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We present a systematic approach to the study of the electronic structure of thousand atom
(nanometer scale) quantum structures. This approach uses the empirical pseudopotential method
to approximate the Hamiltonian and a plane wave basis to expand the wavefunctions. Two com-
plementary, newly developed methods are used to calculate the electronic structure of the system.
The first method solves for the discrete near-edge states (the valence band maximum and the
conduction band minimum). Its computational time scales linearly with the size of the system.
The second method calculates statistically the electronic density of states and optical absorption
spectra. For a given resolution and statistical accuracy, its computational time is independent
of the size of the system for systems smaller than ~ 10,000 atoms. The combination of these
two methods is used to study the electronic and optical properties of up to thousand Si atom
quantum dots passivated by hydrogen. The properties studied include: (1) band gap wvs size;
(2) band gap vs shape; (3) analysis of band edge states in terms of bulk Bloch functions; (4)
total electronic density of state and optical absorption spectra; (5) dielectric constant vs size;
(6) photoluminescence radiative lifetime vs luminescence photon energy. The results are com-
pared with tight binding and other model calculations. Comparison with experimental data is
made whenever possible. Good agreements with experiment are obtained for photoluminescence
lifetime and for the ratio between conduction band shift and valence band shift.

1. INTRODUCTION

While electronic structure theory has traditionally focused on the detailed band struc-
ture of rather symmetric, simple solids, rapid experimental advances in semiconductor
physics are constantly shifting interest to lower symmetry quantum systems with an ever
increasing number of atoms. Examples in semiconductor physics include nanometer-
sized (> 10 atoms) quantum dots, films and wires[1, 2], superlattices A, Bn Ay B ...
with randomly selected layer thicknesses [3], interdiffused (”interfacially rough”) quantum
wells[4], spatially inhomogeneous alloys exhibiting various degree of long and short range
order(5], long period superlattices[6], impurity aggregates, line defects and dislocations in
solids[7], amorphous and glassy solids[8] and surfaces with complex reconstructions and
step structures[9]. The electronic structure of such low-symmetry nanometer-size systems
is often cast in terms of solutions to some effective single-particle Schrodinger’s equation:
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His = e, (1)

where H = —%VQ + V(r) and V(r) is the mean-field potential. Such applications can
generally be divided into two classes:

In the first class, one investigates problems in which both the self-consistent poten-
tial V(r) and the atomic positions are not known in advance and thus have to be ob-
tained from solutions of Eq(1). Examples include surfaces with unsuspected reconstruc-
tion geometries[10, 11] or crystals and molecules with intricate patterns of charge transfer
and hybridization. This class of problems requires calculating iteratively the ground state
energy and density, thus all occupied solutions of Eq(1) are needed. Development of
iterative diagonalization methods[12], conjugate-gradient minimization of < ;|H|v; >
[13], and Jacobian update scheme[14] for iterating Eq(1) have dramatically improved the
efficiency of such "total energy first-principle calculations”. However, the overall effort
is still limited by the N® scaling of the orthogonalization step, where N is the number
of atoms in the system. Comnsequently, current first-principle calculations are limited to
N < 100 atoms. While parallel computation has raised the limitation to a few hundred
atoms(11, 15], thousand atom computations are still costly. We have recently demon-
strated that the orthogonality computation can be reduced using the Lanczos method[16],
so that for N < 1000 atoms, all solutions of Eq(1) can be obtained with an overall scaling
of N2. For larger systems, however, the scaling is still N3. There are currently a number
of proposals for total energy electronic structure calculations with a linear-in-size scaling
of the effort [17-22]. These promising approaches are, however, still in their formative
stages, and the cross-over size of their cost with respect to the N scaling method is yet
unknown.

The second class of problems to which Eq(1) has been applied includes cases where
V(r) and the atomic geometry are either known(e,g, large, bulk-like quantum dots), or
they can be transported from small-scale first principle calculations. An example of the
latter case is the study of band-gap impurity levels in bulk solids, where V(r) and the
atomic relaxations are often localized near the impurity (and thus can be obtained from
self-consistent calculations on small systems) but the wavefunctions extend over many
atomic cells[23]. Again, conventional N* scaling first-principle methods are limited to
N < 100 atoms. However, if V(r) and the atomic geometry are known or can be modeled,
there is no need to calculate all solutions of Eq(1). One could then focus instead on some
selected properties of the electronic structure, e.g, the band gap, the density of state and
optical absorption spectrum. Here, we provide an effective approach for addressing this
class of problems.

Current approaches to ”class-two problems” for ~ 10% atom systems includes the use of
the effective mass approximation[2] (EMA) and the tight-binding (TB) approach[24]. The
EMA removes the atomic-scale variation of V(r), replacing it by an empty system with
walls (e.g, particle-in-a-box) and parabolically varying energy bands. This approach is
very useful[2] for quantum systems (dots, wires, films, superlattices) which are larger than
60 — 100A (i.e, having > 10* atoms), but it often fails[25] for intermediate sized systems
with 100 — 5000 atoms (15 — 60A) for which the real microscopic potential V(r) can not
be renormalized. The TB approach, on the other hand, does include an atomistic V(r),
but simplifies the problem by expanding ;(r) in an exceedingly small basis set whose
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shape and variational flexibility remain unspecified. Furthermore, V(r) is represented
by a few Hamiltonian matrix elements within a finite interaction range. In the present
author’s view, this restricted variational expression of v;(r) and the inability to test the
accuracy of v;(r) and V/(r) through explicit real-space comparison with first-principles
results constitutes a severe limitation.

We focus here on "class-two problems” whose potential can be represented by a su-
perposition of atom-centered quantities:

= Z Vatom (T — Ratom), (2)

atom

and whose wavefunctions can be conveniently expanded in plane waves

=Y ai(q)er. (3)
q

Here, {R}aom are atomic position vectors and a,(q) are variationally determined expan-
sion coefficients at the reciprocal lattice vector q of the supercell. In general, the atom-
centered potential vgiom need not be spherical, (although in our present work, spherically
symmetric potentials are used). Our central approximation is that we use a fired potential
V(r) that is not updated to reflect charge rearrangement in differently sized clusters. The
plane wave basis is convenient because it permits calculation of the matrix-by-vector prod-
ucts H7; in dual space representation[14, 26, 27] using fast Fourier transforms (scaling as
N In N). This avoids the N2-scaling explicit matrix multiplication using < q;|H|q, >.

Modelling of ~ 10° atom systems using Eqs(1)-(3) requires three steps:

First, one needs to model the geometry, i.e, to specify {Rawm}. For "class-two prob-
lems”, we assume that this is known in advance. For example, experimental structural
measurements on > 100 atom Si quantum dots[28] show that the atomic positions and
the interatomic distances in the interior of the quantum dots are very close to the values
of the extended bulk solid. Atomic relaxations exist only near the surface. But, as will
be shown later, one usually has a reasonably good idea on how to model such relaxations
using either first-principle calculations or experimental data on the relevant bulk surfaces.
Another example of knowable structural information is mesoscopic strained layer super-
lattices, where the atomic structure can be reliably modeled[29] using continuum elasticity
or first-principle calculations on short period systems. A final example is homogeneous
alloys, where relaxations can be obtained from empirical force models such as the valence
force field[30]. This first step will be demonstrated in Sec.2.1 in the context of Si quantum
dots.

The second step in using Eqs(1)-(3) requires determination of the atom-centered poten-
tials Vaom (). We use for this purpose the empirical pseudopotential method[31] (EPM).
Rather than fit vaem(Gi) at a few discrete reciprocal lattice vector {G;} of the primary
unit cell, (as done in classic bulk EPM calculations[31]), we will fit a continuous vasem(q)
to a series of experimental data and detailed first-principles calculations on relevant pro-
totype systems. This will include in the properties that need to be fitted the bulk band
structures, the surface work function, and the density of states of chemisorbed surfaces.
Unlike the case in tight-binding approaches, we will be able to compare the ensuing poten-
tial V/(r) with screened first-principles local density approximation (LDA) results. Unlike
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the case with the LDA, we will be able to obtain experimentally sensible excitation en-
ergies. This second step will be demonstrated in Sec.2.2 in the context of Si quantum
dots.

The third step in using Eqs(1)-(3) involves solving Eq(1) for a given geometry and
potential. This is nontrivial for ~ 1000 atom systems since the number of plane wave
basis functions in Eq(3) scales as O(N). For most semiconducting systems made up of
main group elements, one needs about 50 plane waves per atom. So for N = 1000, one
typically has a 50,000 x 50,000 Hamiltonian problem (the number of FFT grid points is
much larger than 50,000 and is around 10°). The conjugate gradient approaches(13] to
this problem scales as N3, so large systems can not be treated, if all occupied eigenstats of
Eq(1) are to be calculated. However, we may not need all eigenstates in order to study, e.g,
the threshold optical properties of semiconductor quantum structures. What one typically
needs to know on such systems includes: (a) the eigenvalues and eigenfunctions of the
band edge states (the valence band maximum, VBM and the conduction band minimum,
CBM); (b) the total and local electronic density of states; (c) the optical absorption
spectra. With these three properties calculated, most of the optical characteristics of the
system can be determined. We have designed two new methods([32, 33] to calculate these
properties. First, the "folded spectrum method”[32] calculates the band edge states. This
will be introduced in Sec.3. Second, the "generalized moments method” [33] calculates the
density of states and optical absorption spectra. This will be introduced in Sec.4. As will
be demonstrated in Sec.5, using these two methods, it takes 2-3 Cray-YMP cpu hours
to calculate the above mentioned electronic and optical properties of a thousand-atom
system.

In section 6, we apply our approach to study Si quantum dots. The properties studied
include: (a) band gap vs quantum dot size; (b) band gap vs quantum dot shape; (c)
analysis of band edge states in terms of bulk Bloch functions; (d) electronic density
of states and optical absorption spectra; (e) dielectric constant vs quantum dot size;
(f) photoluminescence radiative lifetime vs luminescence photon energy. We have also
compared our results with tight binding like direct calculations, with model calculations
and with experiment. This appears to be the first application of pseudopotential plane
wave methods to ~ 10° atom quantum structures.

2. CONSTRUCTING THE EMPIRICAL PSEUDOPOTENTIAL HAMILTO-
NIAN

In this section we discuss the construction of the empirical pseudopotential vasom(T)
of the system studied. We first determined the atomic configuration {Ruim} and then
construct the atom-centered empirical pseudopotentials vgiom(r) of Eq(2). Instead of
discussing these steps in general, we will discuss them in the context of Si quantum dots
which will be studied in this paper.

2.1. Determination of atomic configurations

Si quantum dots of size 10-40 A can be made by vaporization of Si electrodes[34],
microwave plasma decomposition of SiH4[35], gas-phase pyrolysis of disilene[28], elec-
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trochemical reaction [36], amorphous Si thin film erystallization[37], Si*-implantation of
silica glasses[38], and direct atomic force microscope fabrication[39]. Nanometer sized Si
quantum dots are also expected to exist in porous Si[40, 41]. The surface of Si quantum
dots can be passivated by hydrogen, oxygen or by a host amorphous matrix[37, 38]. X-
ray experiments[28] and direct transmission electron microscopy (TEM) observations[35)
show that the interior of the quantum dots has a bulk-like structure, with a lattice con-
stant that is within 0.25% of the bulk value. According to the deformation potential[42]
of bulk Si, this 0.25% lattice constant uncertainty leads to < 5meV change in the band
structure energy. Thus, without introducing any significant errors, we will use in the
following the diamond structure and the bulk Si lattice constant to describe the interior
of the Si quantum dots. We will fully passivate the surface by hydrogen. The main issue
here is to model the atomic surface relaxation for the chemisorbed H and for the near
surface Si atoms.

We model the H positions at the surface of the quantum dot from the known config-
urations of H-covered (111), (110) and (100) Si surfaces [43-49]. We thus represent the
surface of a convex quantum dot by "patchs” of these three primary flat surfaces. This
can be usually achieved rather easily; If it can not, a few atoms are added or removed from
the surface to make it so (e.g, we remove all tri-hydride "-SiH;3” group on the surface).
The correction is small, so the overall shape of the quantum dot does not change. The
reconstructed surface geometries used for the three primary surfaces are: (1x1):H for the
(111) oriented film surface[43, 44] [i.e, the surface unit cell is primitive 1x1 in terms of the
original ideal surface periodicity, and each surface Si atom has one H atom]; (1x1):H for
the (110) oriented film surface[45], and (1x1):2H for the (100) oriented film surface[46, 47)
(each surface terminal Si atom has two H atoms). The previously determined relaxations
for (111) and (110) surfaces are relatively small[48], so for these surfaces we will use
the ideal unrelaxed structures with Si-H bond distance of 1.487A4. There are different
relaxation models[49] for the (100) (1x1):2H surface. We will use a ”canted dihydride”
model of Northrup[49], derived from a LDA total energy minimization. The reconstructed
structure of this "canted dihydride” model is shown in Fig.1. The H-Si-H bond angle is
106°, not much different from the ideal tetrahedral bond angle of 109.5°. Note, however,
that the H-Si-H group has been rotated, so that the two nearby H atoms from two neigh-
boring H-Si-H groups avoid steric hinderance (they are at a distance of 2.214). Figure
1 shows that the structures of the canted dihydride model is different from that of the
SiH, molecule: there is no tetra-hydride at any surface Si site. Thus the SiH, molecular
structure can not simulate the relative positions of neighboring SiH, (n=1,2) groups on
the real H-covered silicon surface. (We will see below that the H pseudopotential of the
H-covered Si surface is also very different from the H potential in SiH,. This molecule
should therefor not be used as a paradigm for Si nanostructures).

Following the above procedure, we construct the atomic positions of any, arbitrarily
shaped Si quantum dots studied in this paper.

2.2. Constructing the Si and H pseudopotentials

Once the atomic configuration {R,sm} has been determined, the next step is to fit
the spherically symmetric atomic pseudopotential vaom (7) of Eq(2).



166

Canted Dihydride

246A 221A o :8i

v
\
b
\

(001)

(110)

Figure 1: The atomic structure of Canted Dihydride (001) Si surface viewed from (110)
as calculated in Ref.[49)].

In the classical bulk EPM[31], the pseudopotential vg;(G) is defined only on the dis-
crete set of bulk reciprocal lattice vectors {G;}. To describe different finite quantum dots
inside different computational unit cells, one needs instead a continuous momentum space
form vs;(g). We represent the Si local pseudopotential in the form[25]:

vsi(g) = a1(g® — a2)/(aze™” ~ 1). (4)

The coefficients were fitted to (i) the bulk band structure at high symmetry points [50-
54], (ii) the effective masses[55, 56 and (iii) the surface work function[57]. The bulk band
structure was calculated in a plane wave basis [Eq(3)] with a energy cut off of 4.5 Ry
(the same cut off is used in subsequent calculations) and a lattice constant of 5.434. The
fit gave a; = 0.2685, ay = 2.19, a3 = 2.06 and ay = 0.487 in atomic units (Hartree for
energy, inverse Bohr for q). Table 1 compares the fitted quantities as obtained from the
current EPM, the bulk local EPM of Chelikowsky and Cohen[58] and experiment [50-57].
It is clear from Table 1 that the two empirical pseudopotentials have similar quality; the
band energies are within 0.1V of the experimental data (i.e similar to the experimental
uncertainty). Although non-local EPM[31] can improve the agreement of the calculated
band structure with experiment, we consider the level of agreement reflected in Table 1
as sufficient for the current purposes, especially for studying band edge states.

Figure 2 compares the current atomic Si pseudopotential vg;(g) with the Fourier trans-
form of the (self consistently) screened local LDA pseudopotential [59] obtained from bulk
calculations. The ability to compare our potential to first principle potential is a signifi-
cant advantage over tight-binding-like methods. The small, systematic difference between
our empirical pseudopotential and the LDA potential reflects the fact that the current
potential produces accurate band structures (compared with experiment) while the LDA
does not.

Figure 3 compares our calculated bulk density of states (DOS) and optical absorption
spectra €;(E) with experiment[54, 60]. We have used in this calculation the k.p method[61]
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Table 1: Comparison of the bulk Si band structures and effective masses, as obtained in
the present EPM[Eq(4)], the bulk local EPM of Chelikowsky and Cohen (Ref.[31]) and
in experiments. We use a cut-off energy of 4.5Ryd for the plane wave expansion and a
Si bulk lattice constant of 5.434. The numbers in the bracket of the experimental data
indicate the estimated error in the last digit. mg)_x(h) and mg-{)_L(h) stand for the non-
spin-coupled effective hole mass [defined as (hk)?/2AFE] in the ' — X and I'— L directions,
where i denotes the band degeneracy. W is the work function. Energies are in eV and
effective masses are in the unit of electron mass.

Present Bulk (Ref.[31])

Property EPM EPM Experiment
T 0. 0. 0.
I 12,57 -12.68 —12.5(6)¢
Fise 3.24 3.34 3.35(1)°
Py 4.12 419 4.15(5)"
Lo -10.19 -10.26 —9.3(4)°
L -7.25 783 ~6.8(2)¢
La, -1.28 -1.27 -1.2(2)
Ly 2.18 219 2.04(6)°
Lias 4.02 3.88 3.9(1)®
' -3.01 -3.03 —2.9b
Xy 1.32 1.14 1.13(7)°
3 -4.47 -4.55 —4.48°
B 1.167 1.062 1.124¢
W 4.96 - 4.9"
my(e) 0.928 0.912 0.916/
mr(e) 0.199 0.194 0.19
m&? () 0.272 0.271 0.349
me (k) 0.168 0.170 0.159
m (R) 0.669 0.676 0.699
m (k) 0.098 0.097 0.11¢

a: from Ref.[50] b: from Ref.[51]

¢: from Ref.[52] d: from Ref.[53]

e: from Ref.[54] f: from Ref.[55]

g from Ref.[56] h: from Ref.[56]
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Figure 2: Comparison between the present screened Si pseudopotential vam(g) and the
screened first-principles local pseudopotential obtained from bulk Si self consistent LDA
calculations. The screened first principle potential V(G) is decomposed into atomic po-
tentials according to ¥ €% Cvu0m(G) = V(G), where G is the bulk reciprocal lattice
vector and R; is the Si atomic position.
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Figure 3: (a) Total density of states (DOS) and (b) optical absorption spectrum (e;) of
bulk Si. The solid lines are calculated values using the present EPM and the dashed
lines are experimental data. The XPS photoemission data in (a) is from Ref.[54]. The
experimental data in (b) is from Ref.[60]. The lower energy peak in (b) is the exciton
transition.
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with 10° k points. The DOS compares well with experiment. However, as is the case
with other single-particle calculations[31] (EPM or LDA), our single-particle Hamiltonian
does not reproduce the exciton peak in the absorption spectrum. The static dielectric
constant ¢,, calculated from our e(E)[31], is 10.38, compared with the experimental
value[62] of 11.4, the LDA result 12.7[63] and the early EPM value of Walter and Cohen
11.3[64]. In our calculations below, we will correct for the difference between our value of
10.38 and experiment value of 11.4, (caused mostly by the neglect of exciton effects and
possible imperfection in the band structure), by scaling our calculated ¢, — 1 by a factor
(11.4 = 1)/(10.38 — 1) = 1.11. Recently, we have developed [65] a more general method
to construct non-local empirical pseudopotentials that have LDA-quality wavefunctions
and experiment-quality band energies. The improvement for CdSe is substantial, but the
results for Si are similar to those given here[65).

We next fit the hydrogen pseudopotential. The fitted quantities are the surface local
density of states (LDOS) of the three primary [(100),(110),(111)] H covered Si films. We
emphasize in particular obtaining the correct energy of the structurally sensitive LDOS
peaks corresponding to the Si-H bonds. The experimental data are taken from ultra-
violet photoemission spectroscopy[44, 45] (UPS) and angle-resolved electron-energy-loss
spectroscopy[46] (AR-EELS). These experiments indicate that the bonding Si-H states are
located around E, — 5 eV, where E, is the valence band maximum. However, there are
insufficient experimental data for determining the position of the conduction band Si-H
antibonding states. We have thus used instead the results of first principle LDA calcu-
lations (measured from the conduction band minimum to avoid the LDA error). These
calculations and considerations of LDA energy corrections of the unoccupied state[66]
suggest that the antibonding surface state at T is at > E. + 1 eV. Similar conclusions
apply to other % points.

The vy(g) fitted to the surface LDOS is (in atomic units)

vy (g) = —0.1416 + 9.802 x 10™>¢ + 6.231 x 107%¢° — 1.895 x 1072¢*: when ¢ < 2
= 2.898 x 1072 /g — 0.3877/¢" + 0.9692/¢° — 1.022/¢*; when ¢q > 2 (5)

The calculated surface LDOS obtained with this v (g) and our vs:(g) of Eq(4) are shown
in Fig4 for the three primary surface orientations. As can be seen, the Si-H bonding
states (indicated by the vertical arrows in the figure) are at E, — 5 eV, while the anti-
bonding surface states are at E.+1 eV. Figure 5 shows the contour plots of the real-space
total potential V(r) [Eq(2)] of the H-covered (100) Si film, as produced by our empirical
pseudopotentials (right) and by first principle self-consistent local LDA pseudopotential
calculation (left). The two potentials are very close, suggesting that we have a realistic
description of the total potential V(r). We emphasize here that fitting the electronic
structure of H covered Si surfaces is crucial to a realistic description of H covered meso-
scopic Si quantum dots, and that fitting instead the SiH, molecule produces Si-H surface
states that are incorrectly placed energetically.
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Figure 4: Surface local density of states of three primary hydrogen covered silicon surfaces
calculated using the present EPM of Si and H atoms. The vertical lines indicates the
energies of the Si-H bonding and antibonding states. The dashed vertical lines show the
bulk VBM and CBM.

3. THE FOLDED SPECTRUM METHOD (FSM) FOR CALCULATION OF
BAND EDGE STATES

The conventional variational approach to Eq(1) is to minimize the energy < ¢|H|¢y >
by varying the expansion coefficients a(q) of ¥ [Eq(3)]; the first 1 obtained is then the
lowest energy eigenstate of H. To find a higher state, one needs to orthogonalize ¢ to
all previously converged energy eigenstates below it. The effort needed to accomplish
this orthogonalization scales as N3. Consequently, only small systems (IV < 100) can be
conveniently addressed.

We have developed a method that enables calculation of eigensolutions around a given,
"interesting” energy, without having to calculate any of the eigensolutions below it. (A
brief account was given in Ref.[32]). The effort involved scales linearly with the system’s
size, thus enabling calculations of band gap properties in mesoscopic systems. The method
is exact in that the solutions are identical to those of Eq(1).

The central point of this approach is that the eigensolutions (¢;, v;) of the Eq(1) also
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Figure 5: The contour plots of the (110) cross section of the total potential of a H covered
(001) Si slab. The EPM potential is produced according to Eq(2) and the LDA screened
potential is a self consistent result using ab initio atomic local pseudopotentials of Si and
H. The contour level interval is 0.25 Hartree.
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satisfy
(H = €ref) 't = (& — €ref) W (6)

In fact, Bendt and Zunger[14] and Wood and Zunger[12] proposed early on to treat
(H — ¢€)? rather than H in the calculation of all occupied eigenstates, using, however
different methods to solve for ;. As shown schematically in Fig.6, the spectrum {¢;} of
H has been folded at the reference point €,.; into the spectrum {(&;—¢.cs)?} of (H —€,.7)%.
The lowest solution of the folded spectrum is the eigenstate with ¢; closest to €..;. Hence,
by placing €..; in the physically interesting range, one transforms an arbitrarily high
eigensolution into the lowest ome, thus obviating the need for orthogonalization. For
example, if €..; is placed inside an energy gap, minimization of < ?,L|(H - e,,_,f)2|¢ >
results either in the valence band maximum state or the conduction band minimum state,
depending on which is closer to ¢,.;. Changing €..; within the gap region then assures
that both the VBM and the CBM are found.

CBM —~ \W ,::

Eret =T

VBM - spectrum folding

{€;} { [€i- Eref]?}

Figure 6: A schematic of the folding process of the spectrum {¢;} to spectrum {[e —
ref]’}

Our basic strategy is to solve Eq(6) by seeking the minimum of
1
F= [0 ()-572 + V() - eref () (7

in the space of the variational parameters a(q) of ¥ [Eq(3)]. However, comparing to
the minimization of < "d)[f}' [¥ >, the use of (H — €rer)? slows down considerably the
convergence of standard minimization methods. This problem is solved here by using
preconditioned conjugate gradient method with large number of conjugate gradient steps.
To calculate F, we apply twice [—3V% + V(r) — €¢f] to ¥(r) = Lqa(q)e’®™. The term
—3V%y is computed in reciprocal space, while V(r)y(r) is obtained by using the FFT
to transform a(q) to real space v(r), then applying V(r) to ¢ (r) and transforming the
product back to q space. The result can be casted in the same form as 34 c(q)e’™ (with
the same energy cutoff for {q}). Then, [-3V? + V(r) — €,.4] is applied again to this



173

function to get the final result F. Once F is obtained, we minimize it with respect to the
variational wavefunction coefficients a(q), using the preconditioned conjugate gradient
method[26]. The conjugate gradient method is defined as a series (indexed by {j} below)
of sequential line minimizations of the task function F. A line minimization implies adding
a search wavefunction Pj(r) to the current wavefunction ¢;(r) and constructing a new
wavefunction 1;.4(r)

Yi+1(r) = ¥j(r)cos(6) + Py(r)sin(f) (8)

which minimizes F at a value of #. In this procedure, the search function P;(r) is made
orthogonal to v;(r). The next search direction Fjy; is given by

Prs1(a) = A@xg41(a) + 6;P(a), Q
where
Xonal) = 5o = [V 4 V) = e () (10)

The preconditioner A(q) is a g-space function:

B
0F+ Vo ) + ]

Alq) = ; (11)
where V5 is the average potential and Ej is the average kinetic energv of the wavefunction
¥. The §; in Eq(9) is determined using the Polak-Ribiere formula|67]:

TqAlQ)[xj41(q) — x(@xin(a) (12)

By = TqAlQ)xj(@)x;(q)

Usually, a few (4 in our case) wavefunctions 3 are minimized simultaneously while being
kept mutually orthogonal. N line minimizations steps are carried out for each wave-
function before a subspace diagonalization of these wavefunctions based on (H — €., £)2is
carried out. After this, we start another sequence of line minimization iterations. This
forms an outside loop. [This algorithmic structure is the same as in the minimization of
< ¥|H|¢ > in the conventional conjugate gradient method[26]]. Before the final result is
obtained, a subspace diagonalization based on H is carried out. This gives the eigenen-
ergy E;. We used N, ~ 100, (i.e, the square of typical N, values used in conventional
conjugate gradient methods based on H ). The number of outside loop NV; is 5, the same
as the typical values used in the conventional methods. Following the above procedure,
the computational effort to solve for each wavefunction ¥(r) scales linearly with the sys-
tem’s size V. Because only a few wavefunctions need to be calculated, the whole effort of
this method also scales linearly with the system’s size N. This method will be tested in
Sec.5.1.
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4. GENERALIZED MOMENTS METHOD (GMM) FOR CALCULATION
OF THE DENSITY OF STATES AND OPTICAL ABSORPTION SPEC-
TRUM

While the Folded Spectrum Method allows us to calculate discrete band edge states,
one often needs some averaged, (e.g, statistical) information about other states, noticeably,
the density of states and the optical absorption spectrum. In this section, we will describe
a generalized moments method to do just that. A preliminary account was given in
Ref.[33].

The generalized moments approach for the calculation of the density of states p(E)
[22,68-72] consists of two steps. First, one defines the generalized moments I, of the vet
unknown p(E) as:

I = f_ 11 T.(E)p(E)dE, (13)

where, T,,(F) is a polynomial of power n defined in the interval [-1:1], and the energy of
the Hamiltonian H has been scaled and shifted, so that all its eigenvalues are inside the
[-1:1] interval. In the present study, we will utilize the Chebychev polynomial for T,(E)
which forms an orthogonal polynomial set and affords a linear transformations between
I, and p(E). The Chebychev polynomial is defined in the [-1:1] domain as:

To(E) =1, Ti(E)Y=F

To(E) = 2ET, 1(E) - Ta_y(E) (14)
and obeys the orthogonality relation:

f_ll Ton(E)Ta(E)(1 — E*)~dE = %5m(1 + 6mo)- (15)

In the second step, one uses Eq(15) and Eq(13) to reconstruct p(E) from its moments I,
as:

[N

New
p(E)=2(1 = E*)"1 Y Tu(B) (1 + 6:0) 7", (16)

s

where N, is the total number of Chebychev moments I, used. As will be shown later,
the property of the Chebychev polynomial will allow us to use the fast Fourier transform
to compute Eq(16).

In the first step, we calculate the moments {I,} following Skilling[68] using statistical
means. We assume that the Hamiltonian A has N, (= the number of basis functions)
eigensolutions {¢y, E;} when represented in a finite plane wave basis. A random wave-
function ¢y can be constructed by using random coefficients {b(q)} in the plane wave
expansion of Eq(3), i.e,

do = b(q)e'T. (17)
q
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Because the transformation from {e'3} to the eigenstates {¢;} is unitary, we can rewrite
@p as:

Ne
¢o = D_b(q)e'" =3 e, (18)
q 1

and {c¢;} are random numbers just like {b(q)} with equal statistical means and zero
correlations among them. If we normalize the wavefunction ¢y to N,, we have:

< C:Cj >= 61‘,}', (19)

where <> denotes average over different random wavefunctions {¢p}. Following the
recursion formula of Eq(14), one can apply H to the wavefunctions to generate ¢,:

¢ = Heyp
On=2H¢,_ 1 — Pn—z = To(H)do. (20)

Now, taking products, we have:
Ne
I, = 2 < go|dn >=2_ To(E)laif*. (21)

If we use many random wavefunctions {¢p}, repeating the above process and taking the
average of I/, over {¢o}, we have:

<I.>= 2%1;@-) = /_ 11 T.(E)p(E)dE, (22)

where we have used Eq(19) and p(E) = 25, 6(E — E;). Thus, if we average I} over a
sufficiently large number N, of the random wavefunction ¢y, we can get a good approx-
imation to I,. After {/,} are obtained, Eq(16) is used to calculate p(E) in the second
step.

Equation (21), (22) apply to the total DOS, but with minor changes it can be used to
obtain partial DOS. For example, to calculate the projected DOS on a given function y,
e, ppo(E) =2%,;6(E — E;)| < ds|x > |?, simply replace the random wavefunction ¢y by
x and repeat the above operations without averaging. To calculate a local DOS defined
by a weighting function f(r), i.e, p(E) = 25, 6(E — E;) [ |0:(r)|2f (r)d®r, replace the
product in Eq(21) by 2 < ¢|f|¢. > and keep everything else the same.

The optical absorption spectra (or the imaginary part of dielectric constant) is defined
as:

oce unocc

1
&(E) = AZ ; m| < ¥s|Bly: > |*6(E - Ej + Ey), (23)

where A = 872¢24%/3m*Q, and Q is the volume of the system while E;, E; are the
eigenenergies of states i and j, respectively. Note that | < ¥;|p|y; > |* is the transition
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probability between occupied (occ) state ¥; and unoccupied (unocc) state ¢y, and p is
the momentum operator iV. The conventional way to calculate ¢;(E) is to solve for all
eigenstates {#;}, then calculate the transition matrix < ¥y|p|y; > between ¥; and vy
and sum Eq(23). As we pointed out above, this is impractical for systems with more than
thousand atoms. Here, to calculate ¢;(E) we first calculate a two dimensional function:

T(Ey, Ex) = ) | < ilBly; > P6(E1 ~ E)6(Ez — Ej). (24)

1,7€all

After 7(E), E») is obtained, €;(E) can be calculated (using the original unscaled energy)
from:

&(E) = E% f_i‘: dE, /;: dEr(Ey, E;)SE — (Er — Bv)), (25)

where Ep is the Fermi energy.
To calculate 7(Ey, E,), we will first calculate its two-dimensional generalized moments.
We generate a random wavefunction ¢, as before [Eq(17)], then calculate:

Ay =< $o|BTR(H) - DT (H) 60 >

= 3 ¢ ¢;Tu(E)Tm(E5) < %ilBlths > - < ¥l > (26)

ij,l€all

We now repeat the above products with different random wavefunctions {¢o} and average
them. This gives:

An‘m =< A’n_m >= Z Tn(Eg)Tm(E])I < ’!,i')ilﬁ"t,f)] > |2

ij€all
1 1
=/ (dE, / 4By T (E\)Tn( Ex)r(Ey, Er), (27)

where we have used Eq(19) and Eq(24). After obtaining A, .., the reconstruction of
7(E}, E>) using Eq(13) is straightforward:

7(Byy By) = (21~ B (1~ B3 F Y. Tl B)Ton( o)1+ 620) ™ (1 + i) ™. (28)

The calculation of Eq(26) is carried out by first calculating ¢,, = T, m(f[ Yo as defined
in Eq(20). After all {¢n} have been obtained, another set of wavefunction ¢%(k) =
T,.(H)proo is obtained using the same recursion relation as in Eq(20). Here, k stands
for the directions x,y,z (usually, by symmetry, only one or two k need to be calculated).
Then A ., can be calculated as A}, = ¥, < ¢%(k)|pk|¢m > . The computational effort
of obtaining A, ., is of the same order as the effort in calculating I,,. The I, can be
calculated when one calculates A, ., essentially without any extra work. Because there
is a large number of moments A, ., in Eq(28), its direct implementation can be time
consuming. However, T,,(E) = cos(nf) and 8 = cos~*(E). Substituting this into Eq(28)
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we get a Fourier transformation for that equation. Thus, FFTs can be used to evaluate
that equation. The same is true for Eq(16).

The idea of using moments to calculate the density of states is not new [22,68-72].
Compared with previous methods, the current approach has the following characteristics:
(1) a plane wave basis rather than a tight-binding basis is used; (ii) a high resolution spec-
trum is obtained; (iii) because of (i) and (ii), a large number (500 or more) of Chebychev
moments are calculated; (iv) unlike methods based on moments E”, the current method
is numerically stable even for a large number of Chebychev moments; (v) unlike methods
based on the maximum entropy technique[22], the current method uses linear transfor-
mation from moments to the spectrum. This allows a large number of moments to be
used without having to solve the nonlinear equations needed in the maximum entropy
method[22]. The linear transformation we used is in fact a Fourier transformation. Thus
FFT technique can be used to carry it out; (vi) most of all, we use a moments method to
calculate not just the DOS, but also the optical absorption spectrum.

One interesting aspect of this statistical method is the scaling of its computing time
as a function of the system’s size N. The resolution AE of a constructed spectrum is
roughly 2/N,, for a given total number N, of Chebychev moments. The error of the
statistical average ( i.e, the fluctuation of the magnitude of the spectrum at a given
energy) is proportional to (AN x N,,.)~'/2, where AN is the number of eigenstates inside
one interval AE, and Ng,. is the number of random wavefunctions used in the statistical
average. Since for a fixed AF interval, AN is proportional to the size N of the system,
N,y should be inversely proportional to the size in order to give the same statistical
accuracy for different system sizes. This yields a roughly constant scaling of computing
time with the size of the system. This constant scaling changes to a linear scaling when the
system exceeds a size at which N,,. = 1. In practise, this limit is > 10,000 atoms. The
conventional methods which solve all the eigenstates then calculate the optical absorption
spectrum scales as V3 of the system’s size N. The approximate crossover system size after
which the current method becomes faster than the conventional ones, is about 100 atoms,
for the same spectral resolution and statistical accuracy used in this paper.

5. TESTING THE FOLDED SPECTRUM AND THE GENERALIZED MO-
MENTS METHODS

5.1. Testing the folded spectrum method

Since the solutions of Eq(6) are formally identical to those of Eq(1)[73], no tests for
the accuracy of the FSM is necessary. The test here is for its speed. We will use for
this purpose six rectangular Si quantum boxes: Sij3Hog, SiseH7g, SiigaHias, SiasgHoss,
Sigq1 Hzgq and Styps3 Hsos. Their Hamiltonians and atomic structure are generated using
the methods described in Sec.2. For comparison with the present folded spectrum method,
we independently use the more conventional precoditioned conjugate gradient method|26]
to solve Eq(1) for the two smallest systems Si13Hqs and SiseHyg (larger systems are too
costly to calculate using this method). We estimate the computing times for larger clusters
using the actual time needed in conjugate gradient calculations for these small clusters
plus the scalings of various parts of the program. We used in the current folded spectrum
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Table 2: Computer time (in Cray YMP cpu seconds) needed to compute four valence
and four conduction band eigenstates using the folded spectrum method. N is theﬁtotal
number of occupied states. The error tolerance for the eigenstates [defined as < ¥|(H— <
Y|H | >)?|¢ >1/?) is 2 x 107 Hartree.

system Noce FFT grid cpu time (s)
51:13H23 40 20 x 20 x 27 100
S’ingTB 156 25 x 25 x 36 320
Stie3H14s 400 32 x 32 x 45 720
Stzag o4 820 40 x 40 x 54 1760
Sts41 Hasq 1464 45 x 45 x 64 2690
Stz Hsos 2380 50 x 50 x 72 2080

method the same convergence tolerance as for the conventional conjugate gradient method.
Four states near the VBM and four states near the CBM are calculated for each system.
The resulting computing times are summarized in Table 2, and illustrated in Fig.7. We
see that the computing time of the current method scales linearly as a function of the
system’s size. For the largest system Sijgs; Hsos studied here, the conjugate gradient
method would require two weeks Cray-YMP cpu time, while the current method takes
less than one hour of Cray-YMP cpu time.

Total number of atoms per cell

w 41 1571
g i) 135 311 593 1005 15 .
2 & :projected time of conventional method LA
@ 10°F & -actual time of conventional method P 1
§ O :actual time of FSM ,.-4’
+51 Lo 4
B w0 &
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>
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Computational system size nxnynz

Figure 7: Computational time t (in units of Cray YMP cpu seconds) vs the size n of the
system measured by the number n,nyn. of fast Fourler transform grid points. The solid
line is a fit: ¢ = 9.0 x 1073n. The dashed line depicts a projection of the computer time
needed with the conventional conjugate gradient method based on Eq(1l). The system
calculated here are rectangular shaped quantum dots.

It is interesting to test the convergence of the folded spectrum algorithm regarding
the number N, of line minimizations, the number N; of outside loop iterations and the
position of the reference energy €.y, (all defined in Sec.3). We find that interchanging
N, (=100) and N;(=5) slows down the convergence considerably. This means that the
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conjugate gradient method (with 100 line minimization steps) does speed up the conver-
gence compare to the simple steepest decent method[67]. The position of €. also plays
a role in the convergence. Placement of ¢, at the exact center of the band gap leads
to an accidental degeneracy in the folded spectrum between a uper band edge state and
a lower band edge state (see Fig.6). This could cause a slow down in the convergence.
Also, if €.y is placed very close to the VBM or the CBM, or inside one band, this will
also considerably slow down the convergence. All of these problems can be avoided by
simply shifting e,.y.

5.2. Testing the generalized moments method

Since the generalized moment method is not exact, in order to test its accuracy we
need to compare its results to those of direct calculation. However, it is impractical to
calculate the DOS of large quantum dots using conventional approaches (which solve for
all eigenstates). We will thus use a large bulk supercell, containing 1024 primitive unit
cells (2048 Si atoms) of bulk Si with periodic boundary conditions. Since the eigenstates
of this supercell are identical to those of primitive unit cell of bulk Si (2 atoms/cell) at the
corresponding folded k points, the exact eigenstates can be calculated easily using direct
diagonalization. The results will be compared with GMM calculations of the 2048-atom
supercell treated as a new system in its own right. The FFT grid is 64 x 64 x 96 and
we use N, = 500 Chebychev polynomial iterations and Ny, = 20 random wavefunctions
averaging. The computation time for the density of states and optical absorption spectrum
using a single py is about 3 Cray-YMP cpu hours.

Figure 8 compares the directly calculated (“exact” for the present purpose) density
of states (part a) and optical absorption spectrum (part b) with those found using the
GMM. (Note that the directly calculated results in Fig.8 are different from the truly
bulk results in Fig.3 because there are only 1024 k points in our current test system).
Because we use only a finite number N of Chebychev polynomials, this corresponds
to a certain convolution (broadening) in the energy space of the spectra obtained from
Eq(16) and Eq(28). Thus, using Eq(16) and Eq(28) without modification will lead to
undesirable sharp oscillatory features. To avoid this we apply two choices of smooth
truncation functions e=("/0-5¥e)® and e~(/08Ner)® ¢ the moments I, and Anm. These
two choices correspond to Gaussian and a smooth oscillation broadening in energy space,
respectively. In Fig.8, we use the Gaussian broadening. The same Gaussian broadening
of width 0.3 eV is used in the direct calculations. We see that the GMM mimics the
“exact” results closely. The integrated sum of the DOS produced by the GMM upto the
Fermi energy is 99.7% of the exact occupation number.

The static dielectric constant ¢, can be calculated from e, by:

o 2 mEQ(E)
Es—l+7r./u S dE. (29)

Using this formula, we get ¢, of 10.305 and 10.572 for the direct and the current GMM,
respectively. The difference of 2.5% is similar to the estimated 1.5% statistical error
caused by the finite N,,.. The error in €, caused by broadening (finite N_,) is about 3%.
This is estimated from the difference between the results of the two different broadenings.
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Figure 8: (a) The DOS and (b) the optical absorption spectra of a 2048 Si atom bulk
supercell. The Dashed lines indicate “exact” calculations using folded states obtained
in a primitive unit cell conjugate gradient calculation, while solid lines give the results
of the GMM. The same Gaussian broadening (0.3 eV) is used in both GMM and exact
calculations. Note that the exactly calculated curves are different from the truly bulk
results in Fig.3, because there are only 1024 folded k points in the current supercell
system.

In conclusion, we can calculate a thousand atom system within a few Cray-YMP cpu
hours.

6. CALCULATIONS ON Si QUANTUM DOTS

In this section, we will use our approach to study the Si quantum dots. Because of
the quantum confinement effect, Si quantum dots with different sizes and shapes can
exhibit different colors throughout the visible range[74] . In this work, all quantum
dot’s atomic configurations and their Hamiltonians will be constructed by the method
introduced in Sec.2. The quantum dots are placed in a periodic unit cell with quantum
dot’s surrounding filled by vacuum. Then the systems are calculated by FSM and GMM
methods. Preliminary accounts of these results were given in Ref.[32, 33, 75, 76]. This
book chapter provides, however, new data, comparisons, and analyses not given earlier.
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6.1. Dependence of the band gap on size for Si spheres, cubes and rectangular
boxes

The most commonly addressed question in quantum dot physics[l] is the size de-
pendence of the energy gap. However, experimentally prepared quantum dots not only
have different sizes, but for each size there could be a distribution of shapes and surface
orientations. To understand the effects of the shapes on the energy levels of quantum
dots, we study here three " prototype shapes”: (i) spherical balls, (i) rectangular bozs [the
surfaces are in the (110),(110) and (001) directions and the lengths of the edges satisfy
d: = dy = d,/v/2] and (iii) cubic bozs [the surfaces are in the (001),(010),(100) directions].
To compare the electronic properties of these different prototype shapes, we need a con-
sistent definition of the quantum dot’s size. A natural choice is to associate the effective
size with the diameter of a sphere which has the mass density p of bulk Si and contains
the same number N of silicon atoms as the quantum dot in question. Then the diameter
is d(Ns;) = (%)} N5, = 3.3685N5( ) and the radius R = d/2. Using this definition, the
calculated size dependence of the CBM-VBM band gaps of the three prototype quantum
dots is reported in Table 3 and depicted as symbols and the solid line in Fig.9. Quite sur-
prisely, the three sets of data corresponding to the three prototype quantum dots collapse
into a single, unified curve. Thus, if we measure the effective size by d o Ng/> and vary
Ngi, the gaps of all prototype shapes (which are not too prolate) fall on a "universal”
curve. Express d in A, this curve can be fitted as:

88.34

The “EMA” and “RKF” curves of Fig.9 will be discussed in sec.6.3.
6.2. Quantum dot wavefunctions and the role of surface atoms

It is commonly thought that since the surface-to-volume ratio increases rapidly as the
quantum dot decreases, this must imply a greater role of surface effects on the electronic
structure. This is true only if the wavefunection has an amplitude on the surface atoms.
We test this next.

Shown in Fig.10(a),(b) are the wavefunction square of the CBM and VBM of the
rectangular quantum box with d = 34.14(Ns; = 1035). While other quantum dots
represented in Fig.9 may have different wavefunction patterns, in all cases, the VBM
and CBM states are found to be localized in the interior of the quantum dot, with zero
amplitude on the surface. Because of this and the fact that hydrogen potential is of very
short range, we find that, as long as all dangling bonds are passivated, the details of the
surface passivating atoms play little direct role in the determination of the wavefunctions,
hence the band gaps and the oscillator strengths.

Next, we will try to find the relation between the quantum dot wavefunctions and
the bulk Bloch states. Both the effective mass[2] and the truncated crystal methods[25]
model the states of quantum structure in terms of an expansion in bulk Bloch states. It
is thus helpful also to expand our directly calculated "exact” wavefunctions in terms of
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Figure 9: CBM-VBM band gap (without Coulomb corrections) versus the effective diam-
eter d = 3.3685V, ;{3()’1) for three prototype quantum dot shapes. The symbols <, +, and
O stand for the spheres, (110) x (110) x (001) rectanular boxes, and (100) x (010) x (001)
cubic boxes, respectively. The fitted solid line is given by Eq(30). Also shown are the
multiband effective mass result (EMA) (Ref.[79]) and the result of the method of Rama
Krishna and Friesner (RKF) (Ref.[78]) [applied here to cubic quantum dots with the
present Si pseudopotential of Eq(4)]. In all cases, the excitonic Coulomb energy is ex-
cluded.

bulk Bloch wavefunctions:

Y =3 alhulyt (31)
n,k

where k and n are the wavevector and the band index of the bulk Bloch wavefunction
tulk, Consider, as an example, the rectangular quantum box whose directly calculated
wavefunctions are shown in Fig.10(a),(b). In a rectangular box, k of Eq(31) is quantized
as m[xj.d;', £j,d;t, £5.d7"], where j.,j,, j- are positive integers larger than zero. In
a particle-in-a-box model, the lowest energy is obtained for j, = j, = j. = 1, which
corresponds to eight symmetric wavevectors which will be denoted here as k*. We have
calculated the projection P, = Y. |an4-|® for the quantum dot VBM state onto bulk
wavefunctions and found that as much as 93% of the amplitude of [¢%,,|* comes from the
three upper valence bands n,, ny, n3 at k* (These three bands become triply degenerated at
the I's5 , point). The remaining 7% come primarily from other k points for the same bands.
Similar percentage is found in other quantum dots. The projection weights P, ., n, for
these three bands are 0.774,0.005,0.149(the small P,, value in this case is accidental; for
most other cases we tested, these three numbers are comparable). Figure 10(c) shows the
approximate ¥{ g, (7), using just these three bulk bands at k* in Eq(31). We see that this
approximation is very close to the directly calculated wavefunction shown in Fig.10(b).
From our analysis of the wavefunctions, we conclude that (i) the band-edge quantum
dot wavefunctions are ”bulk-like” rather than ”surface-like” in that they can be con-
structed from just a few bulk Bloch wavefunctions; (ii) It is essential to have in Eq(31)
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Figure 10: Wavefunction square contour plots of the (110) x (110) x (001) rectangular
quantum box with d = 34.14 and Ns; = 1035 viewed from the [001] direction. (a) The
CBM wavefunction square summed along the z direction. (b) The VBM wavefunction
square plotted on the z = d./2 cross section. The crossed circles in (b) and (c) denote the
positions of the silicon atoms on that plane. (c) The square of the VBM wave function
reconstructed from Eq(31) using just three bulk bands at k* (see text). This is plotted
on the same cross section and has the same contour levels as in (b).



184

Table 3: Band edge energy shifts AE,(d) = Evpun(bulk) — Evpum(d) and AE (d) =
Fcpm(d) — Ecpu(bulk), for different sized and shapes of the quantum dots. The vac-
uum level are the same for bulk and quantum dots. Thus, these shifts are also the
shifts relative to Si deep core levels (Ref.[100]). F,up = AE, + AE, + Egp(bulk). Here
Ecouoms = —3.572/dé(d), is the electron-hole Coulomb binding energy in a spheri-
cal quantum dot. The measurements of Van Buuren etal [100] (see Fig.21 here) re-
fer to AE,(d) vs AE.(d) + Ecoutoms(d). "Sphere” stands for spherical quantum dots;
"rectangular” stands for rectangular box quantum dots with their three surfaces in
(110) x (110) x (001) and edge length ratios as d, : dy : d. = 1 : 1 : v/2; "cubic”
stands for cubic quantum dots with their three surfaces in (100) x (010) x (001).

system shape d (A) AEFE, (V) AE.(eV) FEup (eV) Ecouoms (€V)
SiggHg sphere 10.35 1.311 1.623 4.101 -0.957
SigyHrg sphere 14.93 0.989 1.192 3.348 -0.532
Siazs Hiag sphere 20.79 0.648 0.726 2.541 -0.325
Sigo0 Haog sphere 25.41 0.513 0.544 2.225 -0.245
Si7a1 Hagg sphere 30.48 0.416 0.415 1.998 -0.192
S?;1315H450 sphere 36.90 0.303 0.311 1.781 -0.151
Siy7Hso rectangular 12.16 1.176 1.547 3.890 -
Sty Hie  rectangular 17.78 0.834 0.946 2.948 -
Si309H04  rectangular 23.25 0.587 0.661 2.415 -
S‘I;517H315 recta.ngular 28.68 0.443 0.487 2.097 =
StjossHyse rectangular  34.07 0.338 0.363 1.868 -
Sis Hre cubic 14.21 1.027 1.179 3.373 =
StoagHy7a cubic  20.90 0.657 0.684 2.509 =
StsyrHzap cubic 28.04 0.410 0.488 2.065 =
Siy101 Hsaz cubic 34.78 0.294 0.356 1.817 -

a band mixing since no single bulk band represents accurately the wavefunction of the
quantum dot[77]. We will see in Sec.6.3 that using a single bulk band to represent a
dot (Rama-Krishna and Friesner[78]) is insufficient; (iii) The k-point selection rules of
particle-in-a-box are a reasonable approximation to the exact results.

6.3. Comparison of the band gaps with previous calculations

Figure 9 compares the results of two model calculations with our direct ("exact”)
calculations. These models includes the multiband effective mass approximation (EMA)
of Takagahara and Takeda[79] and the model of Rama Krishna and Friesner{RKF)[78],
recalculated here(for consistency of comparison) for cubic boxes using the present pseu-
dopotential of Eq(4).

Comparison with the effective mass method: As we saw in Fig.10 above, the VBM and
CBM states found in our direct calculations are not surface states, hence a comparison
with the results of the (surfaceless) EMA is warranted. Our "exact” calculation result
of Eq(30) gives a 1/d'*" size scaling, while the effective mass model predicts a 1/d*
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scaling. Hence, the parabolic dispersion assumed in the EMA is inadequate in the range
of quantum dot sizes studied here(d < 40A4), despite the fact that multiband coupling
is correctly included in this EMA calculation. Indeed, the effective mass approximation
(which includes only kinetic energy effects neglecting erplicit potential energy within
the dot) exaggerates considerably the increase of band gap[AE,(d) = E,(d) — E2*] with
reduced size. Replacing in the EMA calculation the infinite wall by a finite barrier reduces
AFE,(d) and softens the 1/d® scaling. Solving the EMA equation for a finite barrier of
height 4 eV and using an effective mass m* = 0.2m gives a 10% lower AE,(d) for d = 404
and a 15% lower AE,(d) for d = 25A. This reduces the EMA error relative to our direct
calculations by 20% and 30% for d = 40 and 25A4, respectively. The remaining, bigger
part of the error must come from (i) the EMA Hamiltonian itself, i.e, from the assumption
of parabolic dispersion, and (ii) possible non abruptness of the potential well.
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Figure 11: Energy gaps (part a), absolute EMA errors in the band gap (part b) and ra-
diative lifetimes (part c) for H-covered Si films, wires and boxes. The surface orientations
are (110) for filmes, (110) x (110) for wires, and (110) x (110) x (001) for boxes. We use
Degs = Dy for films, D.s; = Dyyg = Dy for wires and Dy = 3.369N3.° for boxes,
where Ng; is the number of Si atoms and Dy is the H surface layer to H surface layer
distance in (11) direction. This figure is taken from Ref.[80)].

Zunger et.al [80] have extended the comparison of (single band) effective mass vs
pseudopotential method to Si wires and films. The results are shown in Fig.11. We see
that the EMA overestimates significantly the quantum confinement shift AE;(d) = E;(d)—
E;(bulk) and that the order of the EMA errors is §AE(boz) > SAE(wire) > SAE( film)
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Figure 12: Calculated near-gap energy levels of (001) oriented hydrogen free (part a) and
hydrogen covered (part b) Si films. All states shown are bulk-like (i.e, surface states in
part a are omitted). Note the oscillations in the highest occupied (VBM) and the next-
highest occupied (V-1) valence bands, absent in the EMA description (dashed line). The
zero-confinement state having a size independent energy is apparent in part a. This figure
is taken from Ref.[80].

[Fig.11(b)]. Note that the error is smallest for 2D films (in vacuum), and is probably still
smaller in 2D quantum wells (embedded in a barrier). This explains partly the success
of the EMA in quantum wells, but warns against the hope that similar success will be
carried over to wire and dots. Note also from Fig.11(a) that the size dependence of the
quantum confinement is the weakest fot films (d~™ with n ~ 0.8 compared to n ~ 1.3 for
wires). Thus, if one wants to make a 2 eV gap Si system, one needs a ~ 54 film or a
~ 204 wire or a ~ 324 dot.

It is interesting to note that in 2D quantum films, the effective mass method leads
not only to quantitative but also to qualitative errors. This is illustrated in Fig.12 from
Ref.[80]. While in the EMA the energy levels vary monotonically with size, the EPM
solutions for (001)-oriented quantum films [Fig.12(a)] show non-monotonic (even-odd)
oscillations in the valence band energies. The amplitude of these oscillations is reduced
somewhat when the film’s surface is covered by hydrogen [Fig.12(b)]. No oscillations exist
in (110) oriented films. The EMA fails quantitatively in describing the valence band states
(in either cases: clean or H covered surfaces) for film’s thickness below ~ 204, The reason
is that the EMA fails to recognize the changes in symmetry in going from an even to an
odd number of atomic layers: EMA has only the film thickness as its parameter. The
EPM solutions of a hydrogen-free (001) quantum film exhibit a VBM state whose energy
does not change with film thickness [see even-layers in Fig.12(a)]. This “zero confinement
state” (ZCS) is missing in the EMA result. The ZCS corresponds to a cosine-type envelope
function which is forbidden in EMA. But it is allowed in the EPM calculation because
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the boundary condition is satisfied by the Bloch function, not by the envelope function.
The ZCS energy becomes unpinned under H chemisorption [Fig.12(b)] and in (110) films.
It is absent in wires and boxes.

A recent self-consistent calculation by Delley [81] has reproduced these even-odd os-
cillations, but with a reduced amplitude. Similarly, recent tight-binding calculation on
films by Gavrilenko and Koch [82] noted such oscillations as well as the ZCS.

Comparison with the method of RKF: In the method of Rama-Krishna and Friesner,
the cluster eigenvalues E%! are approximated by bulk band structure energies E2**(k*)
at the k*-point of a particle-in-a-box model, i.e E#* = E®¥¥(k*). Sec.6.2 shows that in
general, more than one band is needed to describe a quantum dot wavefunction. Figure
9 shows that the method of RKF([78] which corrects the parabolic scaling of the effec-
tive mass model by explicitly using the dispersion relations of the bulk band structure,
underestimates the band gap opening AE(d). The reason for this is the neglect of band
mixing: Eq(31) suggests that e¥%,, = 5, P,et“*(k*)/ ¥, P,. The simple truncated crys-
tal method uses the same particle-in-a-box k* value as in the above analysis, computes the
bulk bands from a similar empirical pseudopotential, but assumes ad-hoc that a single
band(the highest) can be used in the sum of Eq(31). The neglect of the other lighter
bands results therefore in a VBM that is too high, thus in a band gap that is too small.

It is significant that the single-band approximation of RKF underestimates the band
gap. In a recent paper[83], the authors noted that the experimental observation of an
unusually low band gap for Si dots (see Fig.19 below) supports their model. However, im-
proving their model by allowing coupling with other bands shifts their band gap upwards
significantly (by ~ 0.6eV for d = 204 see Fig.9), thus removing the claimed agreement
with experiment.

Comparison with other direct calculations: Figure 11 compares our results for E,
vs d with four previous direct calculations: the empirically fitted nearest neighbor tight-
binding(NN-TB) model of Ren and Dow[84], the empirically fitted third neighbor (nonorthog-
onal) tight-binding(TNN-TB) model of Proot, Delerue and Allan[85], and two LDA cal-
culations: one which uses a small LCAO basis(LCAO-LDA) by Delley and Steigmeier[86]
and one which uses a plane wave basis(PW-LDA) by Hirao, Udo and Murayama[87] (lim-
ited to small Ng; < 123 quantum dots). In all calculations, an ideal atomic structures
was assumed.

The comparison of Fig.13 shows the following:(i) the PW-LDA calculation underes-
timates the band gap since the intrinsic LDA band gap error was not corrected. (ii)
The small basis LCAO-LDA results appear to be inaccurate. Delley and Steigmeier have
subsequently improved their basis set by adding d polarization functions basis [88] and
applied a 0.6 eV rigid upward shift to the calculated results to compensate the LDA band
gap error. Their new results agree perfectly with our results. (iii) the two TB models dif-
fer essentially by a constant shift. Our results agree closely with the TNN-TB, indicating
that longer than nearest neighbor interactions and basis set overlap effects are important.

Comparing our valence band shift AE,(d)[= Evpum{(bulk) — Evpar(d)] shown in Table
3 with the valence band shift obtained in the NN-TB model reported in Ref.[84], we find
that they differ less than 10%. However the conduction band shift AE,(d)|= Ecpnm(d) —
Ecpm(bulk)] of the NN-TB model reported in Ref.[84] is only one third of our conduction
band shift shown in Table 3. This indicates that the band gap error of the NN-TB
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Figure 13: Comparison of calculated CBM-VBM band gaps vs size as obtained with
different direct calculation methods. The curve representing the current results is the
fitted curve of Eq(30). The other results are NN-TB (nearest neighbor tight-bindin)
from Ref.[84], TNN-TB (third nearest neighbor nonorthogonal basis tight-binding) from
Ref.[85], LCAO-LDA from Ref.[86] and PW-LDA (plane wave LDA) from Ref.[87]. See
text for detail discussions.

model comes from the conduction band shift. This is consistent with the fact that simple
(without d state) tight-binding models like the NN-TB can not describe the conduction
band accurately. It is significant that tight-binding methods using but a few neighbor
matrix elements (e.g NN-TB in Fig.13) underestimate the calculated band gap relative to
better converged TB calculations (e.g, TNN-TB). In this respect we note that the better
agreement of the TB calculation of Hill and Whaley [89] with the very low experimental
band gap (Fig.19 below) could represent a fortuitous effect of an underconverged TB
representation.

6.4. Density of states and optical absorption spectra

The total and surface local density of states of the spherical quantum dots calculated by
the generalized moment method are shown in Fig.14, while Fig.15 shows the corresponding
optical absorption spectrum. The DOS and optical absorption spectrum of the largest
spherical dot Si;315Hysp already resemble some of the features of their bulk counter parts
(Fig.3). On the other hand, the smaller systems show molecular features (more peaks).
The calculated surface local DOS in Fig.14 show peaks caused by Si-H bonding. As is
the case in H covered flat Si surfaces, these peaks are around E, — 5 V. The vertical
arrows in Fig.14 indicate the VBM and CBM positions calculated by FSM, which are
consistent with the band edge positions in the DOS calculated by GMM. The vertical
arrows in Fig.15 indicate the band gap energy of the system calculated by FSM. Because
the pseudo-direct nature of the band gap, the absorption spectra are very small around the
band gap energy. The position of the main peak in the optical absorption spectra shows
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Figure 14: Calculated total and local density of states of spherical Si quantum dots.
The vertical arrows denote band edge state positions calculated by FSM. The zero of the
energy is the vacuum level. (a) SilglquﬁO, (b) Si429H228, (C) S’ig'{H’re.

a blue shift as the size is reduced. In Fig.15(a), comparing €; with the joint density of
states (JDOS) shows that the dipole matrix element < ¥¢|plY; > /(Ef — E;) controls the
shape of the absorption spectra. A constant matrix element approximation (i.e, equating
€2 with the JDOS) is obviously useless here.

An analogous calculation of the density of states has been performed for quantum
wires and films (Fig.16). The density of states of films [Fig.16(b)] is rather similar to
that of the bulk [Fig.16(a)] while wires [Fig.16(c)] show sharp features which evolve into
molecular-like states in q quantum dot [Fig.16(d)]. The electron affinity (distance frin
vacuum level 0 to the CBM) decreases in the series film—wire—dot.

6.5. Dielectric constant and exciton screening

The integral of the optical absorption spectra in Fig.15 gives the static dielectric
constant ¢, [Eq(29)]. Figure 17 shows €, vs the quantum dot diameters. This dielectric
constant measures the total polarization respond Pofa quantum dot to a constant total
electric field F: ¢, = 1+ 13/1_7“9, where () is the volume of a quantum dot. While this is
useful for the calculation of the macroscopic dielectric constant of materials consisted of
these quantum dots (e.g, porous Si), we are more interested in the dielectric constant €,
which govers the screening of the exciton in a quantum dot. To model that screening, we
use a uncorrelated electron-hole pair. This uncorrelated pair is an accurate description of
the exciton for systems of strong confinement([1], i.e, when the quantum dot dimension
is smaller than the free Coulomb exciton Bohr radius. Using this uncorrelated pair, the
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Figure 15: Calculated optical absorption spectra e;(E) of spherical Si quantum dots. (a)
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in arbitrary units. The vertical arrows denote the band gap values calculated by FSM.

electron (or hole) charge density is:

T %sin(%r)

o) = (Gt 52 forrsR (3)

-
and zero elsewhere, where R is the radius of the spherical quartum dot. Using this charge
density, one can get its Coulomb potential (unscreened, external) v...(r) by solving the
Possion’s equation V?t..(r) = 4wp(r) with an boundary condition v..(R) = 0. This
external potential will induce a responding potential v;,4(r) from the quantum dot, hence
results in a final screened potential Uso(r) = Vere(T) + ving(r). The screening dielectric
constant &, can be thus defined as the ratio of the electric static energies between the bare
external potential and the screened potential:

Es — fvezt(r)p('r)dST' (33)
[ Veer()p(r) &P

To simplify the following calculations, we will like to change the shape of v..(7) to a

new shape v/,,(r) so that its resulting screened potential v, (r) has the shape of ve.(r).

In other words, we can still use Eq(33), but instead of getting ve.(r) by the Possion’s

equation from p(7), we will get v..(r) by the Possion’s equation from p(r) [i.e, Ve (1) =

4mp(r)]. Substituting veys(7) = Vere(r) — vina(r) in Eq(33), we have:

_ L vinalr)olr)dr -
Jvser(r)p(r)dPr
Using perturbation theory, the total potential v,..(r) will cause a change in quantum
dot’s charge density:

5 A2l o ovit) (35)

fEunoce, i€occ Ef - Ei

€s=1

Apaor(r) = —
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Figure 16: Density of states of H-saturated films, wires and boxes with surface orientations
denoted in the caption of Fig.11. They are normalized so that the integral of the valence
electrons equals 1. Gaussian broadening is 0.2 eV. This figure is taken from Ref.[80].
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Figure 17: Dielectric constants as a function of spherical quantum dot radius R. Here ¢,
is for total polarization [Eq(29)] and €, is for exciton screening [Eq(37)]. The diamond
symbols are the calculated results while the solid lines are the curves fitted to Eq(39).
The dashed curve corresponds to the generalized Penn model (GPM) given by Ref.[91]

Then v;ng(7) is the potential produced by Apu(r) [i-6, Vi0ina(r) = 41 Apacr(r)]. Because
User(r) 1s the potential produced by p(r), we have the identity:

jvmd(r)p(r)d3r = /Apm(r)vm(r)dsr. (36)

Substituting Eq(35) and Eq(36) into Eq(34), we have:

. 2 [ &(F)

=1+ w/ﬁ TE, (37)

where

&(E) = %”'" =3 < Fvns ()i 32 8(E — E; + Ey) (38)
F

where 8 = [v,r(7)p(r)d?r. We have written the expresion for & and &(E) in the same
way as for ¢ in Eq(29) and e;(F) in Eq(23), so that we can use the generalized moment
method to calculate &(E), just by replacing the operator p by v,..(r) in Eq(26).

Using this method, we show in Fig.17 the resulting &(R) along with ¢,(R). &(R) is
smaller than ¢,(R) as expected from the q dependence of the bulk €(q)[90]. Also plotted
in Fig.17 is the dielectric constant predicted from a generalized Penn model[91] (GPM).
This model predicts a value much smaller than ¢,(R) and é,(R). The result of the GPM
can be expressed as

Eb—l

1+ (a/R) (39)

&(R)=1+4+

with [ = 2 and o = 10.934, where ¢, = 11.4 is the Si bulk dielectric constant. Fitting
our directly calculated results to the same form, we find [ = 1.25, & = 4.254 for our
total polarization dielectric constant €, and | = 1.37, o = 6.94 for our screening dielectric
constant &. [Note, however, that Eq(39) with [ < 2 can be used only for finite clusters
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since [ = 2 is the rigorously correct scaling for R — oco.] The difference between our result
and the GPM result is highlighted in Fig.18 giving the ratio of free exciton radius a.; to the
quantum dot dimension. Using the generalized Penn model, this ratio is very close to one,
thus the system is predicted to experience "moderate confinement”. On the other hand,
the ratio obtained in our microscopic calculation is much larger than one, indicating strong
confinements. This strong confinement justifies our use of the uncorrelated electron-hole
pair [Eq(32)] for the model of exciton. It also substantiates the use of Brus’s[92] simple
formula —1.786/&,(R)R for the exciton Coulomb binding energy. Recently Lannoo and
Allen [93] calculated e vs size using a tight-binding based self-consistent linear screening
method, finding even slightly larger supression of the dielectric constant with size than
found here.

0.8 0 1

4 6 g 10 12 1416 18 20
Quantum Dot Radius R (A)

Figure 18: The ratio between the free hydrogenic exciton radius a., and the quantum
dot diameter (d=2R) as a function of quantum dot radius R. The & and GPM values are
given in Fig.17.

6.6. Comparison of calculated exciton energy with experiment

Having calculated the intrinsic band gap E,.,(R) and the screening dielectric constant
€(R) for the Coulomb energy, we are now in a position to compare our exciton energy to
experimental data.

We will compare to experiments which measure the band gap of nearly spherical Si
quantum dots by photoluminescence (PL) spectra[28, 34, 35, 40]. The size distribution
is measured by high-pressure-liquid chromatography (HPLC), transmission electron mi-
croscopic (TEM) and X-ray peak width. The results are summarized in Fig.19. There,
we use a solid symbol to represent each sample and a crossing horizontal line to indicates
the width of the size distribution for that sample. For the data from Ref.[28], we put
the symbol at the X-ray position, and mostly ignore the HPLC values because it tends
to overestimate the size due to the aggregation of monomers. We also plotted the colloid
data from Schuppler, etal[40] using the same measurement methods as in Ref.[28] (the
data points from porous Si are not plotted). As can be seen, there is a very wide size
distribution in these particles. Although our calculated band gap for the three prototype
shapes follows the same curve, to simplify matters, we show in Fig.19 only the results



194

25 Current result with Coulomb term: — ¢ — | |
< Experiments: @ ,m & x
©
=~ 2.0 -
E- S BN

a

E exciton
>
L
¢
—9—

——— A Y L
]
L 1 L 1 i 1 1L !
10 15 20 25 30 35 40 45 50 55
Effective diameter d (}o\)

0.0

Figure 19: Calculated excitonic energy [Eq(40)] compared with experimental PL data
for spherical quantum dots. The symbols (), A, O and x denote PL data from
Ref.[28],[34],[35] and [40] respectively. The vertical lines represent the widths at half-
maximum of the PL spectra. The horizontal lines denote the size distributions. The size
distribution for ) is estimated mostly from TEM and X-ray data in Ref.[28]. The experi-
ment of Ref.[34] does not report the size distribution. The shaded area represents a range
of experimental points of Ref.[34]. The three x points are the "very small”, ”small” and
"intermediate” colloid data reported in Ref.[40] (the data points of porous Si in Ref.[40]
are not used here). The solid line connecting < represents our calculation. Note the
quantum dot SiygHas listed in Table 3 is too small to be reliable, thus is not used here.

for the spherical quantum dots. In order to compare with the PL data, the Coulomb
interaction energy between the excited electron and the hole is added to the calculated
intrinsic band gap Eyp. This gives the exciton energy for a sphere as[92] (in atomic unit,
Hartree for energy, Bohr radius for R):

1.786
E:z:(R) == Eyap(R) = E(ﬂ = 0248ERy (40)

The second term in Eq(40) is the Coulomb energy (shown in Table 3), while the third
term is a correlation energy correction with Er, = 8.18 meV. The resulting calculated
curve is shown in Fig.19 with the experimental value. Unfortunately, the comparison
is inconclusive due to the large experimental size uncertainty. However, for small size
quentum dots, it appears that our calculated exciton energy is consistently larger than the
experimental photoluminescence energy. Calculations using but single bulk band coupling
(RKF in Ref.[78]) or a variationally restricted TB method [Ref.[89]] produce lower gaps
that are in better agreement with experiment. We have seen however, in Sec.6.3 (Figs.9
and 13) that improvement in the theoretical formulation is likely to push the band gaps to
higher energies, thus removing the agreement with experiment. What then is the reason
for the systematic overestimation of the silicon PL energy in Fig.19 7 Before attempting
an answer we decided as a “sanity test” to compute the excitonic gap vs size[94] for a
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system where the ezperimental data is much more accurate - CdSe dots. In the case of
CdSe[95], the size can be control within 5% and the exciton energy is measured from
optical absorption peak, thus avoids the possible complication of surface states. We
use the same methodology, the same type of carefully fitted empirical pseudopotential
[65]. The calculated gap vs size is shown in Fig.20 where it is compared with the best
experimental data [95]. We see that our methodology produces excellent agreement with
experiment for CdSe. We conjecture therefor that in Si dots the photoluminescence could
come from some persistent (size-independent) defects or impurities states (e.g, surface
states) [96-99], rather than from intrinsic dot states.
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Figure 20: Quantum dot dielectric constant (a) and exciton energies (b) for CdSe quantum
dot. The solid line in (a) is the fitted result using Eq(39) with o = 7.54 and { = 1.2.
The experimental data and the effective mass (EMA) curve in (b) are both from Ref.[95].
The screening for the Coulomb potential used in part b also includes ionic contributions
in this polar material [94]. Notice the good agreement between the final calculated result
(cross) and the experimental result (diamond).

A different type of experiment[100] is, however, uncomplicated by the uncertainty in
size distribution and possible surface defect states. In this experiment, the size-induced
shift AF, in the top of valence band and the shift AE, in the bottom of conduction band
are measured from absorption spectra for porous silicon of different quantum dot sizes:

AEv(d) = EVBM(b'U,lk) — EVBM’(d)
AE.(d) = —Ecpu(bulk) + Ecpp(d). (41)
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Instead of focusing on the highly uncertain size dependence, the ratio AE, vs AE,
plots are given, thus obviating the need of measuring the size. The calculated band gap
edge shifts (AE,, AE,) of the three prototype quantum dots are listed in Table 3. Table 3
shows that as the dot size decreases, E,{d) moves to deeper binding energies at a similar
rate as F.(d) moves to shallower binding energies. In the experiment, one measures
AE,(d) vs AE.(d) = AE.(d) — 3.572/dé,(d). The reason is given in Ref.[101]. AE.(R)
and AE,(R) are plotted in Fig.21. As shown in Fig.21, if the bulk dielectric constant
¢y = 11.4 is used instead of é,(R), the result deviates considerably from the experimental
data. If the AE,.(d) of the NN-TB model (Fig.13) reported in Ref.[84] is used, one finds
that the amplitude of the Coulomb energy term —1.786/&,(R)R is always larger than the
intrinsic AF.(d). As a result, the corresponding points in Fig.21 will be below zero of the
v axis.
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Figure 21: Conduction band edge shifts versus valence band edge shifts. The ex-
perimental data is from Ref.[100]. The experimental conduction band shift AE, =
AFE.(d) — 3.572/dé,(d), where AE.(d) and the Coulomb energy —3.572/dé,(d) are given
by Eq(41) and Table 3. See text for detail discussions.

6.7. Radiative recombination rate vs exciton energy

Figure 22 depicts the calculated radiative recombination rate versus the exciton energy
of Eq(40) for our three prototype-shaped quantum dots. The results are compared with
the experimentally measured lifetime of Xie, etal and Vial, etal taken on samples of porous
silicon at room temperature[102, 103]. The recombination rate is defined as 1/7, here 7
is the radiative lifetime, calculated from:
1 4dawn

= = ———| < lplvs > I%,
e

T 3mic )

where, n(=2.6) is the effective refractive index of Si quantum dot[104], w is the photon
angular frequency, o = e?/hc. The value of 7 calculated from Eq(42) strictly between
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Figure 22: Radiative recombination rate 1/7 [Eq(42)] as a function of the lumines-
cence photon energy [exciton energy, Eq(40)]. Experimental curves (1) and (2) are from
Ref.[102] and [103], respectively. They are both for porous Si measured at room tem-
perature. The three curves of (2) are taken from three different samples with different
level of oxidizations. The symbols <, + and O represent calculated results for spherical,
(110) x (110) x (001) rectangular, and (100) x (010) x (001) cubic quantum dots and are
for zero-phonon process [Eq(42)] only. Phonon assisted process (Ref.[105]) could shift the
positions of the symbols (especially those in the lower energy region) upward by a factor
of 3-10. The quantum dot SizeHazs listed in Table 3 is too small to be included here.

the VBM (for 7;) and CBM (for ¥;) states fluctuates widely even with small changes in
quantum dot’s size. To reduce this fluctuation, we have taken an average of | < ¥;|p|uvy >
|* over the four highest occupied states {7} and four lowest unoccupied states {¢;}. The
energy spread for these four eigenstates is about 20 meV for the largest quantum dots
studied here, thus of the order of kT at room temperature. Figure 23 shows that, unlike
the E; vs d curves (Fig.9), which collapse into a single "unified” curve for all prototype
quantum dots, the 1/7 vs d curve shows more scattering. The difference between the
experimental data and the result of Eq(42) is of the same order of magnitude as the
difference between the two sets of the experimental data. Yet, our calculated lifetime
are systematically too long in the small photon energy region. In using Eq(42), we only
considered zero-phonon process. As recently pointed out by Hybertsen[105] , phonon-
assisted process can be 3-10 times stronger than zero-phonon process [especially for large
(40 A) quantum dots, i.e, in the small photon energy region]. Taking that into account,
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Table 4: The band gaps and radiative lifetimes of two cubic quantum dots with different
surface orientations. The band gap difference after correcting for the small difference in
size is 0.014 eV.

system orientation  Ng; Ny size d(A) Egop(eV) lifetime 7(us)
1 (100) x (010) x (001) 1101 532 34.783 1.8173 231.2
2 (110) x (110) x (001) 1157 492 35.363 1.8237 8647.

our calculated recombination rate in Fig.22 should be moved upward by a factor of 3-
10. This will put them right around the experimental data (1) and (2) in Fig.22. This
is consistent with a simple picture that the PL of the porous Si comes from the bulk
like interior of isolated quantum dots which exist in the porous silicon. However, one
must be cautious to explain the experimentally measured PL lifetime of porous Si. As
conjectured in Sec.6.6, defect states (e.g, surface states) might play an important role in
the PL process. Besides the radiative recombination channel, the nonradiative channel
and possible carrier transport process also affect the measured PL lifetime[103]. One must
also keep in mind the temperature dependence of the measured PL lifetime in porous
Si[106, 103]. So far, a good model of the PL process in porous Si does not exist.

6.8. Surface orientation dependence of the band gap

We have next studied the effect of the surface orientation of the quantum dot on
its band gap and recombination rate. To eliminate other effects, we have chosen two
quantum dots with the same shape(cubic) and almost the same sizes (differing by 1.7%).
One quantum dot has (100),(010) and (001) surfaces and the other has (110),(110) and
(001) surfaces. Thus, the latter structure represents a 45° rotation of the first structure
around one of its principle axis. The calculated band gaps and radiative lifetimes are given
in Table 4. After correcting the small size difference using the unified curve of Eq(30), we
find that the band gap difference for these two orientations is only 0.014 eV. This is only
2% of the band gap blue shift(AFE,) and is thus negligible. However, the recombination
rate of the [(110),(110),(001)] oriented quantum dot is 40 times smaller than that of the
((100),(010),(001)] oriented quantum dot. We can conclude that the band gap energy has
negligibly small dependence on orientation, but the radiative lifetime(recombination rate)
is more sensitive to it.

6.9. Shape dependence at constant size

Quantum confinement effects can exist in one dimension(film), two dimension(wire)
and three dimension(particle) systems. In Fig.9, we showed that if the effective size is
measured as d o N;fs, the band gap ws size(or Ng;) curves are similar for three prototype
shapes, for which the structures are not too prolate. It would be interesting to study the
band gap change when a quantum dot goes through an extreme shape change, e.g, from
a film-like object to a wire-like object. We examined this by changing the aspect ratio

d./d; = d./d, of a rectangular box(see inserts to Fig.23): When the ratio d./d, < 1,
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the quantum dot is film-like, when d./d, = 1, the quantum dot is cubic, while when
d./d. > 1, the quantum dot is wire-like. To eliminate the effects of orientation, we
studied boxes with fixed surface orientations [(100),(010),(001)] for all d./d, ratios. To
eliminate the effect of size Ng;, we studied quantum dots having almost the same number
Ng; = 1108 + 13 of Si atoms. Figure 23 depicts the recombination rate(part a) and band
gap energy(part b) versus the ratio d./d,. Note that different shapes at Ng; 2 const can
have gaps that differ by as much as 0.8 eV ! The structure with the smallest band gap(i.e,
weakest quantum confinement effect) occurs when d./d, = 1(cubic). From d./d, = 4 to
d./d. = 14, there is a switch between the near VBM states, as a result, the trend of the
recombination rate has been changed. While the most elongated 1100-atom bar gives the
largest blue shift, interestingly the cube has a faster decay (i.e, the transition is “more
allowed”) than this most elongated bar. Thus a larger blue shift comes, unfortunately,
with a weaker transition.

It is interesting to compare the band gap and radiative lifetime of rectangular boxs(finite
d.) to those of infinitely long(d, = c¢) quantum wires. In both cases, we use structures
with cross section [(110),(110)]. The results of our rectangular box were given in Fig.9
and Fig.22. The results of the quantum wire are from Ref.[107] (the VBM and CBM for
these quantum wires have k., = 0). The comparison in Fig.24 shows that: (i) Given the
same [(110),(110)] cross sections for the wire and rectangular box, the box has a band gap
0.2-0.3 eV higher than that of the infinite wire (in the cross section size range of 10—204).
(This is different from Fig.23, where the total number of Si, not the cross section size are
the same for the box and wire). (ii) The radiative lifetime of the box is about twice the
radiative lifetime of wire. The fact that the gap of a dots is larger than that of the infinite
wire is consistent with the larger quantum confinement for finite d.(i.e. box). The slightly
shorter lifetime of the wire is probably related to the fact that both the CBM and VBM
of the wire has k, = 0. As a result, the overlap between the wire CBM and VBM in z
direction is large in the matrix element (< i|p|j >?) calculation. As discussed by Yeh,
etal[107], it is reasonable to assume that porous Si consists of both quantum wires and
quantum dots. Thus, the quantitative results presented here for different shapes of the
quantum dots should be useful in detail analysis of the experimental data.

7. CONCLUSIONS

We have introduced a new approach for electronic structure calculations of nanoscale
quantum systems. A plane wave basis is used to describe the wavefunctions and accurate
empirical pseudopotentials are used to approximate the Hamiltonian. The empirical pseu-
dopotentials (of continuous forms in reciprocal space) are fitted to the bulk band structure
and surface density of states. The shapes of first principle LDA screened potentials are
also taken into account in the empirical pseudopotential fitting. As a result, our fitted
potential V(r) is very close to LDA screened potential (Fig.5), except that our potential
gives the correct bulk band gap and band structure, while the LDA potential does not.
Our central approximation is the use of a fized, non self consistent potential for all dots.
Two newly developed methods, the folded spectrum method and the generalized moments
method, are used to calculate the band edge states, density of states and optical absorp-
tion spectra of thousand atom systems. These three quantities are sufficient to determine
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Figure 23: Dependence of the band gap and recombination rate (1/7) on the shape
(d./d, = d./d,) of Si quantum boxes. The box has the (100) x (010) x (001) orientation.
The ratio d,/d, changes from 0.38 to 13.2 and the box changes from filmlike to wirelike.
(a) The radiative recombination rate (1/7) vs ratio d./d,. (b) The band gap vs the ratio
d./d,. Fitting the d./d, = 1 point to an EMA formula shows that when d./d, differs
from 1, the effective mass formula overestimates the quantum confinement effects. This
is consistents with the results of Fig.9 which indicates that the smaller the length d, or
d, the larger the error of the EMA.

most optical characteristics of the system. The whole procedure is designed as a more
reliable and realistic alternative to the tight-binding method. The current approach is
illustrated for Si quantum dots with surface passivation of H atoms. The interiors of such
systems still maintain a bulk-like structure. The surface atomic configuration is modeled
using the experimental data and first principle calculations on three primary H covered
Si surfaces.

We have calculated the following properties of Si quantum dots: (1) band gap ws
size and shape of the quantum dots; (2) photoluminescence lifetime wvs size and shape
of the quantum dots; (3) total electronic density of state and optical absorption spectra
of the quantum dots; (4) dielectric constant vs size of the quantum dots. The band-
edge wavefunctions are analyzed in terms ot bulk Bloch wave functions and found to be
bulk like. The results are compared to tight-binding like direct calculations and model
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Figure 24: Comparison of the band gap and radiative lifetime (7) of finite rectangular
quantum boxes of length d. = v/2d. = v/2d, and infinitely long (d. = 00) quantum wires.
The cross sections perpendicular to the z direction are the same for rectangular box and
the wire, which is [(100),(110)] with N Si monolayer on each sides. The distance between
two Si monolayers is 1.92 A. The quantum wire results are taken from Ref.[107] with
adjustments so that same way of calculating 7 is used as described in text. (The lifetimes
of quantum wire shown in Fig.4 of Ref.[107] and in Fig.8 of Ref.[75] are in error: They
should be divided by a factor of 2).

calculations. We find that next nearest neighbor interaction and nonorthogonal basis are
necessary for tight-binding method to get accurate results, and the model calculations
are not correct quantitatively. Good agreement between our results and experiments are
found for the photoluminescence lifetime and the ratio between conduction band shift and
valence band shift.

All these demonstrate the usefulness of the current approach in describing quantum
nanoscale electronic structure. Recently, this approach has also been used in the study of
~ 300 nm disorder superlattices[108] and CdSe quantum dots [94].
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