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The electronic properties of a point vacancy in the two-dimensional graphite crystal are investigated within
the small-periodic-cluster approach using a self-consistent all-valence-electron LCAO (linear combination of
atomic orbitals) scheme previously employed for the calculations of the band structure and optical spectra of
the regular lattice (part I). Eight crystal bands, 54-96 K points in the Brillouin zone, selected according to the
“mean value theorem” and 22-5? primitive unit cells around the defect site are allowed to interact. A doubly
degenerate singly occupied o defect level is shown to appear in the o-o* band gap, 3.5 eV above the o~ band
edge, with a wave function that is about 80% localized on the three nearest-neighbor atoms. The density of
electronic states, charge distribution and Poisson electrostatic potential of the defect structure are computed
and used to discuss the characteristic feature of the defect in connection with Coulson’s “defect molecule”
model and with current models of electron trapping mechanisms used to interpret the experimental data on
Hall coefficient, resistivity and diamagnetic susceptibility of damaged graphite. Both symmetric and Jahn-
Teller lattice distortions are introduced around the defect site, the results being used to interpret the
experimentally observed decrease in lattice constant, the observed optical absorption and the vibronic
parameters of the Jahn-Teller effect. Symmetric lattice relaxations are shown to have a moderate effect on the
lattice energy and on the position of the defect level, these changes being mainly due to the response of the 7
subsystem to accumulation of excess 7 charge on the surrounding bonds, while Jahn-Teller -distortions are
shown to have a small effect on the system due to the relative rigidity of the o skeleton. The energy of
vacancy formation as well as the energy of atom displacement and vacancy migration are directly computed
from the change in total lattice energy, the results being in good agreement with experiment. The importance
of introducing charge self-consistency in treating the charge redistribution in the system as well as the
significance of allowing more distant atoms to interact with the vacancy electrons, is emphasized.

I. INTRODUCTION

The understanding of the electronic properties
of point defects in graphite is of substantial prac-
tical and theoretical interest. From a practical
point of view, the investigation of the elementary
defects (vacancy, Frenkel pair) in graphite seems
to furnish an essential initial step towards the un-
derstanding of the macroscopic phenomena assoc-
iated with radiation damage in nuclear graphite
(e.g., mechanical deformation of the lattice,!™®
release of stored energy,* changes in conductiv-
ity,> ® etc.). Theoretically, the study of deep de-
fect levels in covalent solids may be conveniently
performed by reference to graphite. The theo-
retical framework underlying the calculations for
defects and for the regular lattice, can be checked
by comparison with the large amount of experi-
mental information (noted in the introduction to
paper I) pertaining to both situations. Of partic-
ular value would be to utilize the data on the ex-
tended crystal properties characterizing the regu-
lar lattice and on localized properties associated
with deep defect, so as to correlate the eigenvalue

spectrum and the charge densities of both systems.

Thus, in the present paper we extend our study on
the regular lattice (previous paper) to the investi-
gation of point defects in graphite. Using a charge
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self-consistent LCAO (linear combination of atom-
ic orbitals) scheme and a large basic unit cell
(<50 atoms) with the defect placed at its center,
we investigate the one-electron spectrum associa-
ted with the defect, density of states, charge dis-
tribution, and the role of lattice relaxations
around the defect, in a way similar to that pre-
viously employed to treat the regular lattice using
the primitive unit cell (two atoms) representation.

II. NATURE OF THE PROBLEM

In view of the experimentally known character-
istics of deep defect levels in covalent solids, the
following considerations should be borne in mind
before any theoretical approach is undertaken.

(i) Experimental studies on vacancies in covalent
solids have shown that the wave function associa-
ted with the defect state is not amenable to des-
cription by either of the two limiting outlooks;
namely, the complete localization of the wave
function in the vicinity of the defect site (as used
in the déscription of F centers in ionic crystals’)
or the extended diffused model (used in the des-
cription of shallow impurity states in semicon-
ducting covalent solids®). In fact, EPR (electron
paramagnetic resonance) and NQR (nuclear quad-
rupole resonance) data on point defects in covalent
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systems, suggest® ' that roughly 50 to 70% of the
defects wave function is localized in a “sphere”
surrounding the defect and its nearest neighbors,
the remaining tail of the wave function extending
onto more distant atoms.

This has a twofold implication: interms of the
theories using the band structure of the regular
lattice for construction of the perturbed states
(either by the Slater—Koster'? '® or by direct ex-'
pansion methods'#this suggests that a substantial
part of the Brillouin zone (BZ) and more than a
single electronic band should be taken into account
for constructing the proper defect states. In terms
of theories using a direct-space representation in
treating the defect and its nearest neighbors (as
the “defect molecule”® '), this implies that more
distant atoms could be important in determining
the nature of the defect states. Methods belonging
to the first class!?~!* become very difficult to im-
plement in practice'® when a large number of bands
and points in the BZ are to be included, and have
been shown!” to reveal remarkable sensitivity to
the choice of the grid points in the reciprocal
space when a limited number of high-symmetry
points is used, to the number of bands that are al-
lowed to interact and to the number of neighboring
atoms that are included in the defect’s interaction
range. Extensions to the original “defect mole-
cule” approach, on the other hand, based on treat-
ing larger clusters of atoms in a truncated cry-
stal approach,’® '® do not provide a satisfactory
correlative scheme between the defect levels and
the edges of the crystal bands and reveal an arti-
ficial charge inhomogeneity inside the cluster
owing to the presence of a large number of “dang-
ling” bonds on the surface. Also, effective-mass
approaches,® become ineffectual when the short-
range part of the potential contributes significantly
to the total interaction.

(ii) The formation of a vacancy in covalent solids
and the accompanying bond breaking have been
shown''+'® to induce a substantial charge redistri-
bution around the defect site. Thus, the mean
field experienced by the defect electrons can no
longer be approximated by the charge density ob-
tained from the perfect crystal eigenvectors and
one has to introduce self-consistency in order to
modify the unperturbed interaction potential and
the eigenvectors associated with the bulk of the
crystal. In the direct-expansion methods based on
pseudopotential formalism,?® the charge-redistri-
bution effects are partially accounted for by
phenomenologically introducing various forms of
screening in the local defect pseudopotential,

-while in the defect molecule approaches one esti-
mates the effects of charge redistribution by using
as basis orbitals different trial functions corre-
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sponding to various assumed hybridizations, 2! 22
or by adding a semiclassical polarization term
obtained from the static dielectric constant, to
the calculated defect molecule energy.?'2* Trun-
cated-crystal models are not amenable to a di-
rect self-consistent treatment since, owing to the
surface effects involved, the iteration cycle would
converge to the limit representing the bare clus-
ter and not the defect in the infinite crystal.
Simplified molecular models based on the lineari-
zation of the LCAO variational equations for the
defect were able to achieve charge self-consis-
tency;* however, its sensitivity to the rather
drastic approximations involved is not yet clear.
It should be mentioned that the introduction of
charge self-consistency in the calculation nec-
essitates the consideration of all the occupied
levels in the solid and one cannot restrict the
treatment to the defect levels alone or to assume
a o-7 separation, etc., since the charge density
needed for the readjustment of the crystal poten-
tial is determined by all states below the Fermi
level. This observation excludes the use of sim-
plified models using only a limited subset of the
crystals eigenfunctions (e.g., m-orbital methods)
for treating self-consistently defect problems.

(iii) Lattice relaxations around the vacant site
were shown to induce large changes in the elec-
tronic properties of deep defect levels.?®' 2" The
forces exerted by the vacancy on the rest of the
crystal lead to substantial relaxations of high-
symmetry type, and in cases of a degenerate
ground state also to Jahn-Teller distortions with
typical relaxation energies of the order of 0.5-2
eV.’® 26. 28 Treatment of such effects by pertur-
bative methods using the perfect-crystal eigen-
vector as zero-order functions'®~'* is difficult
owing to the enhancement of the perturbative
potential associated with relaxed defects. Simple
defect-molecule models'® ' are obviously unable
to reproduce a reasonable lattice-response func-
tion although in later elaborations?® 3° the influ~
ence of the crystal elastic behavior was intro-
duced by attaching equilibrium force constants to
the defect molecule. Besides the fact that such
treatments include an additional assumption on
the adequacy of the central-force model, it is not
clear whether the inclusion of an equilibvium re-
sponse taken over from the regular crystal data
both in valence-force models3'~3% and in extended
defect-molecule models?®” % represents adequa-
tely the restoring forces in the presence of a vac-
ancy.

In the present paper we present calculations on
the point vacancy in graphite based on the small-
periodic-cluster (SPC) model®**~*" in which one
can treat the problems of localization, charge
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self-consistency, and lattice relaxation in a
straightforward manner. The method is based on
the representation of the defect eigenvalue spec-
trum by the one-electron energies of a periodic
array of atoms with the defect placed in its center.
A self-consistent LCAO scheme is used and the
interaction between all crystal bands and an ef-
fectively large number of points in reciprocal
spaceis considered throughthe use of therecently de-
veloped mean-Kk-points theorems in the BZ .38:3°
Problems regarding the undesired defect—defect in-
teractioninthe present defect-superlattice model as
well asthe role of many-electron effects, are discus-
"sed. The use of a calculation scheme similar to
that employed for treating the electronic proper-
ties of theregular lattice of graphite (paper I, here-
after referred to as I)enables us both to correlate
the electronic properties of the vacancy with that
of the perfect lattice and to examine the adequacy
of the theoretical description used by comparing
the calculated results with the large amount of
data existing on regular and vacancy-containing
graphite.

1. METHOD OF CALCULATION

In the self-consistent band calculation on the per-
fect graphite crystal (I), we have considered a
basic primitive cell of area a® (where « is the lat-
tice constant) containing 4 =2 atoms. o atomic or-
bitals were placed on each site and the self-con-
sistent solution of the ok Xok variational equations
defined the expansion coefficients C%;(K) of the
crystal functions j in terms of the basis Bloch or-
bitals, where p=1,...,0, @=1,...,hk, and
j=1,...,0kh. The wave vector K wasrestricted to
the primitive BZ of area a™2 and at each iteration
stage, the charge density was recomputed on a
basis of the expansion coefficients Cfl‘j(f(x) of the
occupied bands, calculated at a selected grid {K »}
in this primitive Brillouin zone (PBZ). If one
were to repeat the calculation by using, instead
of a primitive basic cell, a larger cell containing
b and g primitive cells along the two crystal di-
rections, respectively (a cell of area pqa®, con-
taihing pgh atoms) one would obtain the same band
structure where the new pgho bands will be defined
now in a small Brillouin zone (SBZ) characterized
by wave vectors k;. Any point k; in the SBZ would
correspond to a discrete set of pg points K in the
PZB (by folding in the PBZ). The distribution of
the points K;, I=1,..., pq corresponding to a
given ﬁi point in the SBZ, depends on the p and ¢
alone and can be easily obtained for every space
group. Table I demonstrates the distribution of
the K, points associated with k; =0 (T point) for
the two-dimensional graphite structure where

TABLE I. Number of points in the primitive Brillouin
zone which correspond to the £; =T point in the small
Brillouin zone,- built up from clusters containing p xp
primitive unit cells. I'— BZ center, P— BZ corner,‘
@—center of the BZ edge (see Fig. 1, paper 1), T—I'Q
line, S— I'P line, I denotes an integer.

Number of points Type
°© 9 r
36(p/2) Q
26(/2,1) P
3lp-1)-6(p/2,D] - T
2[p2/3_6(p/3,1)] S

o«cp general point

p =q (and hence the unit cell has the area p?q?).
It is observed that the solution of the variational
equations at the hexagonal zone center, based on
a unit cell of lengths pa, always yields the I
point, a maximal degeneracy of three and two for
the high-symmetry points @ and P in the primi-
tive'BZ representation, respectively (see Fig. 1,
paper I for notations) while the number of general
points yielded increases as p2. Similar correla-
tions tables may be easily obtained for any other
point in the small BZ. One can now calculate the
charge density required in the self-consistency
procedure, by replacing the sum over the PBZ:

re2

p(F)=22 20 2. D0 CSHE) Ol (R, )
K p.voa, B g
X & 5K, F)e, (K,F), (1)

by the sum of Ei over the SBZ (each of them cor-

responding to p* vectors in the PBZ and carrying

a weight proportional to the relative volume it oc-
cupies). The lowest approximation to this will be

to use only the T point in the SBZ.

This represents only a minor complication over
the common quantum-chemical approach toward
the self-consistent LCAO solutions for polyatomic
molecules and provides directly information on
electronic properties of periodic solids. This
problem has been previously treated by one of us
for graphite,®' % boron nitride,** and hydrogen
fluoride.?"

Higher approximations to the fully self-consis-
tent solutions would be obtained by including the
eigenvalues corresponding to several k; points in
the SBZ. The best choice of a limited set of k;
points would be obtained by applying the mean-
value theorem in the BZ of Chadi and Cohen3?
and Cunningham®® to the small BZ. The set of
points generated by this algorithm comprises the
best limited selection of points needed in calcu-
lating averages of periodic functions over a given
BZ. Since a given Ei point in the small BZ al-
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ready yields a distribution of p?-K, points with
weights proportional to the volume they occupy in
the BZ, selection of several such k; points ac-
cording to the mean value theorem should furnish
-a good verisimilitude to the totality of points in
the BZ. The accuracy of the average of an
expectation value calculated from the mean value
points is determined by the smoothness of the bands.
Owingto the substantial lowering of the dispersionof
the original bands in the small BZ representation, this
accuracy improves. One canthus set a complete self-
consistent calculationon a perfect solid by defining a
large unit cell and solving for Bloch type states. in
that system using a small number of well-chosen
eigenvectors to obtain the ground-state charge
density at each iteration. Since the number of
general K points projected into a single & point in
the SBZ increases rapidly with unit cell size (e.g.,
Table I), one might also hope to obtain accurate
estimates of properties determined by averaging
over the BZ, such as the total energy per atom,
elastic constants, etc., by using a few k point
representations.

This small-periodic-cluster (SPC) scheme is
obviously inefficient when one is interested in
pevfect periodic systems, (since the large p?ho
x p®ho secular equations can be evidently block
diagonalized to p? equations of order ko Xho using
the translational invariance in the primitive unit-
cell basis.) We are using it in effect only for de-
fect problems, where this type of translational in-
variance does not exist. This is simply done by
repeating the solution of the eigenvalue problem
in the SPC representation after replacing a host
atom in the lavge unil cell by a vacancy. The
self-consistent solution of the Bloch problem in a
vacancy containing large unit cell (°r - 1 atoms),
corresponds to a periodic-defect-superlattice
solution. One then approaches the limit of non-
interacting point defects simply by increasing p.
Although there are some interesting aspects in
the interacting defect superlattice limit itself,37:4%4!
we will be interested in this paper solely in the
point defect problem. The superlattice represen-
tation does not place a severe restriction in study-
ing deep defect states in covalent systems since
the localization radius is usually well below
2~3 lattice constants. In any case, the re-
sidual defect—defect interaction present in our
model will be directly evaluated by using the dis-
persion of the defect band and the calculated range
of the perturbative defect potential as monitors to
such residual interactions. .

The defect—defect interaction consisting of a di-
rect electrostatic effect and the force-multipoles
displacement field effect*? has been shown to de-
cay with the defect—defect distance R as R~® and

R™",%2"3 pregpectively. Furthermore, in hexagonal
systems like graphite and boron nitride exhibiting
a large anisotropy, the vacan'cy—ﬁacancy inter-
action in the basal'plane is slightly attractive and
much reduced relative to the interaction of de-
fects parallel to the ¢ axis.*® Thus, the direct
vacancy-vacancy interaction in the basal plane of
graphite is expected to be rather small and to de-
cay very fast with increasing separation and hence
the defect superlattice representation should not
place any severe limitation when applied to such
systems.

The main advantages of the proposed SPC model
in studying defect problems are:

(i) Both resonating and localized states are di-
rectly obtained from a single variational solution.
This should be contrasted with some ¢{-matrix
formulations and simple resolvent schemes!?' 13
that concentrate only on one type of solution.

(ii) The edges of the perfect crystal bands (con-
duction edge, valence edge, separation between
unperturbed valence bands, etc.) are completely
defined in the problem. The separation between
defect levels and the crystal bands can thus be di-
rectly compared with experiment without the need
of invoking the correct band-edge location from a
separate calculation, as is often the case in clus-
ter models.’® '

(iii) The degree of localization of the defect
states is not preassumed (as is the case in apply-
ing effective~-mass theories to nonshallow defects)
but rather comes out naturally from the calculated
eigenvectors.

(iv) The defect perturbative potential is not
transferred from unperturbed crystal data (as
done in the pseudopotential treatment of point de-
fects??) but is calculated self-consistently from
the charge density obtained in a variational LCAO
solution in which the basis orbitals situated on the
vacant site are removed. The separate self-con-
sistent solutions on the perfect and defected sys-
tem enable one to calculate the perturbative de-
fect potential simply by subtracting the two self-
consistent potentials (see below).

(v) Owing to the periodic boundary conditions
placed on the system containing large unit cells,
no unrealistic charge redistribution or surface
states are present, as is the case in cluster mo-.
dels.'® 0

(vi) An effectively large number of unperturbed
crystal states and atomic neighbors are allowed
to interact in forming the defect eigenstates.

This should be contrasted with the defect molecule
models treating only nearest-neighbor interactions
or with simple few-bands Slater-Koster models.'?

The main disadvantages of the present SPC
model are:
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(a) The large number of interacting states in the
model result in large dimensions (p*ho X p*ho) of
the secular equations (each element being a lat-
tice sum in itself) to be solved. This forced us to
restore to rather simplified LCAO algorithms
(the modified iterative extended Hiickel) for cal-
culating the matrix elements. This is certainly
an undesirable feature of the present treatment.
However, as demonstrated in the previous paper
(I), a judicious choice of the LCAO scheme, using
only a few parameters taken over from essenti-
ally atomic (and not solid-state) data, is capable
of revealing excellent agreement between experimen-
tal and calculated optical interbandtransition ener-
gies, photoelectronspectroscopy (ESCA) data,
secondary-electron-emission data, Fermi-surface
characteristics, bond lengths, and binding energy
in the perfect system.

(b) Owing to the defect superlattice representa-
tion in the SPC model, large unit cells should be
employed in order to reach the limit of weakly in-
teracting defects. This restricts presently the
use of the method to systems exhibiting a local-
ization range smaller than two to three lattice
constants. Most color-center problems in alkali-
halides and deep defects in semiconducting and
insulating covalent systems fall within the range
of applicability of this method.

IV. RESULTS
A. Unrelaxed vacancy

The energy eigenvalue spectrum associated with
a point vacancy is obtained by solving self-con-
sistently the coupled LCAO equations [Egs. (1)-(4)
in paper I] for a crystal whose basic unit cell is
composed of p? primitive cells, with a vacancy at
its center. The basic cell contains 2p* -1 atoms
where p runs over the values 2—5 (so that there
are clusters of 7, 17, 31, and 49 atoms, denoted
C,V, C,,V, C,V and C,V, respectively) and the
separation betweentwo nearest defects in the super-
lattice is pa, where a is the primitive lattice con-
stant. On each carbon atom a minimal valence
basis of 2s, 2p,, 2p,, and 2p, Slater orbitals are
used with standard Slater exponents. Self-con-
sistency is obtained by recalculating the charge
density matrix and the net atomic charges at each
iteration step, on the basis of the eigenvectors
belonging to all bands below the Fermi energy at
a discrete set of 62 or 3p? K-points. These sets
of points in the Brillouin zone are generated by
applying the mean value theorem of Cunningham®®
to the small BZ using his 6k and 3k sets, re-
spectively. The self-consistency criterion is set
at 1x1073 ¢ for the charge-density elements
and 107* eV for the one-electron energies. The

matrix elements in the atomic basis set [ Eq. (4)
paper I] are evaluated within the modified extended
Hiickel approximation employing the same param-
eters that have been used in paper Ito discuss the
regular lattice. The limit of noninteracting de-
fects is sought by increasing the value of p (and
hence the defect—defect distance) and using the
degree of dispersion of the defect band and the
perturbations in the electrostatic potential asso-
ciated with it (via the solution of the appropriate
Poisson equation) as monitors to the residual de-
fect—defect interaction.

The spread of the energy bands obtained by
sampling a single k point (i.e., k=T) in the small
BZ for the unrelaxed lattice is depicted in Fig.
1(a). As the size of the large unit cell increases,
more states are sampled by the .I" point in the
small BZ (see Table I) and the band pattern (widths
of bands, o-7 overlap, etc.) converges to a con-
stant limit. Since the vacancy containing lattice
still possesses the basal plane o, reflection sym-
metry, its eigenvectors are partitioned into pure
7 type and o type levels in exactly the same man-
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FIG. 1. General pattern of the eigenvalue spectra of
an unrelaxed vacancy in graphite as obtained from the
calculations including the (a) I'—point in the small BZ
for all clusters. The dotted line indicates the position
of the defect level. (b) Six special points for C,;V, Cy;V,
and C3V and the three special points for the C,qV
cluster. The dark area inthe m —m* region denotes the
position of the defect levels, while the dashed areas
label the ¢ and ¢ * bands.



ner as in the regular lattice. A doubly degenerate
o level of e’ symmetry in the local D,; point group
is observed to peel off the valence band and ap-
pears in the pure 7 region located in the o-o* band
gap. This level is spatially localized on the atoms
surrounding the vacant site and constitutes a loc-
alized defect gap state. Assignment of (2p?-1)
and 3(2p% - 1) electrons to the 7 and ¢ levels, re-
spectively?! leaves this defect o level singly oc-
cupied in the ground state of the neutral vacancy
system. The defect structure as a whole still
possesses one 7 electron and three o eleectrons
per carbon atom as is the case in the unperturbed
lattice. Thus, although graphite is a semimetal
with zero band gap (owing to the degeneracy of the
-7 valence and conduction bands at the hexagonal
BZ corner) it exhibits true localized ¢ gap states
upon vacancy formation since it is actually a high
gap insulator in its ¢ manifold. I is seen from
Fig. 1(a) that sampling of the I" point alone in the
small BZ is insufficient to account for the limiting
shape of the bands when the relatively small (C,V,
C,,V)clusters are considered. Furthermore, only a
small number of translational representations (four
andnine, respectively) are allowed to interact in
forming the defect level. Sampling now the six special
k points®® forthe C,V, C,,V, and C,,V clusters (i.e.
24, 54, and 96K points inthe primitive BZ) and the
three special k points for the C,V cluster (i.e., 75K
points), one obtains [Fig. 1(b)]a stabilized band
pattern and a broadening of the defect level into a -
defectband. The variation inthe characteristicofthe
o defect band reflects now only the defect—defect in-
teractionpresent in the superlattice representation.
We now seek the limit of noninteracting defects by ex-
amining the convergence of the various features of
the defect band as a function of the cluster’s size.
It should be emphasized that a similar conver-

FIG. 2. Convergence of
the energetic separation
of the center of the defect
band from the valence ¢
band (A ;.,), the percent
localization of the defect
band and its width (W) as
a function of cluster' size.
Six special I3 points are
used for C;V, Cy;V, and
C3;V and three special

" & points are used for the
CygV cluster.
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FIG. 3. Partial density of states of the lattice with an
unrelaxed vacancy as obtained by sampling the six %
points in the CyyV cluster. Histogram box width: 0.5
eV. (a)a’ levels in the occupied o bands. (b) ¢ bands.
(¢) m bands. The full line in the o-¢¥ gap indicates the
position of the defect level.

gence check performed on the properties of the
defect band when only a single k point is sampled
in a small cluster,’® does not necessarily reflect
the suppression of the defect—defect interaction
but rather the combined effect of allowing more

K representations to interact and the increase in
the defect—defect separation. Figure 2 shows, as
a function of cluster size the convergence of the
energetic position of the center of the defect band
with respect to the valence-band edge, the width
of the defect band, and its degree of spatial local-
ization.  The last quantity is defined as the per-
cent of electronic charge in the defect band alone,
residing on the three nearest-neighbor atoms
[where the charge definition is that discussed in
paper I, Eq. (A8)]. It is observed that the defect—
defect interaction is effectively suppressed in the
C;,V and C,,V clusters as can be judged from the
vanishing dispersion of the defect band, the sta-
bilization of its energetic position and the leveling
off its degree of localization.

Figure 3 shows the partial density of states of
the solid containing an unrelaxed vacancy, as ob-
tained by sampling the six special k points in the
C,V cluster. The general pattern of the density
of states is similar to that obtained for the regu-
lar lattice (Fig. 5, paper I) except for the occur-
rence of the defect level in the o-0* gap. In addi-
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tion to this highly localized o defect level, the
valence o band contains an entire distribution of
resonant states of ¢’ symmetry with degrees of
localization varying around 20-30%. The partial
density of states of these levels is depicted in
Fig. 3(a) and is seen to peak near the band edges.
In the absence of a lattice distortion that would
remove the degeneracy of the 7 bands at the BZ
corner, no real localization could be found in the
7 system and their dynamic response should be
describable by scattering of the metallic 7 Bloch
waves by the defect.** :

The variation in the density of states of the de-
localized 7 system due to defects, has been con-
sidered by Boardman et al.*® using a Green’s-
function formalism in the Wannier representation
and the one-site approximation to the perturbing
matrix elements with the neglect of interband
coupling terms. This has suggested a very small
change (of ~1%) in the density of 7 states near the
Fermi level, for low defect concentration. Al-
though the 7 system undergoes minor modifica-
tions upon introducing a small number of defects,
it manifests,” however, an important indirect ef-
fect on the o localized defect levels through the
changes induced in the total 7+0 electronic charge
that determines the coupling matrix elements.
This effect will be discussed below.

It is interesting to compare the electronic struc-
ture of the neutral vacancy obtained here with that
yielded by the defect molecule approach of Coul-
son ef al.?' In the latter model the vacancy struc-
ture is represented by three o-type sp? dangling
orbitals centered on the three atoms surrounding
the vacant site. Linear combinations of these
three orbitals are built up according to the a’ and
e’ irreducible representation of the D,, local point
group. In the neutral vacancy, three electrons are
available for these levels while the rest of the six
o electrons and the three 7 electrons are consid-
ered to populate the three sp® orbitals pointing
away from the vacancy and the three perpendicular
7 orbitals, respectively, and are not considered
explicitly. The three o electrons give rise to the
a’®e’ configuration (associated with the 2E’ many-
electron state) and to the a’e’? configuration (as-
‘sociated with the many-electron terms 24;] +%4/,
+2E’). The degree of localization in each of the
one-electron molecular orbitals is -assumed to
be 100% (neglecting all except the first-nearest
neighbors) and lattice relaxations are ignored.

' The coupling with the electronic states of the bulk
crystal is similarly neglected. The two many-
electron terms 2E’ arising from the a’?e’ and
a’e’? electronic configurations are then allowed
to interact through a semiempirical configuration-
interaction treatmert resulting in a very small

admixture between them due to the large separa-
tion (6~8 eV) between the zero-order e’ and a’
levels. The ground state of the neutral vacancy
is then unequivocally assigned to the 2E’ state

arising from the a’?e’ configuration.

In the treatment of the neutral vacancy presented
in this paper, many-electron effects are explicitly
neglected. The vacancy orbitals are allowed to
couple with the crystal eigenstates and an inter-
action range of 2%~ 1 to 5% - 1 neighboring primi-
tive cells is considered in a self-consistent treat-
ment using 24-96 representative K points in the
BZ. This results in a manifold of vesonant a'
levels lying inside the valence band (instead of a
single, completely localized a’ level carrying two
vacancy electrons in the defect molecule model)
and in a singly occupied e’ level, being pushed
out of the band. Using the notation of the defect
molecule model, the resulting configuration might
be denoted as {a{?; i=1,..., Nte’. Owing to mix-
ing with the crystal-band states of similar sym-
metry, the {a’} states are substantially delocal-
ized in the solid and reveal an energy spread
throughout the ¢ valence band [Fig. 3(a)l. Owing
to the neglect of all but the three-nearest-neighbor
atoms in the defect molecule model, one is forced
to assume a completely localized a’ level carrying
the vacancy electrons. Several conclusions can be

"drawn from this comparison:

(i) Many-electron effects could have been treated
on the basis of the ¢’ configuration for the ground
state rather than the a’?e’ configuration, resulting
in a much simpler treatment. This stems from

the fact that the a’ orbitals seem to form a part of

the closed-shell valence band.

(ii) Many-electron correlation effects resulting
from the coupling of the ground state with higher
terms, that have been shown to be rather small
in the original defect-molecule work (a few tenth
of an eV) would be even reduced when one would
use the appropriately delocalized a’ crystal or-

‘bitals instead of the highly lo¢alized orbital used inthe

defect molecule work. (This resultsfrom the fact
that the integral over the distribution of the delocal-
ized a’levels of the square of the perturbative two-
electron matrix elements is smaller than the
square of the corresponding matrix element evalu-
ated for a peaked distribution.) Thus, unlike the
situation present in defects in other covalent sys-
tems (vacancy in diamond'®’ '® and silicon??), .
many-electron effects are probably very small for
the neutral vacancy state in graphite and the one-
electron LCAO description can be safely adopted.
A similar decrease of many-electron correlation
effects owing to increase of the delocalization
space available for the defects electrons has been
suggested by Watkins and Messmer'*® onthe basis
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of a spin unrestricted Xa cluster calculation for a
vacancy in diamond. The situation met in graphite
is, however, much simpler, as discussed here,
owing to the single occupancy of the defect orbital
and the overlap of the a’ levels with the occupied
bands.

(iii) One-electron properties, as revealed by
the defect molecule model, can be roughly corre-
lated with those yielded by the present model, by
considering average quantities. Thus, in Coulson’s
model the a’ level lies some 6-8 eV below the e’
level while the SPC results show that the center
of the highest peak in the {a’} density of states lies
some 5 eV below the ¢’ level. The lowest optical
transition in the defect molecule model occurs be-
tween the 2E’ and the 24/, states at 5-17.7 eV (de-
pending on the values of the empirical integrals in-
volved). The transitionfrom the ground state to the
center of gravity of the excited states arising from
the a’e’? configurations occurs at about 4-6 eV,
compared with the corresponding one-electron
transition energy in our model of 5 eV. It should,
however, be noted that while the lowest transitions
in the defect molecule model occur between spa-
tially localized configurations, the SP€ model re-
veals in addition a transition of lower energy
(4.0 in the unrelaxed lattice) from the top of the
valence band [Fig. 3(b)] to the localized e’ band.

We briefly summarize now the changes intro-
duced in the calculated electronic structure of the
defect system due to maintenance of self-con-
sistency in our calculations.® Figure 4 shows the
partial mand o charges(Q,and @) and the netato-
mic charge (¢net) on one of the nearest-neighbor
atoms to the defect site as a function of the self-
consistent iteration cycle number. It is seen that
the substantial charge accumulated on the near-
est-neighbor atom in the uniterated results (gpe;
=0.85¢) is strongly reduced (up to 0.16¢) upon
reaching the convergence limit., The main redis-
tribution effects occur in the 7 system while the
variation in o charge is smaller. Thus, as a re-
sult of the vacancy formation the 7 electrons tend
to avoid the vacant site and accumulate on the
nearest-neighbor atoms (loosing thereby some 7
delocalization energy), unlike the situation in
shallow impurities in semiconductors and in F
centers in ionic solids.” ® The accumulation of
excess 7 charge on the carbon-carbon bonds sur-
rounding the defect (as manifested also by an in-
crease of 23% in the 7 bond order of these bonds),
is liable to increase the stability of these bonds
relative to the normal c-c bonds in graphite and
thereby induce symmetric lattice distortions.
This possibility will be discussed in Sec. IV B to-
gether with the Jahn-Teller distortions. The atoms
that are next-nearest neighbors to the defect re-
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FIG. 4. Variation in the 7 charge @,), ocharge @,),
and net charge (g,,;) on an atom that is a nearest
neighbor to the vacancy, during the self-consistent
iteration cycle.

" veal only minor (10~2¢) charge perturbations.

(It is noted that in the present study we have
chosen not to utilize the symmetry of the eigen-
vectors to reduce the size of the secular equa-
tions,*” partially because of the need to consider
the full-charge density matrix in the self-consis-
tent treatment and because lattice distortions of
arbitrary symmetry are to be discussed.*®)

Through the self-consistent iteration history,* 5%
the defect level undergoes a destabilization from
-10.30 to —8.6 eV, thus approaching the low den-

sity of states region near the Fermi level, char-

acterized by a fairly steep slope (Fig. 3). The
occurrence of a localized vacancy acceptor state
at the vicinity of the Fermi level, as obtained
here, is in accord with the common concepts on
electron trapping mechanisms in irradiated gra-
phite.® Thus, in addition to the small modifica-
tion?® in the mobile 7 electron density near the
Fermi level due to defect formation, the occur-
rence of localized states at this energy is con-
sistent with the behavior of the Hall coefficient,5*55
the electron-spin resonance,® 57 and the diamag-
netic susceptibility.®® ®® The initial sharp in-
crease of the Hall coefficient for low irradiation
dose has been attributed to removal of electrons
by trapping® * and the decrease in the thermo-
electric power with increasing exposure was ar-
gued® to arise from an increase in the hole con-

- centration due to localization of electrons in ac-

ceptor states. The increase of diamagnetism
with bombardment® and the reduction in the EPR
g factor®® %7 have been similarly discussed in
terms of trapping mechanisms. ;

The decrease in the energy of the defect level
upon iterating towards self-consistency, is ac-
companied by a stabilization of the total cluster
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energy by 1.8 eV and by an increase in the degree
of localization of the defect level, from 78 to 86%.
The stabilization of the total energy arises from
the charge rearrangement in the nonlocalized band
states.®® The increase in the localization of the
defect wave function makes it easier to approach
the limit of uninteracting defects in our superlat-
tice model when the system is treated self-con-
sistently. Self-consistency effects are thus of
considerable importance even in the homonuclear
systems and cannot be neglected.'®* ' Similar
conclusions on the importance of self-consistency
and screening effects in defect calculations have
been previously emphasized by several auth-
ors.25,61,62 )

The energy required to separate a carbon atom
from the cluster and to bring it to infinity in its
ground atomic corifiguration (vacancy self-energy,
E,) was calculated from

Ep=Ep(N) = [E (N=1)+Ep(1) +Em], (2)

where E ot (M) denotes the total energy of all the
occupied states of a cluster containing M atoms
and E,, denotes the promotion energy from the
valence sp? state to the ground atomic 3P config-
_uration. E,(N) and E (N - 1) were calculated by
sampling the six special points in the C;, - C;,V
and C,, — C,, V clusters and the promotion energy
was taken from the theoretical results of Goldfarb
and Jaffe.®® At this level of approximation,” E ,(N)
is minimized with respect to the perfect-crystal
unit-cell parameter (yielding @m,=2.482 A com-
pared with the experimental value a =2.464,) but
Ei (N = 1) is not minimized with respect to relax-
ations of the lattice atoms around the vacancy site.
In this static approximation we obtained E,=12.56
and 12.61 eV for C;,V and C,,V, respectively. The
energy of vacancy formation E,in the unrelaxed latt-
ice is given by subtracting from this the sublim-
ation energy E, gained by the system when
the ejected atom is adsorbed on the crystal sur-
face. Using the experimental value® E,=7.40 eV
for the sublimation energy, one obtains E,;=5.2
eV. Comparison with experiment will be dis~
cussedinSec. IV Bwhererelaxation corrections will
be introduced. In our previous calculation on vac-
ancy formation® avalue of E,; =3.0 eV was obtained
where only the k=0 point was sampled and the
C,,Vand C,,V clusters were used in asimple itera-
tive-extended-Hiickel calculation, using slightly
different atomic parameter. The loss of 7 energy
alone upon vacancy formation is calculated here
to be 2.1 eV. This is smaller than the 7 energy
per atom in the regular lattice (part I) signifying
that the rearrangement in the electronic structure
accompanying vacancy formation serves to recover
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FIG. 5. Charge density of the defect level along the
line indicated in the inset. The numbers at the lower
part of the figure correspond to the numbering of atoms
in the inset, where site No. 6 indicates the vacancy site.
Only sites 5 and 6 along the indicated line are considered
in a simple ‘“defect-molecule” model.

a part of the loss in the 7 delocalization energy.

In addition to the energetic characteristics as-
sociated with the defect (defect level, density of
states, etc.) of considerable interest are also the
spatial behavior of the charge density and the elec-
trostatic potential introduced by the vacancy.
Figure 5 shows the charge density of the defect
level along the line shown in the insert to that fig-,
ure. Most of the density is shown to be localized
on the nearest-neighbor atom (denoted in Fig. 5 as
site 5) and on the aromatic hexagonal ring follow-
ing this atom (the 5-4 region in Fig. 5), however,
non-negligible charge resides also on more dis-
tant atoms. The charge density of the defect band
has about 10% of 2s character, the rest being of
2p, and 2p, character. This admixture is mani-
fested by the shift of the characteristic node of the
2p orbitals away from the atomic sites. Thus not
only the uppermost o valence band (0, in the nota-

* tion of paper I) is contributing to the defect level

(the latter being a pure 2p band, see Fig. 6 in part
I) but also the lower o, and o, bands. This demon-
strates the inherent difficulties associated with
theoretical models on the vacancy problem in co-
valent solids—a nearest-neighbor defect molecule
model would significantly reduce the delocalization
space available for the vacancy electrons (only
sites 5 and 6 in Fig. 5 are considered by such mo-
dels) while a simple truncated-crystal model in-
volving a similar number of atoms as the SPC
model is liable to distort the wings of the defects
wave function due to the penetration of surface ef-
fects associated with the dangling bonds. Simple
one-band Slater-Koster type models, on the other

. hand, are incapable of revealing the extensive

band mixing exhibited by the present calculation.

- The need of more than a single energy band for the

adequate description of the vacancy has been em-
phasized by Callaway.'® The fact that the vacancy
level emerges from the valence band and its wave
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FIG. 6. Electrostatic potential difference (in arbi-
trary units) between perfect and vacancy-containing
clusters, computed from the total valence density along
the line shown in the insert to Fig. 5. Site 6 denotes the
vacancy, upper numbering refers to Fig. 5.

function receives contributions mainly from the
highest occupied o valence bands, justifies the
use of the extended- Hiickel approximaition for des-
cribing this state. In a previous paper (part I) it
has been shown that the EXH approximation used
here yields excellent agreement both with experi-
mental data and with first-principles band calcu-
lations on the valence bands whereas the high con-
duction bands lying some 10 eV above the Fermi
level are not properly described by this approxi-
mation.

Figure 6 shows the difference in the electronic
electrostatic potentials between the perfect clus-
ter and the one with a vacancy. The corresponding
potentials are obtained from the solution of the
Poisson equation by .the method discussed in paper
I[Eqgs. (12) and (13)] where the charge density in-
volved is calculated from all the occupied levels
in the ground state. This potential is the self-con-
sistent LCAO analog of the screened defect
pseudopotential used in pseudopotential theory'*s 2°
and of the defect potential used in the linear Born
approximation,®®” A rather rapid screening-out of
the Coulomb potential is seen and this is accom-
panied by diffraction effects in the tails. The gen-
eral behavior of the potential is similar to that
obtained for a point charge in a Fermi gas®® and
to that anticipated from the Slater-Koster impurity
model* but is markedly different from the smooth-
ly decaying screened Coulomb potential obtained
inthe linear Hartree theory.®® It should be stressed,
hoiivever, that contrary to the defect potential
derived from the simple Slater-Koster model, the
self-consistent SPC defect potential reflects the
contributions of all perturbed valence bands and
not only that of a single band. The modification in
the electrostatic potential due to the nonlocalized
band states is important when one considers quan-
tities that depend on the change in total crystal en-
ergy, such as energy of vacancy formation and
migration.®!

The difference potential shown in Fig. 6 and the
defect charge density shown in Fig. 5 demonstrate
that the perturbative effects associated with the
vacancy are already very small after two or three
primitive unit cells around the defect site. This
implies that a periodic cluster representation
based on 4 x4 to 5X5 primitive cells (clusters C;,V
and C,V, respectively) should furnish a reasonable
model for treating this defect. The very small
dispersion of the defect band obtained for clusters
of this size, further support this conclusion.

Finally, we show in Fig. 7 the total valence elec-
trostatic potential in the plane of the vacancy con-
taining graphite lattice. It is seen that the region
between the nearest neighbors and the next-near-
est neighbors to the defect site is characterized
by strong binding effects while a lower potential
is revealed near the next-nearest neighbors them-
selves. A similar behavior was exhibited by the
difference potential., As discussed above, charge
redistribution effects tend to accumulate excess 7
charge on the bonds surrounding the defect. This
would induce shortening of these bonds through
lattice relaxation effects. Such effects are con-
sidered in Sec. IV B where relaxation effects are
introduced.

B. Relaxed vacancy

The accumulation of excess charge on the bonds
surrounding the vacancy site and the resulting
build-up in the electrostatic potential, suggests
that conformational changes might accompany the
vacancy formation, Although the extended-Hiickel
total energy function [Eq. (10), paper 1] constitutes
only a rough approximation to the exact quantity,'®:%®

FIG. 7. Contours of the electrostatic potential of
vacancy containing two-dimensional graphite in the
layer plane. The numbering on the contours indicate
relative heights.
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FIG. 8. Illustration of the three normal modes in-

volved in local lattice relaxation around the vacancy in
graphite.

the close agreement obtained between experimen-
tal and theoretical force constants for the regular
graphite (see part I) and the elastic constants in
diamond’® suggest that this model could be used as
a first approximation to estimate the restoring
forces in the system. In this treatment we restrict
ourselves to local deformation modes involving
only the nearest-neighbor atoms to the defect site.
In our defect-superlattice representation with 49
atoms, a next-nearest-neighbor relaxation would
substantially increase the undesired defect—defect
interactions. Relaxation studies on vacancies in
other covalent solids, have indicated that the next-
nearest-neighbor contribution to the formation en-
ergy is of the order 1-3%.%: ¢

The three normalized normal modes belonging
to the a’ and e’ representations of the local D,
site symmetry (Fig. 8) are given by:

CQu=(IN3)N-3V3 X, +3V3 X, =3Y, - 3Y,+ 1),
Q():(l/‘/g_)(—%\/g—Xa_%ﬁXb+%Kz+%Yb+2Yc)’ (3)
Qe =(INV2)(-3/3 X,~3V3 X, -3V, +1V;),

where (X,7Y,), (X,Y,), and (X, Y,) denote displace-
ment coordinates of atoms a, b, and ¢ surrounding
the vacancy and 8 and € are the two components
belonging to the e’ representation. The completely
occupied valence band transforms according to the
total symmetric a’ representation, so the trans-
formation properties of the total system are those
of the singly occupied e’ defect orbital. Distor-
~ tions contained in the symmetric product e’X e’
can result in splitting of the energy states. We
‘ thus distinguish between the symmetric distortion
modes a’ giving rise to a constant shift of the to-
tal and of the defect one-electron energies, on
one hand, and the Jahn-Teller distortion e’ giving
rise to level splitting, on the other hand. For the
sake of convenience the amplitude of distortion y
is defined as the decrease in the equilibrium
nearest-neighbor vacancy-carbon bond length as-
sociated with a particular mode (Fig. 8). The @, .
and Qg distortion modes can be associated with
either an inward (y >0) or an outward (y <0) re-
laxation while the @, mode is invariant under the
sign of y. The carbon-carbon bond length for the

unrelaxed lattice is taken as R =1.435 A corre-
sponding to the equilibrium value obtained for
perfect graphite in the extended Hiickel calculation
(part I). At this conformation the defect level ap-
pears at —8.4 instead of —8.6 eV, Local distor-
tions belonging to the @, @y, and @, modes are
thus applied with varying amplitudes y and the
change in the degree of localization of the defects
wave function, the energetic shift of the defect
level and the variation in the vacancy self-energy
(defined as excess stabilization E5 over the un-
relaxed value), are investigated. Owing to the
complexity of a fully self-consistent treatment of
the relaxation effect we have not attempted to
reach convergence in the iteration cycle for each
relaxed conformation but rather used the self-con-
sistent results for the unrelaxed structure as
standard input. The final relaxed conformation
corresponding to the energy minima obtained
(see below) was subjected to a self-consistent
treatment resulting in relatively small modifica-
tions of the charge distribution. The minimiza-
tion of the cluster’s total energy with respect to
the deformation coordinates is performed by the
steepest-descent method [Eq. (11), paper I].
Figure 9 shows the degree of localization, the
defects one-electron energy level position €4, and
the excess binding energy Ej for the a’ relaxation
where positive values of y correspond to shortening
of the vacancy-carbon bond (and elongation of the
bonds formed by the atoms a,b, and ¢ with their
nearest neighbors, see Fig. 10). It is seen that
the vacancy self-energy reaches a minimum of
—0.80 eV relative to the unrelaxed vacancy, at
y=-0.065 A, corresponding to a decrease in each
of the six bonds formed by atoms a, b, ¢ with their
nearest-neighbor carbons (denoted by open cir-
cles in Fig. 10) to 1.404 A (-2.2% relative to the
calculated equilibrium carbon-carbon distance in
graphite) and to an increase of the three a-b, a-c,
and b-c distances to 2.60 A (+4.8% relative to the
calculated value of the unperturbed lattice con-
stant). The energy ¢, of the defect level passes
through a minimum as a function of the a’ distor-
tion. The location of this minimum appears at a
much .smaller distortion amplitude than the cor-
responding minimum in the binding curve, sug-
gesting that the stabilization of the fully occupied
valence bands contributes more significantly to
the lowering of the vacancy self-energy than the
defect orbital itself. This is readily understood
in terms of the different contributions from the 7
and o systems to the relaxation energy. In the
previous section we have shown that although the
loss of 7 energy upon vacancy formation (AE, =2.1
eV) constitutes a relatively small part of the total
vacancy self-energy, the main charge redistribu-
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function, energy (¢;) of vacancy level, and the vacancy
binding energy (Ep) (relative to the unrelaxed vacancy)
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tion effects accompanying the vacancy formation
occur in the more polarizable 7 system rather
than in the relatively rigid o system. The relax-
ation induced bond shortening associated with the
o defect orbital alone [ Fig. 9(b)] constitutes only
a part of the total bond shortening that results
from the stabilization of all occupied bands [ Fig.
9(c)]. Infact, most of the stabilization gained by
the a’ relaxation comes from the 7 system that
forms a part of the occupied valence bands.
Though the system is loosing 2.1 eV of its m ener-
gy upon vacancy formation, almost 0.80 eV are
recovered by the bond shortening accompanying
this relaxation.

We now turn to evaluate the role of the Q4 and
Q. Jahn-Teller distortion modes. These distor-
tions will have a direct effect on the defect orbi-
tal through both linear and nonlinear Jahn-Teller
coupling. Before giving the results of the calcu-

. lation we briefly discuss the nature of the defect
orbitals involved. The doubly degenerate e’ de-
fect orbital can be described using the defect
molecule notation®' by two orthogonal hybrid func-
tions:

& =(1N2)(@s— Pb)s @
4
Bo= (N6 )20 = o= b5)

where ¢,, ¢,, and ¢, denote sp® hybrids of the
three dangling bonds associated with atoms a, b,
and ¢, respectively (Fig. 8). It is immediately
recognized that the asymmetric function &, is
antibonding with respect to atoms a and b while
the symmetric ¢4 function is bonding between
these atoms. "'Thus, an inward relaxation (y>0)
along the Q4 distortion mode would tend to sta-
bilize ® 4 and distabilize & . while an outward dis-
tortion would have the opposite effect. The ener-
gy gain associated with both distortions is equal
in the linear approximation, however, nonlinear
effects could favor one of them over the other.

Figures 11 (a) and (b) show the calculated pro-
perties related to @¢ and @, modes, respectively.
It is seen that the Jahn-Teller binding energy
gained by these distortions is very low (E; =-0.028
eV for the 6 mode and E5 =-0.020 eV for the €
mode), the @, mode leading to a slightly lower en-
ergy for an outward distortion of —0.028 A. Al-
most all of the stabilization energy in the Jahn-
Teller distortions is found to result from the ¢
levels, the defect level itself contributing most
of it. Thus, owing to the relative rigidity of the
o skeleton, only a small amount of stabilization
due to lattice relaxations results from the Jahn-
Teller distortions while symmetric relaxations
reveal a higher stabilization, mainly due to low-
ering of the 7 energy. Nonlinear coupling terms
are found to contribute to the Qg Jahn-Teller en-
ergy, resulting in an asymmetric double well po-
tential for this mode [Fig. 11(a)l. The way non-
linear terms enter the Jahn-Teller effect through
the formalism of molecular orbital theory has
been emphasized before.®®

FIG. 10. Geometry of symmetric lattice relaxation.
Full circles denote the nearest-neighbor atoms
(labeled a,b,c) displaced in the direction of the arrows.
Open circles—next-nearest-neighbor atoms. The
broken lines denote schematically the shorter bonds
formed after relaxation.
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Normalized amplitudes of distortion at equilibri-
um are:

Qo™ =V6 y8,=0.068 A
and
Qmin=v2 y<,, =—0.068 A

compared with the value obtained for the a’ distor-
tion QWr=v3 7%, ==0.113 A. The degree of local-
ization is shown to drop to about 83% due to the
outward relaxation. The change in the localization
due to lattice distortions [Figs. 11(a) and 11(b),
top) follows different patterns in the @, and Q.
modes; while in the former case the take-off is
characterized by a rather steep slope, in the lat-
ter case a vanishing initial slope is manifested.’
The parameters characterizing the @4-mode
Jahn-Teller effect can be easily extracted from
our numerical calculations (Fig, 11) using the
standard form of the Jahn-Teller Hamiltonian.®®
From the mean depths of the wells in the bottom
parts of Fig. 11(a) we obtain E;;~0.023 eV arising
from the linear vibronic coupling, while the dif-
ference between the well depths or the comparison
with the well depths in Fig. 11(b) yields the
strength of the nonlinear coupling as =~ 0.04 eV.
The notation of Ref. 69 (see glossary there) is
followed. The figures lead to a force constant of

1.2x10° dyn/cm compared to about 5.6 x107 dyn/cm

obtained (paper I) for the perfect lattice and to the
value of 6.7x 10° dyn/cm deduced from experi-

ment for the regular lattice.” The vibrational
motion in the well is characterized by w =410
cm™, The rotational energy of the theory is
a=0,02 eV so that the following ratios are de-
rived:

E,T/hw =0.45, B/a= —0.2,

indicating moderate linear and weak nonlinear
coupling. Other vibronic parameters of the sys-
tem (using the definitions of Ref. 69), are:

L =0,082eV; K~0.023 eV, and N=0, L, K, and N
being the linear, quadratic, and cubic coupling
coefficients, respectively. The numerical values
given in this section involving as they do high-or-
der energy derivatives, must be accepted as
mevely approximative., The following qualitative
conclusions are, however, significant: the stable
situation, corresponding to y<0 is one in which
one carbon atom moves towards the vacancy and
two move away from it, the stabilized ground
state is the &, state rather than &,

In the analogous system of a neutral vacancy in
diamond, calculations within the rigid LCAO ap-
proximation using equilibrium spring constants
deduced from the spectra of the regular solid®
yielded E;r=0.05 eV. The substantial decrease
in the force constant near the vacant site in
graphite, as obtained here, implies that a force
field transferred from the regular lattice data
should furnish a rather poor approximation to the
elastic response of the crystal near the perturbed
site,

Since the @, and Q4 modes are shown to be the
most effective in lowering the energy of the sys-
tem, we have minimized the energy with respect
to a combined @, and @, This resulted in
a slight improvement over the previous values,
yielding a binding energy of —0.842 eV. At this
final structure, atoms a and b are pulled by 0.10 A
away from the vacancy and atom ¢ by 0.010 A.
This structure corresponds to a —3.5% shortening
of each of the four bonds connecting atoms a and
b with their carbon nearest neighbors, a shorten-
ing of —-1.5% of the two bonds formed by atom c,
an increase of +6.9% in the a-b bond and a 3.83%
increase in the a-c and b-c bonds. The overall
change in the bonds surrounding the vacancy is
~1.6, or —0.18% per bond. The vacancy self-en-
ergy is reduced from the unrelaxed lattice value
of 12.61to 11.77 eV corresponding to an energy of
vacancy formation of E=E, - E;=11.7T7-7.40
=4,37 eV. The final structure obtained after min-
imizing the systems energy with respect to the
Q. +Qy modes was subjected to a self-consistent
treatment. This resulted in a decrease in the
formation energy to 4.29 eV and a small increase
in localization®® 7’ (86%). After consideration of
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the uncertainties in the theoretical values of the
promotion energies®® ™ and of the experimental
error in determining the sublimation energy,%*: 72
our calculated value for the vacancy formation in
graphite is E,;=4.0+0.5 eV.

C. Comparison with experimental data and other calculations

In this section we compare our calculated re-
sults for the energy of vacancy formation, the
basal plan contraction, and the position of defect
level, with the available experimental evidence.

Several theoretical and experimental determina-
tions of E, have been previously attempted. An-
nealing of vacancy loops has led Baker and Kelly’®
to deduce a value of E=2.4—-4.2 eV while Henning™
suggested a higher value of 6.6 €V using a vacancy
decoration technique after quenching. Kanter™ ob-
tained a value of 7.1 eV for the activation energy
of self-diffusion Ey. Assuming that self-diffusion
occurs via a vacancy mechanism and using the en-
ergy of vacancy migration E,,, of Diens®' (3.1 eV)
or the corrected value given by Kanter™ (4.0 eV)
the energy of vacancy formation was estimated as
Ex=Ey4—Ey, =4.0-3.1 eV. More recent diffusion
experiments of Thrower™ have suggested E,~6.5
eV. OQur calculated value of E,;=4.0+0.5 eV lies
between these values. . .

The vacancy-formation energy in graphite was
previously calculated?! in the defect molecule
model. Neglecting small”” interlayer binding ef-
fects, the unrelaxed vacancy formation energy
was given by Coulson et al.?' as:

Evf:(3Eo+AE1r"Erel)_Epro"'Es, (5)

where E, is the o-overlap energy involved in
breaking a o bond in the valence sp? state, AE, is
the loss of 7 energy upon creation of a vacancy,
E,, is the electronic relaxation energy, (calcula-
ted for the three defect atoms using semiempirical
configuration interaction), Epwo is the promotion
energy from an atomic ®P state to the sp? valence
state, and E; is the sublimation energy. Calcula-
ting the values of E,; and AE, in a defect mole-
cule model, employing the value of Ey, given by
Goldfarb and Jaffe®® or Jordan and Longne-Hig-
gins™ and using the experimental values of E,"
Coulson ef al.?’ obtained E,;=10.74~13.05 eV. In
this calculation the E, value was expressed by the
quantities E, and Ey, and the calculated 7 energy
‘perbond E;.2! Since we have employed the same
Epoand Eg values as Coulsonef al. and obtained sim-
ilar AE, values (Coulsonef al., AE;=2.39 eV; our
value: AE,;=2,1 eV)one can compare thedefect
molecule (DM) and our (SPC) results writing

(3Eo - E,e] )DM =25.1-27.4 eVand (3E0 _E[el)SPC
=18.7eV. The discrepancy betweenthe defect mole-

s

cule result and ours can only be partially attributed to
an increase in E, in the present study (self-consis-
tency and lattice relaxation, not introduced in the de-
fect molecule calculationare shown hereto reduce
the energy by 1.8 and 0.86 eV, respectively). The
main source of discrepancy lies inthe high value of E,
implied by the defect molecule calculation [8.66
eV obtained from Eq. (5)]. In a later study, Coul-
son and Poole?? used a much lower value for E
(6.81 eV) which is very close to the value sugges-
ted by Walsh.”® Using this value one obtains
(3E; — E)om= 17.2-19.5 eV and E,="17.5-5.2 eV,
Self-consistency and relaxation corrections would,
if anything tend to bring this value closer to our
estimate.

Recently, Phillips and Van Vechten’® have sug-
gested a macroscopic model for calculating Es
in diamond-type semiconductors. In his model
the energy of vacancy formation is given by

Eg=AF™+AE™ " (6)

AF} is the energy required to remove an atom
from a linearly screened medium characterized by
spherically symmetric metallic bonds with no di-
rected bonding charge. This term is approximated
by the surface energy involved in the formation

of a vacancy bubble of radius 7, in the liquid state
and is calculated from the measured surface en-
ergy per area ¢ according to"°:

AFM=4mvio , (7)

where 7, is the atomic Wigner-Seitz radius. AE™®
is the anisotropic formation energy denoting the
energy required to form the directional dangling .
bonds from the tails of the spherical metallic
charge distribution through nonlinear screening
effects. For the diamond structure this bond
formation energy is approximated by the energy
of white-tin to diamond transition and was pheno-
menologically calculated by Van Vechten.® This
model can be extended to the graphite structure to
obtain estimates of E. Using the average of the
basal plane and c-plane surface energies of gra-
phite given by Abrahamson® to approximate the
isotropic bubble energy (o = 2480 erg/cm?) one
obtains AF;=1.98 eV. The correction term AE™
(calculated by Van Vechten to be 2,36 eV for four
covalent bonds in diamond or ~1.77 eV for Z=3)
has no direct phenomenological analog. in the
graphite structure, however, owing to the higher
nonlinear screening effects in graphite (as mani-
fested by larger dispersion theory® bond charges
in the latter, i.e., Z,,=-0.21¢ in graphite com-
pared with Z,=-0.17¢ in diamond®? and higher
average band gaps in the Penn model,*° i.e., EJ=15
eV compared with® E,=13.6 eV in diamond) one
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would expect a slightly larger AE™ value in gra-
phite. These arguments would suggest roughly

E =4 eV in graphite.

~ "Both the macroscopic model and the corrected
defect molecule model lead to values of E, that
are in substantial agreement with that of the pre-
sent study. Phenomenological models using var-
ious forms of atom-atom potentials seem rather
crude for systems containing both a relatively
rigid o skeleton and a polarizable 7 system. It
has been realized some time ago®: ® that simple
atom-atom potentials that neglect the many-body
coupling of the atoms surrounding the given atom-
ic pair, fail to predict the stable conformation and
the correct lattice dynamics of aromatic and ionic
crystals and one has to introduce a quantum-
mechanical description of the role of the delocal-
ized 7 system on the potential surface.

The average theoretical contraction Aa/a of the
basal plane of graphite due to relaxation of the
atoms around a single vacancy, was calculated in
the present work to be —0.18% per bond. The ob-
served® value (Aa/a)obs obtained by irradiating at
—-196 °C (where defect aggregation is assumed to
be very small) can be partitioned into a contribu-
tion originating from a Poisson-ratio effect®:
denoted (Aa/az)l,oiss‘m and to the vacancy-induced
relaxation part (Aa/a)v.. The former contribution
arises from the increase in the ¢ spacing Ac/c due
to interstitial formation and is proportional to the
compliance ratio S,;/S,;, i.e., (8a/a)poison =(AcC/C)
(S13/Sss). Using the observed Poisson ratio® and
the Ac/c and Aa/a values measured by Pluchery?
and by Henson and Reynolds,? one obtains (Aa/a)vac
~=(0.13-0.05)%. Only rough agreement-is obtain-
ed with the present extended-Hiickel SPC calcula-
tion. Using an average bond-~order bond-length
correlations® in a simple 7-electron model,
Kelly® obtained a theoretical estimate of C;
(Aa/a),.=—0.14 where C;'is the number of atoms
associated with each vacancy. Since in our model
only the bonds involving the three nearest and six
next-nearestneighbors areaffected by the presence
of the vacancy (i.e., C;'=9), our results can be
written approximately as C3'(Aa/akac~~-0.144 in
good agreement with Kelly’s suggestion. It thus
seems that although the simple semiempirical
LCAO technique employed here is too crude for
obtdining realistic atomic conformations at equil-
ibrium, the overall expected trends are correctly
reproduced.

The energetic position of the vacancy level with
respect to the valence crystal bands can not at
present be conclusively compared with experi-
ment, owing to the lack of detailed optical spectra
of irradiated graphite. A preliminary study of the
optical spectra of neutron irradiated graphite®® at

80 °C revealed an absorption at 2.6 eV that disap-
pears completely upon annealing and is not present
in the unirradiated samples. Since only neutral
vacancies are expected to be stable at normal con-
ditions,?! the assignment of the observed transi-
tion to a negative vacancy® seems doubtful. The
transition between the ground state of the neutral
vacancy to the lower excited state (2E ~2A]) was
calculated by Coulson et al.?! to occur at 7.7-5.0
eV while the analogous transition in our model
.(between the point of the highest density of states
in the a’ system to the e’ defect level) is 5 eV.
The transition between the edge of the o bands to
the defect level is calculated in our model to oc-
cur at slightly lower energy (4.0 eV in the un-
relaxed lattice and 3.55 eV in the minimum con-
formation) and can be tentatively assigned to the
observed transition. More experimental studies
on the optical spectra of vacancy-containing gra- .
phite are doubtless necessary before definite as-
signment can be made. ’

D. Vacancy migration energy and displacement threshold

To complement the study of a removal of an
atom from its crystalline site to the surface
(vacancy formation), we study the effects associ~
ated with placing the removed atom inside the
layer plan (atomic displacement) and moving the
vacancy itself (vacancy migration).

The model adopted for studying the vacancy mi-
gration energy E., is schematically revealed in
Fig. 12. After the removal of the central atom
from position B the system has the total energy
denoted Ey,c. The atom initiallylocated at siteA is
then allowed to move toward the vacant site. The
excess energy involved in this process over the

FIG. 12. Geometry of the model used to calculate
the activation energy for vacancy migration in the C,gV
* periodic cluster.
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FIG. 13. (a) Activation energy for vacancy migration
in the unrelaxed lattice. The displaced atom moves
along the A-C-B axis (Fig. 12). (b) Activation energy for
vacancy migration in the unrelaxed lattice. The dis~ .
placed atom moves along the X axis (Fig. 12).

energy Evcis denoted AE(R) where R denotes the
position of the displaced atom along the line
A-C-B.. The calculated function AE(R) is shown
in Fig. 13(a). Positions A and B are equivalent
and are characterized by AE(R,)=AE(Rg)=0
while the maximum AE value is maintained at
site C lying midway between points A and B. The

activation energy of vacancy migration in this un- .

relaxed configuration is calculated to be 2.79 eV.
Displacement of the atom at site C, along the X
direction, perpendicular to the A-C -B direction
(Fig. 12) reveals an increase in the energy AE,
showing that C is a saddle point [Fig. 13(b)]. We
now allow for relaxation effects on both the in-~
itial configuration (E, =E,,.) and the saddle-point
configuration (E; =E,,. +AE). Symmetric a’ re-
laxation coupled with 6-mode Jahn-Teller distor-
tions were shown (Sec. IV B) to stabilize the in-
itial configuration by 0.842 eV. To allow for re-
laxations in the saddle-point configuration, the
atoms labeled 1, 2, 3,4 in Fig. 12 are allowed to
relax when the displaced atom is at C. The en-
ergy E; is minimized as a function of the relax-
“ation amplitude. This results in a lowering of
0.387 eV for an outward relaxation of 0.08 A. Re-
laxations in the initial vacancy configuration are
thus more effective in lowering the energy than
relaxations in the saddle-point configuration, re-
sulting in a final activation energy of vacancy mi-
gration of 3.25 eV. This agrees favorably with
the experimental value E,,=3.15+0.55 eV given
by Baker and Kelly,” with the estimate E,;, >2.5
eV given by Henson and Reynolds? and with
E,,=3 eV given by several authors.™ * Assum-
ing that self-diffusion in graphite occurs via a
vacancy mechanism, one would obtain an activa-
tion energy to self-diffusion of E, +Ey,="7.3+0.5
eV which is in reasonable agreement with the
measured values of 7.1+0.5 eV,™ and 8.3+0.3
ev.™

We next turn to evaluate the threshold energy of |
atom displacement in graphite. This is done by
calculating the change in the total lattice energy

upon removing a carbon atom from a substitutional
site and placing it at some distant site. Displace-
ment along the open direction (X-direction in Fig.
12) would not involve high barriers and is thus
favored, Figure 14 depicts the amount of energy
necessary to move an atom that was initially at
site A, to various sites along the open direction.
From this, a displacement threshold of about
E;=21.4 eV for the C,, cluster and E4=21.8 eV
for the C,, cluster could be deduced. Similarly,
the displacement threshold perpendicular to the
basal plane is calculated to be Ef=19.6 eV in the
two-dimensional lattice. This value would proba-
bly increase substantially in the three-dimen-
sional lattice due to interaction with atoms from
other layers. The evaluation of E, by the periodic
cluster method is limited by the need to consider
only small separations between the constituents
of the Frenkel pair due to the superlattice repre-
sentation involved. A similar calculation with a

truncated cluster of 50 atoms having the same
geometry as our C,, basic cell and no periodic

boundary conditions, yields E; =22.3 eV (a value
of 25.3 eV has been previously obtained by Moore
and Carlson® using a 36-atom truncated cluster
and an unmodified extended-Hiickel scheme®?),
These calculated values correspond to the unre-
laxed lattice and assume that the displaced atom
does not undergo the sp® transition during dis-
placement. Introduction of dynamical relaxation
effect would probably lower these calculate
values. ‘

Early experimental determinations of the dis-
placement threshold in graphite, yielded values
around 25-33 eV,% % while Lucas and Mitchell ob-

30

E (eV)

201~

L | Il L
0 I 2

R/a

FIG. 14. Plot of the energy required to move the
atom that was initially at the substitutional site A (Fig.
12) to various points in the layer plane. R measured in
units of the lattice constant @ =2.46 &.
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FIG. 15. (a) Net charge on displaced atom. (b) Depen-
dence of some one-electron energy levels on the separa-
tion between the constituents of the Frenkel pair. See
text for notation. The letters on the X axis denote po-
sitions of the displaced carbon as labeled in the insert
to Fig. 14. Solid line—bulk levels; dashed line—dis-
placed site levels; dashed-dot—vacancy levels.

tained a much higher value of 60+10 eV.® A re-
cent reexamination by Montet indicated a value as
low as 27.9 eV.** The latter author indicates® that
much higher values are associated with displace-
ment by electron beams that form aligned 60 °~90 °
with respect to the C axis®® while normal incidence
reveals displacement thresholds that are consis-
tent with previous determinations other than that
of Lucas and Mitchell.® Our calculated result
agrees favorably with this determination.

" The variation of some of the high-symmetry one-
electron levels in the crystal upon displacement

of the carbon atom in the basal plane, is revealed
in Fig. 15. The direction of displacement is de-
noted in the insert to Fig. 14. The atom at the
origin (site A) is displaced to the positions labeled
B-E thus increasing the separation of the Frenkel
pair from 0.71 A (position B) to 1.42, 2.56, and

3.76 A (positions C, D, and E, respectively). The '

one-electron energy levels can be classified into
three groups: the levels denoted dc whose wave
function resides mainly on the displaced carbon
atom, the levels denoted Vac that represent at the
limit of large separation the doubly degenerate e’
vacancy level, and the levels labeled Bulk repre-
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senting delocalized crystal levels.

The displaced carbon levels are associated with
wave functions that are highly localized on the
displaced site and are thus constructed from many
states in the BZ; however, their parentage in
terms of single isolated states in the BZ of the
perfect lattice, can be identified by following the
variation in the energy and wave functions of per-
fectlattice states as afunction of the displacement. It
is thus seen that a displaced carbon level having
mainly 2s character evolves from the low o bands
of the regular lattice at the point P; while 2p-
type levels associated with the displaced atom
originate from the Q;, and P; states. Similarly,
the vacancy e’ level appearing at high separation
between the hole and the displaced atom is highly
localized on the three nearest-neighbors to the
vacant site and originates from the doubly degen-
erate T, state in the valence band of the perfect
lattice. Other levels of the perfect lattice may
split or shift due to the Frenkel-pair formation;
however, these changes in energy and the accom-
panying changes in the wave functions, are very
small (of the order of N~! where N is the cluster
size). It is perhaps worth mentioning that as the
carbon atom is displaced from its substitutional
site, it loses some electronic charge and main-
tains a positive net charge [ Fig. 15(a)l. Large
charge redistribution effects are manifested by
carbon displacements and many self-consistent
iteration cycles (10-15) are needed to obtain con-
vergence in the charges. The self-consistent re-
sults exhibit a net charge of the order of +0.5¢
on the displaced carbon indicating that the Fren-
kel pair really corresponds to a vacancy-charged
atom pair. The charge redistribution effects
around the displaced atom reduces the calculated
displacement threshold energy by 2.8 eV relative
to the uniterated results, and the net atomic
charge on the displaced atom by a factor of 2—-2.5.
Coulomb attraction forces and polarization ef-
fects®” have thus to be introduced in non-self-
consistent calculations®” % % of such effects.

V. SUMMARY AND CONCLUSION

In the present work we have employed a small
periodic cluster superlattice representation to the
point-defect problem in graphite using an all-val-
ence electron self-consistent LCAO scheme that
has been previously shown to yield a good repre-

' sentation of the electronic properties of the reg-

ular solid. Eight crystal bands, 54-96 k points
in the Brillouin zone and 22-5% primitive unit cells
are allowed to interact in a nonperturbative cal-
culation. The undesired defect—defect interaction
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present in.the superlattice model is shown to be
effectively suppressed when the defect-defect
separation reaches about three lattice constants.
At this limit we calculate the electronic density
of states, the charge distribution, the electro-
static vacancy potential, and the effect of both
symmetric and Jahn-Teller lattice distortions.

The defect level is shown to be located some
3.5 eV above the top of the ¢ valence band and its
wave function reveals some 80% localizationonthe
three nearest neighbors. The wave function is most-
ly 2pslike but contains also some admixture of 2s
character arising fromthe lower valencebands. The
vacancy formation energy E.s is calculated to be
4.9+0.5 inthe unrelaxedlattice and 4,0+ 0.5 eV in
the relaxed lattice.

Jahn-Teller @, mode relaxation seems to be the
dominant nonsymmetric stabilizing distortion re-
vealing E;;=-0,023 eV and a relaxation amplitude
of —-0.068 A. Combined Jaln-Teller Q¢ and sym-
metric @, relaxation lower the total energy by
—0.84 eV and induce an average bond shortening
of —1.6%. The energy of vacancy migration is
calculated to be Evm =3.25 eV and the Frenkel-
pair formation energy is 22 eV. Owing to the ap-
proximate character of the semiempirical LCAQO
method used here, these estimates are not to be
considered as definitive.

Some of the more general results are:

(a) Although graphite is a semimetal due to the
degeneracy of its 7 valence and conduction bands
at the BZ corner, it could be viewed as a high-
gap insulator in its ¢ subsystem and hence can
reveal true localized gap states upon defect for-
mation. .

Defect molecule models that treat only a small
number of dangling bonds around the vacant site
are bound to distort the vacancy wave function due
to its relatively long tails. Coupling with the
Bloch states of the crystal, not included in the
defect molecule treatment, are shown to be impor-
tant in such wide-band materials and play an im-
portant role in determining the redistribution of
the vacancy levels among the crystal band states.
Deep defect levels such as that treated here are
in general not amenable to effective-mass theor-
ies due to the importance of the deep short part
of the potential. :

(b) Introduction of charge self-consistency is

shown to stabilize the energy of the nonlocalized
band states, to shift the defect level to the region
of low density of states at the Fermi level and to
increase its localization, The substantial charge
redistribution effects manifested by the iterative
calculation, suggest that-self-consistency is es-
sential even for homonuclear systems such as
graphite, Average dielectric screening neglecting
local-field corrections would probably be poor ap-
proximations in view of the strong charge pertur-
bations observed here.

(c) The eigenvalue spectrum of the defect con-
taining crystal is stabilized after introducing some
50 K points and 3-5 shells of atoms around the
defect site. The localized defect wave function as-
suming contributions from several Bloch states is
thus not amenable to calculation by methods re-
stricting the number of translational irreducible
representations and interacting cells to small
numbers,

(d) Many-electron effects are probably very
small for the vacancy ground state due to the
single occupancy of the defect level and the sub-
stantial delocalization of the a’ defect modes.
Mixing with higher-energy many-electron config-
urations would similarly be small owing to the
relatively large separation betweenthe zero-order
states. Correlation effects are, however, im-
portant in the excited states of the vacancy when
two electrons populate the defect orbitals.

(e) Owing to accumulation of excess 7 charge on
the atoms surrounding the vacancy these bonds ,
relax to a shorter bond configuration in a @, de-
formation mode. Jahn-Teller deformation, on the
other hand, affects mainly the degenerate modes _
that belong to the 0 system. Owing to the relative
rigidity of the o skeleton such relaxations are
small being characterized by low Jahn-Teller en-
ergies and medium to low linear and nonlinear
coupling coefficients. ‘

(f) Owing to an incorporation of both the nonloc-
alized band states and the defect states in a self-
consistent treatment, the SPC method is capable
of revealing various defect formation energies as
well as correlating the level position of the defect
states with the perfect lattice band structure. The
use of more rigorous one-electron methods to re-
place the simple LCAO scheme used here would
no doubt help to assess the validity of our results.
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