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First-principles quantum-mechanical calculations indicate that the mixing enthalpies for Pd-Pt and 
Rh-Pt solid solutions are negative, in agreement with experiment. Calculations of the diffuse-scatter- 
ing intensity due to short-range order also exhibits ordering tendencies. Further, the directly calcu- 
lated enthalpies of formation of ordered intermetallic compounds are negative. These ordering 
tendencies are in direct conflict with a 1959 prediction of Raub that Pd-Pt and Rh-Pt will phase-sepa- 
rate below ~760 ~ (hence their mixing energy will be positive), a position that has been adopted by 
all binary alloy phase diagram compilations. The present authors predict that Pdl_xPtx will order in 

Llz,Llo, and L12 structures ([001] superstructures)at compositionsx = 4 '  2 '  and 4 '  respectively, the 
I I 

while the ordered structures of Rhx_/Pt x are predicted to be superlattices stacked along the [012] di- 
rections. While the calculated ordering temperatures for these intermetallic compounds are too low 
to enable direct growth into the ordered phase, diffuse-scattering experiments at higher tempera- 
tures should reveal ordering rather than phase-separation characteristics (i.e., off-F peaks). The 
situation is very similar to the case of Ag-Au, where an ordering tendency is manifested both by a dif- 
fuse scattering intensity and by a negative enthalpy of mixing. An experimental reexamination of Pd- 
Pt and Rh-Pt is needed. 

1 .  I n t r o d u c t i o n  

In 1959, Raub 1 suggested the existence of miscibility gaps in 
the Pd-Pt and Rh-Pt systems with fairly high maximum misci- 
bility gap temperatures of 770 and 760 ~ respectively. He in- 
ferred these results from the assumed correlation between the 
maximum miscibility gap temperature and the difference in 
melting points of the constituents and from the experimentally 
observed miscibility gaps in similar alloys, such as Pd-Rh, Ir- 
Pt, and Ir-Pd. 1 Attempts to observe these miscibility gaps have, 
however, consistently failed. 2-5 In agreement with the conjec- 
ture of Raub, tight-binding d-band only alloy theories 6 pre- 
dicted phase-separation for all d-electron-rich alloys, e.g. the 
late transition metal alloys (because the anti-bonding states are 
partially occupied). That this is not a compelling argument is 
clear from the fact that Ni-Pt orders strongly despite its high d- 
electron count. The reason for the failure of such arguments 
was recently clarified. 7 Phenomenological theoriesS, 9 are not 
clear on whether Pd-Pt and Rh-Pt should phase-separate or or- 
der: Miedema's models predicts AH = +(1 to 3) kJ/mol for Pd- 
Pt and AH --- -(2 to 3) kJ/mol for Rh-Pt, both values being close 
to the limit of accuracy of the model. Thus, neither experi- 
ment 2-5 nor simple phenomenological theories s shed light on 
whether these systems order or not. Yet, all phase-diagram 
compilations, 10-15 including the latest assessments by Massal- 
ski et al. 13 and Okamoto, 14A5 have adopted Raub's view, label- 

ing Pd-Pt and Rh-Pt as phase-separating (miscibility gap) sys- 
tems. 

First-principles quantum mechanical stability calculations in 
conjunction with cluster expansions ~6 offer an alternative 
method to the phenomenological approaches.8, 9 Here, note 
that such calculations 7 predict Pd-Pt and Rh-Pt to exhibit or- 
dering rather than phase separating at low temperatures. This 
conclusion comes from the first-principles quantum mechani- 
cal calculations 7 backed up by experimental evidence, 17-19 
which seems to have been largely overlooked by the alloy 
phase diagram community. The situation in Pd-Pt and Rh-Pt 
systems is very similar to that in Ag-Au where an ordering ten- 
dency 20 was recognized by ample experiments 21-24 and theo- 
retical calculations 25-30 despite the fact that the ordering 
temperatures24. 30 are too low to actually grow ordered com- 
pounds. An experimental reexamination of the phase stability 
of Pd-Pt and Rh-Pt is thus needed. 

The following gives a brief account of the theoretical strategy 
and then presents the results and discussion. For comparison 
and as a "sanity test," parallel calculations are also conducted 
for Pd-Rh, which is known experimentallyl, 31,32 and theoreti- 
cally 7,33-35 tO phase separate. In the Rh-Pd-PI triangle, Pd-Rh 
should phase separate (in agreement with experiment), but Pd- 
~t and Rh-Pt should order (in distinction to current phase-dia- 
gram assessments). 
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2. M e t h o d  o f  C a l c u l a t i o n  

2 .1  C l u s t e r - E x p a n d i n g  Lat t i ce  Q u a n t i t i e s  

Short- and long-range order (SRO and LRO) in binary AI~,:B x 
1 

systems can be interpreted in terms of spin--~ lattice models in 

which each lattice site i (i = 1 . . . . .  N) is labeled by a spin vari- 
able, ~i, taking on the value -1 (+ 1) if site i is occupied by atom 

A(B). The excess energy AE(c~,V) of any of the 2 N configura- 

tions (y obtained by occupying N sites by A or B is: 

AE(~,V) = E ( G , V )  - [(1 -X)EA(VA) +xEB(VB)] (Eq I )  

The excess energy in Eq 1 depends on the volume, V, and is de- 
fined with respect to the energies of equivalent amounts of the 
pure solids A and B at their respective equilibrium volumes VA 
and liB. The low-temperature ground state structures of a given 
lattice type are then interpreted as the configurations 6 that 
give the lowest AE(G,Vo) at the equilibrium volume Vo. For 
phase-separating systems (miscibility gap) AE(cy, V) are posi- 
tive for all structures, while for an ordering system, AE(cy, V) 
are negative for at least the ground-state structures. 

Advances in the electronic structure theory36 now enable prac- 
tical and accurate quantum-mechanical calculations of the to- 
tal energy of simple configurations G: 

A 
<tlJIHIW> 

Ed,rect(G,V) = <tls[  t l J>  (Eq 2) 

where H and te are the Hamiltonian and wave function of the 
electronic system. In practice, most calculations are performed 
using the density functional formalism,37.38 as implemented 
numerically by, for instance, the highly precise, full-potential, 
linearized augmented plane wave (LAPW) method. 39.4~ Such 
calculations include electrostatic, ionic, and exchange-corre- 
lation effects. They avoid tight-binding or spherical-potential 
approximations and account for metallic, ionic, and covalent 
bonding. However, since quantum-mechanical calculation of 
an astronomic number of configurational energies AE(o,V) is 
prohibitive, one approach is to perform such a ground state 

search by expanding Eq 1 in a finite Ising-like cluster expan- 
sion (CE): 

2; (zq 3) 
f 

where Jj(V) are volume-dependent interaction energies of 
some basic lattice figures f (e.g., nearest-neighbor pairs, next 
neighbor pairs, triangles, etc.) as shown in Fig. I. Their coordi- 
n__ates are defined in Table 1. The lattice averaged spin products 
[ I f  (13) a r e  the product over the f igurefof  the v a r i a b l e s  ~i, av- 
eraged over all symmetry equivalent figures of the lattice. All 
of the terms on the right-hand side of Eq 3 are trivially deter- 
mined geometrical quantities, with theexception of Jf, the ef- 
fective interaction energies. Since {Hf(~)} is a complete, 
orthonormal set of polynomials, the expansion Eq 3 is exact, 41 
if not truncated. In practice, one hopes that this series con- 
verges reasonably rapidly so only -O(10) interaction are re- 
tained (the first few pair interactions, as well as many-body 

Cluster Figures in FCC ] 

�9 

Fig. 1 Atomic figures used in the cluster expansion, which in- 
clude pair figures, three-body figures, and four-body figures. Ta- 
ble 1 defines the figure coordinates. 

Table 1 Definition of the Figures fUsed  in Cluster Expansion in Terms of the Vertices of the fcc Structure 

F i g u r e  t y p e  D e s i g n a t i o n  V e r t i c e s  Pd-P t  R h - P t  P d - R h  Ag-Au 

Empty ........................................ 
Point .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Triplets . . . . . . . . . . . . . . . . . . . . .  

Quadruplets . . . . . . . . . . .  

J0 -28.2 -11.6 65 0 .-43 41 
Jt  (000) -3.  l 4.2 1.9 1.95 
J ,  (000),(110) 22 6 43.2 4 9 . 2  41 l0  
K 2 (000),(200) 4).7 0.1 0.4 0.7 l 
L 2 (000),(211 ) 10.9 -2  1 -9.9 3 65 
M~ (000),(220) -1 0 8 3 10.4 -0.48 
N 2 (000),(310) . . . . . . . . .  -0.03 
O 2 (000),(222) . . . . . . . .  -0.89 
" ] . 3  (000),(1101,(10l) 3.5 -6  6 0.7 - 0  56 
K 3 (000),(110),(200) . . . . . . . .  -2 .22 
L 3 (000),(l 10),(211 ) ... 0.89 
Ja (000),( 110),(101 ),(011) 0'3 0.7 - 3 9  - 0 3 1  

�9 , a 1 
N o t e :  Verhces are in umts of~,  where a is the lattice parameter See Fig 1 The effective T = 0 cluster lnteracnons Df.lf(m meV/atom) at x = 97 [or corresponding to V = 

(V a + V,~)/2I, are hsted The dominant negative (positive) J2 denote phase-separating (compound-fonmng) mteracttons. One meV/atom equals 9.649 x 1 0 2 Id/mol. 
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terms). If the series Eq 3 converges after M terms, one can cal- 
culate an equivalent number of  interaction energies { Jr(V) } by 
equating Eq 2 with Eq 3. For example, the simplest, direct in- 
version gives 

M 

Dj/V) = y_., a2d,~,(o.v)[n/o)],  (Eq 4) 
(Y 

which can be obtained once one has performed self-consistent 
quantum-mechanical calculations on M different A,,B,,, or- 
dered structures. These structures do not have to be ground 
state structures. In fact, any collection of  M hypothetical con- 
figurations (that have a nonsingular determinant in Eq 3) will 
do. Using Eq 4, extract a set of  interaction energies { Jj.} from a 
set of total energies {Edlrect(O', V)}. Convergence is examined 
by the ability of  these M interaction energies to reproduce via 
Eq 3 the quantum-mechanically calculated energies of  other 
configurations. This approach recently was reviewed. 16 Since 
the underlying quantum-mechanical calculations of  AEatrect(CL V) 
automatically includes atomic size effects, charge-transfer, 
atomic displacements, exchange-correlation, and covalency, 
all of these factors are also encoded in the ensuing Jj: 

Having obtained a converged set of  interactions, the T = ~ en- 
thalpy of  mixing of  the random alloy can be readily evaluated. 
Denoting a configurational average for the random (R) state by 
angular brackets <>~, then: 

~,,fl(x) : ZDtlc<H?R: ~.Dcl/Zx- 1) ~, (Eq 5) 

f f 

where <H> R = (2x - 1 )g, and kfis the number of  vertices in fig- 
uref(e.g. ,  kf= 2 for pair, 3 for triangles). The enthalpy of  for- 
mation of  ordered compounds is obtained by evaluating Eq 3 at 
the volume V,a (as well as the appropriate external and internal 
coordinates) that minimizes E(cy, V); i.e., Af/-/((y) : diE((Y, Vo). 
The ordering energy, -8Eo~a(G), is defined as the difference be- 
tween the enthalpy of  formation AfH(C0 of an ordered configu- 
ration 0 and the enthalpy of  mixing km~,H(x) of  a random alloy 
at the same composition x: 

8Eora(~) = y ,  DaJf[II j(6) - (2x - 1)15] (Eq 6) 

f 

The order-disorder transition temperature thus can be esti- 
mated using the mean-f ie ld  formula  -8Eor d = kT~[x In x + 
( 1 - x)ln(l - x)], where on the right-hand side an ideal entropy 
of  mixing is assumed. More accurate values of  T,~ can be calcu- 
lated applying either the cluster-variational method 42 (CVM) 
or Monte-Carlo simulation 43 to the present set of  interaction 
energies {Jf}. In these approaches, AfH and Am,~H are evalu- 
ated at finite temperatures so that effects of imperfect ordering 
(in AfH or imperfect randomness in Am,• are included. Here, 
subject the effective interactions {Jf} to a Monte-Carlo simu- 
lated annealing treatment, 43-45 which gives (a) the T = 0 LRO 
ground states (on a finite cell), (b) the order-disorder transition 
temperature T~, and (c) the SRO diffuse-scattering map at a 
fixed temperature. Monte Carlo simulated annealing was per- 
fonned in the canonical ensemble at a fixed concentration with 
the transition temperature being calculated from the disconti- 

nuity in the internal energy as a function of  temperature and the 
ground state detennined by the state of  the simulation at a tem- 
perature where all configurational changes proved to be ener- 
getically unfavorable.* 

The Warren-Cowley SRO parameter 46 for the Nth atomic shell 
at distance Rt,,,,, from the origin is: 

<H0.A, > _ q2 
O~SR~ - 1 - q2 (Eq 7) 

where q = 2x - 1, and the angular bracket denotes a configura- 
tional average. Note that OtSRO(0)--I by definition. The 
Fourier transform of the real-space SRO is OtSRo(k), which is 
proportional to the diffuse intensity due to SRO. Its value de- 
pends on the number of  N R of  real-space shells used in the 
transform: 

N,r 

O~SRo(k'J'VR) = Z OtsRo(Rtm')e'k RI ..... (Eq 8) 
N 

For a binary alloy with a small lattice mismatch such as the sys- 
tems studied here, the peak positions in reciprocal-space of  
high-temperature ~(k) usually indicate the type of  low-tem- 
perature order structure; i.e., phase-separating systems have 
peak position at the zone center the F = <000> point, while or- 
dering systems have peak positions off the F point. See Ref. 47 
for a more complete discussion of  the SRO versus LRO behav- 
iors. 

2 .2  Calculat ing  the  Clus ter  E x p a n s i o n  Interac-  
t i on  Energies  

The excess energy AEdirect(O', V) vs volume V for 12 ordered 
structures each in Pd-Pt, Pd-Rh, Rh-Pt, and Ag-Au were calcu- 
lated. The structures are defined in Ref. 48. The total energies 
were calculated by self-consistently solving the effective 

1 e2 2,-/'/= 1) Schr0dinger equation (in atomic units: m e = v--f" = 

2Zo [ 2p(r') OE, c[P] 
i-V2 + Z [Rla_ ~ + a i~_ ffl dff + T i  (Eq 9) 

I J 

~,(r) = ~,%(r) 

where p(r) = Z,gff(r)~,(r) is the charge density, Exc[p ] is the to- 
tal exchange and correlation energy, and R~ are position coor- 
dinates of  atom lU with atomic numberZ w The present authors 
use the local density description37. 38 for E,~c[ 9], for which they 
use the functional of  Wigner 49 for Pd-Rh, Pd-Pt, and Pt-Rh and 
of  Ceperley and AlderSO as parameterized by Perdew and 

*A Monte Carlo cell size of 163 = 4096 atoms (with periodic bound- 
ary conditions) was used In the calculation of O~SRo(RImn) and 
cXSRo(k, NR), 500 Monte Carlo steps per site are used to equilibrate the 
system (which is initialized in a completely random state), and sub- 
sequently, averages are taken over 100 Monte Carlo steps per site The 
ground state structures are searched among a set of-65 000 structures 
that have less than 16 atoms per unit cell for Pd-Pt and Rh-Pt, while 
the ground state structures are found using Monte-Carlo simulated an- 
nealing approach for Ag-Au system. 
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Table 2 LAPW-Calculated Enthalpies of Formation in the meVlatom of the A l-xBx Intermetallics 

S t r u c t u r e  Pd~_~Ptr Rhl_tPt  ~ Pd I rRh x A g l _ r A u  x 

fcc (A) . . . . . . . . . . . . . . . . . . . . . . . .  0 0 
L I 2 ( A 3 B )  . . . . . . . . . . . . . . . . . . . . .  -30 4 -20.4 
0022 ( A ~ B )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -22  I -25 2 
131 (A3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - 2 8 2  - 1 0 0  
L l o ( A B )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -39.5 -16.5 
L 11 ( A B )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -29, l -3.9 
"40" ( A B )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -32. l -29 5 
Z2 (A?.B2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -24.7 ~ )  4 
[32 ( A B , , )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -30.4 -4  3 
D022 (AB3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -29.1 -13 0 
L 1 2 ( A B ~ )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -35 1 -10.8 
fcc (B) . . . . . . . . . .  0 0 
8E . . . .  l ................. " ' i " . " ' . . i  . . . . .  "'"i..iiiilli". 1.1 21 
AmlxH(~-) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -28 2 -11.6 
8Eora ..7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -11 3 - 1 7 9  
c7c7c7c7~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189 300 

N o t e :  Various structures are defined m Ref. 48. One meV/atom equals 9 649 x 10 ~- k J/tool. 

0 0 
66 8 -43.4 
69.0 -42.3 
72.5 -40.8 
82.4 -59.7 
79 0 -40.0 
70.7 -55.3 
35 1 -28 8 
64 2 -40.0 
63 8 ~-1.0 
85 0 - 4 4 0  

0 0 
7 1 0.6 

65.0 -43.4 
- 1 6 3  
273 

The cluster expansion fitting errors 8E are given. Tills table gives the 
1 

calculated, high-temperature enthalpies of mixing of the disordered alloys atx = ~- Also given are the ordenng energies of Pd-Pt (Llo), Rh-Pt ("40"), and Ag-Au (LIo) 

and the corresponding estimated transition temperatures (in Kelvin) using the s~mple mean-field formula ~Eor d = k~cc IF Ix In x + ( 1 - x)ln( I - x)]. 

ZungerS~ for Ag-Au. Equation 9 was solved self-consistently 
by the full-potential linearized augmented plane wave 
(LAPW) method.39, 4~ Any shape approximation (e.g., muffin- 
tin) to the potential and charge density or any elimination of a 
subset of states (e.g., the pseudopotential approximation) is 
avoided. The core states are treated fully relativistically while 
the valence states are treated scalar relativistically. The spin- 
orbit coupling for the valence electrons can be treated in a sec- 
ond variational procedure. The spin-orbit effects on the 
enthalpy of formation is, however, rather small, e.g., it changes 
A/-/in the L10 structure for Ag-Au by less than 1.5 meV/atom. 
All matrix elements between basis functions are calculated nu- 
merically with no approximation. The calculation is fully self- 
consistent. Core states are also treated self-consistently (i.e., 
no frozen core approximation), but using only the spherical 
piece of the potential. To obtain highly precise results, a k point 
sampling is used that is geometrically equivalent in the com- 
pound and its pure constituents. For example, by use of such a 
set, the total energy of A v4 in the L12 or D022 crystal structures 
are all equal to the fcc value. In practice, sets of  k-points are 
used that are equivalent to 408 fcc special k-points 52 for Ag-Au 
(increasing k-points from 60 to 408 alters AH by less 1.6 
meV/atom) and 60 for the other systems. Also used is a large 
basis set cutoff of RMTKma x = 9.0, which corresponds to -90 
LAPW/atom. 

Having solved Eq 9 self-consistently, one obtains the total en- 
ergy as: 

1 2ZoZv 
Edlrect (13,V) -- Z <~/11 - V2ll~/l> -I- ~-~ Z I R g -  Rvl 

t U,V 

-2Z~t 
+ 2 f 9 ( r )  l ~ - r l  +lII2p(r)13(r')lr- ~1 drdrt+E'c (EqI0)  

i1 

where the terms are kinetic energy, ion-ion, electron-ion, elec- 
tron-electron Coulomb energy, and exchange-correlation en- 

ergy. For structures possessing external and internal degrees of 
freedom (e.g., c/a relaxation in the L10 structure), we optimize 
these parameters (atomic relaxation) to achieve the lowest to- 
tal energy. Such relaxation was previously 53 shown to have a 
significant effect on AH of compounds with size-mismatched 
constituents. For example, in NiPt and NiAu, relaxation low- 
ers AH(LI 0) by -18 (out of-96)  and -20 (out of 77) meV/atom, 
respectively. In the disordered 50%-50% phase of these alloys, 
the energy lowerings due to relaxation are -54 and -68 
meV/atom, respectively. Since relaxation is different in or- 
dered vs disordered states, it has a significant effect on order- 
ing energy ~Eor d. For example, for NiAu without relaxation 
8Eora(L10) = -96 meV/atom while with relaxation ~SEord(L10) 
= 4 8  meV/atom. The relaxation can even change the sign of 
AH (see examples of this in Ref. 48). For the present systems 
with relative small lattice mismatch, the effect of relaxation is 
small, e.g., it lowers AH(L 10) by 1.8 meV/atom for Ag-Au. The 
estimated LAPW errors are approximately _+2 meV/atom for 
Ag-Au and larger (approximately _+10 meV/atom) for the other 
systems. 

The formation enthalpies of Eq 1, AEa,rect(C~, V~) = Aft,  at the 
equilibrium volume V~, are given in Table 2. Next, the directly 
calculated excess energies AEd,rect((Y, V) are used to extract { Jf} 
via Eq 3. Eight to twelve figures described in Table 1 and Fig. 
1 are used. For Ag-Au, the 12 interaction {Jf} are obtained 
from a more extended set of 18 structures (see Ref. 45) with av- 
erage fitting error of 0.6 meV/atom. The convergence is then 
checked by the ability of these {Jf} to predict 14 other struc- 
tures that are not used to extract {Jf}. Comparing with direct 
LAPW calculated values, an average prediction error of 1.0 
meV/atom is found with the maximum error being 1.8 
meV/atom, smaller than the estimated LAPW error (_+2 
meV/atom) for Ag-Au. The average fitting errors for other sys- 
tems are larger, and they are listed in Table 2. 

Determination of the T = 0 ordered ground state structures in- 
volves three steps. (1) Verify that the structures have negative 
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t  a) I ""'1 t 
0 t p d  

i I i i 

dl-x Pt 
E 

~. ",~1~ / I 
~20 

�9 ~ L12/ -[ 
E -40 ~ J 
"~ -Pd , , - , , Pt [ 

1 I I /m 
0 r i i i ~ ~l, ~c) 

I= Rhl-x Ptx '.- -1~ 1 
o -20 
x D1 
1,1,,,I "4 

-30[- X2 ~ 4 
[Rh L , ~ , Pt ]  

_20 t I 

.4o 

_oo: o, 
0.0 0.2 0.4 0.6 0.8 1.0 

C o n c e n t r a t i o n  x 

Fig. 2 Predicted T = 0 ground states (closed circles) as a function 
of composition for (a) Pd-Rh, (b) Pd-Pt, (c) Rh-Pt, and (d) Ag-Au 
systems. One meV/atom equals 9.649 • 10 -2 kJ/mol. 

1400 
v 

1200 

'~ 1000 
m, 

E 800 
I -  

6oo 
0.0 012 
Pd 

4.-7 [ ,,o.. 
r i 

0'4 0.6 0'8 1.0 

C o n c e n t r a t i o n  x Rh 

Fig. 3 CVM calculated (lines) and measured (circles from Ref. 
32 and squares from Ref. 31 ) phase diagram ofPd l_~Rhv The solid 
line is the binodal, the dashed line is the spinodal, and the dotted 
line is the calculated binodal corresponding to a ~ 12% reduction in 
AfH (see text). 

formation energy AfH < 0 (otherwise phase separation would 
be energetically preferred). (2) At each composition, find the 
structure with the lowest AH(o) (for example using Monte 
Carlo simulated annealing method). (3) Determine if AH(~) 
lies below the tie line connecting the neighboring lowest en- 
ergy structures in the energy versus composition diagram. To 
illustrate this step, let (Y, or, and 13 denote three configurations 

with concentration of B atoms x o, xc~, and x[~ in the order xa < xo 
< x[~. If AfH((~) is larger than the linear average of AfH(o0 and 
AfH(~), that is if 

AfH((y) > x o -  ~131~ x o - x a  6fl-/(c ) + Aq4(fb 

then configuration ~ does not belong to the ground state be- 
cause a mixture of the equilibrium phases a and 13 would have 
a lower energy. The ground states can thus be represented by 
vertices in an energy versus composition diagram, the straight 
lines connecting vertices (ground states) in such a diagram are 
the lowest possible energy at a particular composition for the 
alloy system. 

3. R e s u l t s  and  D i s c u s s i o n  

3 .1  L o w - T e m p e r a t u r e  L o n g - R a n g e  Order 

Pd-Rh. This method was first tested for a known phase-sepa- 
rating system--Pd-Rh. Note first from Table 2 that the calcu- 
lated enthalpies of formation, AfH, for Pd-Rh are all positive, 
implying phase-separating behavior. Second, the dominant 
nearest neighbor interaction J2 (Table 1) is negative, also im- 
plying phase-separation. Third, its ground state line corre- 
sponds to a trivial horizontal line (see Fig. 2a). The 
temperature versus composition phase diagram of Pd-Rh was 
previously calculated 7 using the CVM. The calculated misci- 
bility gap temperature (see Fig. 3) is in reasonable agreement 
with experiment 31,32 (overestimating it by -160 K) and other 
theoretical calculations. 33-35 Note that in the present calcula- 
tion no empirical data or parameter adjustment is used, and vi- 
brational and coherency effects are neglected. Figure 3 also 
shows that the calculated phase diagram can be brought into 
perfect agreement with experiment if LAPW-calculated ex- 
cess enthalpies AfH of the input structures are lowered by a rea- 
sonable error margin of 12%. 

Pd-Pt. In contrast to the Pd-Rh system, Pd-Pt, Rh-Pt, and Ag- 
Au all exhibit negative enthalpies of formation AfH for the 12 
structures listed in Table 2, thus unequivocally indicating or- 
dering rather than phase-separating tendencies. Concomi- 
tantly, the dominant interaction energies, J2 (Table 1), are 
positive, indicating ordering tendencies. The predicted T= 0 
ground states for Pdl_xPt x are shown in Fig. 2(b), where the 

1 1  3 
vertices represent the L12, L10, and L12 forx = -~, 2 '  and ~-, re- 

spectively. Figure 4(a) and (b) show the crystal structures of 
these ground states. These ordered structures are characterized 

by a reciprocal-space wave-vector of k = 2= <001>, where a 
6/ 

is the lattice constant of the underlying fcc lattice. Section 3.3 
shows that the peaks of the calculated high-temperature dif- 
fuse-scattering intensity due to SRO also occur at these wave 
vectors. 

Rh-Pt. Figure 2(c) shows the predicted T = 0 ground states lor 
Rh]_APt x. They are all superlattices along the [012] direction. 
These are denoted the D 1  a, D022, X2 (AusMn 2 type), "40," and 
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(a) L12 

Cu3Au 

�9 

(C) DO22 
TiAI3 

Crystal Structures of Predicted Ground States 

(b) Llo 

CuAu-I 

O 0 0 0  3 

(d) "40" 
Nb2P2 

O �9 

�9 _ _  O 

F-.__2_ f o--- 

(e) Dla 

MoNi4 

i 

(f) Au5Mn2 

Fig. 4 Crystallographical structures of the predicted T = 0 ground states. Figure 2 of Pd-Pt [L 12 (a) and L10 (b)], Rh-Pt [D 1 a (e), D022 (c), "40" 
(d), and X2 (f)], and Ag-Au ILl 2 (a) and L10 (b)] systems. 

1 1 2 t  4 
D I  a forx - 5' 4 '  7 '  ~, respectively. These crystal struc- k-, and 

tures are shown in Fig. 4(c) to (f). Many of these predicted 
ground states (D1 a and AusMn2) are absent from out input set 
(used to extract interaction parameters) since such structures 
were not suspected to be stable. These ordered structures are char- 

by a reciprocal-space wave-vector of k = ~a ~ 
! 

acterized <1 v~-0>. 

Section 3.3 shows that these indeed correspond to the maxima 
in the calculated diffuse scattering intensity. Magri et al.54 and 
Wolverton and Zunger 55 have shown that the ground state 
structures of fcc lattice having only point-ion interactions are 
D022, "40," and D022. It is thus possible that small stabilizing 
negative enthalpy of formation found in Rh-Pt is due to the 
charge transfer effect. 

Ag-Au. Similar to the Pd-Pt system, the predicted T= 0 
ground states for Ag l=~Aux (Fig. 2d) are also L 12, L 1 o, and L 12 

1 1 3 
for x = ~-, ~-, and ~-, respectively. These are shown in Fig. 2(d); 

1 
the ground state lines are fairly symmetric with respect to x = ~-. 

This symmetry is also seen in section 3.2 (Fig. 5d) in the calcu- 
lated and measured mixing energy for the random alloy at high 
temperatures. 

The order-disorder transition temperatures T c for the ground 
state can be estimated from the ordering energy of Eq 6 using 
the mean-field formula 8Eor d = kTc MF Ix In x + (1 -x)ln(1 -x) ] .  
Table 2 gives the T~F for some of the ground states, e.g., the 
T~F are 189, 300, and 273 K for the L10 (PdPt), "40" (Rh2Pt2), 
and L10 (AgAu). The more accurate Monte-Carlo simulated 
annealing procedure gives the corresponding T~C = 210 K for 
the above compounds. At such low transition temperatures, the 
atomic diffusion rates are clearly too slow to actually form 
these ordered ground states. Only solid solution across the 
whole composition ranges are thus observed. Of course, the 
observation of solid solutions above T~ is consistent with both 
phase-separation or ordering at lower temperature�9 The pre- 
sent theory suggests unequivocally that the equilibrium struc- 
tures should be ordered. 

3 . 2  M i x i n g  E n e r g y  o f  D i s o r d e r e d  A l l o y s  a t  
F i n i t e  T e m p e r a t u r e s  

Figure 5 compares the calculated and available, experimental 
enthalpies of mixing19,22, 56 at finite temperatures. The calcu- 
lated results were obtained using CVM for Pd-Rh, Pd-Pt, and 
Rh-Pt and Monte-Carlo simulations for Ag-Au (tetrahedron 
CVM gives a result that is within 3 meV/atom for Ag-Au). The 
positive sign of enthalpy of mixing for Pd-Rh (Fig. 5a) is con- 
sistent with its phase-separation behavior at low temperatures, 
while the negative signs of the enthalpies of mixing for Pd-Pt, 
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Fig. 5 Calculated and measured (where available) mixing en- 
ergy for (a) Pd I rRh~ at T= 1575 K, (b) Pdl_rPt~ at T = 300 K, (c) 
Rh I ~Pt x at T = 300 K, and (d) Agl=rAu a at T = 800 K. The meas- 
ured data are cited from Ref. 56 for Pd-Rh, Ref. 19 for Pd-Pt, and 
Ref. 22 for Ag-Au, while the statistical part of calculations was 
performed using CVM for Pd-Rh, Pd-Pt, and Rh-Pt and Monte- 
Carlo simulation for Ag-Au. One meV/atom equals 9.649 x 10 -2 
kJ/mol. 

Rh-Pt, and Ag-Au indicate ordering tendencies of  these alloys 
rather than phase separation. 

Pd -Rh .  Figure 5(a) compares the present calculated enthalpy 
of  mixingS7 for Pd-Rh with experiment  56 at T = 1575 K.* The 
experimental  values are consistently higher than the calculated 
values by nearly a constant factor of  1.7 (except for three 
points at the two ends, x = 0.1, 0.2, and 0.9). This is surprising 
because the present calculated phase diagram can be brought 
into nearly perfect agreement  with experiment  if one reduces 
(rather than increases) the calculated enthalpies of  formation 
of  the ordered structures AfH by - 1 2 %  as shown in Fig. 3. It 
hence appears that the measured AnuxH of  Ref. 56 is somewhat 
inconsistent with the measured phase diagram of  Ref. 31 and 
32 at least if the latter is interpreted via tetrahedron CVM. A 
careful reevaluation of  the experimental  data is therefore 
needed. A previous calculation by Wolverton et al.34 (at T = oo) 
gave a value o f - 8 0  meV/atom (7.72 kJ/mol),  which is between 
the present calculated value of  60.7 meV/atom (5.86 kJ/mot) 
and the experimental value of  104.5 meV/atom (10.08 
k J/tool). 

P d - P t  a n d  Ag-Au.  The calculated Am~xH(x) for Pd-Pt agrees 
reasonably well with experiment,  19 while for Ag-Au the agree- 
ment is excellent. Note that the calculated Am~xH(x) are consis- 
tently above experiment 22 by less than 2.7 meV/atom (0.26 
kJ/mol) for Ag-Au. There were a few previous calculations 26 
of  AmixH(x) of  Ag-Au using the simple Connolly and Wil- 
l iams 58 procedure [i.e., extracting nearest neighbor interac- 
tions Jo, J1, J2, J3, J4 in Fig. 1 from total energy calculated on 
five ordered structures fcc (A), L12 (A3B), L1 o (AB), Lle(AB3), 

*Note that the volume-dependent J (and subsequent diffuse scattering 
intensity map due to SRO) here for Pd-Rh are slightly different from 
volume-independent v extracted using the c -  G approach (Ref. 57) 
listed in Ref. 47. 

Fig. 6 Calculated diffuse scattering intensity due to short-range order a(k, N R) for (a) Pd o 5Rh05 (T = 1500 K), (b) Pd 0 5Pt05 (T = 600 K), (c) 
Rho 5Pro 5 (T = 600 K), and (d) Ag o 478Au0 523 (T = 600 K), o~(k, N R) were Fourier synthesized using AIR = 13 real-space o~(Rl,,m) (including 

c~(Rooo) --- I ) Note that Pd-Rh has peak on the F = -'" <000> point indicating phase-separating behavior, while Pd-Pt, Rh-Pt, and Ag-Au all a 
have off F peaks indicating ordering tendencies. 
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and fcc (B)]. They also achieved fair agreement with experi- 
ment. 

Rh-Pt .  There are no measured kmlxH data for solid solutions 
of  Rh-Pt. However, the enthalpy of  mixing of  liquid Rh 1 rPtx 
was recently estimated to be AmixHL(x) = -6x( l  - x) kJ/mol, 
which was derived from measured liquidus and solidus 59 and 

according to a semiempirical model. 60 Thus, AmlxHL = -1.50 
1 

kJ/mol o r -15 .6  meV/atom at x = ~-. This is consistent in sign 

and magnitude of  the present calculated enthalpy of  mixing 
(-11.8 meV/atom o r - 1 . 1 5  kJ/mol when T--+ ~ a n d - 1 7 . 6  
meV/atom or -1 .70  kJ/mol when T = 300 K) of  solid solution. 
Hence, accurate measurements on mixing energies of  solid so- 
lution for Rh-Pt is needed to compare with the present theoreti- 
cal prediction in Fig. 5(c). 

3.3  High-Temperature Short-Range Order 

The calculated, high-temperature SRO diffuse intensities for 
Pd-Rh, Pd-Pt, Rh-Pt, and Ag-Au are shown in Fig. 6. 

Pd-Rh.  The calculated high-temperature SRO diffuse inten- 
sity for Pd-Rh (Fig. 6a) peaks at the F point indicating phase- 
separating behavior at low temperature, in agreement with the 
observed phase-diagram data. SRO measurements are un- 
available. 

Pd-Pt  and  Rh-Pt.  Kidron t7 measured the SRO in a polycrys- 
talline Pdo.49Pto. 51 sample annealed at 873 K. He found a nega- 
tive o~(Rllo)=-0.10 indicating an ordering tendency. 
Unfortunately, this work as well as the subsequent measure- 
ments of  AmixH(X)18,19 showing negative values seem to have 
largely been overlooked by phase-diagram compilations that 
characterized this system as having a miscibility gap. The pre- 

sent authors calculated a t (Rl lo )=-0 .040  at T =  873 K for 
Pdo.5Pto.5. Since the SRO parameters are very sensitive to the 
sample condition and heat treatment, careful SRO measure- 
ments on single crystal Pd-Pt and Rh-Pt samples are highly de- 

sirable. The predicted at(k) at T = 600 K for Pd 0 5Pt0 5 and 
Rho.5Pto. 5 are presented in Fig. 6(b) and (c), respectively, and 
are awaiting experimental comparison. The maximum diffuse 

2n 1 
intensities occur at the X = 2 n  <001> and W = ~ <0-~-~ 1> 

a 

points for Pd 0 5Pro 5 and Rho.5Pt0. 5, respectively, which corre- 
sponds to the wave vectors of  their respective lower-tempera- 
ture ordered ground states. Since the structure "40" rarely 
occurs in nature, it would be very interesting to see experimen- 

2n 1 
tally if the SRO indeed peaks at the - ~ < 0 2 1 >  points for 

Rho.5Pto 5. 

Ag-Au.  The short-range order in Agl_xAu~. alloys was meas- 
ured by a number of  authors. 21,23,24 Recently, Sch0nfeld et 
al. 24 carefully measured the SRO at three different composi- 
tions, x = 0.253, 0.523, and 0.750, and found maxima at the 

2n 
wave v e c t o r -  <001>. These authors extracted composition a 
dependent pair interaction energies from their measured real- 

Fig. 7 Calculated (a) and experimental (b) (Ref. 24) diffuse scat- 
tering intensity due to short-range order c~(k, AIR) for 
Ag0477Auo.523, which were Fourier synthesized using N R = 13 
real-space O~(Rimn) (including o~(R000) ~- 1 for both experiment and 
theory). The calculation was done at T = 600 K, while the experi- 
ment was performed on a sample that was homogenized at T = 
1203 K and later aged at T = 502 K. 

space short-range order parameters at(Rlm,~) using the inverse 
Monte-Carlo method. 61 Their subsequently Monte-Carlo 
analysis using such interaction energies as input produced the 
same ground states and similar transition temperature as the 

present results. Figure 7 compares our calculated c~(k) with ex- 

periment for Ago.477Auo.523 . The calculated maxima occur at 

the wave vector k = 2__~n <001> (and its equivalent points) with 
a 

intensity of 1.83. This is in close agreement with the experi- 
mental value of 1.75. 

The authors of  Ref. 26 used a similar approach to the one em- 
ployed here, except that the effective interaction energies of  Eq 

4 were extracted from only five, high-symmetry structures ~ = 
A (fcc), A 3 B (L 12), AB (L 1 o), AB3 (L 12), and B (fcc). Their inter- 
action energies are limited to first nearest neighbors. Although 

this simple approach reproduces the AmixH(x) well, it cannot 
correctly reproduce the shape and composition dependence of  

at(k). This is so because in this approach one ignores second 
neighbor interaction thus spuriously creating a degeneracy be- 
tween the T = 0 energies of the L12 and D022 structures as well 
as between the L10 and "40" structures. Since this degeneracy 

survives at high temperatures, the calculated at(k) have flat 

maxima along the line connecting the two X points 2n <001> 
a 

and 2g <011> (the W= 2re 1 <0~-~ 1> point is in the middle). 
a a - 
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4. C o n c l u s i o n  

Using a first-principles quantum-mechanical method (which 
properly includes the terms that were neglected by the pre- 
vious theories, such as simplified tight-binding Hamiltonian 
models, neglect of  relativistic effects and charge transfer ef- 
fects), the present authors have shown that Pd-Pt and Rh-Pt bi- 
nary alloy systems will order, rather than phase separate as 
assumed by many compilations of  binary phase-diagram col- 
lections. However, the ordering temperatures for these two 
systems are rather low, similar to the Ag-Au systems, where 
the ordering propensity has been widely recognized. In the 
case of  Pd-Pt, the present calculated mixing energy is in fair 
agreement with experiment, while for Ag-Au excellent agree- 
ment was found. The calculated diffuse intensity due to short- 
range order for Ag-Au is also in good accord with recent 
experiments. The present authors further predict that Pdl_xPt x 
as well as Agl_xAu x will order in the L12, Llo, and L12 struc- 

1 1 3 
tures at x = ~-, ~-, and ~-, respectively, while ordered structures 

are in Rhl_xPt x are all superlattices stacked along the [012] di- 
rections. Since the ordering temperatures are so low (below the 
room temperature), these ordered phases may never be ob- 
served. However, peak positions in the measured SRO inten- 
sity would lend support to the existence of  these ordered 
low-temperature LRO structures. Hence, accurate SRO meas- 
urements on single-crystal Pd-Pt and Rh-Pt as well as meas- 
ured mixing energy for solid solution of Rh-Pt are highly 
desirable. 
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