ ,  - ' ... . . . . .  -., . . . . . . . . . . . . . . . . . .  -..-- 
0 

150 
a 
~ loo 
q 

N ° 
0 

I-- -20 

(b) 
I 

Si-H bond ~ A #  
. ~ l  VBM CBM t ~,-, ! 

LDOS ," 

-15 -10 -5 0 

Energy (eV) 

Fig. 6. Calculated total and local density of states of spherical Si 
quantum dots. The vertical arrows denote band edge state posi- 
tions calculated by the folded spectrum method. The zero of the 
energy is the vacuum level. (a) 5i1315H460, (10) Si429H228, (c) 
8i87H76. 
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Fig. 7. Calculated optical absorption spectra E2(E) of spherical Si 
quantum dots. (a) Si1315H460, (b) Si429H228, (b) Si87H76. The 
joint density of states (JDOS) in (a) is given in arbitrary units. The 
vertical arrows denote the band gap values calculated by the 
folded spectrum method. 
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Fig. 8. Density of states of H-saturated films, wires and boxes 
with surface orientations denoted in the caption of Fig. 3. They 
are normalized so that the integral of the valence electrons equals 
1. Ganssian broadening is 0.2 eV. This figure is taken from Ref. 
[8; 

14 

12 

¢010 

g 
o -= 

~5 

Eb=11.4 

; 8 It0 112 lr4 116 118 20 
Quantum Dot Radius R (,a,) 

Fig. 9. Dielectric constants as a function of spherical quantum dot 
radius R. Here e~ is for total polarization and es is for exciton 
screening. The diamond symbols are the calculated results while 
the solid lines are the curves fitted to Eq. (5). The dashed curve 
corresponds to the generalized Penn model (GPM) given by Ref. 
[17]. 

the other hand, the smaller systems show molecular 
features (more peaks). The calculated surface local 
DOS in Fig. 6 show peaks caused by Si -H bonding. 

An analogous calculation of the density of states 
has been performed for quantum wires and films 
(Fig. 8). The density of states of films (Fig. 8b) is 
rather similar to that of the bulk (Fig. 8a) while wires 
(Fig. 8c) show sharp features which evolve into 
molecular-like states in q quantum dot (Fig. 8d). The 
electron affinity (distance frin vacuum level 0 to the 
CBM) decreases in the series film ~ wire ~ dot. 

2.5• Dielectric constant and exciton screening 

The  integral  e s = fe2(E)/E2dE of  the optical  
absorpt ion spectra e2 (E)  shown in Fig. 7 gives  the 

static dielectr ic  constant  e s. Fig. 9 shows e s vs. the 
quan tum dot  diameters .  This  dielectr ic  constant  mea-  

sures the total polar iza t ion  response  P o f  a quan tum 

dot  to a constant  total electr ic  f ie ld  F: 

e~ - -  1 + P / F / 2 ,  

where  ~ is the v o l u m e  of  a quan tum dot. W e  also 

show the dielectr ic  constant  ~s which  governs  the 

screening of  the exc i ton  in a quan tum dot (Ref. [16]). 

~ ( R )  is smal le r  than es(R) as expec ted  f rom the q 
dependence  of  the bulk  e ( q )  1. A l so  plot ted in Fig. 9 

is the dielectr ic  constant  predic ted  f rom a general-  
ized Penn mode l  [17] (GPM).  This  mode l  predicts a 

I The e~(R) is analogue to ebulk( q = 0) and gs(R) is analogue 
to ebulk( q = p/R)  in the bulk. 
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value much smaller than e~(R) and ~s(R). The result 
of  the GPM can be expressed as 

% -  1 
Es(R) = 1 + (5)  

1 + 

with l = 2 and a = 10.93 ,~, where e b = 11.4 is the 
Si bulk dielectric constant. Fitting our directly calcu- 
lated results to the same form, we find l = 1.25, 
a = 4.25 ,~ for our total polarization dielectric con- 
stant e~ and l = 1.37, c~ = 6.9 A for our screening 
dielectric constant ~ .  [Note, however,  that Eq. (5) 
with l < 2 can be used only for finite clusters since 
l = 2 is the r igorously correct scaling for R ~ co.] 
Using the generalized Penn model, the ratio between 
the free exciton radius aeu and the quantum dot 
dimension is very close to one, thus the system is 
predicted to experience 'moderate  confinement ' .  On 
the other hand, the ratio obtained in our microscopic 
calculation is much larger than one, indicating strong 
confinements. Recently Lannoo and Allen [ 18] calcu- 
lated e vs. size using a t ight-binding based self-con- 
sistent linear screening method, finding even slightly 
larger suppression of  the dielectric constant with size 
than found here. 

2.6. Comparison of calculated exciton energy with 
experiment 

Having calculated the intrinsic one-electron 
CBM-VBM band gap Egap(R) (Fig. 1) and the 
screening dielectric constant ~s(R) for the Coulomb 
energy (Fig. 9), we are now in a posit ion to compare 
our exciton energy to experimental  data. 

In order to compare with the experimental  data, 
the Coulomb interaction energy between the excited 
electron and the hole is added to the calculated 
intrinsic band gap Egap. This gives the exciton en- 
ergy for a sphere within infinite barrier as [19] (in 
atomic unit, Hartree for energy, Bohr radius for R): 

1.786 
Ex(R)=Egap(R)  g~(R) R 0.248 Egy (6)  

The second term in Eq. (6) is the Coulomb energy, 
while the third term is a correlation energy correc- 
tion with Egy = 8.18 meV. 

We first compare our result with the band gaps 
est imated using the optical absorption spectrum 

[20,21]. The comparison is shown in Fig. 10a. Our 
results, and those using the TNN-TB (Ref. [11]) 
agree well with experiment for their trends, except 
that the excitonic correction [second term of  Eq. (6)] 
seems too large, by ca. 0.2 eV, so the calculated 
Ex(R) is slightly below experiment. 

W e  next compare our result with photolumines- 
cence (PL) spectra [1,22-24] in Fig. 10b. The size 
distribution is measured by high-pressure-liquid 
chromatography, transmission electron microscopic 
and X-ray peak width. Our calculated result is sys- 
tematically above the experimental  PL data. 

Unfortunately, the comparisons in Fig. 10 are 
somewhat obscured by experimental  uncertainties: In 
both absorption and PL experiments,  there is large 
size distribution. In the absorption experiments,  due 
to the indirect gap nature of  the material, there are 
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Fig. 10. Calculated excitonic energy [Eq. (6)] compared with (a) 
experimental band gap from absorption measurement (b) PL 
energy for spherical quantum dots. The symbols (3, z~ in (a) 
denote data from Ref. [20,21], respectively. The dashed line in (a) 
denote the TNN-TB calculated results from Ref. [11]. However, 
unlike in Ref. [20], here the Coulomb energy using gs(R) has 
been added to the TNN-TB calculated Egap(R) in Eq. (6). The 
symbols (3, z~, [] and x in (b) denote PL data from Ref. 
[1,22-24], respectively. The vertical lines in (b) represent the 
widths at half-maximum of the PL spectra. The horizontal lines in 
(b) denote the estimated size distributions. 
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further complications in determining the exact band 
gap from the absorption spectra. Thus we decided as 
a 'sanity test' to compute the excitonic gap vs. size 
[25] for a system for which the experimental data are 
much more accurate CdSe dots. In the case of  CdSe 
[26], the size can be controlled within 5% and the 
exciton energy is measured from an exciton peak in 
the absorption spectrum (due to the direct band gap 
nature of  CdSe). We use the same methodology, the 
same type of  carefully fitted empirical pseudopoten- 
tial [3]. We found [25] that our methodology pro- 
duces excellent agreement with experiment for CdSe. 

Thus, we conclude that our methodology should 
produce reliable results. Based on this, and the facts 
that our calculated exciton energy is systematically 
higher than the experimental photoluminescence en- 
ergy at small quantum dot sizes, we conjecture that 
in Si dots the photoluminescence originates from 
some persistent (approximately size-independent) de- 
fects or impurities states (e.g, surface states), rather 
than from intrinsic dot states. This is also supported 
by the fact that the experimental absorption spectrum 
gap in Fig. 10a is systematically larger than the 
experimental photoluminescence energy in Fig. 10b. 

A different type of  experiment [27] is, however, 
uncomplicated by the uncertainty in size distribution 
and possible surface defect states. In this experiment, 
the size-induced shift A E~ in the top of  valence 
band and the shift A Ec in the bottom of conduction 

, . . . .  ] / /  
}( : Exp. data 

o,s 1) calc. using bulk~b| (1)/ 

I~  0.4 

0.2 

o j l  1 

-o.2 ; o'.2 o'., o; o'., ', ,'.= ,., 

zx E v (eV) 

Fig. 11. Conduction band edge shifts versus valence band edge 
shifts. The experimental data is from Ref. [27]. The experimental 
conduction band shift Aff.c=AEo(d)-3.572/dgs(d), where 
A Eo(d) and the Coulomb energy -3.572/g,(d) are given by Eq. 
(6). 

band are measured from absorption spectra for porous 
silicon of  different quantum dot sizes: 

BEy(d )  = EvBM(bulk ) - Evsra ( d )  

AEo ( d )  = - EcB M (bulk) - EcB M ( d )  (7) 

Instead of  focusing on the highly uncertain size 
dependence, the ratio A E v vs. A E c plots are given, 
thus obviating the need of  measuring the size. 
AEc(R)  and AEv(R)  are plotted in Fig. 11. As 
shown in Fig. 11, if the bulk dielectric constant 
eb = 11.4 is used instead of  gs(R), the result deviates 
considerably from the experimental data. The reason- 
able agreement with experiment suggests that when 
the measured dot size is not used, theory explains 
experiment rather well. 

2.7. Shape dependence at constant size 

Quantum confinement effects can exist in one 
dimension (film), two dimension (wire) and three 
dimension (particle) systems. In Fig. 1, we showed 
that if the effective size is measured as d et N~/3, the 
band gap vs. size (or Nsi) curves are similar for three 
prototype shapes, for which the structures are not too 
prolate. It would be interesting to study the band gap 
change when a quantum dot goes through an extreme 
shape change, e.g, from a film-like object to a 
wire-like object. We examined this by changing the 
aspect ratio d z / d  x = dz /dy  of a rectangular box (see 
inserts to Fig. 12): When the ratio d z / d  x << 1, the 
quantum dot is film-like, when d z / d  ~ = 1, the quan- 
tum dot is cubic, while when d z / d  ~ >> 1, the quan- 
tum dot is wire-like. To eliminate the effects of  
orientation, we studied boxes with fixed surface 
orientations [(100),(010),(001)] for all d z / d  x ratios. 
To eliminate the effect of  size Nsi, we studied 
quantum dots having almost the same number Nsi  = 

1108 _ 13 of  Si atoms. Fig. 12 depicts the calculated 
recombination rate (part a) and band gap energy 
(part b) versus the ratio d z / d  x. Note that different 
shapes at Nsi -~ const can have gaps that differ by as 
much as 0.8 eV! The structure with the smallest band 
gap (i.e, weakest quantum confinement effect) oc- 
curs when d z / d  x = 1 (cubic). From d z / d  x = 4 to 
14, there is a switch between the near VBM states, 
as a result, the trend of  the recombination rate has 
been changed. While the most elongated 1100-atom 
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Fig. 12. Dependence of the band gap and recombination rate 
( l /T )  on the shape (d  z / d  z = d z / d y )  of Si quantum boxes. The 
box has the (100)×(010)×(001) orientation. The ratio d z / d  x 
changes from 0.38 to 13.2 and the box changes from filmlike to 
wirelike. (a) The radiative recombination rate ( l /T )  vs. ratio 
d z / d x. (b) The band gap as the ratio d z / d x. Fitting the d z / d x 
= 1 point to an EMA formula shows that when d z / d  x differs 
from 1, the effective mass formula overestimates the quantum 
confinement effects. This is consistent with the results of Fig. 9 
which indicates that the smaller the length d x or d z, the larger the 
error of the EMA. 

in the empi r ica l  pseudopotent ia l  fitting. As a result, 

our  f i t ted potent ial  V(r)  is very  close to L D A  

screened potential ,  except  that our  potent ial  gives  the 

correct  bulk  band gap and band structure, whi le  the 

L D A  potent ia l  does not. Our  central  approximat ion  

is the use o f  a f ixed,  nonse l f  consis tent  potent ia l  for 

all dots. T w o  newly  deve loped  methods,  the fo lded  

spec t rum me thod  and the genera l ized  momen t s  

method,  are used to calculate  the band edge  states, 

densi ty  o f  states and optical  absorpt ion spectra of  

thousand a tom systems. These  three quantifies are 

suff icient  to de termine  mos t  optical  characterist ics o f  

the system. The current  approach is i l lustrated for Si 

quan tum dots wi th  surface pass ivat ion o f  H atoms. 

Recent ly ,  this approach has also been  used in the 

study of  ca. 300 n m  disorder  superlatt ices [28] and 

C d S e  quan tum dots [25]. 
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