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Abstract. Accurate information of energetics is essential to map out the temperature versus
composition phase diagram of a binary substitutional A;_, B, alloy. Since it is computationally
prohibitive to calculate the total energies of alt 2¥ configurations obtained by occupying N
sites by A and B atoms, we map instead the ab initio calculated total energies of only O(10)
simple structures {with € 8 atoms/cell) onto a generalized Ising model (including pair and
many-body interactions) finding that for Ag~Au a close reproduction (within ~ 2 meV/atom)
of LDA energies of arbitrary structures can be achieved by including relatively short-ranged
interactions. Subjecting these Ising interaction parameters o a Monte Carlo simulated annealing
treatment, we obtain (i) the structures having T’ = 0 minimum energy (‘ground states’); (i) the
order—disorder phase transition temperatures; (iii} the mixing enthalpy for the discrdered afloy;
and {iv) the high-temperature atomic shori-range order (SRQ). While the predicted ordering
temperatures for the ground state structures are too low to enable direct growth into the ordered
phase, the calculated mixing entitalpy and the SRO parameters for Ag—Au agree goantitatively
with experiment and clearly indicate a tendency for ordering, not phase separation.

1. Introduction

Theoretical calculations of temperature—composition phase diagrams of A;_;B; alloys are
needed for (i) verification [1-3] of existing measurements for low-temperature phases and of
order—disorder transition temperatures; (ii) predictions [4-6] of hitherto unsuspected ordered
structures missed by experimentalists; and (iil) development of understanding [4,7] of the
electronic and structural origins of phase stability. Under class (i) we note the calcutation
of phase diagrams for III-V and I-VI semiconducting alloys [1,2], and noble-metal alloys
{3,4]. Under class (ii) we mention the recent prediction [3] of the NiyAl structure in
Nij_ Al, alloys; the L1; (PdsPt), L1y (PdPt), and L1, (PdPty) structures in Pd,_,Pt,
alloys; and superlattices stacked along the [012] directions in Rh;_,Pt, alloys [8]. Under
class (iii) we note the discovery that scalar—relativistic effects (mass—velocity and Darwin
term) are a major contributions to ordering in Ni—Pt [7] and phase separation in Au-Pt [7];
that spin polarization stabilizes the L1, structure in Pd3Cr, Pt3Cr, and Pd;Fe [9]; and that
atomic size differences in Ni-Au and GaP-InP lead to phase-separating low-temperature
ground states, but with an ordering-type short-range order at high temperatures [10].
Phase diagrams and order—disorder phenomena in binary A)_,B; substitutional alloys
can be studied theoretically by mapping atoms A and B onto a spin-% generalized Ising
model [11,12]. In such a model one assignsﬂ(l) a set of ‘spin’ variables 3,- (i=12,...,N)
to each of the N sites of the lattice, with §; = —1 (41) if site { is occupied by an A (B)
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atom, and (2) a set of interaction energies {Jr} among the various sites belonging to a
‘figure’ F (pairs, triplets, quadruplets, etc). A configuration o is defined as a particular set
of occupations of each of the N latiice sites by an A (or a B) atom. The total energy £(g)
for any configuration o can be rigorously cluster expanded (CE) as
Ecglo) = Jo+ Z JiSi{e) + Z 1 8:(0)8;(0) + Z IS5 @8 @)+ (U
i J<i kej<i

where {Jr} are the interaction energies, and the summations are over all sites in the
lattice; over ‘figures’ F containing all pairs of sites; and over all triplets, and so on.
The interaction energies {Jr} are the same for all configurations o. 1In the traditional
approach [13, 14] one assumes a priori an interaction range (usually a short-ranged pair
interaction) and extracts the Ising interaction parameters by fitting [13, 14] them to the
experimentally determined phase diagrams [14] or to the experimentally determined diffuse-
scattering intensities [15,16]. Recent first-principles alloy theories (reviewed in [11, 12])
instead extract these Ising interaction energies directly from the ab initio calculated total
energies of a small set {o'} of ordered configurations: the basic idea is that if the series
of equation (1) converges reascnably rapidly (in practice, 10-20 terms are needed), these
energies Jr can be obtain by inverting [17] or least-square fitting [5] equation (1) to a set
of (10-20) total energies {E g (o)} of structures {o'} calculated directly from e.g., using
the local density approximation (LDA) [18]. Because the Ising representation of the energy
is a linear function of Jr and the spin products, once {Jr} is known one can readily use
equation (1) to predict the total energy of any of the 2V configurations. One can further
calculate temperature-dependent physical properties using statistical mechanics technigues
[11]. The predictions from these first-principles cluster expansion methods have met with
not only qualitative but in many cases also quantitative agreement with experiment [11,12].

A successful alloy theory depends critically on its ability to accurately reproduce
the alloy energetics, since the temperature versus composition phase diagram represent
a delicate balance between structures with nearly equal energies. For a fixed type of lattice
with N sites, there are 2V substitutional configurations for binary A;_.B, alloys. It is
obviously impossible to calculate the total energies of such a large number of configurations
using self-consistent, first-principle LDA methods, whose computational efforts increase
rapidly (¢ M?) with the number of atoms M in the unit cell. However, a cluster-
expanding physical quantity in terms of Ising-like interaction requires but 10-20 total energy
calculations, yet it enables prediction of 2V total energies. Thus, this approach extends the
applicability of first-principles total energy calcolations from structures with cells containing
a small number of atoms (~ 10) to a large number of structurally complex substitutional
configurations, including random alloys, alloys with short-range order, superlattices, and
antiphase boundaries, many of which are computationally too complex to be treated using
current first-principles methods. For systems consisting of atoms with very different sizes,
the atoms often move off their ideal lattice sites (‘relaxation’) causing a slowing down in
the convergence of the cluster expansion [19-21]. The recently developed [19] mixed-space
cluster expansion, which sums an infinite series of pair interactions cast in reciprocal space
(treating all other interactions in real space), has overcome this problem. It predicted the
comrect T = 0 ground state structures, the mixing enthalpies, and the diffuse-scattering
intensities of Cu-Pd and GaP-InP systems [19, 22].

We selected the Ag-Au system for our study because there is a wealth of previous
theoretical and experimental data on this system to compare with.

(i) Solid state mixing enthalpy has been measured [23] and also has been calculated
using empirical methods [24-26] and first-principles methods in junction with the cluster
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expansion techniques [1,27-30].

(ii) Electronic structure and charge transfer effects have been investigated both
experimentally [31-34] and theoretically [35-39].

(iii) The short-range order has been measured by a number of groups [15,40,41]. The
recent careful measurement and analysis of SRQO [15] has prompted us to make a direct
comparison between theory and experiment.

(iv) The recent explosion of interest in metallic superlattices (including the Ag-Au
system [42-47] has given us added reason to investigate this system.

The Ag-Au system is particularly convenient for the cluster expansion method, since
the elemental face-centered cubic Ag and Au constituents have nearly the same measured
room-temperature lattice constants [48] (4.086 and 4.078 A for Ag and Au, respectively),
50 there is no slowing down of the convergence of the cluster expansion. In this paper, we
demonstrate how we obtain accuraie alloy properties of Ag—-Au using as input a reasonably
small number of first-principles LDA total energy calculations. Specifically, we will show
how we (i) select structures for LDA total energy calculations; (ii) select the interaction
figures for the cluster expansion; (iii) test the convergence of the cluster expansion; (iv) use
the Monte Carlo [49-51] simulated annealing [52] technique to predict the low-temperature
ground state structures and the order—disorder phase transition temperatures; (v) compare
the calculated and experimental mixing energy for the disordered alloy; and (vi) compare
the calculated and experimental short-range order parameters,

2. Method of calculation

The excess energy (or low-pressure enthalpy) AE (e, V') of any substitutional configuration
o is given by

AEgirea(o, V) = E(0, V) — [(1 = x)E4(Va) + x Ep(Vp)] (2}

with the volume, V, dependence and is defined with respect to the energies of equivalent
amounts of the pure solids A and B at their respective equilibrium volumes, V4 and Vz. The
low-temperature long-range order (LRQ} of a given lattice type is then interpreted as the
configuration o which gives the lowest AEg..(o, V) at the equilibrium volume V. One
can cluster expand (CE) the directly calculated A Egpect(o, V) in a finite Ising-like series as
in equation (1). By taking advantage of symmetry properties, the terms in equation (1) can
be further grouped together in a concise form:

AEce(o, V) =Y Dplp(V)Ir(0) 3)
F

where Jr(V) are volume-dependent interaction energies of basic lattice figures F, e.g.,
nearest-neighbor pairs, next-neighbor pairs, triangles, etc. Figure 1 shows examples of
some of these figures on a foc lattice. The ‘lattice-averaged spin products’ T1r(o) are the
product over ail the figures f (related to F) of the variables 3‘;-, averaged over all symmetry
equivalent figures of the lattice. D is the degeneracy of the figure F. Since in the Ag-Au
system the lattice mismatch (as —ag) is very small, we will ignore the volume dependence
in equation (3), using instead V = (V4 + Vg)/2 or a cubic lattice constant & = 4.032 A.
All of the terms on the right-hand side of equation (3) are trivially determined geometrical
quantities, with the exception of Jp, the effective interaction energies. Since (Tl=(o)} is
a complete, orthonormal set of polynomials, the expansion equation (3) is exact [53], if
not truncated. In practice, one hopes that this series converges reasonably rapidly, so only
N; ~ O(10) interactions are retained (the first few pair interactions, as well as several
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Cluster Figures in FCC

Figure 1. Geometric figures used in our cluster expansion. The expansion includes pair figures,
three-body figures, and four-body figures. See table 3 for the definition of the figure coordinates.

parameters {Jr} by mapping N,
equation (3) through a least-squares
fitting procedure, 1.e., by minimizing

N,
Y 1A Egiea(05) — AEce(0,)[* = min (4)

where N, = N;. Convergence is tested by applying equation (3) to a set of structures {o'}
not used in constructing the cluster expansion of equation (4). We define the prediction
error (PE) as

8pe(0") = Egirear(0") — Ecg(a’). (5)

If the prediction errors are larger than a prescribed tolerance, more many-body figures and
input structures are added to the expansion of equation (3).

‘We have calculated the total energy versus volume E(V) for the elemental fcc solids
Ag and Au using the LDA-based full-potential linearized augmented plane wave (LAPW)
method [54,55]. We have used the LDA exchange correlation potential of Ceperley and
Alder [56], as parametrized by Perdew and Zunger [57], and have used 60 special k-
points [58] in performing the k-space summations. The calculated equilibrium fcc lattice
parameters of the pure Ag and Au are 4.008 A and 4.056 A, compared with the room-
temperature experimental data [48] of 4.086 A and 4.078 A, respectively. LDA thus
underestimates the lattice parameters of Ag and Au by 1.9% and 0.5%, respectively. Our
current lattice parameters are nearly the same as those calculated using the LAPW method
by Klein and Fong [39], but are slightly different from those calculated previously using the
LAPW method by Wei et al [3], yielding 4.057 A and 4.105 A for Ag and Au, respectively.
The difference between the present results and those of Wei et al is due mainly to a different
exchange—correlation potential (Wigner form) [59] used in [3]. We have calculated the
excess total energies A Egirei(o, V) of equation (2) for N, = 32 ordered structures {o}
involving a small number of atoms in the unit cell (up to 8 atoms/cell) [5]. Figure 2 shows
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Example of FCC Structures

Figure 2. Examples of some simple, fcc-based structures used in this work: the L1, structure
(prototype CuzAu); the D07 (prototype Al3Ti); prototype PtoMo structure; the L1y (prototype
CuAu-1); structure ‘40’ in [61]; and the L1, structure (prototype CuPt). Some of these structures
are superlattices along some orientation (see table 1).

examples of some simple fcc-based ordered structures used in our calculations. Table 1
and its caption define these structures. Most of these structures can be described as short-
period A, B, superlattices along some orientation as shown in figure 2 and table 1. The
calculations for ordered compounds are all carried out at the average cubic lattice constant of
@ = 4.032 A, and the atoms are assumed to be on their ideal fcc positions since the effects of
lattice relaxation on A H are small here (e.g., for Ag—Au, relaxation lowers the energy of the
L1y structure by less than 1.5 meV/atom. For comparison, in the 12% size-mismatched Cu-
Au system relaxation lowers the energy of the L1 structure by ~ 13 meV/atom). To obtain
highly precise results we use a k-point sampling scheme that is geometrically equivalent



758 ZWLuetal

Table 1. The directly calculated LAPW excess energies A Eyyeci(cr) (error ~ +£2 meV/atorn)
{equation (2)), the cluster-expanded energy A Ecg{e) (equation (3)), and the prediction error
dpg {equation (5)) in meV/atom for Agr_rAu,. In the cluster expansion (fit I) we include
Ny = 18 ordered structures and Ny = 12 interaction energies. These include the reference
{empty) interaction Jp, point interaction Jy, six pair interactions, J1, K2, Li, Ma, N3, and
Oy, three triplet interactions, Jf3, K3, and L3, and one quadruplet interaction Jy. Many of the
structures can be defined as superlattices in given orientations, as shown in this table. Structures
D1, D4, and D7 are defined in figures 10 and 11 in [5], while the SQS structures are defined in
figure 1 and equations (2)-(4) in [38]. The L1 structure is also not a superlattice. The symbol
* denotes the structures that are not included in our cluster expansion to extract the interaction
energies, so the energy value is a pure prediction. The average prediction error is 1.0 meV/atom,
while the largest prediction error is 1.8 meV/atom.

Formula [001] [011] [012] [111]) [113]
AB Llp Lip Llg Ll L1

A Bdigect -59.7 —59.7 —59.7 —43.0 —43.0
AEgiect — LECE -04 -04 ~0.4 04 04
AxB Bl MoPts MoPtz [:3] MaoPts
A Eirect -40.8 —49.7 —49.7 =302 —497
A B — AEcE —{0.4 —1.7*% —-1,7* 0.5 —~1.7*
ABy 82 MoPtz MoPtz a2 MoPt»
A Edirect —40.0 —-46.9 —46.9 -30.8 —46.9
ABgyper — AECE -0.8 —1.3% —1.3% -0.5 —1.3%
AsB al Y1 POy Vi W1

A Egireer -292 ~37.0 —42.3 =213 =359
AEgreet — AECE 1.0 0.4 0.0 0.7* 1.4%
AB4 Z3 Y3 DO V3 W3

A Egirecs —279 —354 —410 —21.4 —34.4
A Egicet — AEcE 14 08 ~0.2 Lo 0.1%
AaBa Z2 Y2 40’ V2 w2
ALjieat -288 —44.1 —55.3 -22.9 -50.6
AEgiceet — AEcE 1.2 —0.1 —0.4* —0.1* =(.4%
Non-superlattice L1; (A3B) L12 (AB3) Ag Aun

& Edirect —43.4 —44.0 0.0 0.0

A Edgiect — A Ecg 0.0 0.1 -0.3 04

Non-superlattice D1 (A7B) D4 (A4B4) D7 (AB7) SQ58, (A4B4g) SQS8y (A4By)
A Egiret =208 ~42.9 —20.0 —42.5 —43.6
AEgiest — AEcE 1.8 1.1 0.6 05 —0.1

in the compound and its pure constituents [60], leading to, e.g., the total energy of AzA in
the L1, or DOy crystal siructures being equal to the fcc value {A). In practice we use sets
of k-points that are equivalent to 408 fcc special k-points [S8]: increasing the equivalent
k-points from 60 to 408, the energy of each structure changes by less than 1 meV/atom,
except for the Y1 and Y2 structures for which the changes are 1.2 and 1.6 meV/atom,
respectively. Table 2 shows the effects of k-point sampling on A E g for a few structures.
We also use a large basis set cut-off of RyrKmax = 9.0 (Rﬁ% = R{S = 2.55 au), which
corresponds to ~ 85 LAPWs/atom. In the LAPW calculations, the core states are treated
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Table 2. This table illustrates the effects of k-point sampling on the calculated A Fgiee
(in meV/atom) of some ordered compounds, The structures are defined in table 1. We have
used the equivalent k-point sampling scheme of [60]; these two k-point sets are equivalent to
60 and 408 fec special k-pomnts, respectively (see [S8]). We also give the actual number of
k-points, N, in the irreducible zone for a particular structure.

60 equiv, 408 equiv.

fce k-points fec k-points
Structure Formula Ny A Egirect Ny, A Egjrect
W1 AgiAu 136 -362 1056 =359
Y1 AgiAu 88 —35.8 608 ~37.0
Y2 AgiAuy 88 -42.5 608 —44.1
w2 ApaAug 136 =510 1056 —50.6
L1p AgAu 80 —60.7 576 =59.7
Y3 Aghu; 88 -348 608 —354
W3 AgAuy 136 —35.1 1056 —344

fully relativistically, while the valence states are treated scalar—relativistically, ignoring
the spin—orbit interaction (its effect on AH is rather small). The total error in A Egirect 18
estimated to be ~ 2 meV/atom, which is comparable to the energy of the zero-point motion,

Once a converged cluster expansion of equation (3) is established, we can use it to
calculate the properties of the ideally (T’ — oo) random alloys. Denoting a configurational
average for the ideally random (R} state by angular brackets { }r the mixing enthalpy of
the random alloy is

AHpin(x) = (AEcg(0))r = ) DrJr{Tip)r = ) Drlr2x =D (6)
F F

where (IT)z = (2x — 1)** and & is the number of vertices in figure F, so that at x = %

and T — oo we have

AHupu(x = 1) = J. @

The ordering energy of configuration ¢ measures the difference between the energy of o
and that of the random alloy with the same compaosition:

dEo(o) = AEce(o) — (AEce(o)ir = Z DrJellp(o) — (2x — 1)F7], Y]
F

Also, using our set of {Jr} we can calculate the lowest-energy ‘ground state structures’
by applying linear programming techniques [61,62], or simply searching a large enough
structural data base [5] to locate the lowest-energy structure using equation (3). We will use
a Monte Carlo simulated annealing method [22, 52] to obtain simultaneously (i} the T =0
ground state structures (on a finite cell), (i1} the order—disorder trangition temperatures, (iii)
finite-temperature short-range order (SRO) and energies of the disordered alloy. A Monte
Carlo cell size of 16° = 4096 atoms (with periodic boundary conditions) was used in our
calculations. Monte Carlo simulated annealing was performed in the canonical ensemble at a
fixed concentration, with the transition temperature being calculated from the discontinuity
in the internal energy as a function of temperature, and the ground state determined by
the state of the simulation at a temperature where all configurational changes proved to
be energetically unfavorable. Since we ran the Monte Carlo simulation with decreasing
temperature, it tends to supercool a structure. The resulting transition temperature is thus a
lower bound of the real 7;. The estimated error is around 20 K for the present system.
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The Warren—Cowley SRO parameter [63, 63] for the N'th atomic shell at distance Rpux
from the origin is

Mon) —4°
1—g?
where g = 2x — 1 and {T1g ) is the configurational average of the pair correlation function
between sites zero and N. Note that aspo{Rom) = 1 by definition. The Fourier transform

of the real-space SRO is ctspo (k), which is proportional to the diffuse intensity due to SRO.
Its value depends on the number, Ng, of real-space shells used in the transform:

asrok, Ng) = EN asro( Ry )& Fimn (10)

In the calculation of ospo( Rimn) and eisrolk, Ng), 500 Monte Carlo steps per site are used to
equilibrate the system (which is initialized to a completely random state), and subsequently
averages are taken over 100 Monte Carlo steps per site. The values of Nz in our calculations
are dictated by the number of experimental SRO parameters reported [15]. The absolute
values of the SRO parameter increase as the annealing temperature is lowered. For Ag-Au,
lowering the temperature at which our Monte Carlo simulation (T = 600 K) is performed
by 100 K increases the values of the SRO parameter by less than 10%, which is similar to
the experimental accuracy. The values of experimental SRO parameters are very sensitive
to the experimental conditions: sample growth conditions, history of heat treatment etc.
The experimental Ag-An samples are homogenized at 7 ~ 1200 K and subsequently aged
at T ~ 500 K; the samples probably reflect the state of thermodynamic equilibrium of a
temperature somewhat above 500 K.

©

sro(Rima) =

3. Results

3.1. LDA energies of ordered structures

The directly calculated excess enthalpies AEg.q(o) are collected in table 1. One

immediately notices that A Egiecr) are negative, unequivocally indicating ordering in this

alloy system. Among this set of 32 structures, we find that the D1, L15, MoPtz, Llg, MoPtz,
1]

le, and D7 have the lowest energies at their respective compositions of x = 5, 35 5, 3,

4, and Z. These structures could be the contenders for the ground states, but the ground state
structure that we calculated by MC need not be in the input set. The D1 structure at x = %
can not be the ground state, since the energy of a linear combination of the nearby L1s
structure at x = % and the pure element at x = 0 is —21.7 meV/atom and is slightly lower
in energy than the D1 structure energy of —20.8 meV/atom. Similarly, the D7 structure
at x = % can not be the ground state either, since the energy of a linear combination of
the nearby LI, structure at (x = %) and the pure element at x = ] is —22.0 meV/atom
and is slightly lower in energy than the D7 structure energy of —20.0 meV/atom. Note
that {AEyree(0}} does not show any systematic trend with o that can be recognized. By

extracting a set-0f interaction energies {Jr} we will unravel the trends,

3.2. Cluster interaction energies

We will discuss three levels (in increasing order of complexity and accuracy) of choosing
interaction energies. First, Connolly and Williams [17] (CW) proposed a cluster-expansion
scheme to obtain the nearest-neighbor fcc interactions, Jo, Jy, Ja, J3, and J; defined in
figure 1 from N, = 5 structures: the fcc elements A and B, L1 (A3B and AB3) and L1y
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(AB). Using this original Connolly-Williams procedure, we obtained an average prediction
error of fpg = 1.6 meV/atom and a maximum prediction error of 4.4 meV/atom for 27
other structures that are not used in obtaining the interaction J values. The prediction
errors for some specific structures are unsatisfactory. For example dpp are 4.4, 2.4, 3.0,
2.6 meV/atom, for structures ‘40°, 2, DOy (AgAug), and W3, respectively (larger than
the estimated error of direct LDA calculation of 2 meV/atom), The large error for “40° and
D (93 is because the Connolly-Williams set of interactions creates a spurious degeneracy
of the L1y and ‘40" structures, and similarly for the L1; and DOy structures.

Second, in addition to the Connolly and Williams set of five interactions, Lu et al [5]
has added more pair interactions (K2, Ly, and M3) to the set. These eight interactions
were obtained from fitting the energies of 12 structures: A, Lls, DOz, B1, L1y, L1,
‘40°, Z2, B2, L1;, DOy, and B. Using this procedure, we obtained an average prediction
error of 8pp = 1.6 meV/atom and a maximum prediction error of 4.0 meV/atom for 20
other structures that are not used in obtaining interaction J values. Here too, the prediction
errors for many structures are also unsatisfactory, e.g. dpg are 2.2, 4.0, 3.1 meV/atom, for
structures o2, 1, and Y2, respectively.

Third, figure 3 shows a converged set of interactions for Ag—Au obtained using 18
structures {o’} in equation (4) (i.e., A, B, L1y, L1s, L1, L1y, DOy, DOy, 21, 73,
al, @2, 81, 82, Y1, Y2, Y3, and W2). These include, the reference (empty) interaction
Jo, point interaction Jy, six pair interactions, Jo, K2, L2, Mz, Na, and O, three triplet
interactions, J3, Ks, and Ls, and one quadruplet interaction Js. Table 3 gives the values
of these interaction energies (denoted ‘fit I}, while figure 3 further shows that the nearest-
neighbor pair interaction Jo (table 3) is dominant, while other interactions are smaller by at
least an order of magnitude. The average fitting error is 0.6 meV/atom and the maximum
fitting error is 1.3 meV/atom. We have tested these interaction parameters by predicting
A Egiree for 14 structures {o’} that are not used to obtain {J} values. Compared with directly
calculated LAPW values, we find an average prediction error of dpg = 1.0 meV/atorn, with
a maximum prediction error of 1.8 meV/atom. This is illustrated in table 1 and is designated
as ‘fit I'

Finally, to test the sensitivity of the resulting interaction parameter to the input structures,
we also used a set of 17 structures that have been used before for studying the Cu-Pd alloy
[22]). These structures are A, B, Llg, L1y, L1y, '40°, L1y, Z2, DOxn, DOy, Z1, Z3, a1,
a2, Bl, V1, and D4 {we have only calculated total energies for structures containing < 8
atoms/cell). The resulting interaction parameters (designated as ‘fit ") shown in table 3 are
very similar to those of ‘fit I’ above. Since we used fewer input structures in fit II (17) than
in fit I (18), we also used two fewer pair interactions in fit II (10} than in fit T (12). Fit II
has an average fitting error of 0.7 meV/atom for 17 structures used to extract the interaction
energies {J}. We have tested these interaction parameters by predicting A Edirect for 15
structures {o’} that are not used to obtain {J} values. Compared with directly calculated
LAPW values, we find an average prediction error of dpg = 1.5 meV/atom, with a maximum
prediction error of 2.5 meV/atom. This fit is only slightly worse than fit I

3.3. Mixing enthalpies of the disordered alloy

The mixing enthalpy of completely randoem alloy (T — oo) is given by equation (6). At
x = %, it is given by equation (7). Using “fit I' we find

AHpix(x = 3) = —43.4 meV /atom. (11)
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Figure 3. This figure illustrates the interaction energies (including the degeneracy DpJr)
used in this work (figure 1) for fit I (table 3). The interaction energies for fit Il are nearly
indistinguishable on this scale. Note that the nearest-neighbor pair interaction J; is dominant.

Table 3. Geometric definition of the ‘figures’ F used in our cluster expansion in terms of the
vertices of the fcc structure (in units of §, where a is the lattice parameter). The values of the
T = 0 cluster interactions D g J¢ for two fits (fit I and fit II) are given in the last two columns.
The converged set of interactions is rather insensitive to the structures used to extract them.
Negative (positive) J¢ denote ferromagnetic (anti-ferromagnetic) interactions.

Value (meV)
Cluster type Designation of figure Vertices Fit I Fit 11
Empty Jo —434]1 —4253
Point Ji (000) 1.95 2.59
Pairs Ja (000),(110) 41.10 41.18
K (000),(200) 0.71 —0.18
L, (000),(211) 3.65 3.01
M; (000),(220) —0.48 —-1.22

N3 (000),(310) —0.03

0; (000),(222) —0.89
Triplets Iy (000),(110),(101) —0.56 —0.06
K, (000),(110),(200) -222 -3.05
Ls (000),(110),(211) 0.89 0.40
Quadruplets Js (000),(110),(101),(011) —0.31 -0.03

The completely random alloy can alternatively be mimicked using a single ordered structure
with small number of atoms/cell, the so called special quasirandom structure (SQS) [38, 65]
whose spin products TIz approximate those of the completely random alloy. The larger
the number of atoms in a SQS cell, the closer will SQS mimic completely random alloy.
Such special structures have been used previously to model the density of states of random
alloys producing results that often agree with experiment but not with valence configuration
averaging (VCA) [66] or with coherent potential approximation (CPA) calculations [67].
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Figure 4. Calculated and measured mixing energy for Agi_.Au,. The
T = B0O0 K, lozenges) are cited from [23]. We give the calculated values a

Table 4. The experimental [23] and calculated (fit 1) Ag)_,Au, mixing enthalpy A Hpix
(meV/atom) using (i) Monte Carlo simulation at 7 = 800 K (including the short-range order
effects and (ii) equation (6) corresponding to the completely random alloy (T — 00).

AH(x, T =800 K) AH(x, T — o0)
Expt Monte Carlo Calc. (equation (6))
x T =800K I =800 K T =00
0.0 0.0 0.3 0.3
0.1 —18.2 ~16.4 =159
0.2 —-32.5 -29.8 —28.4
0.3 —42.0 —39.3 -37.0
0.4 —47.1 —44.8 —-42.0
05 —48.3 —46.4 —43.4
0.6 —45.5 —439 -41.3
0.7 —39:1 —~37d -35.7
0.8 —29.2 —279 —~26.8
0.9 —16.1 -~15.1 —-14.7

1.0 0.0 0.4 0.4

Atx = % one can achieve accurate results with SQS-8, a small cell containing only eight
atoms (whose coordinates are given in [38,65]). Indeed, our LDA-calculated AH (SQS)
values for Ag—-Au

AE(SQS8,) = —42.5 meV /atom
and (12)
AE(SQS8,) = —43.6 meV /atom
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Table 5. The order—disorder phase transition tempetatures T, for Agi—.Au, alloys at x = é,
%, and 3. The calculated resulis were obtained using N interactions, solving the ensuing
Ising mode] with the Monte Cario (MC) method or with the cluster variation method (CVM).
The ‘measured’ data were obtained by (i) using an inverse Monte Carlo method to extract
three composition-dependent effective pair interactions from the short-range order data of
the Georgopoulos-Cohen (GC) and Borier—Sparks (BS) analyses and (iiy subjocting the these
effective interactions to a direct Monte Carlo simulation.

AgzAu AgAu AghAu

Ly Llp L1z

Calculated (K)

Present, fit I Nr=12; MC 155 210 225

Wei ef al® Ny =5 CVM 120 240 200

Mohri et al® Ny =5 CVM [52 177 183
‘Measured’ (K)

Schinfeld er af (BSY Ny =3, MC i15 115 155

Schonfeld er al (GC)d N; =3, MC 165 165 210

Norman and Warren® a0

Ziesemer! 168

* Calculated values from [1].

b Caleulated values from [29].

¢ Experimentaily extracted values from [15] using GC analysis.
d Experimentally extracted values from [15] using BS analysis.
¢ Experimentally extracted valves from [40].

T Experimentally extracted values from [41].

Table 6. Calcutated (fit I) and measured real-space SRO parameters a{ Ry, x) (equation (9))
for Ag)_ Au, alloys. The Monte Carlo simulations were done at T = 600 K, while the
measurements were performed opn samples homogenized at ~ 1200 K and then subseguently
aged at ~ 500 K. The experimental data were extracted using the Georgopoulos-Cohen (GC,
[68)) and Borier-Sparks (BS, [69]} analyses. Note that or(Rgop) = 1. We also give the difference
8 =3 | (Rimn) — &P (Rimn)| (for Rimn 7 0.

Shell (Rimn, x = 0.253) @{Ripn, X = 0.523) & (Rima, x = 0.750)
Imn Rmm GG BS  Theory GC  BS  Theory GC  BS  Theory
000 0000 1093 L[I145 1,000 1043 1190 1.000 1.082 1090 1.000
110 0707 —0084 —0072 —0071  —0.083 —0.081 —0088  —0.081 —0068 —0.067
200 1000 0022 0016 0016 004t 0027 0.039 0028 0033 0027
211 1235 0003 0009 0007 0005 0.009 0007 0.000 0005 0.002
220 1414 0012 0005 0.006 0017 00H 0013 0038 0.010 0008
110 1581 —0.004 0005 —0002  —0005 —0.008 —0006  -0.011 —0.005 —0.003
222 1732 —0005  0.002 0002  0.005 0.004 0004
321 187 —0.001 —0.002 —0.002 —0.001 —0.001
400 2000 0.000 ~0.004  0.003 0002 0001
330 2121 0.000 —0.001 —0,001 —0.010  0.000
411 2121 0.001 0.001  0.001 0.000
420 2236 0,000 0003 000 0.000
332 2345 —0.001 —0.002 —0.001 —0.001
5 0.020  0.007 0.014  0.024 0055 0.014

are within 0.9 meV/atom of values predicted by the the cluster expansion, ie.,
—43.4 meV/atom. The latter value was obtained using 18 input structures. This test
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Figure 5. (a) Calculated SRO diffuse-scattering intensity for Ag,_,Au, (xr = 0.5) using
Connolly-Williams set of nearest-neighbor N; = 5 interaction energies, (b) calculated SRO
map using our set of Ny = 12 interaction energies, and (c) experimental [15] diffuse-scattering
intensity due to short-range order a(k, Ng) for Agp477Auvp.523, which were Fourier synthesized
using Ng = 13 real-space a(Rymn) (including a(Roy) = | for both experiment and theory).
The calculation was done at T = 600 K, while the experiment was performed on a sample
that was homogenized at T = 1203 K and later aged at T = 502 K. Note that the intensities
in (a) are flat along the X-X lines, where X = 2;5 [001] (a is the cubic lattice constant) and
W = 22[041] is on the X—X line, while in (b) and (c) there is a pronounced peak at the X

point.

confirms the accuracy of SQSs used previously.
The energy of an imperfectly random (‘disordered’) alloy at finite temperature 7' can
be calculated using the Monte Carlo simulated annealing method. Figure 4 depicts the
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Figure 6. Calculated (a) and experimental (b) [15] diffuse-scattering intensities due to short-
range order a(k, Ng) for Agy747Aup2s3, which were Fourier synthesized using Ng = 6 real-
space @(Rjmn) (including a(Row) = 1 for both experiment and theory). The calculation was
done at T = 600 K, while the experiment was performed on a sample that was homogenized at
T = 1173 K and later aged at T = 513 K.

mixing enthalpy of the disordered alloy at T = 800 k while table 4 compares our calculated
values with experiment [23]. The agreement is excellent. Note that the finite-temperature
enthalpy is more negative than the T — oo values and that the calculated A Hpix(x, T) lie
consistently above experiment (by less than 2.7 meV/atom). A Hyix(x) for Ag—Au has also
been calculated using empirical methods such as the embedded atom method by Johnson [24]
and by Ackland and Vitek [25] and the semiempirical method by Bozzollo

[26]. These results all agree fairly well with experiment. Terakura and coworkers [27-30]
have calculated A Hy,ix (x) for Ag—Au using the simple five-structure, nearest-neighbor only
Connolly-Williams procedure [17], finding also fair agreement with experiment. However,
although this simple set of interaction parameter reproduces the A Hmix(x) well, it can not
correctly reproduce the shape and composition dependence of the short-range order map
a(k), as we will see in section 3.5.

The ground state problem can be solved using the linear programming method [61, 62]. For
fce alloys, the most complete searches for the ground state were given by Kanamori and
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Figure 7. Calculated (a) and experimental (b) [15] diffuse-scattering intensities due to short-
range order a(k, Ng) for Agga2spAugso, which were Fourier synthesized using Ng = 10
real-space a(Rjny,) (including a(Rgop) = 1 for both experiment and theory). The calculation
was done at T = 600 K, while the experiment was performed on a sample that was homogenized
at T = 1223 K and later aged at T = 488 K.

Kakehashi [61] and recently by Garbulsky et al [62].

While performing a ground state search using linear programming is relatively easy, it
has one drawback: the resulting ground state structure is described in terms of its lattice-
averaged products T1» which do not always correspond to a physically realizable lattice
structure. Here, we will use the Monte Carlo simulated annealing algorithm to perform a
ground state search directly on real lattices. This guarantees that the ground state found
is always a real structure. The limitation is that one constrains the search to a finite cell,
so only structures commensurate with this cell can be obtained. Here we will search the
ground state at primary composition of x = 1, 1, and 3.

The predicted T = 0 ground states for Ag,_,Au, are L1y, Llg, and L1;, for x = %,
%, and % respectively. These structures are shown in figure 2. The Monte Carlo
simulated annealing also gives the order—disorder phase transition temperature 7. Table 5
gives our calculated 7, and compares it with other theoretical [1,29] and experimental
[15,40,41] estimations. The values of the ‘ordering temperature’ (7, < 240 k) for these

compounds are perhaps too low to enable direct growth into the ordered phases (due to slow
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atomic diffusion). However, diffuse-scattered intensity due to short-range order at higher
temperatures should reveal these ordering tendencies. This is discussed next.

3.5. Diffuse-scattering maps due to short-range order

For a size-matched phase separating system, one expects that cvspo(k) will show a peak
at the I' = (000) point, while for ordering systems, (k) will have peaks off the I" point.
The short-range order in Ag;_;Au, alloys has been measured by a number of authors
[15,40,41]. Recently, Schonfeld et af [13] have carefully measured the SRO at three
different gold compositions x = 0.253, 0.523, and 0.750. The directly measured intensities
Lexpi (k) were converted into ¢o(k) due to SRO using the method of Georgopoulos and Cohen
[68] and of Borie and Sparks [69]. The resulting cc(%) showed maxima at the wave-vector
X = %(100), where a denotes the underlying fcc lattice constant, This off-I" behavior is
indicative of ordering tendencies (i.e., a tendency for having unlike atoms as neighbors).

Figure 5(a) depicts the diffuse-scattering map (at 7 = 600 K and x = %) calculated
using the Monte Carlo simulated annealing method with the Connolly and Williams set
of five (nearest-neighbor only) interaction parameters. One immediately notices that the
calculated ¢(k) have flat maxima along the line connecting the two X points —25-{001)
and 2;—"{110) {the W = %(1%0) point is in the middle), in qualitative contradiction
with experimental observation (figure 3(c)). In the Connolly and Williams approach one
ignores second-neighbor interactions, so one spuriously creates a degeneracy between the
T = 0 total energies of the L1, and DOy, structures as well as between the L1y and ‘40
structures in the absence of second-neighbor interactions, and this degeneracy survives at
high temperatures. Note that the L1z and L1y structures are characterized by a reciprocal k-
point, the X = ZZ{100} point, while DO and ‘40" are characterized by the W = 2% {110)
point. Hence one sees flat maxima along the X-W lines. These flat maxima have also been
observed by Mohri et al [29] using the tetrahedron CVM approximation (and the Connolly
and Williams set of interactions). However, Mohri et al showed that the flat maxima are
lifted if one uses a higher order of configurational entropy, i.e., tetrahedron—octahedron
approximation. This is apparently in contradiction with our Monte Carlo results, since we
have treated the entropy accurately. We believe that it is the longer-ranged (than nearest
neighbor) interactions in Ag—Au that is responsible for lifting this flat maxima. We show
next how this flat maxima is lifted in Ag-Au.

This deficiency of resulting flat maxima along the X-W line using the Connolly and
Williams procedure was rectified by applying our converged set of interaction parameters.
Table 6 gives the calculated and experimental real-space ot( Ryp,,). Note that the experimental
extracted «(Ropg) deviates from unity, reflecting the degree of uncertainty in their analyses.
It appears that 3~ [ Ry ) = &P Ri)| (Rimn 7 0) agrees better with experimental
values extracted using the method of Borie and Sparks than that of Georgopoulos and
Cohen for x = 0.253 and x = 0.750 and vice versa for x = 0.523. Figures 5-7 compare our
calculated diffuse-scattering maps (using our full interaction set} with recent, experimentally
determined [15] maps. Our calculated a/spo(k) agree with experiment fairly well. We see
that both calculated and experimental maps have peaks on the X point. The calculated
(experimental) peak intensities at the X point are 1.41 (1.41), 1.83 (1.75), and 1.68 (1.60)
for x = 0.253, 0.523, and 0.750, respectively. Note that our calculations reproduce the
slight, experimentally observed asymmetry in ce{k) with respect to x = %: there are shallow
maxima on the X point in (k) at x = 0.253, while there are relatively pronounced peaks
at the X point at x = 0.750. This reflects a larger AH(L1y) — AE(DOyy) difference at
x = 0.75 (—3.0 meV/atom) than x = 0.25 (1.1 meV/atom). The AE(L1y) — AE(‘40°)
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difference at x = 0.5 is —4.4 meV/atom, correlating with a fairly pronounced peak at the
X point for asgo(k) at x = 0.523,

4, Conclusions

We have demonstrated here that accurate ailoy properties can be obtained from ab initio
calculated total energies of ~ 20 simple structures coupled with a generalized Ising mode}
(including pair and many-body interactions) and statistical mechanics. We show that a
converged expansion can be achieved by including relatively short-ranged interactions for
the Ag-Au alloy system. We find that the Ag,_,Au, alloy system will order into L1,,
L1p, and L1 siructures at x = &, x = 1, and x = 2, respectively. Although the ordering
temperatures are too low to enable direct growth into ordered phases, the calculated and
experimental diffuse-scattering intensities at high ternperatures indeed indicate these ordering
propensities. The calculated mixing energy and short-range order parameters for Ag—An

agree quantitatively with experiment.
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