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We have calculated from first principles the recently measured electron and hole transport of disordered
AlAs/GaAs superlattices, in which the individual layer thicknessesn,m,n8,m8, . . . of sequence
~AlAs!n~GaAs!m~AlAs!n8~GaAs!m8 . . . are 1, 2, or 3, selected at random with equal probabilities. First, the
near-edge electronic states are calculated using a three-dimensional pseudopotential representation for a
;2000-ML cell. The results are then modeled by an effective-mass approximation, thus obtaining the elec-
tronic states in a wider energy range. All electronic states are found to be localized in the superlattice direction.
Second, the phonon-assisted-hopping probabilities between different localized electronic states are calculated
from first principles, including contributions of polar optical, acoustic deformation-potential, and acoustic
piezoelectrical effects. Third, the master equation describing electron transport via phonon-assisted hopping is
addressed using Monte Carlo simulations. The resulting transport properties versus temperature are analyzed
according to dispersive transport theories, including the crossover from dispersive to equilibrium transport. A
simple model for the photoluminescence process is proposed on the basis of the transport calculations. Our
results agree qualitatively with recent experimental data.

I. INTRODUCTION

The introduction of intentional one-dimensional disorder
in semiconductor superlattices~SL’s! has been shown to have
a profound impact on their electronic and optical
properties:1–5 ~i! the electronic band gap is reduced
significantly,2 ~ii ! the photoluminescence~PL! intensity is
much larger than in ordered SL’s and decays more slowly
with temperature,4 and~iii ! the PL intensity exhibits a strong
nonexponential time dependence in a wide temperature
range.5 These striking features are of particular interest for
SL’s, where one or both of the components are indirect-gap
materials, because the weak PL intensity that is rapidly
quenched by raising temperature can be convertedvia intro-
duction of layer randomness to strong and slowly quenched
PL. Examples for such superlattice materials include AlAs/
GaAs SL’s~having an indirect-gap for small period ordered
SL’s!, and AlP/GaP and Si/Ge SL’s~which are indirect or
pseudodirect ordered SL’s for all periods!.

We have recently studied6,7 the electronic states of disor-
dered AlAs/GaAs SL’s proposed by Sasakiet al.2 using ac-
curate three-dimensional~3D! empirical pseudopotential
theory. We found that all electronic states are localized in the
growth direction, and that the calculated band gaps of the
d-SL’s agreed quantitatively with experiment. Furthermore,
we showed that optical transition between localized states
can be as strong as in direct-gap materials, thus explaining
the enhancement of PL in thed-SL. Starting from the calcu-
lated electronic wave functions, we now proceed to study the
temperature-dependent carrier dynamics of the vertical trans-
port.

While previous studies of transport in disordered systems
are based mostly on assumed models of the electronic states

and hopping probabilities,8 in the present case of one-
dimensional disorder one can use realistic first principles
electronic wave functions and phonon-mediated hopping
probabilities. We included the electron-phonon interactions
suggested to be important by previous studies on quantum
well transport.9–12

The particulard-SL that we consider here is the one
grown by Sasaki:2 starting from an ordered SL (o-SL!
~AlAs! 2~GaAs! 2 , we replace at random two-ML-thick seg-
ments by one- or three-ML-thick segments, thus creating a
disordered chain with randomly selected equal-probability
layer thicknesses ofn51,2,3. In order to simulate the break-
ing of translational symmetry along the growth axisz, we
have used unit cells with a total of 2000randomlyselected
ML. For computational reason, each such ‘‘supercell’’ is re-
peated periodically. In Sec. II, we briefly discuss the elec-
tronic state wave functions, i.e., the localization of electronic
states induced by disorder.6 In Sec. III and Appendix A, we
present a quantitative model of phonon-assisted hopping be-
tween the localized electronic states. The calculated hopping
probabilities are used in Sec. IV to simulate the single-
particle diffusionvia a Monte Carlo solution of the master
equation. The results are discussed in Sec. V and analyzed in
Sec. VI, where a simple model of the PL process is proposed.
Conclusions are given in Sec. VII.

II. LOCALIZED ELECTRONIC STATES

The single-particle electronic wave functions of thed-SL
were calculated earlier6 using a three-dimensional empirical
pseudopotential method~EPM!, with screened Ga, Al, and
As pseudopotentials that were carefully fitted13 to the band
structure of bulk materials and short-period superlattices. At
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this stage, we used computational supercells of up to 1000
ML total length to simulate the AlAs/GaAsd-SL. Our main
findings were:6 ~i! all states are localized along the disorderz
axis,~ii ! the band gap is reduced by about 100 meV~redshift
of PL!, and~iii ! the near-edge optical transition between lo-
calized states is very strong even though in the ordered SL
this transition is weak, and~iv! the density of states~DOS! is
nonexponential and bound from below, with a lowest pos-
sible conduction-band energy equal to that of a very long
sequence of consecutive~Ga3Al ! layers. Note that the non-
exponential DOS isnot a consequence of a small~1000
atom! sample as it exists in all different randomly selected
configurations of thisd-SL.7

To facilitate fast calculations of many interelectronic ma-
trix elements for transport calculations, a one-dimensional
effective-mass approximation~EMA! was used to model the
pseudopotential results.7 In general, the 1D effective mass
results were in good agreement with the 3D pseudopotential
results, except for the level order of theG- andX-derived
conduction-band edges: While the more accurate EPM
shows thed-SL to be a direct-gap material~the GaAs-like,
G-derived states are the lowest unoccupied localized states!,
in the EMA the AlAs-like,X-derived states are slightly be-
low the G-derived ones.7 ~However, theshapeof the EMA
wave functions agrees very well with the EPM results.! We
have thus ignored theX-valley states in the present study,
and considered only theG-valley electrons. For holes, the
agreement between the EPM and EMA result is quantitative.7

Figure 1 shows the energy vs localization range of the
EMA-calculated states in a 2000 MLd-SL. Each horizontal
line represents the effective length 2Leff over which the wave
function is localized.6 The vertical position of each line de-
notes its energy measured from the GaAs conduction-band
minimum ~CBM!, and from the valence-band maximum
~VBM !, respectively. There are 285 electron and 434 hole
states~not counting the twofold degeneracies of the heavy
hole in the^001& direction! represented in Figs. 1~a! and~b!,
respectively. Away from the localization center, the wave

functions decay exponentially with a ‘‘tail decay length’’ de-
noted byg21 and shown in Fig. 2. The information con-
tained in Figs. 1 and 2~energy, localization length, tail decay
length! completely specifies the electronic structure param-
eters necessary for the transport calculation presented in the
next section.

III. CALCULATING THE HOPPING PROBABILITY
BETWEEN LOCALIZED STATES

Because all states of thed-SL are localized, there is
no physical mobility edge, and thez direction transport can
only occurvia hopping. The hopping is induced by phonon
absorption and emission. From previous work14,15 on III-V
materials, we know that at high temperature (T.100 K!, the
polar optical phonon has the largest contribution, while at
lower temperature (T,100 K!, the piezoelectric effect of the
acoustic phonon has the largest contribution, followed by the
deformation-potential effect of the acoustic phonon. We take
into account all three effects for all temperatures. We ignore
possibleinterfacial phonon modes, and treat the phonon sys-
tem of thed-SL as the same of the pure bulk system of GaAs
and AlAs with averaged frequencies.

The wave function of an electronic state (i ,kW ) can be
approximated as the product ofc i(z), thez direction local-
ized wave function, and exp(2ikW•rW), a plane wave in thex,y
directions~wherekW , rW are two-dimensional vectors!. The en-
ergy of state (i ,kW ) can be approximated as
E( i ,kW )5Ei1k2/2m, whereEi is the i th EMA SL eigenen-
ergy andm is the transverse effective mass. We assume that
the effective masses are equal inx and y directions, and
ignore the difference in transverse mass between GaAs and
AlAs; m is taken as the average value of GaAs and AlAs. In
cases of nonsphericalx,y effective masses, we also take an
average value form.

Our simulation of the transport~see Sec. IV! will be based
on the quantum numberi and not on itssubstates( i ,kW ). We,
thus, need to integrate out thekW degrees of freedom. Let

FIG. 1. Effective-mass calculated localized states of a 2000 ML
AlAs/GaAs d-SL. Each line represents one eigenstate. The line
length equals 2Leff , whereLeff is the localization length, and the
vertical position represent its eigenenergy. There are 285 states in
the conduction band and 434 states in the valence band.

FIG. 2. Effective-mass calculated tail decay lengthsg21 for the
localized d-SL states. The energy zero is at the GaAs VBM for
holes, and at the GaAs CBM for electrons.
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P( i , j ) denote the probability of an electron hopping from
state i to state j , and letW( ikW , jkW8) be the probability of
hopping from substate (i ,kW ) to another substate (j ,kW8).
Then,

P~ i , j !5(
kW

(
kW8

f ik~12 f jk8!W~ ikW , jkW8!, ~1!

wheref ik is the occupation of substate (i ,kW ). For low carrier
density, nondegenerate cases, and by assuming equilibrium
among the substates (i ,kW ) within each statei ~reached within
picoseconds due to the existence ofkW -continuous energy lev-
els!, we have

f ik5
2pb\2

Sxym
e2~\2/2m!k2b, ~2!

whereb51/kBT andT is the temperature andSxy is thex,y
cross-section area of the SL. Becausef ik is much smaller
than one~nondegenerate case!, we can change Eq.~1! to

P~ i , j !5(
kW

(
kW8

f ikW~ ikW , jkW8!. ~3!

W( ikW , jkW8) can be calculated by the Fermi golden rule:

W~ ikW , jkW8!5
2p

\ (
q

uC~q!u2^ ikW uexp„i ~q•r !…u jkW8&2

3$Nqd@E~ i ,kW !2E~ j ,kW8!1\vq#

1~11Nq!d@E~ i ,kW !2E~ j ,kW8!2\vq#%,

~4!

whereq is the three-dimensional phonon wave vector,vq is
the phonon frequency forq, C(q) is the electron-phonon
coupling function,Nq51/@exp(\vqb)21# is the number of
phonons atq, and u ikW &, u jkW8& are the electronic wave func-
tions for states (i ,kW ) and (j ,kW8). The electron-phonon cou-
pling function uC(q)u2 for the optical-phonon polar effect
~OPP!, the acoustic-phonon piezoelectric effect~APP!, and
the acoustic-phonon deformation-potential effect~APD! in
zinc-blende structure are16–21

uC~q!uOPP
2 5

2pe2

V S 1e`
2

1

e0
D \vq

q2
, ~5!

uC~q!uAPP
2 5

8p2e2\P2

Ve`
2r

Kh
2

vq
, ~6!

uC~q!uAPD
2 5

C1
2\

2VrCs
q. ~7!

Here,e is the electron charge,V is the total volume of the
system,e` is the electronic dielectric constant,e0 is the total
~including ionic screening! dielectric constant,r is the den-
sity of the material, P is the piezoelectric constant
(P/25e1235e14), C1 is deformation potential,Cs is the
acoustic-phonon speed, and, finally,Kh[q̂1p̂2p̂31q̂2p̂1p̂3
1q̂3p̂1p̂2 , whereq̂, p̂ are the unit vectors ofq and polar-
ization, respectively. For optical-phonon polar and acoustic-

phonon deformation potential effects, we have considered in
Eqs.~5! and~6! only the longitudinal mode, which has large
electron-phonon coupling. For acoustic-phonon piezoelectric
effect, we have considered all polarization modes. For opti-
cal phonons, we can approximatevq as a constantv0 . For
acoustic phonons, we can approximatevq asCsq.

Substituting Eqs.~4!–~7! into Eq. ~3! and carrying out
analytically22 the summation(kW(kW8, we find the analytical
formulas forP( i , j ) as a function of the energies, positions,
localization lengths, and decay lengths of statei and j .
P( i , j ) is also a function of temperatureT. The final formulas
for P( i , j ) due to OPP, APP, and APD are given in Appendix
A.

IV. MONTE CARLO SIMULATIONS

OnceP( i , j ) is obtained at a given temperature from Eqs.
~A1!, ~A8! and ~A10! of Appendix A, Monte Carlo simula-
tion can be performed to solve the master equation describ-
ing the population and depopulation of leveli :

d

dt
Ni52Ni(

jÞ i
P~ i , j !1(

jÞ i
NjP~ j ,i !, ~8!

whereNi is the occupation number of electron~or hole! in
state i . The Monte Carlo method is used to simulate the
random trajectory of a single electron~or hole!. We study the
dilute carrier limit, thus ignoring possible Coulomb interac-
tions between electrons~or between holes!. If the electron
~hole! is at a given statei , thenPi5( jÞ iP( i , j ) is the rate of
hopping to other states. IfR is a uniformly distributed ran-
dom number between 0 and 1, thent52 ln(R)/Pi can be used
as the time for the electron~hole! to have a hopping event.
Using another random numberR1 , one can determine to
which statej the electron~hole! will hop given their prob-
ability P( i , j ) @this selection process fromNstat states can be
performed in log2(Nstat) operations, using a tree data struc-
ture#. Repeating this process, we obtain the real-space trajec-
tory of this carrier, allowing one to watch how the electron
~hole! hops from one state to another and to measure the
distance traveled by the carrier. To obtain statistically aver-
aged results, we have repeated the process with different
starting states and random number sequences, and have av-
eraged the electron’s~hole’s! energyE(t), and the diffusion
distance squaredd2(t). Typically, we repeat the process
1000 times, letting each time the electron~hole! have five
million hopping events. This takes a few hours of CPU time
on a RS/6000 IBM workstation model 590.

V. RESULTS

Figures 3 and 4 show the energyE(t) and diffusion dis-
tance squaredd̄2(t) curves, respectively, for electrons and
holes at different temperatures. Each curve is an average of
1000 trajectories, with starting statesuniformly distributed
among theNstat states shown in Fig. 1. Thus, the average
t50 energy is given by the centroid of Fig. 1: about CBM
10.7 eV for electrons and VBM20.4 eV for holes.23 In av-
eragingE(t) and in all of the following discussions, we use
only the 1D EMA energyEi , while the transverse kinetic
energykxy

2 /2m5kBT is not included~this constant can, how-

2012 53LIN-WANG WANG, ALEX ZUNGER, AND KURT A. MÄ DER



ever, be added back trivially if needed!. Figures 3 and 4
suggest the following observations.

~i! Comparison of the distances traveled by electrons and
holes ~at T.77 K and t.10210 sec! in Fig. 4~a! and Fig.
4~b!, respectively, shows that the hole is more mobile than
the electron. This reflects the larger hole density of states in
the system.

~ii ! Inspection of the lowT curves shows that there is a
characteristic baselineT→0 curve both for theE(t) and
d̄2(t) functions. These curves reflect the result of downhill
hopping ~i.e., i hops to j whenEi.Ej even if T→0). At
short times, the curves for all temperatures follow this base-
line curve.

~iii ! For finite temperatureT, theE(t) and d̄2(t) curves
deviate from their baseline curves only after a critical time
tc . This indicates that uphill hopping with phonon absorp-
tion takes place fort.tc .

~iv! For T5300,150 K ~for electrons! and
T5300,150,77 K~for holes!, the carriers have reached equi-
librium within our simulation time. This is indicated by the
plateau in theE(t) curves of Fig. 3 and byd̄2(t)52D(T)t
being a straight line in Fig. 4, whereD(T) is the equilibrium
diffusion constant. For the other temperatures considered
here, equilibrium is not reached even after one second.@If the
system were in equilibrium atT55,10,20,40 K, then accord-
ing to the $Ei% spectrum of Fig. 1, more than 90% of the
electron and hole occupation would have been condensed in
the overall lowest energy level of the 2000 ML system.#

~v! The electron equilibrium diffusion constantsD(T) at
T5300,150 K are calculated to be 3.731013 and 3.731011

ML 2/sec, respectively. The hole equilibrium diffusion con-

stants at T5300,150,77 K are 9.131013, 2.231012,
5.33109 ML 2/sec, respectively. The temperature depen-
dence ofD(T) is activated withD(T)5D0exp(2E0 /kBT),
with E05110,90 meV for electrons and holes, respectively.
Notice that this formula does not imply that we have aphysi-
cal mobility edge. A variable range hopping model with tail
states density;(E2EA)

n also yields24 an almost exponen-
tially decreasing diffusion constant vs 1/T. A more recent
work25 using exponential tail density of states and tail state
hopping also obtained an exponential decayD(T) with
1/T. ~Additional discussion of this is provided in Sec. VI C.!

~vi! Diffusion constants foro-SL’s are significantly larger
than those ofd-SL. @As we will see in Sec. VI D, this could
explain the weaker temperature dependence of the PL of
d-SL’s relative too-SL’s.# This is seen as follows: The cal-
culated hopping model electron diffusion constants foror-
dered~GaAs! 7~AlAs! 7 superlattices

26 at T5300,150,100 K
are 4.631014, 1.331014, and 3.831013 ML 2/sec from Ref.
11. ForT5300 K, these values for the ordered 737 SL are
already an order of magnitude larger than our values for the
disordered superlattice with an average 232 period. The
value ofD(T) for 232 orderedsuperlattices must be even
larger than the 737 results.11 Furthermore, for 232 ordered
SL, the localized-state hopping model may no longer hold,
and the continuous-energy miniband scattering model might
be more relevant.12 If that is the case, then the diffusion
constant of the 232 o-SL could be one or two orders of
magnitudelarger than the values from Ref. 11 for the 737
o-SL. Furthermore, the diffusion constant for the ordered SL
drops much slower with temperature than thed-SL results.11

~vii ! Within the first few picoseconds~see wide vertical

FIG. 3. Energy decay caused
by phonon-assisted hopping. Each
curve is an averaged result of
1000 electron or hole trajectories.
The large arrows around 10212 sec
indicate the end of the initial fast
relaxation regime.
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arrows in Figs. 3 and 4!, the electron and hole lose energy
very quickly ~Fig. 3!. This is the time scale characteristic of
optical phonons. After the first few picoseconds, the energy
drops much slower. At the end of these few picoseconds, the
electron~hole! has moved an averaged distance of 77~42!
ML. This distance is larger for electrons than holes, because
the electron has a smaller density of state, thus it has to find
more distant states to hop to. Note that 77~42! ML are com-
parable to the effective localization length of the electronic
states~Fig. 1!. After this initial stage, the electron and hole
are trapped in local energy minima and thus move much
slower.

~viii ! In the typical range of time resolved PL
experiments5 ~nano to microseconds!, the systems below
T5300 K have not yet reached their equilibria. For
T5150,77,40 K, the diffusion curves of Fig. 4 already devi-
ate from theT50 baseline curve. Thus, the carriers are ex-
periencing dispersive transport. This will be analyzed in
more detail in the next section.

VI. ANALYSIS OF THE TRANSPORT RESULTS AND A
SIMPLE MODEL FOR PHOTOLUMINESCENCE

As noted above, in the range of nano to microseconds, the
d-SL at most temperatures is going through a dispersive dif-
fusion process. A general way to describe such a system is to
define a ‘‘time-dependent diffusion constant’’D(t).27,28 In
our case, it can be calculated as

D~ t !5
1

2

d

dt
d̄2~ t !, ~9!

where D(t) is a function of the distribution of electrons
~holes! at timet. Thus, roughly speaking,D(t) is a function
of the average energyE(t). TheD(t)’s calculated by Eq.~9!
are shown in Fig. 5. We see from Fig. 5 that~i! at low
temperaturesT55,10 K, D(t)}1/t; ~ii ! for other tempera-
tures, whenD(t) deviates from the 1/t curve, it can be de-
scribed by a straight line in the log-log plot, thusD(t)
}1/t12b, with 0,b,1; ~iii ! for high temperatures
T5300,150,77 K, after equilibrium is reached,D(t) is a
constant. So, in general, theD(t) curve for a given tempera-
ture can be represented by three straight lines in the log-log
plot of Fig. 5. These are shown as dashed lines in Fig. 5. We
now discuss these regimes and a simple model for the PL
process.

A. The 1/t regime

In the 1/t regime, the diffusion process is purely downhill
~Fig. 3!, so the 1/t scaling of D(t) can be explained as
follows.29,30 Define D8(E) as a diffusion constant for an
electron at energy levelE. D8(E) also determines a charac-
teristic time t(E)}1/D8(E) within which the electron can
diffuse away~or have a hopping event!. D8(E) drops rapidly
with decreasingE. Thus, at time t, the electrons with
t(E),t have already hopped to a lower energy state. Thus,

FIG. 4. Diffusion distance
squared as a function of time.
Each curve is an averaged result
of 1000 electron~hole! trajecto-
ries. The dashed lines with slope
one are the fits for equilibrium dif-
fusion formula d2(t)52D(T)t.
The large arrows around 10212 sec
indicate the end of the initial fast
relaxation regime.
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t(Ecut)5t determines a cutoff energyEcut in the electron
energy distribution, above which there is no electron occu-
pation. The total diffusion constantD(t) is dominated by a
small fraction of the electrons at the highest energy. Thus,
D(t).D8(Ecut). But t5t(Ecut)}1/D8(Ecut), soD(t)}1/t.
This argument can be applied only to low temperatures when
all the hopping events are purely downhill.

B. The 1/t12b regime and the possibility
of continuous-time random walks

When D(t) deviates from the 1/t curve, it can be de-
scribed by 1/t12b. Such scaling is often discussed in terms of
continuous-time random walks~CTRW!.31 In the CTRW
model, a hopping probability distribution function
c(t1);t1

2(11b) is assumed and a time-of-flight experimental
currentI (t)}t2(12b) is obtained. Physically,I (t) is propor-
tional toD(t) through a constant factor. It would thus appear
that the CTRW can be used to describe our results. There are
a few reasons to think otherwise.

~i! In the CTRW model,c(t1) describes the probability
distribution of thenexthopping after a given hopping event
(t1 is measured from the absolute timet of the current hop-

ping event!. The average hopping distance is a constantd,
independent of how many times the electron has hopped and
when @i.e, at whatt1 in c(t1)# the hopping occurred. This
appears inconsistent with the electron transport process that
we find here. In our case, the later the hopping happens in
c(t1), the longer the hopping distanced is. Furthermore,
c(t1) is a function of the number of times the electron has
already hopped. Thus, in our case,c(t1) seems to depend on
theabsolutetime t of the current hopping event. Apparently,
for largert, thec(t1) has larger weight at largert1 . Another
way to look at this is to define at ime-dependenttransport
energyEt ~see below! around which most of the hopping
events occur. Thus the jumping distanced, which depends on
Et, is also time dependent. One can apply CTRW on
fractals.32 But in that simple model~a! the temporal effect
and spatial effect are separable and uncorrelated,~b! there is
no correlation between the timet of the current hopping
event and the hopping distributionc(t1) of the next hopping
event. So, we conclude that the uncorrelated CTRW model
cannot be used to describe our process, although the final
results are the same.

~ii ! The value ofb is shown in the insets of Fig. 5 as a
function of temperature. Note that it cannot be described by

FIG. 5. Time-dependent diffu-
sion constantD(t) as calculated
from Eq. ~9!. The dashed straight
lines indicate the three different
regimes in the transport as dis-
cussed in the text. The lowest
dashed lines have slopes equal
21, thusD(t)}1/t. The interme-
diate dashed lines have slopes
larger than 21, thus D(t)
}1/t12b. The b ’s are plotted in
the insets.
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T/T0 , which is a CTRW result of a multiple trapping model
with an exponential density of state tail exp(2E/kBT0) below
a physical mobility edge.31

Finally, ~iii ! in the CTRWc(t1);t2(11b) model, the sys-
tem reaches equilibrium only att→` for exponentially de-
caying, unbound DOS, thusD(t) will follow the 1/t12b scal-
ing forever~in the exponential density of state tail model, for
T,T0 , the equilibrium state corresponds to an energy dis-
tribution infinitely deep which will take an infinitely long
time to reach!. In reality, of course, given long enough time
the system will reach equilibrium@see Sec. V items~iv! and
~v!#. Thus, theD(t)}1/t12b scaling will give way to a con-
stant ~horizontal line!. This happens in our simulation at
T5300,150 K for electrons and atT5300,150,77 K for
holes. Based on the above arguments, we conclude that one
cannot use theD(t)}1/t12b scaling to justify the validity of
the CTRW.

C. Equilibrium transport and the possibility
of effective mobility edge

As discussed in item~v! of Sec. V, the equilibrium diffu-
sion constants at different temperatures obey the activation
formula exp(2E0 /kBT), although there is no physical mobil-
ity edge in our system. Nevertheless, there are theories which
employ the concept ofeffectivemobility edge.33,25,30,34The
essence of these theories is that the carriers need to hop to
some higher energy levels in order to make subsequently
more efficient hops around those high energy levels. To
check such a concept, we have plotted in Fig. 6 the energy
resolved diffusion constantDD(E) ~the diffusion contribu-
tion around energyE! for holes atT5300 K. The integral
*DD(E)dE equals the total diffusion constantD. Numeri-
cally, DD(E) is calculated by averaging the square of the
hopping distance@i.e, (zi2zj )

2# of each hopping event
Ei→Ej , where max(Ei ,Ej) falls into the interval [E,E

1dE]. The average is carried out after the system has
reached its equilibrium. Also plotted in Fig. 6 are the hole
distribution functionf (E) at equilibrium and the hole den-
sity of states~DOS! of the d-SL. The DD(E) is a rather
broad function with a larger than 0.1 eV range. The maxi-
mum ofDD(E) is often called33,25transport energyEt and is
sometimes regarded as an effective mobility edge.30,34How-
ever, we want to point out that this effective mobility edge is
rather different from the real physical mobility edge of the
original multiple trapping model,35,36 because here the con-
tribution to the diffusion comes from a rather broad range,
both below and aboveEt . Unlike the common
theories,33,25,30,34 which assume an exponential DOS tail
exp(2E/kBT0), our DOS(E) aroundEt does not follow such
exponential form as evident from Fig. 6. Thus, while in the
common theories,f (E)5 DOS(E)exp(E/kBT) is exponen-
tially increasing into the band gap region (T,T0), our f (E)
has a peak only 60 meV belowEt and the conduction-band
DOS has a lower bound cutoff. Furthermore, ourg21(E)
depends onE. Thus,a-Si theories do not directly apply to
our case and more studies are needed to see how useful the
concept of the effective mobility edge is in our case. A
simple model which assumes tail state hopping with an ex-
ponential DOS and a constant localization decay length
g21 yields25 an activation formula exp~2kBT0/kBT! for the
diffusion constantD in one dimension, which seems in
agreement with our results. Furthermore, as mentioned in
Sec. V, item~v!, models with a;(E2EA)

n localized band
tail also yield approximately exp(2E08/kBT) results.

24 So the
D(T);exp(2E0 /kBT) is a very general result and can be
obtained from many different situations; it does not imply an
exponential DOS and multiple trapping.

D. A simple model for the PL process

Given the above transport results, we can construct a
simple model for the photoluminescence process ind-SL’s.
While more detailed results should be obtained by direct
numerical simulations~especially taking into account the ef-
fects of Coulomb interactions and the correctradiative tran-
sition matrix elements!, here, we merely use a simple model
to judge whether the PL process can be explained by consid-
ering the vertical transport alone, i.e, ignoring the details of
the xy lateral transport.

We consider a geminate process. LetI (t) denote the car-
rier density.I (t) decays both because of radiative and non-
radiative effects. The radiative decay is described here by a
single decay timeta . For the nonradiative decay, it is as-
sumed that the electron and hole will annihilated by nonra-
diative centers as they diffuse away from their current posi-
tions. Thus, the nonradiative channel is proportional to the
diffusion constantD(t) for both electrons and holes. Thus,
we have

dI~ t !

dt
52a@Del~ t !1Dhole~ t !#I ~ t !2

1

ta
I ~ t !, ~10!

where we assume thata and ta are time and temperature-
independent constants. The PL intensity is proportional to
I (t) with a prefactor 1/ta . Integrating Eq.~10!, we have

FIG. 6. The energy-resolved diffusion constantsDD(E),
the hole distribution functionf (E), and the density of states
DOS(E). DD(E)dE is the contribution to the diffusion constant
from energy rangeE to E1dE. See text for its calculation.
f (E)5 DOS(E)exp(2E/kBT). TheEt is the transport energy used
in some theoretical models.~Refs. 25, 30, 33, and 34!. There is a
5 meV Gaussian broadening for each curve.
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I ~ t !5I 0expF2aE
0

t

@Del~ t !1Dhole~ t !#dt2t/taG
5I 0expF2

a

2
@ d̄2el~ t !1d̄hole

2 ~ t !#2t/taG . ~11!

Note that in the exponential, only one term dominates at a
given time range. At the experimental time range of nano-
seconds to microseconds, forT less than 300 K, theDel(t)
and Dhole(t) are described by 1/t12b, thus d̄el

2 (t) and
d̄hole
2 (t) scale astb. Thus, within this time range, the PL
intensity is a stretched exponential. This agrees with the ex-
perimental results.5 On the other hand, for higherT
(T5300 K!, Del(t) andDhole(t) are constants, thus the PL
decays as a single exponential. This also agrees with experi-
mental results.5 To determinea, we required Eq.~11! to give
the experimental5 exponential decay time of 350 ps for37

T5300 K. This givesa52.231025 ML 22. Assuming
ta51 ms, we can then obtain the total PL intensity
1/ta*0

`I (t)dt as a function of temperatureT. The results are
shown in Fig. 7, and compare well with experimental
results.4 In our simple model the PL process is dominated by
the radiative decay itself at low temperatures (T55,10,20
K!. In these cases, the nonradiative channel does not play a
very important role. At higher temperatures, especially for
T5300 K, the nonradiative decay dominates the PL process
@i.e, the decay ofI (t)#. The slower drop of PL intensity with
increasing temperature compared witho-SL results4 is prob-
ably a consequence of a one or two order of magnitude
smallerD(T) in d-SL compared with the value ino-SL at
T5300 K @Sec. V, item~vi!#. A more detailed comparison
has to await direct PL process simulations. They might re-
veal whetherta anda are functions oft andT. Neverthe-
less, the overall comparison of our simple model with the
experimental results is very good.This probably means that
the vertical transport is sufficient to explain the PL process.

Finally, our vertical transport results might shed some
light on the explanation of a recent PL thermal-quenching
experiment.38 Especially, the bending of thed-SL curve in
Fig. 4 of Ref. 38 aroundT5120 K might correspond to the
start of deviation of thed̄2(t) curve from theT50 baseline
curve within the experimental time range.

VII. CONCLUSIONS

Starting from a realistic description of the electronic
structure of disordered AlAs/GaAs SL’s, we have simulated
from first principles the vertical transport in thed-SL, due to
phonon-assisted hopping. The lateral degrees of freedom
were integrated out analytically, and the hopping probabili-
ties between localized states along thez direction were cal-
culated numerically, using effective mass wave functions and
GaAs/AlAs material parameters pertinent to electron-phonon
interaction as sole input. The hopping probabilities were then
used in a Monte Carlo simulation of carrier diffusion.

We have identified the following time and temperature
regimes of vertical transport.

~i! At very short times (;picoseconds!, hopping is mostly
downhill, and independent of temperature. At very low tem-
perature (T&10 K!, downhill hopping~i.e., phonon emis-
sion! continues to be the dominant process, and the diffusion
‘‘constant’’ behaves asD(t)}1/t. The carriers will eventu-
ally ‘‘freeze’’ in the lowest energy positions, and will be
unlikely to escape.

~ii ! At high temperature (T*300 K!, the carriers reach
equilibrium within about a nanosecond, and the transport is
then described by a standard diffusion law.

~iii ! At intermediate temperatures (T*150 K for elec-
trons, andT*77 K for holes, the carriers reach equilibrium
after nano to microseconds. In the equilibrium regime, the
diffusion constant behaves asD(T)}exp(2E0 /kBT). How-
ever,E0 is not an activation energy to a mobility edge, since
in the quasi-one-dimensionald-SL all statesare localized.

~iv! Before reaching equilibrium, the carriers experience
dispersive transport. The diffusion ‘‘constant’’ is time depen-
dent asD(t)}1/t12b. For intermediate temperatures, disper-
sive transport occurs within the experimental time span
~nano to microseconds! of time-dependent PL experiments.5

Using a simple model of geminate photoluminescence, we
have shown that such a power lawD(t) leads to a stretched-
exponential quenching of the PL intensityI (t), in agreement
with experiment.5

We have pointed out some important differences between
the present results and previous models, such as continuous-
time random walk, and the multiple trapping model~with a
physical mobility edge!, even though similar scaling laws are
obtained. We also discussed the usefulness of the effective
mobility edge concept in our system. Finally, our simple
model of the PL process demonstrates that the PL process of
the d-SL is likely explainable by the vertical transports
alone, ignoring thexy direction diffusions.
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APPENDIX A: THE FORMULAS FOR P„ i ,j …

For theoptical-phonon polareffect:

POPP~ i , j !5 fOPPE
0

qmax
@N0e

l1 f g~x1!

1~N011!el2 f g~x2!#I i j
2 ~qz!

1

qz
dqz , ~A1!

where

fOPP5
v0e

2

\ S pmb

2 D 1/2S 1e`
2

1

e0
D , ~A2!

l65
b

2
~DE62uDE6u!, ~A3!

and

DE65Ei2Ej6\vq , ~A4!

and

x65S b\2

2m D 1/2S qz2 1
muDE6u

\2qz
D , ~A5!

and

f g~x!5
2

Ap
ex

2E
x

`

e2t2dt. ~A6!

N051/@exp(\v0b)21# in Eq. ~A1! andvq5v0 in Eq. ~A4!
for the optical phonon.qmax in Eq. ~A1! is determined by the
boundary of the phonon Brillouin zone. Finally,I i j (qz) is
defined as

I i j ~qz!5E c i~z!c j* ~z!eiqzzdz, ~A7!

wherec i(z) andc j (z) are normalized, one-dimensional lo-
calized wave functions for statesi and j .

For theacoustic-phonon deformation-potentialeffect:

PAPD~ i , j !5 f APDE
0

qmaxF S \2qz
2b

4m D 1/2N~qz!~e
2l1

2
1e2l2

2
!

1el2S x21
Ap

2
f g~x2! D G I i j2 ~qz!

1

qmax
dqz ,

~A8!

where

f APD5
C1
2m3/2qmax

prCs\
3b1/2. ~A9!

Here, vq5Csqz in Eq. ~A4! for acoustic phonons and
N(qz)51/@exp(\Csqzb)21#. Cs is the velocity of the lon-
gitudinal acoustic phonon.

For theacoustic-phonon piezoelectriceffect:

PAPP
p ~ i , j !5 f APP

p E
0

qmaxHNp~qz!Fel1 f g~x1!K̄p
2~u1!

1el2 f g~x2!K̄p
2~u2!

1A2el2 f g~y2!K̄p
2~u2!I i j

2 ~qz!
1

qmax
dqz ,

~A10!

where

fAPP
p 5

e2P2~8p3bm!1/2

re`
2\

qmax
Cs
p ~A11!

In Eq. ~A10!, y2 is defined as@(bqz
2\2/2m)1/2x2#1/2. The

superscript and subscriptp stands for polarization. Thus,
Np(qz)51/@exp(\Cs

pqzb)21# and vq5Cs
pqz in Eq. ~A4!.

u6 is defined as

sinu65
~21buDE6u!1/2

~21buDE6u1\2qz
2b/2m!1/2

. ~A12!

The K̄p
2(u) is then given by

K̄L
2~u!5

9

8
sin4ucos2u, ~A13!

K̄T1
2 ~u!1K̄T2

2 ~u!5
1

8
~3cos2u21!2sin2u1

1

2
cos2u sin2u.

~A14!

In order to carry out the integral*0
qmaxdqz in Eqs. ~A1!,

~A8!, and ~A10!, we must first calculateI i j (qz) defined in
Eq. ~A7!. I i j (qz) can be calculated numerically fromc i(z)
andc j (z), using fast Fourier transformation. However, here,
we chose to calculateI i j (qz) analytically from modelc i(z)
andc j (z). First, we modelc i(z) as

c i~z!5a i f ~ uz2zi u!cosS z p

Lz
~ i21!1u i D , ~A15!

whereLz is the z direction length of the system,zi is the
central position of the localized wave function,u i is a phase
shift, anda i is a normalization factor. The state indexi is
counted from the lowest state of the system.f (z) equals
e22z/Leff for z,Leff and e222(z2Leff)g for z.Leff , where
Leff is the effective localization length of the state~shown in
Fig. 1!, 1/g is the energy-dependent tail decay length of the
state@g(Ei)# ~shown in Fig. 2!. By comparing to the directly
calculated EMA wave functions, we found that Eq.~A15!
models the wave functionc i(z) well for all states. The factor
cos@z(p/Lz)(i21)1ui# describes correctly the nodal structure
of the state. In Eq.~A7!, when we calculateI i j (qz), assum-
ing j. i , we let u i50 and adjustu j so that c i(z) and
c j (z) are orthogonal.a i , a j are determined accordingly
based onu i and u j . After that, I i j (qz) can be carried out
analytically as a function ofzi ,zj , u i ,u j , anda i ,a j .

After I i j (qz) was obtained, integrals*0
qmaxdqz in Eqs.

~A1! and ~A8! and ~A10! were performed numerically. Fi-
nally, P( i , j )5POPP( i , j )1PAPD( i , j )1(pPAPP

p ( i , j ) was ob-
tained for all pairs (i , j ) in Fig. 2 for a given temperature. We
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find that if Ei.Ej by an amount larger than\v0 , then
POPP( i→ j ) has the largest contribution of allP’s at all tem-
peratures. IfEi is not larger thanEj by \v0 , then~i! at high
temperature (T.100 K!, P OPP has the largest contribution,
~ii ! at lower temperature (T,100 K! and for smallEj2Ei if
Ej.Ei , PAPP has the largest contribution, followed by
PAPD ~a factor of 2–10 smaller thanPAPP).

The parameters used in Eqs.~A1!,~A8!, and~A10! are the
following. Some of them are from calculations13 and others

from experimental results.39 P5(20.3220.45)/2 C/m2,
\v05(36150)/2 meV, e0(GaAs)512.85, e0(AlAs)
510.06, e`(GaAs)510.89, e`(AlAs)58.16, C1(el)
5(11.38110.56)/2 eV,C1(hole)5(2.712.6)/2 eV, m(el)
5(0.07710.158)/2 electron mass,m(hole)5(0.41610.439
10.07910.157)/4 electron mass, Cs

L5(36144)/2
meV/qmax, Cs

T50.58Cs
L , qmax52p/10.6826 bohrs21. In

the averages, the first number is the value of GaAs, the sec-
ond number is for AlAs.
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6K. A. Mäder, L.-W. Wang, and A. Zunger, Phys. Rev. Lett.74,
2555 ~1995!.
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