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We have calculated from first principles the recently measured electron and hole transport of disordered
AlAs/GaAs superlattices, in which the individual layer thicknessesn,n’,m’,... of sequence
(AlAS) ,(GaA9 (AlAs), (GaAs,, ... are 1, 2, or 3, selected at random with equal probabilities. First, the
near-edge electronic states are calculated using a three-dimensional pseudopotential representation for a
~2000-ML cell. The results are then modeled by an effective-mass approximation, thus obtaining the elec-
tronic states in a wider energy range. All electronic states are found to be localized in the superlattice direction.
Second, the phonon-assisted-hopping probabilities between different localized electronic states are calculated
from first principles, including contributions of polar optical, acoustic deformation-potential, and acoustic
piezoelectrical effects. Third, the master equation describing electron transport via phonon-assisted hopping is
addressed using Monte Carlo simulations. The resulting transport properties versus temperature are analyzed
according to dispersive transport theories, including the crossover from dispersive to equilibrium transport. A
simple model for the photoluminescence process is proposed on the basis of the transport calculations. Our
results agree qualitatively with recent experimental data.

[. INTRODUCTION and hopping probabilitie%,in the present case of one-
dimensional disorder one can use realistic first principles
The introduction of intentional one-dimensional disorderelectronic wave functions and phonon-mediated hopping
in semiconductor superlatticéSL's) has been shown to have probabilities. We included the electron-phonon interactions
a profound impact on their electronic and optical suggested to be important by previous studies on quantum
properties:™® (i) the electronic band gap is reduced well transporf =2
significantly? (ii) the photoluminescencéL) intensity is The particulard-SL that we consider here is the one
much larger than in ordered SL's and decays more slowhgrown by Sasald: starting from an ordered SLo¢SL)
with temperaturé,and(iii ) the PL intensity exhibits a strong (AlAs) ,(GaAs ,, we replace at random two-ML-thick seg-
nonexponential time dependence in a wide temperaturements by one- or three-ML-thick segments, thus creating a
range® These striking features are of particular interest fordisordered chain with randomly selected equal-probability
SL's, where one or both of the components are indirect-gapayer thicknesses of=1,2,3. In order to simulate the break-
materials, because the weak PL intensity that is rapidlyng of translational symmetry along the growth aziswe
guenched by raising temperature can be converigéhtro-  have used unit cells with a total of 200@ndomlyselected
duction of layer randomness to strong and slowly quenche®L. For computational reason, each such “supercell” is re-
PL. Examples for such superlattice materials include AlAs/peated periodically. In Sec. Il, we briefly discuss the elec-
GaAs Sl's(having an indirect-gap for small period ordered tronic state wave functions, i.e., the localization of electronic
SLl’s), and AIP/GaP and Si/Ge SL&wvhich are indirect or states induced by disord®in Sec. Ill and Appendix A, we
pseudodirect ordered SL's for all perigds present a quantitative model of phonon-assisted hopping be-
We have recently studiéd the electronic states of disor- tween the localized electronic states. The calculated hopping
dered AlAs/GaAs SL’s proposed by Sasakial? using ac-  probabilities are used in Sec. IV to simulate the single-
curate three-dimensiona{3D) empirical pseudopotential particle diffusionvia a Monte Carlo solution of the master
theory. We found that all electronic states are localized in thequation. The results are discussed in Sec. V and analyzed in
growth direction, and that the calculated band gaps of th&ec. VI, where a simple model of the PL process is proposed.
d-Sl's agreed quantitatively with experiment. Furthermore,Conclusions are given in Sec. VII.
we showed that optical transition between localized states
can be as strong as in direct-gap materials, thus explaining
the enhancement of PL in tlieSL. Starting from the calcu-
lated electronic wave functions, we now proceed to study the The single-particle electronic wave functions of th&L
temperature-dependent carrier dynamics of the vertical transvere calculated earli®using a three-dimensional empirical
port. pseudopotential methoEPM), with screened Ga, Al, and
While previous studies of transport in disordered system#\s pseudopotentials that were carefully fittétb the band
are based mostly on assumed models of the electronic stategucture of bulk materials and short-period superlattices. At

Il. LOCALIZED ELECTRONIC STATES
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FIG. 1. Effective-mass calculated localized states of a 2000 ML Energy (eV)
AlAs/GaAs d-SL. Each line represents one eigenstate. The line ) _ -
length equals Ry, whereL 4 is the localization length, and the FI.G. 2. Effective-mass calculated tail Qecay lengghg for the
vertical position represent its eigenenergy. There are 285 states |Acalizedd-SL states. The energy zero is at the GaAs VBM for
the conduction band and 434 states in the valence band. holes, and at the GaAs CBM for electrons.

functions decay exponentially with a “tail decay length” de-

this stage, we used computational supercells of up to 10080ted by y * and shown in Fig. 2. The information con-
ML total length to simulate the AlAs/GaAd-SL. Our main tained in Figs. 1 and Bema_rgy, Iocallzatlon_length, tail decay
findings weré® (i) all states are localized along the disorder €ngth completely specifies the electronic structure param-
axis, (i) the band gap is reduced by about 100 nieadshift eters necessary for the transport calculation presented in the
of PL), and(iii) the near-edge optical transition between lo-NeXt section.

calized states is very strong even though in the ordered SL

this transition is weak, an@v) the density of stateOS) is I1l. CALCULATING THE HOPPING PROBABILITY
nonexponential and bound from below, with a lowest pos- BETWEEN LOCALIZED STATES

sible conduction-band energy equal to that of a very long
sequence of consecutii&a;Al) layers. Note that the non-
exponential DOS isiot a consequence of a smglL000
atom sample as it exists in all different randomly selecte
configurations of thisi-SL.’

Because all states of thd-SL are localized, there is
no physical mobility edge, and thedirection transport can
gonly occurvia hopping. The hopping is induced by phonon
absorption and emission. From previous wérk on 11I-V
To facilitate fast calculations of many interelectronic ma_matenalsz we know that at high temperatu'tf@_(lO_O K). th?
trix elements for transport calculations, a one-dimension olar optical phonon has the Iargest contrl_butlon, while at
effective-mass approximatiiEMA) was used to model the [OWer temperatureT<100 K), the piezoelectric effect of the
pseudopotential resulfsin general, the 1D effective mass acoustic phonon ha_s the largest contrlbut_lon, followed by the
results were in good agreement with the 3D pseudopotentiéjeformatlon—potentlal effect of the acoustic phonon. Wg take
results, except for the level order of tiie and X-derived into account aII_three effects for all temperatures. We ignore
conduction-band edges: While the more accurate EP ossibleinterfacial phonon modes, and treat the phonon sys-
shows thed-SL to be a direct-gap materidihe GaAs-like, tem of thed-_SL as the same of the_pure bulk system of GaAs
I'-derived states are the lowest unoccupied localized siatesand AlAs with averaged frequencies. N
in the EMA the AlAs-like, X-derived states are slightly be- ~ The wave function of an electronic statek) can be
low the I'-derived ones.(However, theshapeof the EMA  approximated as the product ¢{(z), thez direction local-
wave functions agrees very well with the EPM resiilt§e  ized wave function, and exp(k-r), a plane wave in tha,y
ha\ée thus_dign?jred lthﬁ%a”e?ll statles in the Fpresherllt stur(ily, directions(wherek, T are two-dimensional vectorsThe en-
and considered only thE-valley electrons. For holes, the v ;
agreement between the EPM and EMA result is quantitétive.ergye of stzate (k) Ca.n b(_a apprOX|m§ted as
Figure 1 shows the energy vs localization range of théz("k):EiJ.rk f2m, wherek; is the.'th EMA SL eigenen-
EMA-calculated states in a 2000 Mi-SL. Each horizontal €9y andm is the transverse effective mass. We assume that

line represents the effective length & over which the wave f[he eﬁ?ﬁtlvg_ﬁmasses_arte equalnandy (kll)lrtectlons,G:Rd d
function is localized. The vertical position of each line de- Ignore the dilference in transverse mass between S an

notes its energy measured from the GaAs conduction-barfg‘lAS; m is taken as the average value of GaAs and AlAs. In
minimum (CBM), and from the valence-band maximum cases of nonsphericaly effective masses, we also take an
(VBM), respectively. There are 285 electron and 434 hol@verage.value. fom. .

states(not counting the twofold degeneracies of the heavy Our simulation of thg transpofisee_ Sec. IVW'”_bf based
hole in the(001) direction represented in Figs(d) and(b), ~ ©n the quantum numbeérand not on itssubstategi, k). We,
respectively. Away from the localization center, the wavethus, need to integrate out the degrees of freedom. Let
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P(i,j) denote the probability of an electron hopping from phonon deformation potential effects, we have considered in

statei to statej, and letW(ik,jk’) be the probability of Eds.(5) and(6) only the longitudinal mode, which has large

hopping from substatei,(IZ) to another substatej QZ’) electron-phonon coupling. For acoustic-phonon piezoelectric
Then o effect, we have considered all polarization modes. For opti-

cal phonons, we can approximatg as a constandg,. For
o L. acoustic phonons, we can approximaig as C.
P(i.j)=2> 2 fi(1—=F )Wk, jk"), (W Substituting Eqs(4)—(7) into Eq. (3) and carrying out
ko k analytically’? the summatior® 3/, we find the analytical
wheref . is the occupation of substatiK). For low carrier ~ formulas forP(i,j) as a function of the energies, positions,
density, nondegenerate cases, and by assuming equilibriutpcalization lengths, and decay lengths of statand j.

& B withi : . P(i,j) is also a function of temperatufie The final formulas
among the substate within each staté (reached within Y . . .
. g 5K) . - . ( for P(i,j) due to OPP, APP, and APD are given in Appendix
picoseconds due to the existencekefontinuous energy lev- A

els), we have

277,[3ﬁ2 IV. MONTE CARLO SIMULATIONS

_ 7(ﬁ2I2m)k2ﬁ 2
ik m € ) ( ) oL i .
Syy OnceP(i,]) is obtained at a given temperature from Egs.

where@=1kgT andT is the temperature arfil, is thex,y (A1), (A8) and (A10) of Appendix A, Monte Carlo simula-
cross-section area of the SL. Becadseis much smaller tion can be performed to solve the master equation describ-

. I d . o
P(i,j)=2 2 fuW(iK,jk"). (3 —Ni==N; > P(i.j)+ > NiP(j,i), 8)
kK dt =i =i
W(ik,jk’) can be calculated by the Fermi golden rule: whereN; is the occupation number of electrgar hole in
5 statei. The Monte Carlo method is used to simulate the
W(ik iK'= _772 |C(q)|2<iIZ|exp(i(q- r))|le’)2 random trajectory of a single electréor hole. We study the
' fi g dilute carrier limit, thus ignoring possible Coulomb interac-

R R tions between electron®r between holes If the electron

X{Ngo[E(i,K) —E(j k") +fiwg] (hole) is at a given statg, thenP; ==, ;P(i,j) is the rate of
. =, hopping to other states. R is a uniformly distributed ran-

+(1+Ng) OLE(i,K)—E(j, k") —hrag]}, dom number between 0 and 1, then— In(R)/P; can be used
(4) as the time for the electrofhole) to have a hopping event.
Using another random numb&t;, one can determine to
: which statej the electron(hole) will hop given their prob-
the p_honon fr?q“e”‘ﬁ/ foq, C(q) is th? electron-phonon ability P(i,j) [this selection process froiNg; States can be
coupling functlon,NS—1([faxp@iwqﬁ)—1] IS th? number of performed in log(Ng,) oOperations, using a tree data struc-
phonons ag, and|ik), |jk") are the electronic wave func- tre). Repeating this process, we obtain the real-space trajec-
tions for statesi(k) and (j,k’). The electron-phonon cou- tory of this carrier, allowing one to watch how the electron
pling function |C(q)|? for the optical-phonon polar effect (hole) hops from one state to another and to measure the
(OPB, the acoustic-phonon piezoelectric effééPP), and  distance traveled by the carrier. To obtain statistically aver-
the acoustic-phonon deformation-potential effé&PD) in  aged results, we have repeated the process with different

whereq is the three-dimensional phonon wave vectay,is

zinc-blende structure a&?! starting states and random number sequences, and have av-
) eraged the electron®ole’s) energyE(t), and the diffusion
|C(q)|2 :27Te (i_i) hawq (5) distance squared?(t). Typically, we repeat the process
OPP (0 \e. € o2 1000 times, letting each time the electr@mle) have five
million hopping events. This takes a few hours of CPU time
C@P _ 8m’e*hiP? K2 ©) on a RS/6000 IBM workstation model 590.
(D) [app= 0p oy
5 V. RESULTS
Cih
|C(q)|iPD:ﬁq_ (7 Figures 3 and 4 show the energyt) and diffusion dis-
S

tance squared®(t) curves, respectively, for electrons and
Here,e is the electron charge) is the total volume of the holes at different temperatures. Each curve is an average of
system,e,, is the electronic dielectric constanry, is the total 1000 trajectories, with starting statesiformly distributed
(including ionic screeningdielectric constantp is the den- among theNgy, states shown in Fig. 1. Thus, the average
sity of the material, P is the piezoelectric constant t=0 energy is given by the centroid of Fig. 1: about CBM
(P/2=e;j,5=€14), C, is deformation potentialCg is the  +0.7 eV for electrons and VBMO0.4 eV for holes2 In av-
acoustic-phonon speed, and, finallg,=0q,p,ps+0,p1p3  €ragingE(t) and in all of the following discussions, we use
+Q3p1p,, Whereq, p are the unit vectors off and polar- only the 1D EMA energyE;, while the transverse kinetic
ization, respectively. For optical-phonon polar and acousticenergykiy/2m=kBT is not included(this constant can, how-
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ever, be added back trivially if neededFigures 3 and 4 stants at T=300,150,77 K are 9x10% 2.2x10%%
suggest the following observations. 5.3x10° ML ?/sec, respectively. The temperature depen-
(i) Comparison of the distances traveled by electrons andence ofD(T) is activated withD(T)=Doexp(—Ey/ksT),
holes (at T>77 K andt>10"'% seq in Fig. 4@ and Fig.  with E,=110,90 meV for electrons and holes, respectively.
4(b), respectively, shows that the hole is more mobile thanyotice that this formula does not imply that we havehysi-
the electron. This reflects the larger hole density of states iga) mopility edge. A variable range hopping model with tail
the system. states density- (E—E,)" also yield$* an almost exponen-

(ii) Inspection of the lowT curves shows that there is a {ja|ly decreasing diffusion constant vsT1/A more recent
characteristic baselin@—0 curve both for theE(t) and  \york?5 ysing exponential tail density of states and tail state

dz(t) functions. These curves reflect the result of dOWﬂhI”hoppmg also obtained an exponentia| dedaYT) with
hopping (i.e., i hops toj whenE;>E; even if T—0). At  1/T. (Additional discussion of this is provided in Sec. VI)C.
short times, the curves for all temperatures follow this base- (vi) Diffusion constants fob-SL's are significantly larger
line curve. _ than those ofi-SL. [As we will see in Sec. VI D, this could

(iii ) For finite temperaturd, the E(t) and d?(t) curves explain the weaker temperature dependence of the PL of
deviate from their baseline curves only after a critical timed-SL's relative too-SL’s.] This is seen as follows: The cal-
t.. This indicates that uphill hopping with phonon absorp-culated hopping model electron diffusion constants dor
tion takes place fot>t,. dered (GaAs ,(AlAs) ; superlattice® at T=300,150,100 K

(v) For T=300,150 K (for electrong and are 4.6<10" 1.3x10 and 3.8 10" ML ?/sec from Ref.
T=2300,150,77 K(for holesg, the carriers have reached equi- 11. ForT=300 K, these values for the orderetk7 SL are
librium within our simulation time. This is _indicated by the already an order of magnitude larger than our values for the
plateau in theE(t) curves of Fig. 3 and by?(t)=2D(T)t  disordered superlattice with an averag& 2 period. The
being a straight line in Fig. 4, whei2(T) is the equilibrium  value of D(T) for 2X2 orderedsuperlattices must be even
diffusion constant. For the other temperatures consideretrger than the X 7 resultst! Furthermore, for X 2 ordered
here, equilibrium is not reached even after one seddhthe  SL, the localized-state hopping model may no longer hold,
system were in equilibrium &t=5,10,20,40 K, then accord- and the continuous-energy miniband scattering model might
ing to the{E;} spectrum of Fig. 1, more than 90% of the be more relevant If that is the case, then the diffusion
electron and hole occupation would have been condensed onstant of the X2 o-SL could be one or two orders of
the overall lowest energy level of the 2000 ML systgm. magnitudelarger than the values from Ref. 11 for thex7/

(v) The electron equilibrium diffusion constariy T) at  o-SL. Furthermore, the diffusion constant for the ordered SL
T=300,150 K are calculated to be %720 and 3.7<10'*  drops much slower with temperature than th&L results'*
ML ?/sec, respectively. The hole equilibrium diffusion con-  (vii) Within the first few picosecondéee wide vertical
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arrows in Figs. 3 and )4 the electron and hole lose energy 1d-—

very quickly (Fig. 3. This is the time scale characteristic of D=5 adz(t). 9)

optical phonons. After the first few picoseconds, the energy

drops much slower. At the end of these few picoseconds, th@here D(t) is a function of the distribution of electrons

electron(hole) has moved an averaged distance of(42)  (holeg at timet. Thus, roughly speakindd(t) is a function

ML. This distance is larger for electrons than holes, becausef the average enerdg(t). TheD(t)’s calculated by Eq(9)

the electron has a smaller density of state, thus it has to findre shown in Fig. 5. We see from Fig. 5 th@t at low

more distant states to hop to. Note that(42) ML are com-  temperature§ =5,10 K, D(t)=1/; (ii) for other tempera-

parable to the effective localization length of the electronictures, whenD(t) deviates from the 1/curve, it can be de-

states(Fig. 1). After this initial stage, the electron and hole scribed by a straight line in the log-log plot, thi(t)

are trapped in local energy minima and thus move much«141~# with 0<pB<1; (iii) for high temperatures

slower. T=300,150,77 K, after equilibrium is reacheD(t) is a
(vii) In the typical range of time resolved PL constant. So, in general, tit) curve for a given tempera-

experiments (nano to microsecongisthe systems below ture can be represented by three straight lines in the log-log

T=300 K have not yet reached their equilibria. For piot of Fig. 5. These are shown as dashed lines in Fig. 5. We

T=150,77,40 K, the diffusion curves of Fig. 4 already devi- now discuss these regimes and a simple model for the PL
ate from theT=0 baseline curve. Thus, the carriers are ex-process.

periencing dispersivetransport. This will be analyzed in

more detail in the next section. A. The 1t regime

In the 1t regime, the diffusion process is purely downhill
(Fig. 3), so the 1f scaling of D(t) can be explained as
follows.2>3° Define D’ (E) as a diffusion constant for an

As noted above, in the range of nano to microseconds, thelectron at energy levét. D’(E) also determines a charac-
d-SL at most temperatures is going through a dispersive difteristic time r(E)=1/D’(E) within which the electron can
fusion process. A general way to describe such a system is diffuse away(or have a hopping eventD'(E) drops rapidly
define a “time-dependent diffusion constari’(t).2"?® In  with decreasingE. Thus, at timet, the electrons with
our case, it can be calculated as 7(E)<t have already hopped to a lower energy state. Thus,

VI. ANALYSIS OF THE TRANSPORT RESULTS AND A
SIMPLE MODEL FOR PHOTOLUMINESCENCE
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7(E.) =t determines a cutoff energi, in the electron Pping event. The average hopping distance is a constint
energy distribution, above which there is no electron occuindependent of how many times the electron has hopped and
pation. The total diffusion constaii(t) is dominated by a When[i.e, at whatt, in #(t,)] the hopping occurred. This
small fraction of the electrons at the highest energy. Thusappears inconsistent with the electron transport process that
D(t)=D'(E¢y). But t=7(E,)*1/D'(Eyy, S0 D(t)x1k. we find here. In our case, the later the hopping happens in
This argument can be applied only to low temperatures wher#(t1), the longer the hopping distanekis. Furthermore,

all the hopping events are purely downbhill. ¥(tq) is a function of the number of times the electron has
already hopped. Thus, in our caggt,) seems to depend on
B. The 141~ regime and the possibility ]'Ehelabsolltjtitrllmettof thhe clurrent hqpﬂl[ngt (levegt. AA;\)patrr:antly,
of continuous-time random walks or largert, the y(t,) has larger weight at largéy. Another

way to look at this is to define ime-dependentransport

When D(t) deviates from the 1/curve, it can be de- energyE, (see below around which most of the hopping
scribed by 11 2. Such scaling is often discussed in terms ofevents occur. Thus the jumping distar;evhich depends on
continuous-time random walkéCTRW).! In the CTRW E; is also time dependent. One can apply CTRW on
model, a hopping probability distribution function fractals®? But in that simple model(a) the temporal effect
¢(t1)~t1_(1+5) is assumed and a time-of-flight experimental and spatial effect are separable and uncorreldtgdhere is
currentl (t)ct~(*~#) is obtained. Physicallyi(t) is propor- no correlation between the timie of the current hopping
tional toD(t) through a constant factor. It would thus appearevent and the hopping distributiof(t,) of the next hopping
that the CTRW can be used to describe our results. There apvent. So, we conclude that the uncorrelated CTRW model
a few reasons to think otherwise. cannot be used to describe our process, although the final

(i) In the CTRW model,(t;) describes the probability results are the same.
distribution of thenexthopping after a given hopping event (i) The value of is shown in the insets of Fig. 5 as a
(t, is measured from the absolute tirnef the current hop- function of temperature. Note that it cannot be described by
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FIG. 6. The energy-resolved diffusion constamD (E),
the hole distribution functionf(E), and the density of states
DOS(E). AD(E)dE is the contribution to the diffusion constant
from energy rangeE to E+dE. See text for its calculation.
f(E)= DOS(E)exp(—E/kgT). The E; is the transport energy used
in some theoretical model$Refs. 25, 30, 33, and 34There is a
5 meV Gaussian broadening for each curve.

T/Ty, which is a CTRW result of a multiple trapping model
with an exponential density of state tail ex{f/kgT,) below
a physical mobility edgé

Finally, (iii ) in the CTRWu(t;)~t~ ("4 model, the sys-
tem reaches equilibrium only at-c for exponentially de-
caying, unbound DOS, thus(t) will follow the 1/t~ # scal-
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+dE]. The average is carried out after the system has
reached its equilibrium. Also plotted in Fig. 6 are the hole
distribution functionf(E) at equilibrium and the hole den-
sity of states(DOS) of the d-SL. The AD(E) is a rather
broad function with a larger than 0.1 eV range. The maxi-
mum of AD(E) is often called®%transport energ§, and is
sometimes regarded as an effective mobility etfg& How-
ever, we want to point out that this effective mobility edge is
rather different from the real physical mobility edge of the
original multiple trapping modet>=® because here the con-
tribution to the diffusion comes from a rather broad range,
both below and aboveE;. Unlike the common
theories>253%34 which assume an exponential DOS tail
exp(—E/kgTy), our DOSE) aroundE; does not follow such
exponential form as evident from Fig. 6. Thus, while in the
common theoriesf(E)= DOS(E)expE/ksT) is exponen-
tially increasing into the band gap regiofi<Tg), our f(E)

has a peak only 60 meV belo&; and the conduction-band
DOS has a lower bound cutoff. Furthermore, our!(E)
depends orkE. Thus,a-Si theories do not directly apply to
our case and more studies are needed to see how useful the
concept of the effective mobility edge is in our case. A
simple model which assumes tail state hopping with an ex-
ponential DOS and a constant localization decay length
v~ yields?® an activation formula exp- kgTo/kgT) for the
diffusion constantD in one dimension, which seems in
agreement with our results. Furthermore, as mentioned in
Sec. V, item(v), models with a~(E—E,)" localized band
tail also yield approximately exp(Ey/kgT) results®* So the
D(T)~exp(—Ey/kgT) is a very general result and can be
obtained from many different situations; it does not imply an

ing forever(in the exponential density of state tail model, for exponential DOS and multiple trapping.
T<T,, the equilibrium state corresponds to an energy dis-

tribution infinitely deep which will take an infinitely long
time to reach In reality, of course, given long enough time
the system will reach equilibriuffsee Sec. V itemév) and
(V)]. Thus, theD(t)=1/'~# scaling will give way to a con-
stant (horizontal ling. This happens in our simulation at
T=300,150 K for electrons and &t=300,150,77 K for

D. A simple model for the PL process

Given the above transport results, we can construct a
simple model for the photoluminescence procesd-aL’s.
While more detailed results should be obtained by direct
numerical simulationgespecially taking into account the ef-

holes. Based on the above arguments, we conclude that offgCts of Coulomb interactions and the correatliative tran-

cannot use th®(t) =1/t~ # scaling to justify the validity of
the CTRW.

C. Equilibrium transport and the possibility
of effective mobility edge

As discussed in iteniv) of Sec. V, the equilibrium diffu-

sition matrix elements here, we merely use a simple model
to judge whether the PL process can be explained by consid-
ering the vertical transport alone, i.e, ignoring the details of
the xy lateral transport.

We consider a geminate process. L&t denote the car-
rier density.l (t) decays both because of radiative and non-
radiative effects. The radiative decay is described here by a

sion constants at different temperatures obey the activatiosingle decay timer,. For the nonradiative decay, it is as-

formula exp(Ey/kgT), although there is no physical mobil-

sumed that the electron and hole will annihilated by nonra-

ity edge in our system. Nevertheless, there are theories whidliative centers as they diffuse away from their current posi-

employ the concept oéffectivemobility edge®32%3034The

tions. Thus, the nonradiative channel is proportional to the

essence of these theories is that the carriers need to hop @diffusion constanD(t) for both electrons and holes. Thus,
some higher energy levels in order to make subsequentiye have
more efficient hops around those high energy levels. To

check such a concept, we have plotted in Fig. 6 the energy

resolved diffusion constankD(E) (the diffusion contribu-
tion around energy¥) for holes atT=300 K. The integral
JAD(E)dE equals the total diffusion constabt. Numeri-

di(t)

1

cally, AD(E) is calculated by averaging the square of thewhere we assume that and r, are time and temperature-

hopping distanceli.e, (zi—zj)z] of each hopping event
Ei—E;, where max;,E) falls into the interval E,E

independent constants. The PL intensity is proportional to
I(t) with a prefactor 1#,. Integrating Eq(10), we have
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Finally, our vertical transport results might shed some
light on the explanation of a recent PL thermal-quenching
experiment® Especially, the bending of thd-SL curve in
Fig. 4 of Ref. 38 around =120 K might correspond to the
= Exp. start of deviation of thel?(t) curve from theT=0 baseline
107 " . curve within the experimental time range.

10° | 1
—— model

VIl. CONCLUSIONS

1o r 1 Starting from a realistic description of the electronic

structure of disordered AlAs/GaAs SL's, we have simulated
from first principles the vertical transport in tkdeSL, due to
10° . phonon-assisted hopping. The lateral degrees of freedom
were integrated out analytically, and the hopping probabili-
ties between localized states along thdirection were cal-
¢ L ' . . . . I culated numerical_ly, using effective mass wave functions and
0 50 100 150 200 250 300 350 _GaAs/A_IAs materla_l parameters pertinent to e_I_e_ctron-phonon
interaction as sole input. The hopping probabilities were then
Temperature (K) used in a Monte Carlo simulation of carrier diffusion.
We have identified the following time and temperature
FIG. 7. The comparison of PL intensity between experimentalregimes of vertical transport.
data (Ref. 4 and our simple model results. THe=0 points are (i) At very short times { picoseconds hopping is mostly
both normalized to one. downhill, and independent of temperature. At very low tem-
perature T=<10 K), downhill hopping(i.e., phonon emis-
sion) continues to be the dominant process, and the diffusion
“constant” behaves a®(t)«1/t. The carriers will eventu-
ally “freeze” in the lowest energy positions, and will be
unlikely to escape.
_ (11) (i.i? At high tgmperature T=300 K), the carriers reach .
equilibrium within about a nanosecond, and the transport is
. . . then described by a standard diffusion law.
Npte that in the exponential, o_nIy one term dominates at a (iii) At intermediate temperaturesT£150 K for elec-
given time range. At the experimental time range of Nanoyong andT=77 K for holes, the carriers reach equilibrium
seconds to microseconds, forless than 300 K, th®e(t)  after nano to microseconds. In the equilibrium regime, the
and Dpodt) are described by €4, thus d3(t) and giffusion constant behaves &(T)xexp(~Ey/ksT). How-
di,dt) scale ast’. Thus, within this time range, the PL ever,E, is not an activation energy to a mobility edgsince
intensity is a stretched exponential. This agrees with the exn the quasi-one-dimensiondtSL all statesare localized.
perimental results. On the other hand, for highef (iv) Before reaching equilibrium, the carriers experience
(T=300 K), D¢(t) and Dy t) are constants, thus the PL dispersive transport. The diffusion “constant” is time depen-
decays as a single exponential. This also agrees with expeiglent asD (t) 11~ #. For intermediate temperatures, disper-
mental results.To determinex, we required Eq(11) to give  sive transport occurs within the experimental time span
the experimentdl exponential decay time of 350 ps or (nano to microseconii®f time-dependent PL experimerits.
T=300 K. This gives@=2.2x10"° ML ~2. Assuming Using a simple model of geminate photoluminescence, we
7,=1 us, we can then obtain the total PL intensity have shown that such a power l&t) leads to a stretched-
1/, 51(t)dt as a function of temperatufe The results are exponential quenching of the PL intensiift), in agreement
shown in Fig. 7, and compare well with experimental with experiment.
results? In our simple model the PL process is dominated by We have pointed out some important differences between
the radiative decay itself at low temperaturés=5,10,20 the present results and previous models, such as continuous-
K). In these cases, the nonradiative channel does not playtame random walk, and the multiple trapping modeith a
very important role. At higher temperatures, especially forphysical mobility edgg even though similar scaling laws are
T=2300 K, the nonradiative decay dominates the PL procesebtained. We also discussed the usefulness of the effective
[i.e, the decay of(t)]. The slower drop of PL intensity with mobility edge concept in our system. Finally, our simple
increasing temperature compared wittSL resulté is prob-  model of the PL process demonstrates that the PL process of
ably a consequence of a one or two order of magnitudéhe d-SL is likely explainable by the vertical transports
smallerD(T) in d-SL compared with the value in-SL at  alone, ignoring they direction diffusions.
T=300 K [Sec. V, item(vi)]. A more detailed comparison
has to await direct PL process simulations. They might re- ACKNOWLEDGMENTS
veal whetherr, and « are functions oft and T. Neverthe-
less, the overall comparison of our simple model with the The authors like to thank Dr. D. Arent and Dr. H. Branz
experimental results is very gootihis probably means that for many helpful discussions and Professor M. Kemp for
the vertical transport is sufficient to explain the PL process.very thoughtful comments on this manuscript. This work was

PL Intensity (arb. units)

[(t)=I Oex;{ - aJot[De,(t) +Dpot)Jdt—t/ 74

o — _
=1 oeXF{ - E[dzel(t) + dﬁole(t)] —t/r,
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+eMfy(x_)K3(6-)
APPENDIX A: THE FORMULAS FOR P(i,j)

i A 2 2 1
For theoptical-phonon polareffect: +2e ~fa(y-)Ky( 6_)Iij(qz)q—dqz,
max
. Gmax
POPF(':])szPPf [Noe+fq(x) (A10)
0 where
1 2p2 3 12
+(No+1)erfy(x )17 (a,)—da,, (Al) o 8 P2(87°AM) ™ Omax (A1D)
d: APP peiﬁ o
h
where In Eq. (A10), y_ is defined ag (Bq2%%/2m)Y*_12. The
_w0e2 mmp\¥3 1 1 superscript and subscrigi stands for polarization. Thus,
fopr=——|—5— e e (A2) NP(q,) =11 exp{Cea,8)—1] and wq=Cga, in Eq. (A4).
6. is defined as
B 12
N==(AEL—|AE.]), A3 ) 2+ B|AE..
=5 (AE. |AE.[) (A3) sing. = (2+8 : |§ . (A12)
(2+ B|AE.|+A%q;B/2m)
and _
The K3(6) is then given by
AEi:Ei_Ejiha)q, (A4)
w2 9 v}
and KE(6)= g sin 6cos 6, (A13)
BH*\ (g, m|AE.|
Xe=| 50 ?Z'Fﬁz— , (A5) — —, 1 5 . 1 .
m RF: K3,(0)+K7 ()= §(3co§0— 1)2%sir? 6+ 5 cog 6 sirf.
and (A14)
f(x)= iexzjme‘tzdt (A6) In order to carry out the integrdlg™dq, in Egs. (A1),
o J X ’ (A8), and (A10), we must first calculate;;(q,) defined in

. ) Eq. (A7). 1;;(d,) can be calculated numerically frog(z)
No=1/1exp(iwoB)—1] in Eq. (A1) andwq=wg in EQ. (A4)  andy,(2), using fast Fourier transformation. However, here,
for the optical phonong . in Eq. (Al) is determined by the \ye chose to calculats;(q,) analytically from modeky;(2)

boundary of the phonon Brillouin zone. Finally;(d,) is  andy;(2). First, we modeks;(z) as
defined as J

. (A1H)

a

Iij(qz):f lpi(Z)l/I}k(Z)eiqzde, (A?) ¢|(Z) a|f(|Z Z||)C05<ZLZ(| 1)+ 0;
wherel, is the z direction length of the systeng; is the
central position of the localized wave functiofy,is a phase
shift, and«; is a normalization factor. The state indexs
counted from the lowest state of the systeffiz) equals

amal | 520281 12 , , e 2ZLett for z<L.s and e 2~ Led? for z>L 4, where
Paep(i,j)= fAPDf “{( 2 ) N(g,) (e M +e *5) Lo« is the effective localization length of the staghown in

0 4m Fig. 1), 1/v is the energy-dependent tail decay length of the

where #;(z) and ;(z) are normalized, one-dimensional lo-
calized wave functions for statésandj.
For theacoustic-phonon deformation-potentisffect:

1 state] y(E;)] (shown in Fig. 2_. By comparing to the directly
|i2j(qz)_dq2' calculated EMA wave functions, we found that H&\15)
Umax models the wave functiott;(z) well for all states. The factor
(A8) cogz(n/L,)(i—1)+ 6] describes correctly the nodal structure
of the state. In Eq(A7), when we calculaté;;(q,), assum-
ing j>i, we let ;=0 and adjustd; so that ¢;(z) and
¥;(z) are orthogonal.a;, «; are determined accordingly
APD= -y (A9) based ong; and ¢; . After that, I;;(q,) can be carried out
mpCshi°B analytically as a function of; ,z;, 6;,6;, anda;,a;.
Here, w,=C4, in Eq. (A4) for acoustic phonons and  After I;;(q,) was obtained, integralg j">dg, in Egs.
N(q,) = 1[exp(i Cq,8) — 1]. Cs is the velocity of the lon- (A1) and (A8) and (A10) were performed numerically. Fi-
gitudinal acoustic phonon. nally, P(i,j)=Popdi,j) + Papp(i ,j)+EpP,‘§PP(i,j) was ob-
For theacoustic-phonon piezoelectréaffect: tained for all pairsi,j) in Fig. 2 for a given temperature. We

+eh-

x_+gfg(x_)>

where

2 7312
Clm max
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find that if E;>E; by an amount larger thahwg, then
Popdi—]) has the largest contribution of @'s at all tem-
peratures. IE; is not larger thark; by 7 wg, then(i) at high
temperature T>100 K), P opp has the largest contribution,
(i) at lower temperatureT(<100 K) and for smallg; - E; if
E;>Ei, Papp has the largest contribution, followed by
Papp (@ factor of 2—10 smaller thaBapp).

The parameters used in E¢8.1),(A8), and(A10) are the
following. Some of them are from calculatidisnd others
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from experimental resulf§. P=(—0.32—0.45)/2 Chm?,
hwe=(36+50)/2 meV, ¢y(GaAs)=12.85, €g(AlAS)
=10.06, €,.(GaAs)=10.89, e.(AlAs)=8.16, C,(el)
=(11.38+10.56)/2 eV, C,(hole)=(2.7+2.6)/2 eV, m(el)
=(0.077+0.158)/2 electron massn(hole)=(0.416+0.439
+0.079+0.157)/4 electron mass, C.=(36+44)/2
meV/Qmax, Ci=0.58C., Qmac=27/10.6826 bohrs'. In

the averages, the first number is the value of GaAs, the sec-
ond number is for AlAs.
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