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Abstract Accurate information of energetics is essential to map out the temperaNE versus 
composition phase diagram of a binary substitutional AI-,B, alloy. Since it is computationally 
prohibitive to calculate the total energies of all ZN canfigurations obtained by occupying N 
sites by A and B atoms, we map instead the ob initio calculated total energies of only O(10) 
simple smchlres (with < 8 atomsfcell) onto a generalized king model (including pair and 
many-body interactions) finding lhat for Ag-Am a close reproduction (wilhin - 2 meV/atom) 
of LDA enezgies of arbi trq strucmres can be achieved by including relatively short-ranged 
interactions. Subjecting these king interaction parameters to a Monte Carlo simulated annealing 
treatment, we obtain (i) the structures having T = 0 minimum energy ('ground states'): (ii) the 
orderdisorder phase transition temperaas ,  (iii) the mixing enthalpy for the disordered alloy; 
and (iv) the high-temperature atomic short-range order (SRO). While the predicted ordering 
temperatures for the ground slate SmCNres ax too low lo enable direct growth into the ordered 
phase, the calculated mixing enthalpy and the SRO parameters for Ag-Au agree quantitatively 
with experiment and clearly indicate a tendency for ordering, not phase separation. 

1. Introduction 

Theoretical calculations of temperature-composition phase diagrams of A,-,B, alloys are 
needed for (i) verification [ 1-31 of existing measurements for low-temperature phases and of 
orderdisorder transition temperatures; (ii) predictions 14-61 of hitherto unsuspected ordered 
structures missed by experimentalists; and (iii) development of understanding [4,7] of the 
electronic and structural origins of phase stability. Under class (i) we note the calculation 
of phase diagrams for III-V and &VI semiconducting alloys [1,2], and noble-metal alloys 
[3,4]. Under class (U) we mention the recent prediction 151 of the Ni7AI structure in 
Nil-xNx alloys; the LIZ (PdsPt), L l o  (PdPt), and LIZ (PdPtl) shvctures in Pdl-,Ptx 
alloys; and superlattices stacked along the lo121 directions in Rh-,Pt, alloys [8]. Under 
class (iii) we note the discovery that scalar-relativistic effects (mass-velocity and Darwin 
term) are a major contributions to ordering in Ni-Pt [7] and phase separation in Au-Pt [7]; 
that spin polarization stabilizes the L l z  structure in Pd&r, Pt?Cr, and Pd3Fe [9]; and that 
atomic size differences in Ni-Au and GaP-hP lead to phase-separating low-temperature 
ground states, but with an ordering-type short-range order at high temperatures [lo]. 

Phase diagrams and order-disorder phenomena in binary AI-,B, substitutionat alloys 
can be studied theoretically by mapping atoms A and B onto a spin-; generalized king 
model [ 11,121. In such a model one assignsA(l) a set of 'spin' variables $ (i = 1,2,  . . . , N )  
to each of the N sites of the lattice, with Si = -1 (+1) if site i is occupied hy an A (B) 
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atom, and (2) a set of interaction energies { J F }  among the various sites belonging to a 
‘figure’ F (pairs, triplets, quadruplets, etc). A configuration U is defined as a particular set 
of occupations of each of the N lattice sites by an A (or a B) atom. The total energy E ( u )  
for any configuration U can be rigorously cluster expanded (CE) as 

ECE(U) = JO+ c J i i i ( U ) +  x J ; j $ ( U ) i j ( O ) +  J i j k ~ i ( ~ ) ~ j ( U ) ~ ~ ( U ) + ” .  (1) 
i j <i k < j < i  

where { J F }  are the interaction energies, and the summations are over all sites in the 
lattice; over ‘figures’ F containing all pairs of sites; and over all triplets, and so on. 
The interaction energies { J F }  are the same for all configurations U. In the traditional 
approach [ 13,141 one assumes U priori an interaction range (usually a short-ranged pair 
interaction) and extracts the Ising interaction parameters by fitting [13,14] them to the 
experimentally determined phase diagrams [I41 or to the experimentally determined diffuse- 
scattering intensities [15,16]. Recent first-principles alloy theories (reviewed in [ l l ,  121) 
instead extract these king interaction energies directly from the ab initio calculated total 
energies of a small set [U} of ordered configurations: the basic idea is that if the series 
of equation (1) converges reasonably rapidly (in practice, 10-20 terms are needed), these 
energies JF can be obtain by inverting [I71 or least-square fitting [5] equation (1) to a set 
of (10-20) total energies {E,jirect(u)] of structures (U} calculated directly from e.g., using 
the local density approximation (LDA) [IS]. Because the king representation of the energy 
is a linear function of JF and the spin products, once { J F }  is known one can readily use 
equation (1) to predict the total energy of any of the 2N configurations. One can further 
calculate temperature-dependent physical properties using statistical mechanics techniques 
[ I l l .  The predictions from these fik-principles cluster expansion methods have met with 
not only qualitative but in many cases also quantitative agreement with expcriment [I 1,121. 

A successful alloy theory depends critically on its ability to accurately reproduce 
the alloy energetics, since the temperature versus composition phase diagram represent 
a delicate balance between structures with nearly equal energies. For a fixed type of lattice 
with N sites, there are 2N substitutional configurations for binary Al-,B, alloys. It is 
obviously impossible to calculate the total energies of such a large number of configurations 
using self-consistent, first-principle LDA methods, whose computational efforts increase 
rapidly (cx M 3 )  with the number of atoms M in the unit cell. However, a cluster- 
expanding physical quantity in terms of king-like interaction requires but 10-20 total energy 
calculations, yet it enables prediction of ZN total energies. Thus, this approach extends the 
applicability of first-principles total energy calculations from structures with cells containing 
a small number of atoms (- 10) to a large number of structurally complex substitutional 
configurations, including random alloys, alloys with short-range order, superlaliices, and 
antiphase boundaries, many of which are computationally too complex to be treated using 
current first-principles methods. For systems consisting of atoms with very different sizes, 
the a t o m  often move off their ideal lattice sites (‘relaxation’) causing a slowing down in 
the convergence of the cluster expansion [19-211. The recently developed [19] mixed-space 
cluster expansion, which sums an infinite series of pair interactions cast in reciprocal space 
(treating all other interactions in real space), has overcome this problem. It predicted the 
correct T = 0 ground state structures, the mixing enthalpies, and the diffuse-scattering 
intensities of Cu-Pd and GaP-InP systems [19,22]. 

We selected the Ag-Au system for our study because there is a wealth of previous 
theoretical and experimental data on this system to compare with. 

(i) Solid state mixing enthalpy has been measured [23] and also has been calculated 
using empirical methods [24-261 and first-principles methods in junction with the cluster 
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expansion techniques [l, 27-30]. 
(ii) Electronic structure and charge transfer effects have been investigated both 

experimentally [31-341 and theoretically 135-391. 
(iii) The short-range order has been measured by a number of groups [15,40,41]. The 

recent careful measurement and analysis of SRO [15] has prompted us to make a direct 
comparison between theory and experiment. 

(iv) The recent explosion of interest in metallic superlattices (including the Ag-Au 
system [42-47] has given us added reason to investigate this system. 

The Ag-Au system is particularly convenient for the cluster expansion method, since 
the elemental face-centered cubic Ag and Au constituents nearly the same measured 
room-temperature lattice constants [48] (4.086 and 4.078 A for Ag and Au, respectively). 
so there is no slowing down of the convergence of the cluster expansion. In this paper, we 
demonstrate how we obtain accurate alloy properties of Ag-Au using as input a reasonably 
small number of first-principles LDA total energy calculations. Specifically, we will show 
how we (i) select structures for LDA total energy calculations; (ii) select the interaction 
figures for the cluster expinsion; (iii) test the convergence of the cluster expansion; (iv) use 
the Monte Carlo [49-511 simulated annealing [52] technique to predict the low-temperature 
ground state structures and the order-disorder phase transition temperatures; (v) compare 
the calculated and experimental mixing energy for the disordered alloy; and (vi) compare 
the calculated and experimental short-range order parameters. 

2. Method of calculation 

The excess energy (or low-pressure enthalpy) AE(u, V )  of any substitutional configuration 
U is given by 

AEdirest(U3 V ) = E ( ~ , V ) - [ ( ~ - ~ ) E A ( V A ) + ~ E B ( V B ) ~  (2) 

with the volume, V ,  dependence and is defined with respect to the energies of equivalent 
amounts of the pure solids A and B at their respective equilibrium volumes, V A  and VB. The 
low-temperature long-range order (LRO) of a given lattice type is then interpreted as the 
configuration U which gives the lowest AEbe,(u, V,) at the equilibrium volume V,. One 
can cluster expand (CE) the directly calculated AEdmt(u, V )  in a finite king-like series as 
in equation (1). By taking advantage of symmetry properties, the terms in equation (1) can 
be further grouped together in a concise form: 

A.EcE(u.. V )  = D F J F ( V ) ~ F @ )  (3) 
F 

where J F ( V )  are volumedependent interaction energies of basic lattice figures F ,  e.g.. 
nearest-neighbor pairs, next-neighbor pairs, triangles, etc. Figure 1 shows examples of 
some of these figures on a fcc lattice. The 'lattice-averaged2pin products' E+) are the 
product over all the figures f (related to F )  of the variables Sf, averaged over all symmetry 
equivalent figures of the lattice. DF is the degeneracy of the figure F .  Since in the Ag-Au 
system the lattice mismatch ( a ~  - a g )  is very small, we will ignore the volume dependence 
in equation (3), using instead v = (VA + V B ) / ~  or a cubic lattice constant Z = 4.032 A. 
All of the terms on the right-hand side of equation (3) are trivially determined geometrical 
quantities, with the exception of J F .  the effective interaction energies. Since (EF(u)) is 
a complete, orthonormal set of polynomials, the expansion equation (3) is exact [531, if 
not truncated. In practice, one hopes that this series converges reasonably rapidly, so only 
N ,  - U(10) interactions are retained (the first few pair interactions, as well as several 
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many-body terms). We determine the NJ interaction 
k t l y  calculated A E a ( u )  values onto AECa(u) of 
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Table 1. The directly calculated LAPW ex- energies AEdrcct(.r) (error - k2 mevlatom) 
(equation (2)). the cluster-expanded e n e m  AEa(u)  (equation (3)), and the prediction enor 
6 p ~  (equation (5)) in mevlatom for Agi.IAu,. In the cluster expansion (61 I)  we include 
N, = 18 ordered structures and NI = 12 inleraction energies. These include the reference 
(empty) interaction Jo, point interaction J I ,  six pair interactions, J2, Kz. Lz. MI. Nz, and 
02, three triplet interactions, J3, K3, and LJ, and one quadnrplet inleraction Ja, Many of the 
suucmres cm he defined as supedaltices in given orientations, as shown in this wble. Structures 
D1, D4, and D7 are defined in figures 10 and 11 in [SI, while the SQS struchues are defined in 
figure 1 and equations (2H4) in [38]. The LIZ slructllre is also not a superlattice The symbol 
* denotes the structures that are not included in OUT cluster expansion to extract the interaction 
energies. so the energy value is a pure prediction. The average prediction enor is 1.0 meVhtom, 
while lhe largest prediction e m r  is 1.8 meVlatom, 

L 10 
-59.1 
-0.4 

81 
-40.8 
-0.4 

832 
-40.0 
-0.8 

21 
-29.2 

1.0 

w 
-27.9 

I .4 

22 
-28.8 

1.2 

L12 (A3B) 
-43.4 
0.0 

DI (A7B) 
-20.8 

1.8 

Llo 
-59.7 
-0.4 

MOR2 

- I  .7* 

MOR2 

-1.3* 

Y1 
-37.0 
0.4 

-49.7 

-46.9 

Y3 
-35.4 
0.8 

Y2 
'-44.1 

-0.1 

LIZ (AB31 
-44.0 

0.1 

D4 (A4B4) 
-42.9 

1.1 

Llo 
-59.1 
-0.4 

MoFiz 

-1.7* 

Mohz 

-1.3* 

-49.1 

-46.9 

DOzz 
-42.3 
0.0 

D 012 
-41.0 
-0.2 

'40' 
-55.3 
-0.4' 

Ag 
0.0 

-0.3 

D7 (AB7) 
-20.0 
0.6 

L11 
-43.0 
0.4 

CY1 
-30.2 
-0.5 

012 
-30.8 
-0.5 

VI 
-21.3 
0.7" 

v3 
-21.4 
1.0" 

v 2  
-22.9 
-0. I * 

Au 
0.0 

-0.4 

SQSS. (A4B4) 
-42.5 
0.5 

L11 
-43.0 

0.4 

hloPtz 

-1.7* 

MOR? 

-1.3* 

WI 
-35.9 

-49.1 

-46.9 

1.4% 

w 3  
-34.4 

0.1% 

w2 
-50.6 
-0,4* 

in the compound and its pure constituents [60], leading to, e.g., the total energy of A3A in 
the L l z  or DO= crystal structures being equal to the fcc value (A). In practice we use sets 
of k-points that are equivalent to 408 fcc special k-points [SS]: increasing the equivalent 
k-points from 60 to 408, the energy of each structure changes by less than 1 meVlatom, 
except for the Y1 and Y2 structures for which the changes are 1.2 and 1.6 meV/atom, 
respectively. Table 2 shows the effects of k-point sampling on AE,J,,~ for a few structures. 
We also use a large basis set cut-off of RMTK- = 9.0 (R$ = R k  = 2.55 au), which 
corresponds to - 85 LAPWdatom. In the LAPW calculations, the core states are treated 
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Table 2. This table illusbates the effects of k-poinl sampling on the calculated AEdi,, 
(in meVIotom) of some ordered compounds. The s m c t u m  are defined in table 1. We have 
used the equivalent 12-point sampling scheme of [60]; lhese two k-point sets ue equivalent to 
60 and 408 fcc specid k-points, respectively (see [Sal). We also give the achlal number of 
k-points, Nk, in the irreducible zone for a particular ~Vuctuce. 

Structure Formula 

60 equiv. 
fcc 12-points 

136 -36.2 
aa -35.8 
a8 -42.5 

ao -60.7 
sa -34.8 

136 -51.0 

136 -35.1 

408 equiv. 
fcc k-points 

Nk AEdimct 

1056 -35.9 
608 -37.0 

1056 -50.6 
516 -59.1 

1056 -34.4 

608 -44.1 

608 -35.4 

fully relativistically, while the valence states are treated scalar-relativistically, ignoring 
the spin-orbit interaction (its effect on AH is rather small). The total error in AEdrect is 
estimated to be - 2 mevlatom, which is comparable to the energy of the zero-point motion. 

Once a converged cluster expansion of equation (3) is established, we can use it to 
calculate the properties of the ideaUy (T  + CO) random alloys. Denoting a configurational 
average for the ideally random (R) state by angular brackets ( ) R  the mixing enthalpy of 
the random alloy is 

A&&) = (A&E(U))R  = ~ D F J F ( ~ F ) R  = ~ D F J F ( ~  - I)kF (6) 
F F 

where (fi)~ = (ax - l)kF and k~ is the number of vertices in figure F ,  so that at x = 1 
and T + 00 we have 

2 

The ordering energy of configuration U measures the difference between the energy of U 

and that of the random alloy with the same composition: 

mord(u) A E ~ ~ ( u )  - ( A E ~ ~ ( u ) ) ~  = D F J & T F ( u )  - ( Z X  - 1 ) 9 .  (8) 
F 

Also, using our set of { J F }  we can calculate the lowest-energy ‘ground state structures’ 
by applying linear programming techniques [61,62], or simply searching a large enough 
structural data base [5] to locate the lowest-energy structure using equation (3). We will use 
a Monte Carlo simulated annealing method [22,52] to obtain simultaneously (i) the T = 0 
ground state structures (on a finite cell), (ii) the order-disorder transition temperatures, (iii) 
finite-temperature short-range order (SRO) and energies of the disordered alloy. A Monte 
Carlo cell size of 163 = 4096 atoms (with periodic boundary conditions) was used in our 
calculations. Monte Carlo simulated annealing was performed in the canonical ensemble at a 
fixed concentration, with the transition temperature being calculated from the discontinuity 
in the internal energy as a function of temperature, and the ground state determined by 
the state of the simulation at a temperature where all configurational changes proved to 
be energetically unfavorable. Since we ran the Monte Carlo simulation with decreasing 
temperature, it tends to supercool a structure. The resulting transition temperature is thus a 
lower bound of the real T,. The estimated error is around 20 K for the present system. 
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The Warren-Cowley SRO parameter [63,63] for the Nth atomic shell at distance Rlmn 
from the origin is 

where q = '2x - 1 and  fib,^) is the configurational average of the pair correlation function 
between sites zero and N .  Note that a s ~ o ( R o ~ )  1 by definition. The Fourier transform 
of the real-space SRO is OISRO(~) ,  which is proportional to the diffuse intensity due to SRO. 
Its value depends on the number, N R ?  of real-space shells used in the transform: 

~ s a o & ,  N R )  = WRo(R!mdeik'am". (10) 

In the calculation of as~o(Ri,,) and asRo(k, N R ) ,  500 Monte Carlo steps per site are used to 
equilibrate the system (which is initialized to a completely random state), and subsequently 
averages are taken over 100 Monte Carlo steps per site. The values of N R  in our calculations 
are dictated by the number of experimental SRO parameters reported 11.51. The absolute 
values of the SRO parameter increase as the annealing temperature is lowered. For Ag-Au, 
lowering the temperature at which our Monte Carlo simulation (T = 600 K) is performed 
by 100 K increases the values of the SRO parameter by less than lo%, which is similar to 
the experimental accuracy. The values of experimental SRO parameters are very sensitive 
to the experimental conditions: sample growth conditions, history of heat treatment etc. 
The experimental Ag-Au samples are homogenized at T - 1200 K and subsequently aged 
at T - 500 K the samples probably reflect the state of thermodynamic equilibrium of a 
temperature somewhat above 500 K. 

3. Results 

3.1. LDA energies of ordered structures 

The directly calculated excess enthalpies AEajrect(u) are collected in table 1. One 
immediately notices that are negatiLre, unequivocally indicating ordering in this 
alloy system. Among this set of 32 structures, we find that the D1, Llz, MoPtz, Llo, MoPtz, 
L12, and D7 have the lowest energies at their respective compositions of x = i, i ,  4, i, ;, 
$, and g. These structures could be the contenders for the ground states, but the ground state 
structure that we calculated by MC need not be in the input set. The D1 structure at x = $ 
can not be the ground state, since the energy of a linear combination of the nearby Llz  
structure at x = $ and the pure element at x = 0 is -21.7 meV/atom and is slightly lower 
in energy than the D1 structure energy of -20.8 meV/atom. Similarly, the D7 structure 
at x = can not be the ground state either, since the energy of a h e a r  combination of 
the nearby Llz structure at ( x  = a )  and the pure element at x = 1 is -22.0 meV/atom 
and is slightly lower in energy than the D7 structure energy of -20.0 meVIatom. Note 
that (AEdirrer(u)] does not show any systematic trend with U that can be recognized. By 
extracting a s e 6 f  interaction energies ( J F }  we will unravel the trends. 

3.2. Clusrer interaction energies 

We will discuss three levels (in increasing order of complexity and accuracy) of choosing 
interaction energies. First, Connolly and WUiams [ 171 (CW) proposed a cluster-expansion 
scheme to obtain the nearest-neighbor fcc interactions, Jo, J I ,  Jz, J3. and 34 defined in 
figure 1 from N ,  = 5 structures: the fcc elements A and B, L la  (A3B and A B 3 )  and Llo 
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(AB). Using this original Connolly-Williams procedure, we obtained an average prediction 
error of ~ P E  = 1.6 meV/atom and a maximum prediction error of 4.4 meviatom for 27 
other structures that are not used in obtaining the interaction J values. The prediction 
errors for some specific structures are unsatisfactory. For example &PE are 4.4, 2.4, 3.0, 
2.6 meV/atom, for structures ‘40’, 72, DOZZ ( A d u s ) ,  and W3, respectively (larger than 
the estimated error of direct LDA calculation of 2 mevlatom). The large error for ‘40’ and 
DOzz is because the Connolly-Williams set of interactions creates a spurious degeneracy 
of the Llo and ‘40’ structures, and similarly for the Llz and DO22 structures. 

Second, in addition to the Connolly and Williams set of five interactions, Lu et al [SI 
has added more pair interactions (Kz, Lz,  and Mz) to the set. These eight interactions 
were obtained from fitting the energies of 12 structures: A, L ~ z ,  DOzz,  e l ,  Llo, L l l ,  
‘40’, 22, g2 ,  Liz, DOzz, and B. Using this procedure, we obtained an average prediction 
error of &PE = 1.6 meV/atom and a maximum prediction error of 4.0 mevlatom for 20 
other structures that are not used in obtaining interaction J values. Here too, the prediction 
errors for many structures are also unsatisfactory, e.g. 8 p ~  are 2.2, 4.0, 3.1 mevlatom, for 
structures a2, y l ,  and Y2. respectively. 

Third, figure 3 shows a converged set of interactions for Ag-Au obtained using 18 
structures { U )  in equation (4) (i.e., A, B, Llo, Llz, Llz, L11, 0022, DOz, 21, 23, 
a l ,  a2, el, g2, Y1, Y2,  Y3,  and W2). These include, the reference (empty) interaction 
Jo. point interaction J I ,  six pair interactions, 1 2 ,  K2, Lz, Mz, Nz, and 02, three triplet 
interactions, J3. K3. and L3, and one quadruplet interaction Jq. Table 3 gives the values 
of these interaction energies (denoted ‘fit 1’), while figure 3 further shows that the nearest- 
neighbor pair interaction JZ (table 3) is dominant, while other interactions are smaller by at 
least an order of magnitude. The average fitting error is 0.6 meV/atom and the maximum 
fitting error is 1.3 meV/atom. We have tested these interaction parameters by predicting 

for 14 structures [U ’ }  that are not used to obtain ( J }  values. Compared with directly 
calculated LAPW values, we find an average prediction error of &PE = 1 .O meV/atom, with 
a maximum prediction error of 1.8 meV/atom. This is illustrated in table 1 and is designated 
as ‘fit I’. 

Finally, to test the sensitivity of the resulting interaction parameter to the input structures, 
we also used a set of 17 structures that have been used before for studying the Cu-Pd alloy 
[22]. These structures are A, B, Llo, LIZ, Llz,  ‘40’, L11, 22, 0022, DOzz. 21, 23, a l ,  
a2, 01, V1, and D4 (we have only calculated total energies for structures containing < 8 
atoms/cell). The resulting interaction parameters (designated as ‘fit I(’) shown in table 3 are 
very similar to those of ‘fit I’ above. Since we used fewer input structures in fit 11 (17) than 
in fit I (IS), we also used two fewer pair interactions in fit Il (10) than in fit I(12). Fit I1 
has an average fitting error of 0.7 meV/atom for 17 structures used to extract the interaction 
energies ( J } .  We have tested these interaction parameters by predicting AEfiEt for 15 
structures {U’) that are not used to obtain { J )  values. Compared with directly calculated 
LAPW values, we find an average prediction error of SPE = 1.5 meV/atom, with a maximum 
prediction error of 2.5 meV/atom. This fit is only slightly worse than fit I. 

3.3. Mixing enthalpies of rhe disordered alloy 

The mixing enthalpy of completely random alloy (T + CO) is given by equation (6). At 
x = 4, it is given by equation (7). Using ‘fit I’ we find 

AHmu(x = i) = -43.4 meV/atom. (11) 
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Table S. The order-disorder phase transition temperatures T, for Agi-lAu, alloys at x = +, 
4, and $. The calculated results were obtained using N, inrmcrions. solving the ensuing 
king model with the Monte Carlo (MC) method or with the cluster variation method (CVM). 
The 'measured' data were obtained by (i) using an inverse Monte Carlo method to extract 
three composition-dependent effective pair interactions f" the short-range order data of 
the Georgopoulos-Cohen (GC) and Borier-Spark 03s) analyses and (ii) subjeciing the these 
effective intenctions to a direct Monte Carlo simulation. 

A a A u  AgAu AgAu, 
LIZ Llo LIZ 

calculated 00 
Present, fit I A', = 12; MC 155 210 225 
Wei et aP N, =5;CVM 120 240 200 
Mohri eralb N, = 5 :  CVM 152 in 183 

Schonfeld er 01 (BS)' N I  = 3; MC 115 115 155 

Nor" and Warrens 90 
t i e s e m d  168 

'Meassured' (U 

Schonfeld er nl (GOd N I  = 3; MC 165 165 210 

~~ 

a Calculated values from [I]. 
Calculated values from [291. 
Experimentally extracted values from [151 using GC analysis. 
Exprimentally exhacted values from [ I 3  using BS analysis. 
Experimentally extracted values from [40J. 
ExperimentaLly exhacted values fIom 1411. 

Table 6. Calculated (fit I) and measured real-space SRO panmeters u(Rl,.,x) (equation (9)) 
for Ag,-,Au, alloys. The Monte Carlo simulations were done Y T = 600 K, while the 
measuremem were performed OD samples homogenized at - 1200 K and then subsequently 
aged at - 500 K. The experimental data were extracted using the Georgopoulos-Cohen (GC, 
[6!3]) and BorierSpark (BS. [69]) analyses. Note that u(Rw)  = I .  We also give the difference 
S = lucdc(Rhn) - uCxpP'(Rhn)l (for Rlm # 0). - 

Shell u(Ry,,.x = 0.253) u(Rimn, x = 0.423) u(Ri,.,x = 0.750) 

Imn R h  GC BS Theory GC BS Theory GC BS Theory 

0 0 0 0.000 1.093 1.145 1,000 1.043 1.190 1.000 1.082 1.090 1.000 
1 1 0  
2 0 0  
2 1  1 
2 2 0  
3 1 0  
2 2 2  
3 2  I 
4 0 0  
3 3 0  
4 1  1 
4 2 0  
3 3 2  

S 

0,707 -0,084 -0.072 -0.071 
1,000 0.022 0.016 0.016 
1.225 0.009 0,009 0.007 
1.414 0.012 0.005 0.006 
1.581 -0.004 0.005 -0.002 
1.732 -0.005 0.002 
1.871 -0,001 
2.000 0.000 
2121 0.000 
2.121 0.001 
2.236 0.000 
2.345 -0.001 

0.029 0.007 

-0.083 -0.081 -a.osa 
0.041 0.027 0.039 
0.005 0.009 0.007 
0.017 0.014 0.013 

-0.005 -0,008 -0.006 
0.002 0.005 

-0.OM -0.002 
-0.004 0.003 
-0.001 -0,001 

0.001 0.001 
0.003 0.001 

-0.002 -0.001 

0.014 0.024 

-0.081 -0.068 -0.067 
0.028 0.033 0.027 
0.000 0.005 0.002 
0.038 0.010 0.008 

-0.011 -0.005 -0.003 
0.004 0.004 

-0.001 -0.001 
0.002 0.001 

-0.010 0.000 
0.000 
0.000 

-0.001 

0.055 0.014 

are within 0.9 meV/atom of values predicted by the the cluster expansion, i.e., 
-43.4 meV/atom. The latter value was obtained using 18 input structures. This test 
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and CowoTkers 

3.4. T = 0 g m d  state shuchues 
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atomic diffusion). However, diffuse-scattered intensity due to short-range order at higher 
temperatures should reveal these ordering tendencies. This is discussed next. 

3.5. Diffuse-scattering maps due to short-range order 

For a simmatched phase separating system, one expects that olspo(k) will show a peak 
at the r = (000) point, while for ordering systems, a(k) will have peaks off the r point. 
The short-range order in Agl,Au, alloys has been measured by a number of authors 
[15,40,41]. Recently, Schonfeld et a1 [ E ]  have carefully measured the SRO at three 
different gold compositions x = 0.253, 0.523, and 0.750. The directly measured intensities 
texpr(k) were converted into a(k)  due to SRO using the method of Georgopoulos and Cohen 
[68] and of Borie and Sparks [691. The resulting ~ ( k )  showed maxima at the wave-vector 
X = ?(loo), where a denotes the underlying fcc lattice constant. This off-r' behavior is 
indicative of ordering tendencies (i.e., a tendency for having unlike atoms as neighbors). 

Figure 5(a) depicts the diffuse-scattering map (at T = 600 K and x = &) calculated 
using the Monte Carlo simulated annealing method with the Connolly and Williams set 
of five (nearest-neighbor only) interaction parameters. One immediately notices that the 
calculated a(k) have flat maxima along the line connecting the two X points %(001) 
and F(110)  (the W = F(140)  point is in the middle), in qualitative contradiction 
with experimental observation (figure 5(c)). In the Connolly and Williams approach one 
ignores second-neighbor interactions, so one spuriously creates a degeneracy between the 
T = 0 total energies of the L lZ  and DOu shuctures as well as between the Llo  and '40' 
structures in the absence of second-neighbor interactions, and this degeneracy survives at 
high temperatures. Note that the Llz and Llo sbllctures are characterized by a reciprocal k- 
point, the X = $(loO) point, while DO= and '40' are characterized by the W = $(1 io) 
point. Hence one sees flat maxima along the X - W  lines. These flat maxima have also been 
observed by Mohri et a1 [29] using the tebahedron CVM approximation (and the Connolly 
and Williams set of interactions). However, Mohri et al showed that the flat maxima are 
lifted if one uses a higher order of configurational entropy, i.e., tetrahedron-octahedron 
approximation. T h i s  is apparently in contradiction with our Monte Carlo results, since we 
have treated the entropy accurately. We believe that it is the longer-ranged (than nearest 
neighbor) interactions in Ag-Au that is responsible for lifting this flat maxima. We show 
next how this flat maxima is liited in Ag-Au. 

Th is  deficiency of resulting flat maxima along the X-W line using the Connolly and 
Williams procedure was rectified by applying our converged set of interaction parameters. 
Table 6 gives the calculated and experimental real-space ~ ( R I , , ) .  Note that the experimental 
extracted a(Rwo) deviates from unity, reflecting the degree of uncertainty in their analyses. 
It appears that Iawlc(Rlmn) - lyerpt(R~,,)I (Rtmn # 0) agrees better with experimental 
values extracted using the method of Borie and Sparks than that of Georgopoulos and 
Cohen for x = 0.253 and x = 0.750 and vice versa for x = 0.523. Figures 5-7 compare our 
calculated diffusescattering maps (using our full interaction set) with recent, experimentally 
determined [ 151 maps. Our calculated a ~ , ( k )  agree with experiment fairly well. We see 
thai both calculated and experimental maps have peaks on the X point. The calculated 
(experimental) peak intensities at the X point are 1.41 (1.41). 1.83 (1.75), and 1.68 (1.60) 
for x = 0.253, 0.523, and 0.750, respectively. Note that our calculations reproduce the 
slight, experimentally observed asymmetry in a(k) with respect to x = $: there are shallow 
maxima on the X point in a(k)'at x = 0.253, while there are relatively pronounced peaks 
at the X point at x = 0.750. This reflects a larger AH(Ll2 )  - A E ( D O u )  difference at 
x = 0.75 (-3.0 meV/atom) than x = 0.25 (-1.1 meV/atom). The AE(L.10) - AE('40') 
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difference at x = 0.5 is -4.4 meV/atom, correlating with a fairly pronounced peak at the 
X point for @sRo(IE) at x = 0.523. 

4. Conclusions 

We have demonstrated here that accurate alloy properties can be obtained from ab initio 
calculated total energies of - 20 simple structures coupled with a generalized king model 
(including pair and many-body interactions) and statistical mechanics. We show that a 
converged expansion can be achieved by including relatively short-ranged interactions for 
the Ag-Au alloy system. We find that the Agl-,Au, alloy system will order into Liz, 

temperatures me too low to enable direct growth into ordered phases, the calculated and 
experimental diffuse-scattering intensities at high tempecatures indeed indicate these ordering 
propensities. The calculated mixing energy and short-range order parameters for Ag-Au 
agree quantitatively with experiment. 

Llo, and LIZ structures at x = ;, 1 x = f, and x = $, respectively. Although the ordering 
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