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We show how the formation energies of 4 B, superlattices with arbitrary periods p and g and
layer orientation G can be predicted via a ‘cluster expansion’ technique, given the formation
energies of short period structures from first-principles caleulations. We predict both bulk and
epitaxial energies as well as the energies of the fully intermixed (alloyed) superlattices. Appli-
cations to AgfAu and Cw/Pd superlattices illustrate our method, as well as a global classifi-
cation scheme for superlattice stability.
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1. Introduction

Advances in vaporization techniques have now led to the growth of metal-on-metal superlattices with
quality approaching that of semiconductor superlattices. A central question regarding such superla-
ttices (SL) is whether they are thermodynamically stable or that their post-growth stability is atiribu-
table to insurmountable kinetic barriers. This question can be phrased in terms of the superlattice
excess enthalpy. We distinguish three types of pertinent excess enthalpies [1,2].

First, the bulk formation enthalpy AHg (pq,G) of the 4,8, superlattice with p layers of 4 atom
followed by g layers of B atoms stacked in direction G (see a schematic diagram in Fig. 1) is the
equilibritom superlattice energy (at lattice constant ag ) minus that of equivalent amounts of consti-
tuents at their bulk, equilibria {at lattice constants a, and a,, respectively):

A A 4 q
AH, ,Gy=E(A B_G, —| —F —F . 1
s.(19.G) ( Py st.) [p+q A(aA)+p+q B(aB):l ()

This enthalpy represents the gain or loss of the superlattice energy with respect to the energy of bulk
phase-separated constituents {so there is no interaction between the 4 and B atoms) and each of the
constituents maintains its own (free-space) equilibrium structure.

Second, the epitaxial formation enthalpy 6Hg, (pq, G, a,) is the energy of the superlattice grown
coherently on a substrate with lattice constant a,, relative to the energies of epitaxial constituents
deformed to the same substrate @, and relaxed in the G direction:
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Fig. 1. Schematic diagam of an 4 A coherent superlattice (p layers of A atoms followed by ¢ layers of B atoms) along the
G direction. a, is the substrate fattice constant perpendicular to G.

0Hg (pq,G,a,) =E(4,B,,G.a)— [ tq A(Ga)+——an(Ga)] @)

This enthalpy is pertinent to coherently strained interfaces where each component adopts the sub-
strate dimension g, rather than its own cquilibrium lattice constants a, and agz. This coherency
condition holds for films thinner than a critical thickness for misfit dislocations, For thicker films
coherency is lost and eqn (1) replaces eqn (2).

Finally, the mixing enthalpy of the disordered alloy AH,;, (x, T) is the energy of the random
A, _ B, alloy at the composition x and equilibrium lattice constant a{x) relative to equivalent
amounts of constituents at their bulk equilibria

AH oy (x, T)=E[A4, . B, ,a(x}] - [{1 -x)E (a,) + xE(ap)]. 3

These definitions suggest the following observations: (i) AHl (pg, G)>0 reflects the propensity
for incoherent bulk decomposition while AHg (pg, G) <0 reflects the stability of the SL with respect to
bulk decomposition. In contrast dH, (pg. G, a,)>0 reflects the propensity for decomposition into
coherently matched constituents. (1) For substrate lattice constants matched to the equilibrium super-
lattice (a,=ay; ) the difference

AHg (py, G) —dHg (pq, GA,G’SL) = AECS(G) (4)

is the ‘constituent strain’ energy, i.e. the (orientiation dependent) ecnergy required to deform the
equilibrium free-space constituents (4 at ¢, and B at ¢z} into epitaxially strained constituents
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AEcs(c?)=1%q[EA(G,aS)—EAaﬂHﬁ[Es(é,as)—EB(as)]. (5)

For lattice matched constituents (@, ~ag) we thus expect AE~0 and §Hg =AH;; while in lattice
mismatched systems AE->0 and 6Hy <AHg, so bulk unstable SLs (AHg >0) can become epi-
taxially stable (8 Hg < 0). Examples from semiconductor systems were discussed by Dandrea et ol [3]
by Wood and Zunger [4] and by Zunger [2]. (iii) In the thick SL limit p— o0 and g— oo the enthalpy
per atom AHy, has but a negligible G(1/p) contribution from the A4/B interface. The remaining energy
is that of the deformed constituents. Thus,

AHSL(pq_’OOnG)zAECS(GAL (6)
We thus define the “interfacial energy’ as the difference

41(pq, G}

AHg, (pq, G)“AHSL(P‘I—’OO: G)=5HSL(P‘]> é’as)E P+q

(7

‘Attractive interfaces’ have f <0 while ‘repulsive interfaces’ have > 0. In most zinc blende semicon-
ductors £(210)< 0 and [(110) <0 are attractive interfaces f(111)>0 is repulsive, while /{100) can be
either {3]. From eqns (6) and (7) we can wrile
A A{(pg.G)

AHg (pq,G) =—£-—|—q_ +AEq(G). (8)

Thus, the formation energy of the bulk superlattice consists of the interfacial term (which equals the
epitaxial formation enthalpy in the absence of strain) and a constituent strain term. Figure 2 and
Table | illustrate the various possibilities of the behavior of AH, versus p in terms of the nature of
the interfacial interactions (/<0 or 7>0) and the existence/nonexistence of size mismatch between
the constituents (AE.~0 or AE.s>0). As the period p increases, type I and II superlattices (both
having AE~~0) approach zero enthalpy from above and from below, respectively, since they have
I>0 and 7<0, respectively. Type Il and IV superlattices have finite enthalpy at long periods (due
to frozen-in constituent strain).

(iv) While the signs of AHg and éHg, determine the stability towards phase-separation in bulk
and in epitaxial forms, respectively, the stability towards intermixing {alloy formation) is decided by
the ‘ordering energy’ AE, ;. For bulk,

Table 1: This table illustrates type of superlattices accord-
ing to ‘constituent strain energy’ AE. and ‘interfacial

energy’ I
Constituent Interfacial
Type strain energy energy Example
Type I: AE =0 I>0 Mo/W
Type II: AE =0 I<( Ag/Au
Type III: AE ;>0 1>0 Pd/Rh

Type IV: AE >0 <0 Cu/Pd
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I>0

Superlattice energy AH(G,p)

Repeat peried p

Fig. 2. Four prototypes of superlattice according to the sign of AH, and magnitude of AE_.. See definition in Table 1.

5Eord = AHSL(pq’ G) - AHﬂlloy(xﬂ T) (9)

where x=g¢/(p+q) is the alloy composition, equivalent to that of a superlattice with period 4,8,. If
0E, 4> 0, the 4,8, superlattice will be stabilized by disordering into a bulk alloy, while if 6E_ ;<0,
the ordered SL is more stable at low temperature than the random alloy. Thus, for each of the types
shown in Fig. 2 and Table 1, one can place the energy of the equivalent random alloy cither below
or above the ordered SL energy, resulting in sub-types ‘a’ and ‘b’, respectively, For example, lattice-
mismatched superlattices with attractive interfaces (type IV) are stable for p <p, against phase sep-
aration (Fig. 2) but could be either stable [AH; (p <p.)<AH, ] or unstable [AHg (p<p)>AH,,,,]
towards intermixing.

While there were a few previous calculations on the stability of metal superlattices |5,6], they
neglected the constituent strain effect or did not describe the general trends of stability versus period.
Here we give a general framework for describing the thermodynamic stability of SLs and illustrate
the method for two metal superlattices: Ag/Au and Cu/Pd. For relatively short periods p, it is possible
to calculate AHg [eqn (1)] and dHg [eqn (2)] directly from their definitions using, for example,
first-principles LDA calculations. Such calculations become, however, rather time consuming as p
and the number of interesting orientations G increases. We describe here the ‘cluster expansion’
method that uses but a few, directly calculated AH, values (where we will also determine ag and
other internal and external structural parameters explicitly), mapping the result onto an Ising expan-
sion so that AH can be evaluated trivially for any (pg, (& (bypassing the determination of ag; and
other structure-specific structural parameters). This Ising-like description has another advantage:
once we know the interaction parameters of the CE, we can use standard methods of statistical
mechanics, calculating the free-energy of any given SL as a function of temperature.

We find that Ag/Au SLs belong to type II (stable towards phase-separation at all periods [7])
while Cu/Pd is a type IV [stable towards phase-separation only for sufficiently short periods p <p(G)
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Fig. 3. Atomic figures used in the cluster expansion, which include pair figures, three-body figures, and four-body figures.
See Table 4 for the definition of the figure coordinates.

that vary with orientation]. Regarding stability with respect to intermixing we find that both AgfAu
and Cuw/Pd are stable towards alloying (sub-type ‘a’) only at short repeat periods p,=1-3: longer
period superlattices, such as those actually grown, are predicted to be unstable at 7=0.

2. Method

Accurate first-principles total energy calculations (e.g. using the LDA) can be conveniently performed
only on relatively short period superlattices [6]. For example, one can directly compute the total
energy AH (pg, @ of eqn (1) for a few ordered superlattice configurations denoted {g,} with a
reasonably small number of atoms in the unit cell. Our task here is to use a set of such directly
calculated first-principles formation energies of simple (s) superlattices {c,} to define a general ‘cluster
expansion’ [1,8] that can predict the energies of all superlattices. In the CE, a superlattice made up
of A and B atoms is treated as a lattice problem, assigning a set of ‘spin’ variables §; (i=1,2, ...,
N) to each of the N sites of the lattice, with $;,= —1 if site / is occupied by an 4 atom, and §;= +1
if it is occupied by a B atom. A configuration & is then defined by the occupation of each of the &
lattice sites by an 4 atom or a B atom. The energies of any of the 2 possible configurations ¢ can
be exactly [9] mapped into a generalized Ising Hamiltonian:

E(G)=J0+2Ji§i(0')+ZJUL?E(O‘)SJ(J)-}- Y JyuSi(e)Si(a)S (o) +. . ., (10)

j<i k<f<i

where the Js are ‘interaction energies’, and the first summation is over all sites in the lattice, the
second over all pairs of sites, the third over all triplets, and so on. The interaction energies J are the
same for all configurations ¢. Thus, if the Js can be calculated and if the series [eqn (10)] converges
reasonably rapidly, the energy E(¢) of any configuration can be obtained almost immediately by
simply calculating the spin products and summing eqn (10). The problem with representation (10) is
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that often atoms move off their ideal lattice sites (‘relaxation’) and that when this happens the
convergence of eqn (10} becomes slow [10-12]. This problem can be fixed [10]. To this end, the Ising
series of eqn (10) is first cast m terms of lattice-averaged functions. The lattice is broken into a set
of “figures’ f (Fig. 3) each being a specific set of sites, such as a nearest-neighbor pair, or a nearest-
neighbor triangle. Since the interaction energies have the full symmetry of the lattice, we can average
the spin products of eqn (10) over each class F of symmetry-equivalent ‘figures’. This defines lattice-
average spin-product for F

_ 1
nF(a)zN—D Y. S, (6)S,(a)... S, (o), (1)
Fr

where f run over the ND; figures in class F, and the spin indices run over the m sites of figure £ In
the remainder of this paper, we will use the term figure for a class of equivalent figures, as in ‘the
nearest-neighbor pair figure’. The set {TT(a)} defines {9] a complete, orthogonal set of basis functions
over the space defined by {a}. This means that we can rigorously expand the energies of the configur-
ations after all of the atoms have been fully relaxed—even though the atoms are no longer on their
original lattice sites. We can therefore rewrite eqn {10} as a cluster expansion (CE):

AEcg(6)=NY DpJ;lle(0) (12)
F

We now take a few steps in anticipation of a possible slow convergence of eqn (12):
First, rather than expand AH, (c)=AE,;,..(0), we will expand the energy with respect to a
reference energy

AECE(U)=AEdirec1(0')_Eref(0') (13)

Second, we will separate the sum in eqn (12) into (i} a term including all pair interactions,
which will be conveniently summed to infinity usig the reciprocal-space concentration-wave formal-
ism, and (ii) the many-body terms which will be cast in real-space. This gives

AEcg(0)=NY J(k)|S(k,6)|* + N Y. Dy Jpllp(o) (14)
k F

where the first term includes e/l pair interactions and the second term extends to F=many body
figures. The Fourier transform of the real-space pair interaction J; , between site 0 and site # is

1y .
J(k)=zzfo.n€‘“'k" (15)
while the Fourier transform of the spin variables is
1 & i
S(k,a)=ﬁz Sy(o)e™ (16)
!

where R, (or R,) is the coordinate of the /th atomic site, and k is a vector in the first Brillouin Zone.
For an ordered configuration ¢, the S(k, o) functions will only be nonzero for a finite set of points k.
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Laks er al. [10] introduced, at this point, two modifications:

First, they required that J{k) be a smooth function. This was accomplished by minimizing the
integrated gradient of J(k). Second, they selected E,.; of eqn (13) to contain long range interaction
terms so that the expansion of AE,,,.(6)— E, (o) converges faster than otherwise. If relaxation is
unimportant (e.g. Ag-Au) one might use £,,,=0. However, when relaxation is significant, there is a
singular k=0 term which can cause a slow decay of the real-space interactions, J, , with distance
R, —R,. In this case one can choose [10] £, (o) as the energy per atom of p— oo superlattices 4,8,
whose layers are oriented along the direction ((s). This is the equilibrium ‘constituent strain’ [the
equilibrium value of eqn (5)]. For each direction G, some equilibrium (eq) value of a, will minimize
this elastic energy AE(G) yielding AES(G). One can compute AEZ(G) from its definitions by per-
forming LDA calculations for epitaxially constrained 4 and B solids along directions G, finding a%®
at each G. This ‘direct’ calculation, however, has to be repeated for all directions G{ o) for which a
given lattice configuration ¢ has S(k, ¢) #0. Laks ef ol [10] has shown that this procedure can be
simplified considerably if one assumes harmonic elasticity. In this case a5%(() is computed analytically
so the G-dependence of AES (£, x) is given in close-form. Details are given in Laks et al. [10].

The reference energy E, (¢} which we subtract from AHg (o) is hence

E (0)=N) Jos(k)|S(k,0)|? (17)
k

where

AEZ (K, x)

Jes=Jes (B0 = E

(18}

The reference energy of eqn (17) corresponds to an infinite series of real-space elastic interactions.
Removing them from the relaxed LDA-calculated energies AHg {¢) prior to a cluster expansion
significantly accelerates the convergence of this expansion [10].

Combing in a set {AHg (o)} of LDA calculations on simple configurations {o,} with eqns
(13-18) we then fit AH (6,)—E, (6,) to AE-£(6) of eqn (14). The reference energy is given by eqns
(17-18). The input to our calculation are N, LDA formation energies {AH, (¢)} and the LDA epi-
taxial parameters needed to evaluate AESYG) of eqn (18). The output consists of the pair spectrum
J(k) (or, equivalently, its Fourier transform J, ), and the many-body interactions {J/;}. Together
these enable calculations of the excess energy of any of the 2% configurations ¢ from

AEcg(0)=N Y [J(k) +Js(K)]IS(K,0)|* + N Y, DpJpI1p(0) (19)
k F

simply by inserting the geometrical factors S(k, o) and I1,(s).
Convergence is tested by applying eqn (19) to a set of structures {¢'} not used in constructing
the CE fit. We define the prediction error (PE) as,

Opel(0') = Egjpei(0') — Ecgla’}). (20)

If the predictions errors are larger than a prescribed tolerance, more many-body figures and input
structures are added to the expansion (14). This method has been tested [10] previously by comparing
the prediction AE g{s’) to directly calculated energies of huge supercells (up to 1000 atoms) with
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Table 2: Directly calculated relaxed LDA excess energies AE,; __(¢) (error+10 meV atom™'} and
the corresponding cluster expanded [eqns (17) and (19)] formation energies AE (o) (in meV
atom ™ ') for Cu-Pd. Many structures calculated here can be characterized as a Cu,Pd, superlattice
in orientation G. We use the conventional structure (or prototype) name when avattable and assign
our own label otherwise. Structure D1, D4, and D7 are defined in Figs 10 and 11 in Lu e ol [14].
The ‘special quasirandom structures’ (3QS) are structures with small number of atoms/cell used to
mimic the random alloy. The structural information for these SQSs is given elsewhere [16-19]. The
L1, based one-dimensional long period superlattices (LPS) are denoted by their Fisher and Selke
(see [15]) notation which specifies, between angular brackets, the sequence of non anti-phased
domains. The structures labeled here with the symbol * are used in the fit of eqn (19); others are
predictions.

QOrientation
formula [001] [011] [012] [111]
AB L1* L1* L1* LL*
AE, . —86.3 —86.3 —-86.3 —~82.0
AE_, —82.2 —82.2 —82.2 —81.0
A,B B1* MoPt, MoPt, al*
AE,, .., —456 —80.0 —80.0 —403
AE g —46.3 —74.6 —74.6 —393
AB, 52 MoPt, MoPt, o2*
AE, —72.0 —457 —457 —49.2
E —65.6 —54.6 —54.6 —49.8
A8 Z1* Yl bo,,* VIi*
AE,; NS —65.9 —76.4 —-20.0
CE —41.0 —56.4 —-71.8 —222
AB, Z3* Y3 Do, .* V3
AE, o —-50.2 —36.6 —46.4 —34.1
AE g —-59.2 —47.5 —47.0 —344
2B Z2* Y2 q* V2
AE, . —72.0 —63.2 —84.6 —29.5
- —627 —67.7 —83.8 —1838
Non-SL A* B* L1, (4. B)* L1, (4B,
AE, .. 0.0 0.0 —85.0 —534
<E 2.5 2.1 —859 —53.0
Non-SL D1 (A,B) D7 (A4B.) D4 (A4 B
LY. —38.1 —31.8 —65.3
CE —30.7 —24.9 —65.5
5Q88, (4,B,) SQS8, (4,B) SQS14 (4,B,)
AE,. .. —57.1 —67.8 —48.6
CE —54.5 —69.7 —43.6
DO, (AB;) LPS(21Y (A4B,) LPS(3) (4,B,)* LPS¢4) (4,,B,)
AE, . —83.9 —80.7 —90.0 —874
—85.8 —82.4 —88.0 —88.1

CE

different symmetries (abrupt and inter-diffused superlattices, random alloys, impurities). The direct
calculations as well as the corresponding CE were done using valence force field method [13]. Excel-
lent agreement was found. Here we apply the method to find LDA energies of (Ag)(Au), and
(Cu),(Pd), superlattices.

For Cu/Pd for which there is a significant size mismatch and hence relaxation, we use the full
formalism of egqns (15-19). For Ag/Au for which the size mismatch is negligible we have AE =0 so
the cluster expansion is given by a finite real-space sum of both pair and many-body figures [eqn (12)].
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Table 3: Directly calculated relaxed LDA excess energies AE,, (o) {error+2meV

atom™ ') and the corresponding cluster expanded {Eq. (17} and (19)] formation energies

AE (o) (in meV atom™') for Ag-Au. See caption for Table 2 for definition of the

structures. The structures labeled here with the symbol * are used in the fit of eqn (19);
others are for predictions.

Orientation
formula [0o1] {o11] [012] (111] [113]
AB L1* L1} L1* Ll* L1
direct -59.7 -59.7 —359.7 ~43.0 —43.0
cE —587 —58.7 —58.7 —43.5 —43.5
A,B B1* MoPt, MoPt, ol * MoPt,
AE,,... —408  —49.7 —49.7 ~30.2 —49.7
AE, ~40.4 —47.2 —472 —29.0 —47.2
AB, B2 MoPt, MoPt, a2* MoPt,
AE,,.., —400  —469 —469 308 —46.9
AE g —38.1 —44.7 —447 —29.3 —44.7
A,B Z1* Yl DO,,* VI* wi
AE, .. —292 -37.0 —423 —21.3 -359
AE -30.2 —36.4 —42.8 —21.6 374
AB, Z3* Y3 DO, ,* V3 W3
AE, . —27.9 —354 —41.0 —-214 —344
AE; —285  —349 —413 —22.0 ~337
A,B, 2+ Y2 Gl V2 w2
AE, —28.8 —44.1 —553 -229 —50.6
AE; —29.5 —42.0 —54.9 -219 —49.4
Non-SI Ag* Aut L1, (A,B*  Ll, (4B
AE,,., 0.0 0.0 —434 ~44.0
AE . 0.3 0.1 —435 —443
Non-SL Dl (4,B) D7(4B;) D4(4,B)* SQS8, (4,B,) SQS8,(4,B)
AE, ., —208  —20.0 —429 —425 —43.6
AE —23.0 —20.5 —43.6 —42.2 —42.4

3. Details of the calculations
3.1 Configurations used in fit

We used an input set which includes 18 structures for Cu, _, Pd, covering compositions of x=0,
0.125,0.25, 0.333, 0.5, 0.667, (.75, 0.875, and ! and orientations of [001], [011], [012], and [111]. Most
of these can be viewed as short period A,B, superlattices. These structures are 4, B, L1,, L1,, L1,,
40°, L1, Z2, DO,,, DO,,, 71, Z3, al, a2, B1, V1, D4 [14], and LPS {3} [15]. Tables 2 and 3 define
these structures [14-19]. We included a few structures that are not superlattices, namely, the foc 4
and B, the L1,, and the D4 structure. For Ag-Au {21], we used the same set (the structure LPS (35,
which has more than 12 atoms cell !, was, however, not calculated).

3.2 Figures used in fit

For size-matched Ag-Au system, the pair-interactions are cast in real-space, i.e. J,, K, L,, and M,
(up to fourth nearest neighbors), while for size-mismatched Cu-Pd system, the long-range pair-inter-
actions are cast in reciprocal-space (up to ~ 190 neighbor shells). The many-body figures considered
are given in Table 4. In addition to the nearest neighbor three (J;) and four-body (J,) interactions,
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Table 4: Definition of the “figures’ f used in our cluster expansion in terms of the vertices

of the fec structure (in units of @/2, where a is the lattice parameter). We also give the

interaction energies (meV atom ~!) for Cu-Pd and Ag-Au (see [18]). The pair interaction

for Cu-Pd are cast in the reciprocal form. Here we also give the first-few pairs of

real-space interaction energies. Negative (positive) J, denote ferromagnetic (anti-
ferromagnetic) interactions.

Cluster type Designation Vertices Cu-Pd Ag-Au
Empty Jy —100.41 —42.53
Point J, (000) 14.66 2.59
Pairs J, (000), (110} 66.20 41.18
K, (000), (200) 8.26 —0.18
L, (000}, (211) 8.35 3.01
M, (000), (220) —0.25 —1.22
Triplets J, (000), (110), (101) —26.87 —0.06
K, (000), (110}, (200) 8.37 —3.05
L, (000), {110}, (211} 6.16 —0.40
M, (000), {1109, (002) —2.50
Quadruplets g, (000), (110y, (101), (011) 6.26 —0.03
K, (000}, (110), (101), (200) —13.70
L, {000), (110), (101), (211) —1.48

we also included the following three and four body terms: K, L,, M,, K, and L,, for Cu-Pd and
K, and L, for Ag-Au.

3.3 Details of electronic structure calculations

We have calculated total energy versus volume E(J) for the elemental fcc solids and compounds using
the full-potential linearized augmented-plane-wave (LAPW) method [22-27], which is based on the
local density approximation (LDA) [28].

For the Ag-Au systems, we have used the LDA exchange correlation potential of Ceperley and
Alder [30], as parameterized by Perdew and Zunger [31]. To obtain highly precise results we use a
k-point sampling scheme that i1s geometrically equivalent in the compound and its pure constituents
[32). For example, using such a set, the total energy of 4,4 in the L1, or DO, , crystal structures are all
equal to the fcc value. In practice we use sets of k-points that are equivalent to 408 fce special k-points
[33]; increasing the equivalent k-points from 60 to 408, the energy of each structure changes by less
than 1 meV atom ™', except for the Y1 and Y2 structures for which the changes are 1.2 and 1.6 meV
atom ™!, respectively. We also use a large basis set cutoff of Ry K,,,,=9.0 (RyE=Ri1=2.55a.u.),
which corresponds to ~85 LAPWSs atom ™ *. The error in AEy; .., is estimated to be ~2 meV atom™ ..

For the lattice mismatched Cu-Pd system, we also relax (assisted with quantum mechanically
calculated forces) the symmetry-allowed degrees of freedom (both cell-internal and cell-external par-
ameters). We have used the Wigner [34] form of exchange-correlation potential. The error in AEy,, .,
for Cu-Pd is however, larger than for Ag-Au, estimated to be ~10meV atom~!. The calculated
formation enthalpies for the ordered structures are given in Tables 2 and 3.

3.4 Examination of fitting errors

For Ag-Au, the average fitting error is 0.7 meV atom™ ' for 17 structures used to extract the inter-
action energies {J}. We have tested these interaction parameters by predicting AE, ., for 15 struc-
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tures {¢'} that are not used to obtain {J}s. Comparing with directly-calculated LAPW values, we find
an average prediction error of dpp=1.5 meV atom ™!, with a maximum prediction error of 2.5 meV
atom~ !. For Cu-Pd where a typical excess energy AE(}) is around —70 meV atom ™! we find an
average fitting error of 3.9 meV atom™', an average prediction error of 6.2 meV atom™! (for 16
structures that are not used in the fit}. Recall that the estimated LAPW convergence errors are
10 meV atom ™! and 2 meV atom ™! for Cu-Pd and Ag-Au, respectively.

4. Results
4.1 Interaction energies

Table 4 gives the values of many-body interaction energies for Ag-Au and Cu-Pd, while Fig. 4 shows
the pair interaction energies for Ag-Ag and Cu-Pd. Note the dramatically different range for the
relaxed Cu-Pd and unrelaxed Ag-Au systems since Ag and Au are nearly lattice-matched.

Table 5 gives the constituent strain energy AE. Cu-Pd at x=1 for G along the [001}, [011],
[012], and [111] directions. For size-matched Ag-Au systems AE-c=0. This table also gives interfacial
energies,

We find the following results:

(1) for long periods, the energy of Cu/Pd SLs is dictated by the constituent strain AE.s while
the energy of Ag/Au SLs is dictated by interfacial interactions /. The order of constituent strain
energies in Table 5 (also the order of AHg; for large p) is:

AES(111) > AEZ(011)> AESZ(112) > AES3(001). (21)

Thus, the (111) is the ‘hardest’ elastic direction while the (001) is the ‘softest’. This is nearly universal
results observed also in semiconductor superlattices [3]. We thus predict that for lattice mismatched
long period SLs, the (001) oriented Cu-Pd SL is the least unstable while the (111) oriented SL is the
most unstable.

(i) Both Cu-Pd and Ag-Au have attractive (I <0) interfaces. The order of interfacial energies
(Table 5) is

I(111) > I(001) > 1(011) > I(012). (22)

Thus, the (012) interface is the most stable, while the (111) interface is the least stable. Hence, in the
absence of size-mismatch, the (012) oriented SL is the most stable and (111) oriented is the least stable.

(iii) Table 5 shows that Cu-Pd has considerably more attractive interfaces than Ag-Au. Since
AEs~0 and I<0 for Ag-Au, this system behaves as Type 2 (Table 1). In contrast Cu-Pd AE>0
and /<0, so this is a type IV system. Thus, Ag/Au SLs are stable with respect to phase-separation
at ail periods p. Cu/Pd SLs are stable towards bulk phase-separation only if

p<5for G=(111)
p<18 for G=(012) (23)
p<9 for G=(011)
p<15 for G=(001).

Above these values of p, the Cu/Pd bulk SLs are unstable with respect to phase-separation. Note that

since 8Hg (pp, G, a)=2M(pp, G)ip is negative, these systems will be stable against epitaxial phase-
separation as long as interfacial coherence exists.
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Reciprocal space CE, E = AE
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Fig. 4. Pair interaction energies for (A} Ag-Au and (B) Cu-Pd.

{(iv) The power of the CE is illustrated in Fig. 5, depicting the predicted bulk SL formation
energies AHg (pp, G) of SLs too complex to be calculated directly by LAPW and AH,;,(x) of the
random alloy. We see that only for very short period SLs does AHg <AH_ ;. specifically, the order-
ing energy of eqn (9) is negative for Ag/Au only for

p<l1for G=(111)
p<3 for G=(012) (24)
p<2for G=(011)
p<1 for G=(001),

while for Cu/Pd the ordering energy is negative for

p<1for G=(111)
p<3 for G=(012) 25)
p<2for G=(011)
p<1for G=(001).
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Table 5: Constituent strain energy AEZ (G x) {x=1/2) and
interfacial cnergws Kpp, G) of 4 o3, superlatttces {p =50},
the energies are in units of meV atom ™!

SL Orientation  [001]  [012] o1y 1

AEZ (Cw/Pd) 17.4 34.5 41.0 46.0
I (Cu/Pd) —819 -—-2832 1672 =720
I (Ag/Au) —-21.7 —65.2 —361 —l141

—— [001]

iy
=

=]

Superlattice formation energy AH; (G, p) (meV atom™)

—40

10 20 30 40 50
Repeat period p

Fig. 5. (A) the Ag, Au, superlattice energies as a function of repeat period p. As a comparison, we also show (B) the energjes
of the lattice-mismatched Cu,Pd, superlattices.
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Fig. 6, Superlattices according to their signs of AH [eqn (1)] and 8E__, [eqn {9)].

Thus, Ag/Au and Cu/Pd SLs are stable with respect to formation of random alloys and phase-
separation only at ultra short periods of 1-3 corresponding to ordinary intermetallic compounds such
as L1, This corresponds to the energy sequence o shown in Fig. 6(a). Above these periods we find
‘region f’ [Fig. 6(b)] where the SLs are stable with respect to phase-separation but unstable with
respect to alloy formation. This means that some ordered structures (such as the non-superlattice L1,
structure) other than these SLs are more stable. If, nevertheless the SL did form, it would decay into
an intermixed state. Finally in ‘region v’ the SLs are unstable both with respect to alloy formation
and phase-separation. Thus, at high temperature such superlattices will disorder while at low tem-
perature they will adopt the lowest energy ground state (if there is enough diffusion mobility); there
is no temperature at which the atomic order corresponding to such SL is a thermodynamically stable
structure. For Cu-Pd region « is for p<3 [egn (25)], regions # and v are for p<5-18 and p>5-18
(depending on the orientation of G), respectively. For Ag-Au, region « is for p<3, region § is for
p >3, while region y dees not exist.

We have addressed the stability of SLs at T=0 K, and we have found that the interfacial energies
I(pq, @) are strongly orientation and period dependent, with the [012] direction being the most stable while
the [111] direction is the least stable. The free energy of the superlattice as a function of temperature can be
investigated using statistical mechanics methods, e.g. with the cluster variation methed (the internal
energy is calculated using a cluster expansion). Entropy effects would favor diserdering (alioying), thus
lowering the free energy of the disordered alloy. On the other hand, the free energy of the sharply-
interfaced superlttice will become less stable with respect to the ‘intermixed superlattices’ (disordered
alloy). Hence, the atoms near the interface of a superlattice would intermix and as a result, one would
expect that strong anisotropy of the interfacial energy /(G) will be eliminated as temperature increases.
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