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Extended x-ray-absorption fine-structure experiments have previously demonstrated that for each
composition x, the sample average of all nearest-neighbor A-C distances in an A

& „B C semiconductor
alloy is closer to the values in the pure (x —+0) AC compound than to the composition-weighted (virtual)
lattice average. Such experiments do not reveal, however, the distribution of atomic positions in an al-

loy, so the principle displacement directions and the degrees of correlation among such atomic displace-
ments remain unknown. Here we calculate both structural and thermodynamic properties of
Ga& „In„P alloys using an explicit occupation- and position-dependent energy functional. The latter is

taken as a modified valence force field, carefully fit to structural energies determined by first-principles
local-density calculations. Configurational and vibrational degrees of freedom are then treated via the
continuous-space Monte Carlo approach. We find good agreement between the calculated and measured
mixing enthalpy of the random alloy, nearest-neighbor bond lengths, and temperature-composition
phase diagram. In addition, we predict yet unmeasured quantities such as (a) distributions, fluctuations,
and moments of first- and second-neighbor bond lengths as well as bond angles, (b) radial distribution
functions, (c) the dependence of short-range order on temperature, and (d) the effect of temperature on
atomic displacements. Our calculations provide a detailed picture of how atoms are arranged in substi-

tutionally random but positionally relaxed alloys, and o6'er an explanation for the efFects of site correla-
tions, static atomic relaxations, and dynamic vibrations on the phase-diagram and displacement maps.
We find that even in a chemically random alloy (where sites are occupied by Ga or In according to a coin
toss), there exists a highly correlated static position distribution whereby the P atoms are displaced
deterministically in certain high-symmetry directions.

I. INTRGDUCTIGN

Solid solutions A
&

B„Cbetween the semiconductor
binary constituents AC and BC are often used to attain
physical properties P(x) that are intermediate between
the end points P~c and P~&.' Phenomenologically, this
is often described by a quadratic form

P( A, B„C)= [(1—x )P~c+xP~c]+bx(1 —x ), (1.1)

where b is the bowing coefficient. This description holds
for band gaps, elastic constants, carrier mobilities, excess
enthalpies, etc. It is now known ' that b [hence P(x)] is
strongly inAuenced by the atomic structure of the alloy,
i.e., by the extent to which atoms are displaced from the
ideal sites of a virtual alloy. For example, calculations '

show that for P=band gap, the optical bowing b is
strongly affected by atomic displacements off the ideal
sites. Likewise, for P=mixing enthalpy, the interaction

parameter b was predicted to be highly sensitive to the
size-mismatch-induced atomic relaxation. An extreme
example of the dependence of b on atomic structure is the
occurrence of widely different band gaps and formation
enthalpies found in ordered versus disordered Gao 5Ino 5P
alloys of the same composition. Structural relaxation
also plays a critical role in determining the pattern of x-
ray diffuse scattering in alloys as well as in the exciton
dynamics and the phonon spectra. ' However, under-
standing the nature of the structure in disordered alloys
on an atomic scale is complicated by the fact that there
are numerous local atomic environments, so only some
average structure is measurable. This can be illustrated
by considering an alloy formed from the fourfold-
coordinated constituents GaP and InP. While in the
pure compounds, phosphorous is coordinated just by Ga4
(in GaP) or by In4 (in InP), in the Ga& In„p alloy, the
local clusters GaIn3, Ga2In2, and Ga3In are also possible.
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II. THERMODYNAMIC DEFINITION
OF THE ATOMIC STRUCTURE OF AN ALLOY

We start our discussion by introducing a thermo-
dynamic description of the microscopic structure of a
general pseudobinary A& B C alloy where the cation
lattice is occupied by either 3 or B while the anion lattice
is always occupied by C. Unlike the case of an ordered
compound, where the lattice sites i are occupied by A or
B atoms in a definite manner, the site occupations in a
disordered alloy are merely probabilistic. It is therefore
convenient to define pseudospin variables S;, taking up
the values —1 or +1 if site i is occupied by A or B
atoms, respectively. A lattice configuration o. is then a
particular arrangement {S,j of spins on the N lattice
sites. There are 2 such configurations. For each, we can
define the excess internal energy

hE(~) =E(o)—(1—x )E( AC) —. xE(BC), (2.1)

taken with respect to equivalent amount of pure AC and
pure BC The precise at.omic positions {R;j can deviate
(relax) from the positions R'; ' of the rigid ideal lattice.
Thus the excess energy EE(o)of configuration .o. is
defined both by its spin-occupation numbers {S; j
(defining the topology) as well as by its atomic positions

Thus each P-centered Ga4 „In„cluster (0~ n ~4) has its
own bond lengths RG,'p and R,'„"'p, while only the aver-
ages (R G, p ) and (R,„p ) are measured. Extended x-
ray-absorption fine-structure (EXAFS) experiments"
showed that the A-C and B-C bond lengths in disordered

„B C semiconductor alloys are closer to the values
in pure AC and BC compounds, respectively, than to the
virtual lattice average. These experiments and subse-
quent modeling' ' have yielded a detailed picture of
the nearest-neighbor environment in semiconductor al-
loys. However, a global picture of the atomic structure
of semiconductor alloys, including the relaxation of
further-neighbor pairs, bond angle distortions, and off-
center displacements, is still lacking. This paper provides
a general method capable of predicting such global
structural features, as well as their effects on thermo-
dynamic properties. Accurate local-density total energies
of various ordered compounds are used to fit an effective
interatomic potential. The latter is then used in
continuous-space Monte Carlo (MC) simulations to ob-
tain both T=O and finite-temperature structural descrip-
tions of the Ga& In P alloy. The predicted mixing
enthalpy is close to that inferred from experiments. The
calculated nearest-neighbor bond distances are in good
accord with EXAFS data, and the predicted x-T phase
diagram also agrees well with experiment. Having estab-
lished this, we next move on to describe structural prop-
erties which are currently not amenable to measurement,
including bond angle distributions, radial correlation
functions, contour maps of atomic displacements in
different crystal planes, and the effect of temperature on
the above. Our detailed numerical results are then ex-
plained in terms of an analytical physical model. This es-
tablishes a global picture of the structure of substitution-
ally disordered semiconductor alloys.

{R; j (defining the precise geometry):

b.E ( o. ) = b,E [ {S; j; {R; j ] . (2.2)

The positional coordinates {R,. j include both cell exter-
nal coordinates, (defining the lattice vectors of the repeat
unit), as well as cell internal coordinates (defining the
atomic position within the repeat unit).

The energies b,E(o ) or bond length Rzz(cr ), Riiii(o ),
etc. , of a particular configuration o. are generally not ac-
cessible to experimental tests, unless o. becomes a stable
ordered structure, and unless a sample having a cr struc-
ture can be grown. For disordered or partially ordered
phases y, one must therefore average over the
configurations o. according to

2N

(&E( )) =y&E( )p ( ), (2.3a)

2N

(&( )) =/&( )p ( ), (2.3b)

where p (0 ) is the density matrix for the configuration o.

in the ordered phase y. ' In a similar way, one can define
the correlation functions {P''j for phase y and figure f
(equal to pairs, three-body, four-body, . . . ) as the
configuration average of the appropriate spin products.
For example, when f is a pair, the correlation function
for sites i and j is ( S;S ) . As we will see below, the equi-
librium value of the correlation functions depends on
composition x and temperature T through the minimiza-
tion of the free energy, so P''=(P(x, T). For T~~ all
sites are uncorrelated [e.g. , (S;S.) = (S, ) (SJ ) ], and the
alloy is said to be random. (Note that random implies ab-
sence of correlations or short-range order, while disor-
dered permits such correlations. ) At finite temperatures,
there are correlations between the site occupancies, and
{(P(x,T) j can exhibit short-range order (SRO), long-
range order (LRO), or both.

In general, the excess internal energy has both a
configurational contribution AE„„z,akin to a nonvibrat-
ing lattice, as well as a vibrational configuration AE„;b
corresponding to the excess vibrational energy of o. rela-
tive to the constituent solids. The configurationally aver-
aged excess internal energy for phase y is

( b,E(o ) ) =b.E„„s[ {P''(x, T ) j; {R,™j ]

+DE„;b[{gj''(x,T) j; {R;"j ] (2.4)

where {S;j of Eq. (2.2) has been replaced by the averaged
quantities {gg'j, and {R,"j represents the atomic posi-
tions of an infinite sample such that the configurational
ergodicity is preserved. Similarly, the entropy has the
same form:

(bS(o ))r =ES„„„s[{P''(x,T)j ]

+5$„;b[ {p''(x, T ) j; {R;" j ] . (2.5)

We are now in a position to define the quantity indicat-
ed in the heading of this section: at a phase y, the equi-
librium structural parameters {g)''j+{R,"j of an alloy
with composition x and temperature T are those values



ATOMIC-SCALE STRUCTURE OF DISORDERED GaI „In„p ALLOYS 10 797

that minimize F'r '= ( hE ) r
—T ( AS )r.

F[ I gj''( x, T ) ); [R; ) ]=min . (2.6)

b,E'„„'s [IR,. ) ]+6,E„;b[{R,")]=min . (2.8)

Note that the correlation functions or the spin variables
do not appear explicitly in Eq. (2.8) as they are assumed
to be random. However, even though the site occupa-
tions are assumed random, the atomic positions that min-
imize Eq. (2.8) need not coincide with the ideal unrelaxed
lattice sites. In order to calculate physical properties
P[tgg'(x, T)); [R; ) ] using finite samples, the
configurational erg odicity will be preserved only if
P[IP'''(x, T)); IR,.")] will be an average on suflicient
different samples:

P[Igj''(x, T)); [R,")]=—g P[IS~(x, T)); IRJ) ] .
J=1

(2.9)
This paper describes a practical way of calculating the

free energy of semiconductor alloys in a general state of
order Igj''(x, T)), and, through Eqs. (2.6)—(2. 8), the
atomic structure of such alloys. Before describing our
own method, we will use the terminology introduced
above to discuss previous approaches to this problem.

III. PREVIOUS METHODOLOGIES

Previous approaches that treat occupational and posi-
tional degrees of freedom simultaneously can be divided
into direct methods which model directly the free energy
vs tS;) and [R,. ), and cluster expansion (or Ising-Ii&e)
methods which utilize a generalized Ising description in
which atomic displacements do not appear explicitly. We
next describe briefly the guiding principles of these
methods, so we can place our own approach in proper
perspective.

Most statistical-mechanics descriptions of chemical al-
loys A, B or spin alloys (ferromagnets or antifer-
romagnets) disregard the positional degrees of freedom
IR, ), focusing only on the occupation degrees of freedom
IS; ) or Igg'). The spins can be scalar Ising spins, or
vector ones, and in some cases a combination. ' These
standard models have been reviewed, e.g. , in Refs. 20 and
21. The underlying assumption in Ref. 21 is that atomic
positions are invariant under changes in site occupations,

This thermodynamic definition of the structure of an al-
loy properly describes the configurational averaging
needed; it includes both energetic and entropic terms, as
well as configurational (i.e., spin), static-positional (i.e.,
relaxation), and vibrational (i.e., dynamic) effects.

For the ideal case of a perfectly random alloy, S'„„'f,
(R denotes random) is given by the structure-independent
mean-field mixing entropy

S'„„'„(x)=k~[x lnx+(1 —x )ln(1 —x )], (2.7)

where kz is Boltzmann's constant. Since S'„„'f, does not
depend on structure, the equilibrium T=O geometry in
mean-field theory is then obtained from

specifically that the energy of a particular configuration is
not affected much by the relaxation of the atoms off their
ideal lattice sites. This appears to be physically un-
reasonable for alloys made of size mismatched constitu-
ents A and B: the atomic positions IR, ) of a structure
with a small atom surrounded by large atoms must be
different from that of a large atom surrounded by large
atoms, etc. While off-lattice models were developed to
study the phase-separating behavior of Si-Ge,
frozen-lattice alloy models continue to be used extensive-
ly for many alloy studies. The occupational degrees of
freedom [S, ) are varied through Monte Carlo algo-
rithms, ' or the cluster variation method. Zunger
recently reviewed evidence of the effects of positional re-
laxations on the thermodynamics of alloys, citing large,
even qualitative changes in the phase diagram and all
thermodynamic quantities. It thus appears that one must
consider, in practical applications, both spin and atomic
relaxations.

In the direct methods one models the four quantities of
Eqs. (2.4) and (2.5) explicitly. An example is the method
of Srolovitz and co-workers. In this method, Eq.
(2.6) is solved by assuming an ideal entropy of mixing for
S'„„ss(x, ~ ) [Eq. (2.7)], an Einstein model for
faakE y jb + TSyjb a mean-fie 1d virtua 1-crystal-like description
of [gf ), and an embedded-atom model ' for
E [ t S, ); I R, ) ]. Another example of a direct approach to
this problem is the methods of Foiles and Kelires and
Tersoff, who used a continuous-space grand-canonical
Monte Carlo algorithm to equilibrate both the atomic po-
sitions IR,. ) and the occupation variables [S;) at a range
of temperatures.

In the cluster expansion methods2O, 2i, 26, z7, 33—3s one ex
pands b,E„„„in a series of products gfJf, where Jf is
the interaction energy of figure f, and gf is its correlation
function. This corresponds to a generalized Ising model
in which multispin interactions are retained. The ener-
gies I Jf) can be determined from a series of total-
energy calculations on atomically relaxed ordered phases.
Thus Jf incorporates both spin-Aip as well as relaxation
effects (this often means that Jf depends on composition
and volume, e.g. , Ref. 6). Relaxation effects were intro-
duced in Ising-like representations by Laks et al. using
a momentums-space formalism. A related cluster expan-
sion approach is that of de Gironcoli, Giannozzi, and
Baroni, who expanded the energy of the alloy up to the
second order with respect to the displacements
IR; )

—[R; ). In this approach, the electronic charge
density and the forces were calculated using the Green's
function linear-response theory, and I R, ) and IS; ) were
calculated by Monte Carlo simulations. Both the
methods of Laks et al. and de Gironcoli, Giannozzi,
and Baroni permit full relaxations within an Ising rep-
resentation.

Here we will use a direct approach which incorporates
both spin and positional degrees of freedom without us-
ing an Ising expansion. Accurate T=O local-density to-
tal energies of various ordered AC/BC structures are
used to fit an effective interatomic potential. The latter is
then used in continuous-space Monte-Carlo simulations.
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Unlike Ising-based methods, ' ' the convergence of a
truncated Ising series is not involved. The main approxi-
mation is now the use of a par ametrized Born-
Oppenheimer surface E [ [S;};[R; }] without explicit elec-
tronic effects. Unlike the free-energy minimization
method of Srolovitz and co-workers, we used unap-
proximated S pg Eyjb and Syjb Unlike the Monte Car-
lo embedded-atom approach of Chakraborty and Xi, ' we
do include Eyjb and Syjb terms neglected in Ref. 31.

IV. METHODS OF CALCULATION

A. Structural optimizations
and Rnite-temperature Monte Carlo calculations

The excess configurational energy AE„„„will be de-
scribed here by an effective elastic potential which in-
cludes bond stretching and bond bending terms

b.E,o ag[ [S,};[R, } ]= g V;, + g V
ij Go ijk6o

(4.1)

exp(5E ) /kii T ) if 5E )0
t

accept 1 other wi
(4.2)

where T is the temperature of the sample, and k~ is the

where VJ and Vzk are the two- and three-body interac-
tions between the neighboring atoms i,j and i,j,k ac-
cordingly. The details of this potential are given in Sec.
IV 8, as is the description of its fitting to first-principles
total-energy results.

The vibrational energy AE„;b and entropy AS„& are in-
cluded through a continuous-space Monte Carlo sam-
pling in which a random spin configuration as well as a
random displacement field are used to calculate the
grand-canonical MC acceptance probabilities. The pro-
cess is performed in the following steps.

(i) The initial spin configuration [S;} is chosen so that
the A/B sublattice is occupied randomly according to
the alloy composition x. The initial atomic coordinates
[R; } are chosen as the zinc-blende position [R,. } of a cu-
bic cell with periodic boundary conditions and a Vegard
lattice constant a (x).

(ii) The displacement field is defined as follows: first,
atoms (indexed by i) are chosen randomly. After that
three types of Monte Carlo displacements or Hips are in-
troduced: (a) At each step, a random and small coordi-
nate displacement hR, is chosen, and the new positions
{R,'} are mapped: [R,'}~[R;}+6,R;. (b) About every
1/Ps steps the spin S; is flipped so [S,. } is mapped
to [S;}. (c) About every 1/Pi, steps a random small
volume change 6V is chosen, and the volume of
the cell is mapped by [R,'}~[R,. }+[DR;},where
bR; =(1,1, 1)b,Vfor all i Hence P.s and Pv are the prob-
abilities for the spin Qip and volume change, respectively.
We chose Ps =0.05 and P~=1/X, where N is the num-
ber of atoms in the sample. We found that these are op-
timum values for stability as well as for fast convergence
of the MC algorithm.

(iii) Each MC step is accepted with a probability
Paccepi~ w

Boltzmann constant. The energy change due to spin and
position changes is

5E =DE„„„[[S,'};[R,'}]++p, (S,')
l

—aE„„„,[[S,};[R, }]—y~;(S;) . (4.3)
l

Here EE„„„s[ {S;};[ R; } ] is calculated from Eq. (4.1),
and p;(S;) is the chemical potential of the atom species
S;, to be defined below. Procedures (ii) and (iii) define the
MC step. In the multistep MC equilibration process,
each site is relaxed individually while all other sites are
held fixed. Each site change affects its four bond lengths,
six bond angles, and the 12 angles of its nearest neigh-
bors; thus the energy change is calculated only for the
above. This method is very efFicient, as was demonstrated
by Weidmann and Newman, and it was also used by
Glas.

We treat both disordered [Eq. (2.6)] and chemically
random [Eq. (2.8)] cases. When disordered alloys are
considered, the atomic configuration {R;} as well as the
spin configuration [S;} are changed in a range of temper-
atures. This involves the calculations of [R, } and [S, }
after the MC equilibration process described above,
where p„and pii of Eq. (4.3) are the chemical potentials
of species A and B in the alloy A B, C. This calcula-
tion resembles the process of annealing a sample at a tem-
perature T. The initial atomic configuration [R,. } is a
zinc-blende structure, while the initial spin configuration
[S, } is chosen randomly. The phase diagram of a phase-
separating alloy A B, C can now be calculated as de-
scribed by Kelires and Tersoff. The compositions
x, (T) and X2(T) of the two coexisting phases at a tem-
perature T are obtained by plotting the composition
(x(b.p, T)) averaged over the MC iterations versus
hp=p„—pii. The average (x(by, T) ) exhibits a first-
order phase transition, where x, (T) and x2(T) are the
coexisting compositions. Plotting x, ( T ) and x ~( T )

versus T gives the phase diagram.
When perfectly random alloys are considered, the

(ideal) mixing entropy does not depend on the structure
[Eq. (2.7)], so the equilibrium structure is decided by
minimizing the internal energy without any spin Aips.
Thus, when perfectly random alloys are considered, 5E of
Eq. (4.3) is evaluated at a constant (random) spin
configuration corresponding to a given composition x.
This calculation resembles the process of quenching a
sample which was initially equilibrated at some high tem-
perature.

In either cases, the samples used in the present calcula-
tions consisted of periodically repeated cubic cells of
8XN XIVXX atoms for N=5. In order to accumulate
enough statistics for the structural properties, some 200
such samples with different spin configurations [S;} were
equilibrated for each case. We also checked for finite-size
effects by the calculation of selected points using our two
basic algorithms: (i) internal energy minimization
without any spin fiips, and (ii) the MC equilibration pro-
cess at T)0 with spin Aips. Using cubic cells of
8XXXXXX atoms for 5 ~X ~ 8, we estimate that
finite-size errors are below 1% for both algorithms.
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B. Fitting the ternary valence force field (VFF)
to first-principles calculations

The methodology described above will be applied in
what follows to AC=GaP, BC=InP alloys which have
received prominence due to their applications in photo-
voltaic solar cells, high-power quantum-well lasers,
light-emitting diodes, and high electron mobility
transistors. ' In addition, experimental data exist for the
alloy bond lengths, "mixing enthalpies, ' and the phase

diagram. Previous theoretical results include calcula-
tions of alloy bond lengths using local-density-
approximation (LDA) calculations, ' the radial force
model, tight-binding perturbation theory, valence-
force-field calculations, ' and empirical potential calcula-
tions. ' In addition, cluster expansion calculations of
thermodynamic properties have been reported in Refs. 34
and 51.

The excess configurational energy bE'„„'„sof Eq. (4.1)
is modeled here by the valence force field (VFF) of Keat-
ing (see also Refs. 14 and 53):

4
hE', o„'„s=g g 2 aAc[r (/, 1).r (I, 1)—d„c]

1 m=1

2 3 4 3 d2
+g g g g p„r (I,s) r„(l,s)+

I s =1 m =1 n =m+1 3

2

(4.4)

where

4
E(AC)=g g E (l,s) .

I m=1
(4.6)

E (l, s ) is the ideal binary zinc-blende energy of the bond
connecting atom s in its unit cell t' to its mth neighbor.
We took E ( I,s ) = —1.78 eV/bond for Ga-P and
E (I,s ) = —1.74 eV/bond for In-P.

The VFF potential of Eqs. (4.4)—(4.6) is applicable
only to fourfold-coordinated systems with sma11 bond-
length or bond angle deformations, but cannot handle
broken-bond configurations or charge-dependent
structural changes. The latter is, however, not required
in the present work. Martin calculated the values of a
and P of Eq. (4.4) for binary AC and BC materials. Since
the original VFF correctly predicted the elastic
coefficients of the binary compounds InP and GaP, we
leave the binary P's unchanged. For the ternary

where d~c=R," is the equilibrium interatomic distance
in the binary constituents, r (1,s ) is the vector connect-
ing atom s in unit cell l to its mth nearest neighbor, and
a „c and P„c„are the bond-stretching and bond-
bending force constants, respectively. Note that AE„„f,
is the excess energy of Eq. (2.1), so
hE„„„(AC ):AE„„„(B—C )—:0 since in the binary com-
pounds AC and BC d ~c =R;, and all bond angles are the
tetrahedral angles 8; k

= 109.47' [i.e., r (I,s ).r„(l,s )/
dAc= —

—,']. In order to achieve physical values for the
chemical potential difference b,p(T) during the phase-
diagram calculations (see Sec. IV A), scaling of the excess
energies of the binary compounds E( AC) and E(BC) to
their physical values is required. This scaling does not
change the resulting x-T phase diagram but only the
values of bp(T). To this end we added to Eq. (4.4) the
experimental bond energies of GaP and InP:

E„„ss(o) =6E„„&s(cr)+(1—x )E( AC )+xE(BC),
(4.5)

2 B 1 C compound, Martin suggested the relations

PA-C-A PC-A-C

PB c BPcB-c---
pA c a=T'(p-A--c-A+pa c a) . --

(4.7)

Generalizing this, we introduce different parameters p for
the ternary alloy, namely P„c„,Pc A c, Pa c B, Pc B c,
and pA c B. Figure 1 illustrates these parameters for
3 =In, B =Ga, and C =P. We parametrize these P
values as

PP-I -P ( +fI )PI -P

PI -P-I ( 1 fI »I -P

PGz-P-G~ ( 1 +fGa )PG~-P

PP G. P=(1—fG. »G. P ~

(4.8)

Note that the In-P-Ga bond angle does not occur in
binary compounds. It is easy to verify from Eqs. (4.8)
that using the binary p„c A, pa c B, and the three new
parameters [Pi„pG„fi„,fG, ] does not change the VFF
elastic constants for the binary compounds.

The ternary force constants of Eqs. (4.8) were fit to
first-principles total-energy calculations on ordered
periodic structures. Most of these structures can be de-
scribed as (AC) /(BC) superlattices of periods (p, q)
and direction 0, except for two structures, L 1 and I3, .
which are not superlattices. The fully relaxed excess en-
ergies [b,EI D~(s, V)] [Eq. (2.1)] of 25 ordered structures

[s ] of the (GaP)P /(InP) compounds were calculated in
the local-density approximation (LDA) as implemented
by the general-potential, linear augmented-plane-wave
(LAPW) method. {The calculations of Ref. 51 have
been refined in Ref. 55 by adding more k points, using
better basis set convergence, and adding many more
structures. ) Using Eqs. (4.4) and (4.8) we have also calcu-
lated the excess energies of the ordered structures
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IbEvFF(s, V,pI„PG„fi„,fG, )]. For each of the struc-
tures, the excess energy of the relaxed cell was calculated
where the cell external coordinates (i.e., the 3X3 matrix
which describes the parallelepiped shaped unit cell) as
well as the cell internal coordinates (i.e., the atomic coor-

dinates tensor) were relaxed using a Monte Carlo algo-
rithm at T=O. To fit the VFF to the LDA, we define a
cost function which expresses the difference between the
VFF and LDA excess energies as a function of the three
parameters P,„p G„f,„,and fG, :

«PIn-P-Ga fin fGa)= g lbELDA(S I') bEVFF(S V PIn-P-Ga fIn fG. )l
ordered

structure

(4.9)

A simulated annealing algorithm was used to find
values of the parameters which minimize
«pi. PG. fi. fGa)

The surface of the cost function C(p,„PG„fi„,fG, ) is
complex, having many local minima. In some cases, the
simulated annealing algorithm reached minima with

I f» I
& 1 or

IfG, I
& 1, resulting [see Eqs. (4.8)] in unphysi-

cal negative values of one of the bond bending force con-
stants p „c„. We regarded these local minima of
C(pi„PG„fi„,fG, ) as forbidden minima, so we add to
the cost function a constraint function, multiplied by a
Lagrange multiplier,

C (Pin-p-Ga&f in&f Ga )

=C(Pi -P-G fi fG )+A,(hi„+h G, )

where h ~ represents the functions:

0 if —1~f„~1

h
1 otherwise .

(4.10)

(4.11)

t3(P-In-P) = 12.2975 N/m

(3(in-P-In) = 0.1841 N/m

I (Ga-P-In) = 1.6715 N/m

P(P-Ga-P) = 15.2899 N/m

(3(Ga-P-Ga) = 5.6256 N/m

FICx. 1. Schematic diagram depicting the different bond-
bending force constants in the Cxal In P random alloy. The
five force constants P of the VFF potential are labeled. The best
values found in our Qt to the LAPW results are given.

In this way, the modified cost function C' is allowed to
pass through the forbidden minima, but it is most prob-
able that it will not stay there. The value of the Lagrange
multiplier X was chosen to be comparable to the depth of
the valleys of C ( —5 meV), as observed during test runs

of the simulated annealing algorithm.
The best-fit values for the parameters of Eq. (4.8) were

Pi p Ga
= 1.67 15K/m

fG, = —0.4621,

f,„=0.9705 .

(4.12)

V. RESULTS: COMPARISON
WITH MEASURED THERMODYNAMIC

AND STRUCTURAL PROPERTIES

A. Mixing enthalpy of the chemically random alloy

Equation (2.4) defines the mixing enthalpy (excess
internal energy) of the disordered alloy, which we will
denote here as be;„(x,T). The formation enthalpy of
ordered compounds is denoted AHF. Figure 2 shows
bH;„(x, T= nc ) for the Ga, In„P alloy neglecting vi-
brational effects. T= ~ denotes perfectly random substi-
tution in the mixed sublattice. We give results with
atomic relaxation (dashed line), and without relaxation
(solid line). The asterisks denote the formation enthalpies

The resulting P values are given in the inset of Fig. l.
Since our VFF is fit also to ternary ( T) data, we will refer
to it as T-VFF, to be distinguished from the Keating-
Martin binary VFF. Tables I and II compare the LDA
values of bE(s, V, ) to the fitted T-VFF values. We see
that the current T-VFF potential considerably improves
the overall fit compared to the original VFF potential.
This is particularly true for the superlattice structures in
orientations [110], [201], and [113],where the fit of the
original VFF potential is quite poor. The fit of the origi-
nal VFF potential for the superlattice structures in orien-
tations [111]and [001] and for the Luzonite structures
(Table II) is very good; our fit thus leaves these values
essentially unchanged. The existence of a smaH rms error
over a wide range of compositions and superlattice orien-
tations (Tables I and II) suggests that our T VFF can also-

be used to predict energies of structure outside the set
I S ] used in the fit.

The only other elastic potential for the GaP-InP that
we are aware of is that of Khor and Das Sarma (KDS).
We have compared its predictions to those of T-VFF and
found (Table I) that they are consistently inferior. Even
modifications of this potential to a similar form to the im-
proved version for Si-Cxe interactions (M-KDS in
Table I, described in Appendix A) do not give sufficiently
accurate results. We thus use T-VFF.
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TABLE I. Formation enthalpies hH for ordered structures of InP/GaP, where A =GaP and
8 =InP. The structures are described as ( AC)~(BC)~ superlattices with layer repeats (p, q) and orien-
tation G. The formation enthalpies were calculated using LDA, the original Keating VFF potential
(VFF) (Refs. 52 and 53), our ternary potential (T-VFF), the potential of Khor and Das Sarma (KDS)
(Ref. 49), and our modified KDS potential (M-KDS). The units are meV/four atoms, and the symbols
define structure names (as defined in Ref. 55).

Formula Potential [111] [001]
Orientation

[201] [113]
Row average

deviation'

LDA
T-VFF
VFF
KDS

M-KDS

CP
144.2
132.4
133.6
98.7
86.7

CA
90.3
93.5
87.5
83.8
84. 1

CA
90.3
93.5
87.5
83.8
84. 1

CA
90.3
93.5
87.5
83.8
84.1

CP
144.2
132.4
133.6
98.7
86.7

6.6
5.9

22. 1

26.7

LDA
T-VFF
VFF
KDS

M-KDS

a1
128.0
127.4
128.7
94.0
88.0

Pl
81.9
90.8
87.3
86.5
85.5

yl
46.6
43.6
58.9

104.9
98.1

y1
46.6
43.6
58.9

104.9
98.1

y1
46.6
43.6
58.9

104.9
98.1

5.0
9.8

47.1

45.0

W,B
LDA

T-VFF
VFF
KDS

M-KDS

cx2

126.7
109.1
109.7
30.9
38.3

P2
79.1
77.2
72.8
26.0
32.4

y2
45.6
45.7
59.4
59.3
58.9

y2
45.6
45.7
59.4
59.3
58.9

y2
45.6
45.7
59.4
59.3
58.9

5.0
14.9
47.4
44.0

AB3
LDA

T-VFF
VFF
KDS

M-KDS

V1
110.4
112.4
113.5
66.3
62.1

Z1
72.9
80.3
78.0
61.8
61.0

Y1
54.3
53.6
60.8
90.8
76.8

F1
32.0
34.0
43.6
68.6
66.9

8'1
62.9
63.8
72.0
99.9
82.0

4.6
10.9
45.8
35.9

A2B2
LDA

T-VFF
VFF
KDS

M-KDS

V2
141.8
132.1
132.6
44.6
51.1

Z2
90.6
94.1

91.1
41.5
47.1

Y2
60.7
60.2
78.1

84.4
76.9

CH
29.8
40.2
57.1

91.9
85.7

8'2
61.0
62.4
75.8
86.9
83.6

6.0
16.0
60.8
53.0

A3B
LDA

T-VFF
VFF
KDS

M-KDS

V3
105.1
88.7
89.1

20.9
34.6

Z3
67.7
62.7
59.4
19.6
29.5

Y3
54.9
58.1

64.1

44.3
48.6

E3
45.3
52.2
61.0
98.2
78.9

8'3
69.6
67.8
74.7
53.3
51.5

6.9
13.2
51.3
44.2

Column average
deviation

T-VFF
VFF
KDS

M-KDS

9.7
9.4

66.8
65.9

5.0
4.7

28.8
25.0

1.8
10.3
24.9
19.3

4.3
13.9
38.4
32.6

3.2
11.0
32.8
30.4

'The average deviations relative to the LDA values for the rows.
The average deviations relative to the LDA values for the columns.
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TABLE II. Formation enthalpies hH for the two luzonite-
ordered structures of Ga& In P, where 2 =GaP and 8=InP.
The formation enthalpies were calculated using LDA, our ter-
nary potential (T-VFF), Keating original VFF potential (VFF),
the pseudopotentials of Khor and Das Sarma (KDS), and our
modified KDS potential (M-KDS). The units of the formation
enthalpies are meV/four atoms.

Formula Name Potential

L1 LDA
T-VFF
VFF
KDS
M-KDS

57.4
60.7
57.1

68.8
69.2

L3 LDA
T-VFF
VFF
KDS
M-KDS

77.9
81.8
80.8
111.4
88.0

AH+ of some of the ordered structures, defined in Table
I.

The unrelaxed (ur) mixing enthalpy b,H"';„was calcu-
lated directly from Eq. (4.4). In this geometry, all bonds
have the same length, and all bond angles equal the
tetrahedral value 0;.k = 109.47'. AH"';, is therefore

II(x =0.5, T= 800 K) = 3.07 kcal/mol. ' Numerical
simulations gives Q(x =0.5, T= ~ ) =3.77 kcal/mol.
Note also that in Fig. 2 the AHF of some of the ordered
structures is below hH';„, which means that at low tem-
peratures these ordered structures are more stable than
the random alloys.

If b,H;„(x) were parabolic, the interaction parameter
A(x) would be x independent. Fitting our b,H";„(x) to
Eq. (5.3) shows, however, a nearly linear behavior
A(x) =Oo+ax. Our fit is

Q(x, T= ~ )=3.7 —0.8x(kcal/mol),

while Bubik and Leikin have estimated

Q(x, T= oo ) =4.6—1.1x(kcal/mol)

(5.4)

(5.5)

using x-ray diffuse scattering results and the measured
composition dependency of the elastic constants of
Ga, „In P. Both estimations indicate that b.H;„(x) is
not symmetric about x =

—,'. Interestingly, for the relaxed
alloy, the slope a of Sl(x, T= oo ) satisfies a &0, while for
the unrelaxed alloy a &0 (compare the solid line to the
dashed line in Fig. 2). Indeed lim, oO(x ) and
lim &Q(x ) are the limiting solution enthalpy represent-
ing the change in enthalpy when impurity amounts of A
are added to BC. Our result thus indicates that, for the
unrelaxed alloy,

bH"';„(x)=xbEi„p[R(x)]+(1—x )bEo, t, [R(x)], bH"';„(GaP:In) & b,H"';„(InP:Ga) . (5.6)

(5.1)

where R (x) is the average bond length given by the linear
relation

Thus it costs less energy to dissolve a large atoms (In) in a
small host (GaP) than to dissolve a small atom (Ga) in a
large host (InP). However, the opposite is true when re-
laxation is allowed, i.e.,

R (x)=xR,„p+(1—x )R G,p, (5.2) AH";„(GaP:In) )bH";„(InP:Ga) . (5.7)

and b.E [R (x)] is calculated using the two-body term of
Eq. (4.4). The relaxed (r) mixing enthalpy b,H";„was
calculated by minimizing the formation enth alp y of
Ga, In„P samples relative to the atomic configuration

t R, ], starting from an initial zinc-blende structure,
where the spin configuration IXI was chosen randomly
according to the required composition x. Relaxation
lowers hH;„enormously: The maximum value for the
relaxed system b,H";„(x=0.47, T = ~ ) =77.1+0.1

meV/four atoms is much lower than the unrelaxed value
b,H";„(x=0.53, T = ~ ) =304+ 1 meV/four atoms.

Only indirect measurements exist for AH;, in
Ga, „In P. The reduced enthalpy (interaction parame-
ter)

This result implies that the effective (effj force constant of
the In-P bond within the GaP host is higher than the
Ga-P bond within the InP host:

0

C3
O

h(x, T ) =KH(x, t )/x (1—x ) (5.3)

was estimated in these experiments by fitting the ob-
served liquidus and solidus lines to simple thermodynam-
ic models. This gives Q(x =0.5, T= 800 K) =3.40, '

3.5, 3.575, and 3.25 kcal/mol, while our result of the
relaxed system is Q(x =0.5, T= ~ ) =3.33 kcal/mol, and
the estimate of Bublik and Leikin is
Q(x=0. 5, T= oo)=4.05 kcal/mol. The cluster expan-
sion (CE) calculation based on the local-density approxi-
mation gives fl(x=0. 5, T= ~)=3.82 kcal/mol, and

0
GaP

0.2 0.4

In

0.6
Inp

FIG. 2. The mixing enthalpy of the chemically random
Ga& „In„P alloy. The solid line denotes the unrelaxed results,
while the dashed line denotes the relaxed mixing enthalpy. The
asterisks denotes the formation enthalpies of some ordered
structures de6ned in Table I.
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Qi p(GaP) & ao p(InP) (5.8)

This is the reverse of the situation in the pure binary ma-
terials, where the VFF values are'

+in-p ga-p . (5.9)

B. The finite-temperature phase diagram

Figure 3 shows the x-T phase diagram of the
Ga, In P alloy. The circles connected by dashed lines
denote the results of the MC calculations (interpolated
near the top of the miscibility gap), while the squares
denotes the recent experimental results of Ishida et al.

It is interesting to compare the values of the critical
temperature ( TMo ) and composition (xMo ) obtained by
different statistical approximations to our approach.
Table III lists a hierarchy of approximations that are in
common use. They can be divided into (i) approxima-
tions to the excess enthalpy b,H, (ii) approximations to
the configurational entropy ES„„s,and (iii) approxima-
tions to vibrational quantities AH„.b and AS„;&. These
approximations can be conveniently described by using a
stepwise breakdown of the terms entering the free energy
of the disordered alloy in Eqs. (2.4)—(2.7):

b,F(x, T)= [b,E'„„'s (x, oo )
—TS'„„'s (x, ~ ) ]

+[aE,.„„,(x, T)—SZP„'„,(x, ~ )]
—T[S,.„„,(x, T)—S",.„'„,(x, )]

+ [bE„;„(x,T) TbS„;b(x,—T)] . (5.10)

The first term contains the configurational enthalpy and
entropy, both evaluated by assuming that each lattice site
is occupied randomly by 3 or B, i.e., a mean-field ap-
proach. All correlations and vibrations are ignored in
this mean-field approach. The second term of Eq. (5.10)
represents the correction due to nonrandomness (i.e.,
SRO) to the enthalpy, while the third term gives a non-
randomness correction to the entropy. Finally, the
fourth term represents vibrational effects.

We can now explain the various approximations (i)—(v)
of Table III.

(i) In the first approximation one retains only the first
bracketed term of Eq. (5.10), i.e., one assumes that both
AH and AS can be taken from a perfectly random atomic
arrangement using a mean-field description. Here one
neglects the temperature and composition dependences of
Q(x, T) [Eq. (5.3)], and uses an unrelaxed lattice. Fitting
the solid line of Fig. 2 to a parabola gives 0=13.88

(p~ oC)

g n e
Q)

Calc
Exptl

~QH

0

0
Gap

I

0.2 0.4

In

I

0.6 0.8 1

InP

FIG. 3. Calculated and measured (Ref. 44) x-T phase dia-
gram of the disordered Ga& In P alloy. The open circles
denote the results of our Monte Carlo simulations, and the
dashed line is an interpolation of these results. The squares
denote the experimental results (Ref. 44), and the filled circle
and triangle denote the maximum miscibility-gap temperature
of the ab initio calculations of Marzari, Gironcoli, and Baroni.
(Ref. 68) and Wei, Ferreira, and Zunger (Ref. 51).

kcal/mol for this random, unrelaxed lattice. The phase
diagram is symmetric about x =

—,
' and shows TMG =3495

K and xM~ =0.5.
(ii) In the second approximation one relaxes the lattice.

This affects AK but not AS. A parabolic fit to the dashed
line of Fig. 2 gives 0=3.31 kcal/mol. This relaxation-
induced lowering of 0, lowers also TMz to 833 K. Ap-
proaches (i) and (ii) comprise the regular solution model,
and are used widely in the literature ' ' ' in conjection
with empirical 0 values. We see that relaxation has an
enormous effect on TMz. It is ignored in most Ising-type
treatments of alloys, ' ' as reviewed recently.

(iii) In the third approximation one permits b,H;„(x)
to be asymmetric with respect to x =

—,'. A fit of the re-
laxed AH;„(x ) of Fig. 2 then gives 0=3.7 —0.Sx
kcal/mol. A phase-diagram calculation using the com-
mon tangent method gives TM6 =912 K. and
xM~=0. 43. Thus the asymmetry in the phase diagram
comes from the asymmetry in AH;„. The effect on TMG
is, however, rather small.

(iv) In the fourth approximation one permits atomic
correlations (i.e., short-range order effects) in both b,E
and AS, while still neglecting vibrational effects. This

TABLE III. Different approximation to the upper miscibility temperature TMG and composition
xMG. All approximations are based on the present interatomic T-VFF potential (see Sec. V 8).

Method

(i)
(ii)
(iii)
(iv)
(v)

[R;I
Unrelaxed
Relaxed
Relaxed
Relaxed
Relaxed

x-inde p.
x-indep.

x-depend.

Random
Random
Random

Nonrandom
Nonrandom

ES„;b

Zero
Zero
Zero
Zero

Nonzero

TMa(K)

3495
833
912

900+40
870+20

0.50
0.50
0.43

0.42+0.03
0.40+0.02
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can be calculated by allowing spin Aips as well as com-
plete atomic relaxations in the MC runs to the lowest en-
ergy of each spin configuration (this is distinguished from
continuous-space MC where atoms are displaced along
random directions, which is not necessarily energy lower-
ing). Note that atomic correlations tend to reduce the en-
tropy relative to the mean-field value and (for phase-
separating systems) also make the enthalpy less positive. '

Since TMG a: hH/b, S, these correlation effects in b,H and
AS can have opposite influences on TMG. Using our T-
VFF, we find that at this level of approximation
TMz =900+40 K and xM& =0.42+0.03, so the net effect
of atomic correlations is to 1ower the miscibility tempera-
ture. The calculation of Wei, Ferreira, and Zunger,
yielding TMG =961 K and xi&=0.324, corresponds to
this approximation (however, these authors used the clus-
ter variation method rather than the MC, and evaluated
the energies from a cluster expansion of LDA results
rather then from the VFF).

(v) In the final step one introduces vibrational effects
through the use of random displacements. This lowers
TMG to 870+20 K and moves xMG to 0.40+0.02. The
results of this calculation is shown in Fig. 3. Thus vibra-
tions tend to lower TMG. The same trend was observed
in empirical models that introduce vibrational effects into
semicond. uctor alloy phase-diagram calculations.

Bublik and Leikin estimated TMG =996 K and
xMG=0. 412. From the spinodal isotherms of Qnabe
(Fig. 1 in Ref. 67), we estimated TMo —870 K and
xM&-0. 5. Recently calculated ab initio values by Mar-
zari, de Gironcoli, and Baroni yielded T, =820 K and
x, =0.6 using Monte Carlo simulations based on the
LDA to density-functional perturbation. The experimen-
tal results of Ishida et al. (filled squares in Fig. 3) show
a similar asymmetry in the phase diagram, but it is
difFicult to interpolate TMG and x M~ from these results.

In summary, we see that the largest effect is that of in-
clusion of relaxation ( —80% lowering of TMo), and that
statistical correlations and vibrations lower TMG by 43

TABLE IV. Experimental EXAFS results vs ours and other
model calculations of the first-nearest-neighbor bond length
change 6&& in the ideally random Ga& „In P alloy on going
from x ~1 to x ~0. 6„cis defined in Eq. (5.11).

Experiment 0.038

~fnP
A

0.044

rms deviation'
A

Present work
Radial force model'
Perturbation theory
VFF'

0.036
0.045
0.036
0.049

0.050
0.045
0.054
0.067

0.006
0.007
0.010
0.025

'The rms deviation between the theoretical and experimental re-
sults.
Reference 11.

'Reference 47.
dReference 48.
'Reference 14.

and 30 K, respectively. The most sophisticated calcula-
tion [method (v)] gives a value for TMo that is -40 K
below that of the standard approach [method (iii)].

C. Nearest-neighbor bond lengths

is the slope of the dashed lines in Fig. 4. The values of
the present work are compared in the table with experi-
rnental EXAFS results" and with other theoretical re-
sults, e.g. , the radial force model of Shin et al. , the orig-
inal form of the VFF potential, ' and the tight-binding
perturbation theory results of Chen and Sher. Our re-
sults and those of Shin et al. are the closest to the ex-
perimental values.

Figure 4 depicts the average nearest-neighbor bond
lengths Ro, p(x) and R,„p(x) versus x in the random al-
loy Ga, In P. Table IV summarizes the bond-length
changes 6~& for 3 =In or Ga and C =P where

~ac lim Roc(A Bi— C) —lim Roc(A Bi „C)x~1 x —+0

qp lA
ci

C$
C3

M

4
0
A
b8

C3
I

M

qp "?
c4 0
GaP

0.2 0.4 0.6 0.8
I

1

InP

In —P VI. PREDICTED ATOMIC GEOMETRY
IN THK CHEMICAL RANDOM ALLOY

Having established the adequacy of our model to de-
scribe measurable alloy properties we next use our model
to predict currently unmeasured properties, in particular,
structural quantities. We focus first on chemical random
alloys without SRO or LRQ. We thus minimize

E„„ss[IR,.]]at [gf]—:{g

A. Nearest-neighbor bond-length distribution

In

FIG. 4. The average anion-cation nearest-neighbor distance
(R„c(x)) of the chemically random Ga, „In„P alloy. The
open circles denote our average values, while the solid circles
denote the bond length R & c of the binary compounds GaP and
InP. The solid line is the Vegard law prediction.

Figure 5 depicts the nearest-neighbor distance distribu-
tion of the chemically random Ga, „In P alloy. The
solid line histograms denote model calculations described
in Appendix 8, while the shaded histograms describe the
results of our statistical simulations of random alloys re-
laxed at T=O K. The dashed lines denote the bond
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Bond Distance (A)

FIG. 5. Histogram plots of the nearest-neighbor distance dis-
tributions of the chemically random Ga& In„P alloy for five In
compositions. The solid line histograms denote the model cal-
culation described in Sec. VIA, while the shaded histograms
denote the results of numerical simulations on samples relaxed
at T=O K. The dashed vertical lines denote the bond lengths in
the virtual alloy of composition x, calculated according to
r(x) =xr~ c+(1—x)rs c.

FIG. 6. Plots of the second (a) and third (b) moments of the
nearest-neighbor bond length distribution of the Ga& „In„P
random alloy for different compositions x. The distributions are
defined as ((r —Rz z) ) for the second moment and
( {r —R „c) ) for the third moment, where R „cis the average
A-C bond length, and r's are the various bond lengths in the
random alloys.

lengths in the virtual alloy of composition x,
r(x)=xrz c+(I—x)r~ C. The basic features of the re-
sults of the simulation are as follows.

(i) The distribution is bimodal, i.e., the individual iden-
tities of Ga-P and In-P are preserved in the alloy.

(ii) For In-rich alloys, the In-P bond distribution has a
sharp cutoff. Conversely, for Ga-rich alloys, the Ga-P
distribution has a sharp cutoK

(iii) The Ga-P distribution is broader than the In-P dis-
tribution. This is seen more clearly by inspecting mo-
ments of the distribution, as given in Fig. 6. The Ga-P
nearest-neighbor bond-length distribution [Fig. 6(a)] has
a higher second moment ( (r —R z c ) ) than In-P. Fig-
ure 6(b) shows similar trends in the third moment
((r —R „c) ) of the nearest-neighbor bond-length distri-
bution.

We see from Fig. 5 that our simple model (described in
Appendix B; see also Fig. 7) explains the main features of
the numerically simulated distribution, namely the bimo-
dality, and the sharp cutoffs of the A-C distribution in
AC-rich alloys. However, the following also hold.

CV

C4

0
GaP

0.2 0.4 0.6 0.8 1

Inp

FIG. 7. Plot of the bond lengths R&"'c(x) of the different
clusters in the Ga, In„P random alloy (solid lines) calculated
from Eq. (B7) in Appendix B. The possible clusters are n =0, 1,
2, and 3 for Ga4 „P and n = 1, 2, 3, and 4 for In„P. The dashed
lines denote the alloy average bond lengths (R„'"'z) calculated
using Eq. (B1), while the solid dots denote the bond lengths
R '„")c(X„)in ordered compounds where X„=n /4.
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(i) The simulation produces smooth distributions while
the model contains a maximum of four distinct steps (Fig.
5). Clearly, the difFerence between the simulation and the
model reAects effects beyond nearest-neighbor bonds.

(ii) The simulation produces a wider bond distribution
for Ga-P than for In-P (see Fig. 5 at x =0.5) while the
simple model with ~Ko, p ~

= ~K,„p ~
does not. Our dis-

cussion of Sec. VA showed [Eq. (5.8)] that the effective
Ga-P force constants within the ternary alloy are softer
than the In-P force constants, or

(6.1)

Thus our model and the occurrence of wider Ga-P bond
distribution confirm the expectation of Eq. (5.8).

the anion distribution is multimodal. The shape of the
In-In, Ga-Ga, and Ga-In distance distributions are alDD

most identical while the P-P distribution is different, ex-
hibiting as many as five peaks. This shows clearly that
the major displacements in the alloy are of the P atoms.
The reason for the different behavior of cation vs anion
distances is topological: The Ga and In atoms at T=O
remain in their lattice sites with only minor deviations.
The P atoms at T=O have 14 possible off-lattice locations
in addition to the lattice site location (see Appendix C).
This explains why the distributions of the In and Ga
atoms have single peaks, while the distributions of the P
atoms have many peaks.

C. Bond angle distribution

B. Next-nearest-neighbor distance distribution

Figure 8 depicts the next-nearest-neighbor (NNN) dis-
tance distributions for the four types of next-nearest-
neighbor bonds In-In, Ga-Ga, Ga-In, and P-P, in the
chemically random Ga& In„P aHoy. The dashed verti-
cal lines denote the next-nearest-neighbor distances in the
virtual alloy of composition x. We see that while first-
neighbor distributions are bimodal (Fig. 5), the next-
nearest-neighbor cation distributions are unimodal while

Figure 9 depicts the bond angle distributions for the
random Gai In P alloy at the compositions x =0.10,
0.25, 0.50, 0.75, and 0.90, for the three kind of bond an-
gles: the angles around the P atoms (6; p ), the angles
around the In atoms (6;,„J), and the angles around the
Ga atoms (6;o, J ). The last panel shows the total bond
angle distribution (6;~ k). Note how the high-angle
(6—115') satellite at In-rich alloys becomes a low-angle
(6-105') satellite as the alloys become Ga rich. This
means that in In-rich alloys a significant fraction of all
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bond angles open up, while in Ga-rich alloys a significant
number of bond angles close up. Our simulation further
shows that the bond angles around either anions or cat-
ions are rather soft, exhibiting significant deviations from
the tetrahedral values. In contrast, as Fig. 4 shows, the
nearest-neighbor bond lengths are rather rigid, being
close to the ideal values in the binary constituents.

D. Pair-correlation function

R(r)= f p(r)dr .
T

(6.2)

The pair-correlation function is plotted in Fig. 10 for
r & 2 A, as there are no bonds shorter than 2 A. The first
peak represents the first shell (nearest neighbors) bond
length, the second represents the second shell, etc. The
dashed lines denote the bond lengths in the virtual alloy
of composition x. For comparison, we also give results
for pure GaP and pure InP (x =0 and 1). For these pure
compounds, the pair correlations exhibit sharp peaks as
all bond lengths and bond angles are equal. In the first

Figure 10 describes the pair-correlation function of
chemically random Ga, In P alloys for various compo-
sitions. The pair-correlation function R (r) is the average
radial atomic density p(r) in the interval between r and
r+4r, where r is the bond length and Ar is the width of
the histogram

alloy shell (s= 1), the peak of the GaP and InP is split
into two subpeaks. The left subpeak represents the short-
er Ga-P bond and the right subpeak represents the longer
In-P bond. (This can be seen more clearly in the nearest-
neighbor distance distribution in Fig. 5.) From the
second shell on (s ~ 2), the peaks of the alloy are
broadened as the alloy is formed. The centers of the
peaks ( r(x) ), are located in the virtual lattice

(r(x)), =xr, „c+(1—x)r, ~ c,
shown in Fig. 10 as dashed vertical lines. Figure 10
demonstrates that, in substitutional random alloys, the
overall long-range order of the underlying lattice is
preserved.

K. T=0 phosphorus displacements in the random alloy

Figure 11 shows contour plots of the P-atom displace-
ments of numerical simulated random Ga, „In„P alloys
for three di6'erent compositions, x =0.25, 0.5, and 0.75
(left panels). The right-hand panels show similar plots of
the P-atom displacements predicted by the model de-
scribed in Appendix C and Fig. 11. The three-
dimensional displacements are projected onto the three
principal planes (100), (110), and (111). Each plot
represents the P-atom displacements, averaged over some
200 samples which were relaxed at T=O. The contours
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(x=0) and InP (x=1). The distributions extend up to the
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represent difFerent probabilities of finding the P atom.
The length of the squares in the plots is 0.5 A.

As explained in Appendix C, there are 14 off-lattice lo-
cations in addition to the zinc-blende lattice site location
for the P atom: eight in the (111)bond directions and six
between two adjacent bond directions. These sites cannot
be observed simultaneously in a single projection plot
since overlaps appear in the two-dimensional representa-
tions. For example, in the (100) projections for x =0.5

(shown also in a three-dimensional representation in Fig.
13) we see a single nondisplaced site which has the largest
probability, and eight displaced sites: four in the (111)
directions, and four in the (100) directions. The two ex-
tra (100) sites in the plane perpendicular to the projection
plane are projected onto the central nondisplaced site,
while each of the (111) displaced sites is a projection of
two overlapping (111)sites. Only nine different sites can
thus be observed in the (110) and (111)projections [Figs.
11(b) and 11(c), respectively]. Note that, in all projec-
tions, the most probable location is in the middle (e.g. ,
the central peak in Fig. 13).

We see that despite the fact that the lattice sites were
initially occupied by Ga and In in a random manner, the
relaxation process has led to a deterministic pattern of
atomic displacements: while the undisplaced Ga, In, and
P sites have the highest probability (giving rise in recipro-
cal space to the usual Bragg diffraction peaks), there are
several distinct high-symmetry sites with significant prob-
ability peaks. These displacements (of the order of -0. 1

A) are highly correlated, and occur at specific positions at
all compositions. As suggested by Glas and co-
workers, ' they could lead in reciprocal space to the dis-

P—atom Displacements at T=O

I
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FIG. 11. Contour plots of the
P-atom displacements in chemi-
cally random Ga& „In„P alloy.
The displacements are represent-
ed in three projections (100),
(110), and (111), for three
different compositions X=0.25,
0.5, and 0.75. The left-hand side
describes results from numerical
simulations of samples relaxed at
T=O, while the right-hand side
columns are the results of our
model described in Appendix C.
The length of the squares in the
plots are 0.5 A.
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Atom Type T=40K T= 120K T=300K

Qn QG Qln In/Ga

In/ Ga

In/Ga

{100) {100)

FIG. 12. Schematic diagram of four possible displacements
of the P atom in the random Gal „In„P alloy resulting from its
nearest-neighbor atomic configuration.

tinct diffraction pattern observed in nominally random
bulk alloys.

VII. TEMPERATURE EFFECTS
ON THE ATOMIC GEOMETRY

A. Static temperature smearing of displacement maps

Figure 14 shows contour plots of atomic displacements
of the anions and cations in simulated samples of
Gao 5Ino 5P in three different planes and at three different
temperatures. The plots represent the results of average
statistics on some 200 random Gao 5Ino 5P samples which
were equilibrated at three difFerent temperatures 40, 120,
and 300 K using a MC equilibration process without spin
Aip. The projections were calculated with the same
method used for the calculations of the projections at

0.02-

~ 0.015-F

0.01 ~

t'- o.oo5

FIG. 13. Three-dimensional plot of the average possibility of
the P-atom displacements in chemically random Gao 5Ino 5P al-
loy at T=O. The plot represents the (100) plane projection of
the P-atom displacements.

In/Ga

In/Ga:P

In/Ga:P

FIG. 14. Contour plots of the average atomic displacements
in a random Gao, In05P alloy projected onto the (100}, (110),
and (111}planes. The plots represent displacements in samples
which were equilibrated at three di6'erent temperatures. In
each column, the contour plots were placed in an order which
represents the nearest-neighbor configuration of the plane. The

0
marks of 0.3 A represents the scaling of the contour plots' atom-
ic displacements, but not the distances between the centers of
the plots.

T=O (Fig. 11). In Fig. 14 we show contour plots of both
anions and cations. As the displacements of the In and
Ga atoms are very similar, the cations contours show
only the Ga displacements. The contours were placed in
an order which represents the nearest-neighbor
configuration of the crystallographic planes, though not
drawn to scale.

The results show that (i) the anions P are displaced
considerably more than the cations Ga and In. The dis-
placements of the anions include the displaced sites
which were observed at T=O (Fig. 11), while the dis-
placements of the cations are mostly thermal vibrations
around the zinc-blende virtual lattice sites (compare the
cations displacement maps at difFerent temperatures in
Fig. 14). (ii) The main off-center locations of the P atoms
are in the six (001) directions [(100), (100), (010), (010),
(001), and (001)] (see Fig. 13). (iii) Atomic displacements
in the (100) and (110) planes are considerably more direc-
tional than in the (111)plane. (iv) As the temperature is
increased above T=O, the sharp features of the displace-
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ments for the species a. As seen in Fig. 15, this explains
why both UQ, and U,„ increase in In-rich alloys. Note
that the composition dependence in Fig. 15 is monotonic;
no evidence of a drop in U is found at any intermediate
composition similar to that found in some II-VI ter-
naries.

(iii) While the static displacement maps (Fig. 11) show
that the anion has a larger probability than the cation to
reside at off-center positions, the dynamic displacements
(Fig. 15) show U,„)Up ) Uz, . In fact, the anion MSDD
changes monotonically with composition from Up UQ,
in pure GaP, to Up —UI„ in pure InP. The different
peaks of the anion in the static displacement map (Fig.
11) are related to the different anion off-site locations in
the five different clusters Ga, „In„P for n =0, 1, 2, 3, or
4. One may expect different vibrational modes (and pos-
sibly different vibration amplitudes) for different clusters,
but these cannot be observed in the MSDD representa-
tion, as the probability of the different clusters is mono-
tonic with x (see Appendix B).

C. Short-range order

Cowley's short-range order (SRO) parameter is given
b 79

p A/B

&A-B =1— (7.5)
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FIG. 16. Cowley's short-range order parameter [Eq. {7.5)] for
the next-nearest-neighbor mixed cation shell of Gao &In05P at
different temperatures above the miscibility-gap temperature.
The results are averages on Ciao 5Ino 5P simulated samples
equilibrated at temperature T. The MC equilibration process
included spin flip as we11 as atomic coordinates and volume re-
laxations.

where P is the probability that an atom 3 has a B
next-nearest neighbor, and xB is the composition of the B
atoms. For a random alloy, a „~=0. For A %8,
a z ~ (0 denotes the association of unlike atoms (anti-
clustering), while a„~)0 denotes the association of like
atoms (clustering). Equation (7.5) gives az, ,„=a,„o„
and for x =0.5aQa-Qa +In-In and aQa-Qa 1 AQa-In.

Figure 16 depicts the calculated short-range order pa-
rameter for the next-nearest-neighbor shell, i.e., the cat-

ions of the mixed fcc sublattice. Each point is an average
over some 200 GaQ 5InQ 5P simulated samples equilibrated
at a temperature T. The MC equilibration process [Eqs.
(4.2) and (4.3)] included spin flips as well as atomic coor-
dinate and volume relaxations. A uniform composition
in the range of temperatures was achieved by adjusting
the value of the chemical potential difference
Ap=pQ, —p&„during the calculations to obtain the re-
quired composition. This is essential as the SRO parame-
ter is a function of composition as well as temperature.

At high temperature aA B —+0, indicating that the al-
loy becomes chemically random. Below the miscibility
gap temperature TMQ, there is a phase separation into
the two basic phases, i.e., the In-rich and Ga-rich phases,
and therefore the sample contains islands of InP and GaP
clusters. We see in Fig. 16 that even for T far above the
miscibility gap temperature TMQ=870 K, there is still
considerable SRO in the form of anticlustering. Since for
x =0.5 we have, from Eq. (7.5), P ' '"=0.5 —0.5ao, t„,
then eQ, I„&0 in Fig. 16 means that the mixed cation ex-
ists with a higher probability than what random statistics
will grant (anticlustering). Note also that for x =0.5 we

ave pQ'~ '=p'"~'"= 1 —pQ'~'", so the above conclusion
implies that Ga-Ga and In-In exist with a lower probabil-
ity than that given by random statistics. For example
az, z,(1500 K)-0.02 means that the Ga-Ga pair con-
centration is 2%%uo less than that given by random statis-
tics. The anticlustering behavior we observed in our
model is in agreement with the results of the c.-G ap-
proach described in Sec. IV B of Ref. 51.

D. Comparison of displacements with experiment

The average bond distances (Fig. 4) which are amen-
able to EXAFS measurements do not reveal the actual
spatial distribution of the atoms in the alloy. In fact, if
an atom of type a(=P,Ga, In) can have a series of dis-
placed sites R'; '(x ) with probability P,' '(x ), the EXAFS
measurement (and our calculation in Fig. 4) would pro-
vide the average R' ~'(x)=QJP; (x)PJ~(x)~R; (x)
—R '~'~ of the distribution and its width. Our calculation
permits us, however, to take a step backwards and to
focus on the probability of finding an atom of type n in a
given position on a crystalline plane.

As far as we know, no direct experimental results are
available for the rms displacements in Ga, In P, so
only comparisons with related systems are possible. Ion-
channeling measurements are in principle capable of
detecting small displacements of atoms from their ideal
lattice sites. They are therefore ideal to probe experi-
mentally the atomic geometries predicted here. Haga
et al. in 1985 observed abnormal dechanneling in
GaQ 47InQ 53As which they attributed to small atomic dis-
placements in the ternary alloy, though they were unable
to pin down the particular atom which may be displaced.
A lattice average rms displacement obtained in that work
was U=0.07 A, a result which is very close to our pre-
dictions (Fig. 15). This observation, although found in a
different III-V alloy, may well be due to anion displace-
ments similar to those predicted in the present work for
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Ga& In P. More recently, a method which combines
Rutherford backscattering (RBS) and particle-induced x-
ray emission (PIXE) with channeling has been
developed. ' This method allows a determination of the
location in the lattice of each atomic species contained in
a mixed crystal. It has recently been applied to II-VI
mixed crystals, i.e., Zn Cd, „Te (for a range of x values)
and to a lesser extent to Hg Cd& Te. The results for
Zn Cd& Te indicate that in order to best fit the experi-
mental data& a per~anent displacement of the Te atom by
about 0.12 A (for x =0.1) toward the shorter Zn-Te bond
is required. The fact that the mixed ( A, B ) cation sublat-
tice is hardly affected by the ternary mixture, while the
common anion C (Te in the above case) undergoes sub-
stantial displacements, is in accord with the results of the
present calculations for Ga, In P which predict the
common anion (P) to show a multimodal distribution
which depends on crystal composition x (see Figs. 5 and
8). The expected deviations for P in Ga, In P are of

0
the order of 0.1 A, similar to those found experimentally
for Zn„Cd& „Te. The channeling experiments, when
carried out at different temperatures, are also sensitive to
the vibration of the atoms around their equilibrium posi-
tions. These were found in Ref. 77 to vary with x for
both Zn Cd& Te and Hg Cd& Te in a nonmonotonic
way, exhibiting minima for particular alloy compositions
(x=0. 1 for Zn Cd& „Te and x=0.3 for Hg„Cd, „Te
(i.e., at y=0. 7 for Hg, Cd Te). Such bowing was not
observed in our MD calculations for the Ga& „In P al-
loy.

By using the standard VFF potentials ' for ZnTe and
CdTe, we have calculated the average rrns displacements
( U ) for Zn, Cd, and Te in the binaries ZnTe and CdTe
in the same way as done here for Ga, In P (Fig. 15).
We could reproduce the observed trend in the relations
between the anion and cation rms displacements rather
well. However, no evidence was found for the anoma-
lous, nonmonotonic u vs x inferred in Ref. 77. The latter
results thus remain unexplained in terms of our theory of
homogeneous alloys.

VIII. SUMMARY

We have developed a method to adopt the elastic
valence-force-field interatomic potentials of binary corn-
pounds to the ternary mixture of the two binaries. Three
parameters were added to the VFF potential functions,
and their values were calculated using a simulated an-
nealing algorithm to best fit the excess energies of or-
dered structures determined by first-principles local-
density calculations. This method was applied to the cal-
culation of the Ga& In P interatomic potentials.

Using our ternary valence-force-field potentials in
Monte Carlo calculations, we found good agreement with
measured mixing enthalpy, nearest-neighbor bond
lengths, and temperature-composition phase diagrams.

In simulated Ga& In„P random alloys, major off-site
displacements of the P atom were observed. These dis-
placements are affected mostly by the P atoms nearest-
neighbor configuration. We provided a nearest-neighbor
model which predicts these displacements. The observed

A.S. would like to thank the National Renewable Ener-
gy Laboratory for its hospitality during a visit in which
part of this work was done. Work at the Technion was
supported by the U.S.—Israel Binational Science Founda-
tion under Grant No. 88-00295. We also acknowledg-
ment partial support from the Technion Institute for
Theoretical Physics and the hospitality of the Physics
Department and the Solid State Institute of the Tech-
nion. The work at NREL was supported by U.S. DOE
Contract No. DE-AC02-83-CH 10093. We thank the
Laboratory for Parallel Computing Research in the Tech-
nion for an allocation of time on the Meiko computer.
The authors are grateful to Dr. S.-H. Wei for providing
the LAPW results and for many useful discussions and
advice, and to Dr. C. Wolverton for comments on the
manuscript. We thank Dr. K. E. Khor for discussions of
his potential function and Dr. J. Tersoff for discussions of
his method of phase-diagram calculations.

APPENDIX A: COMPARISON OF THE VFF
WITH OTHER POTENTIALS

We have compared our excess energies in Tables I and
II to those obtained with the KDS potential.
Specifically, we use Eqs. (1)—(3) in Ref. 49, fixing the
coordination number Z=—4. The results for the 25 or-
dered structures are shown in Tables I and II. They ex-
hibit large deviations from the LDA data. Das Sarma
and Khor have calculated the excess energy of the
GaInP2 CA structure (defined in Table I here and in Ref.
55) to be 128.04 meV/four atoms, compared to our value
of 83.8 meV/four atoms using the same potential. The
difference probably reAects a more refined structural op-
timization in the current work. We have thus attempted
to modify the KDS potential to systematically improve
the agreement with the LDA. We cite the modified (M)
potential M-KDS using the notation

2 4
(O. )

—I g g g ge lsm Is

I s=l m=1

Here the interatomic distance is

ri, =r (l, s }.r (l, s ),

"Isbn

lsm
pe

Zls
G(0) .

(A 1)

(A2)

and the minimum interatomic distance between the
nearest neighbors is

R&, =min ~r (l, s)~ . (A3)

0
P-atom displacernents are of the order of -0.1 A, and
are therefore measurable.

Molecular-dynamics calculations showed similar
mean-square dynamic displacements for the anions and
cations in the pure GaP and InP binaries. In the
Ga& In P random alloy, we observed a monotonic in-
crease of the MSDD's of the cations as well as the anions
with In composition.
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The three-body term is

4
G(e)=1+ g cos(gb, e&, „—1),

n&m, n=1

where

(A4)

we see that the alloy-averaged nearest-neighbor bond
lengths depend on the cluster bond lengths of all 2
configurations. To capture the essential physics, howev-
er, we will consider four simplifying assumptions: (a) The
alloy-averaged bond lengths are linear function of compo-
sition (Fig. 4). That is,

and the bond angle is

(A5) (Ro, p(x) ) =R o, p+xAo, p,
(Ri„p(x)) =R,„p+xbi„p .

(B1)

r (l,s) r„(l,s)
ir (E,s)i r„(l,s)i

r (l, s) is the vector connecting atom s in unit cell I to its
mth nearest neighbor, ZI, is the effective coordination
number of atom s in unit cell l. A, Bo, 8, A, , a, P, and y
are adjustable parameters. We used the original KDS pa-
rameters for In-P and Ga-P. However, unlike the origi-
nal form of KDS, we moved the G(e) term outside the
brackets of the E„„„(o) expression. This form is similar
to the improved version of the KDS potential for Si-Ge
interactions. We omitted the sine term in the G(e) ex-
pression, and fixed the effective coordination number
Zi, ——4 (since if we let Zi, be calculated from the formula
of KDS, the excess energy of some of the ordered struc-
tures became negative, a totally unphysical result).

The results of the excess energies as obtained by the
LDA, the original VFF, the ternary T-VFF, and the
modified KDS (M-KDS) potentials are summarized in
Tables I and II. The original VFF values were calculated
using the Keating VFF parameters [Eq. (4.4)], with the
Martin assumptions for the ternary interaction parame-
ters [Eq. (4.7)]. Even with the improved form, the M-
KDS formation enthalpies show large deviations from
the ab initio LDA results. For example, the M-KDS for-
mation enthalpies of the [111]-oriented superlattices are
about the same as those of the [001]-oriented superlat-
tices, while ab initio calculations show that the formation
enthalpies of the [111]-oriented superlattices are about
50% higher than those of the [001]-oriented superlattices.
Since the differences between the superlattices are in the
three-body interaction, we tried to vary the bond-bending
parameters n,„p and gz, p of the KDS potential in order
to better fit its energy surface to the ab initio calculations.
We found that major changes are required in order to at-
tain better fits to ternary compounds. However, within
these changes the potential no longer correctly predicts
the elastic coefficients of the InP and GaP binary com-
pounds. We were unable to significantly improve the
agreement between the KDS potential and the LDA re-
sults. In what follows, we thus use only the T-VFF.

APPENDIX 8: A MODEL
FOR THE NEAREST-NEIGHBOR
BOND-LENGTH DISTRIBUTION

We explain the features of the simulated nearest-
neighbor bond-length distribution in terms of a simple
model. We will distinguish the average alloy bond
lengths (Ro, p(x) ) and (Ri„p(x) ) from the bond
lengths R o,~ p(x) and R I„"'p(x) of the individual, P-
centered Cza4„In„clusters (O~n ~4). From Eq. (2.3b)

Here R „& are the bonds in the pure AC compounds, and
h„c in the slope of the dashed lines in Fig. 4 given by Eq.
(5.11). (b) The alloy-averaged bond length depends only
on the nearest-neighbor clusters, i.e., on the five
Ga4 „In„ tetrahedra. (c) The probability of finding a
cluster n at a composition x is given by the random (Ber-
noulli) formula

P(n)(x) xn(1 x )4
—n4

,n
(B2)

Ro~ p(x) &Ro~ p(x ) &Romp(x) &Rom p(x) (B4)

and the opposite is true for the In-P bond length, namely

Rim-p(x) RI Ip(x) Rim-p(x) +RIn-p(x) (B5)

These relationships can be represented by a simple linear
formula

R o'",' p (x ) = ( R o, p (x ) }+ (4x n)Ko,p, —

R',„"'p(x)=(R,„p(x))+(4x n)Ei p ~—(B6)

where K~~ is a displacement for the AC sublattice. Fig-
ure 7 depicts these relationships schematically. Note that
Baldereschi and Peressi have not distinguished the bond
lengths R'"' in ordered compounds (solid dots in Fig. 7)
from the alloy values (R (x) ) (dashed lines in Fig. 7); i.e.,

(d) The mixed (cation) sublattice does not relax from the
ideal fcc positions. The relaxation thus occurs only by
the common sublattice C.

The remaining missing element of our model is to find
how the individual cluster bond lengths Rz,'p(x) and
R',„"'p(x) depend on n and x. This can be argued as fol-
lows, using x =

—,
' as an example. For the n =2 cluster

Ga2In2, it makes sense to assume that

R o,' p (x =
—,
'

) = (R o, p (x =
—,
'

) ),
R' ' (x =—')=(R,„p(x=—,')),

i.e., that the n =2 cluster bond lengths are equal to the
average alloy bond lengths at x =

—,'. However, the Ga-P
bond appears also in the clusters n =0, 1, and 3. In the
cluster GaIn&, the three In-P bonds push the single Ga-P
bond, therefore its length is shorter than its length in the
Ga2In2 cluster Ro,'p(0. 5)(R~o,'p(0. 5). In the cluster
Ga3In, the three Ga-P bonds pull the single In-P bond,
therefore the three Ga-P bonds are longer than their
length in the Ga21nz cluster R o,'p(0. 5) & R o p(0. 5). In
the Ga4 cluster there are four Ga-P bonds, therefore their
length is longer than in the Ga3In cluster
R o,' p(0. 5) & R o,' p(0. 5). These arguments suggest that
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they use Ko,i, =Ki„i =0 in Eq. (86).
Substituting Eq. (81) into (86) gives

R o p (x ) R o& p + (4Ko&p +ko&p )x —nKo&p

Rin'i (x}=Rin-~+(4Kini +~in~}x —«t'ai
(87)

A~,p=0.036 A,

A)~p =0.050 A

The solid lines in Fig. 5 depict the histogram of P'"'(x }
vs R„c(x) using Eqs. (82) and (87), and the numerical
values

hr, (n =2) =E(1,0,0),
hr2(n =2)=s(0, 1,0),
br3(n =2)=s(0,0, 1),

(C3)

where P'"'(x) is given in Eq. (82).
(iii) In the n =2 cluster there are two long In-P bonds

and two short Ga-P bonds, so the P atom is displaced
along one of the six (100), (100), (010), (010), (001), or
(001) directions (the middle of the two bonds). Let s be
the amplitude of the P-atom displacement along the (100}
direction. The three possible displacements of the P
atom in the n =2 cluster are

from our calculation of Table IV, and
0

E~&p =
Kg&p =0.02 A

fit to the width of the histograms of the MC results.

(89)
where c & 0, and Ar4, Ar5, and Ar6 are similar terms but
with E (0. The probabilities of the six displacements are
equal to

P[br;(n =2)]=P'" '(x)/6 . (C4)
APPENDIX: C: A MODEL

FOR THE DISPLACEMENTS OF THE P ATOM

6„
br3(n ) = —(1, —1, —1),

(C 1)

5„br (n)= —( —1 1 —1)4 ~3 7 7

and the probabilities of the four displacements are equal
to

P[hr;(n =1,3)]=P'"=' '(x)/4, (C2)

To understand the essential features of Fig. 11 we con-
sider a model which assumes that the displacements of
the P atoms reAect the properties of its four nearest
bonds in the five different Ga& „In„P clusters. The
mixed (cation) sublattice is assumed to be unrelaxed with
respect to the ideal fcc positions. Specifically, the model
assumes the following.

(i) In the n =0 and 4 clusters, the four bonds connect-
ing the P atom are equal, so the P atom is located in the
tetrahedron center.

(ii) In the n = 1 cluster there is one long In-P bond and
three short Ga-P bonds, so the P atom is disp1aced away
from the longer In-P bond, in one of the four (111),(111),
(11 1), or (111) directions (according to the In-P bond
direction). Since the random alloy is homogeneous and
isotropic, all of these directions have an equal probabili-
ty. In the n =3 cluster, there is one short Ga-P bond and
three long In-P bonds, so the equilibrium locations of the
P atom are in opposite direction relative to the n =1
cluster. Let 5„denote the displacement amplitude of the
P atom along the bond direction in the cluster n (5„)0).
The four possible displacements of the P atom in the
n = 1 and 3 clusters are therefore

6„
br, (n )= —(1, 1, 1),

3

5„
br2(n) = —( —1, —1, 1),

For simplicity we choose

5( )= —5( )=—,'[&R,„,( )) —&R, ( ))], (C5)

where &R,„~(x)) and &Ro, ~(x}) are the In-P and Ga-P
average bond lengths in the random alloy. It is easy to
see from the geometry of the cluster that

E(x)=cos —[&R,„i(x) ) —&Ro, i (x) ) ],9
2

(C6)

where 0 is the tetrahedral bond angle [8=109.47',
cos(8/2)=1/V3]. Figure 12 demonstrates the possible
displacements of the P atom. Thus in a three-
dimensional representation of P-atom displacements
there are 15 possible locations for the P atom. These are
related to the Ave different nearest-neighbor local clusters
Ga4 „In„around the P atom: One undisplaced location
is in the center of the n =0 and 4 tetrahedra, four dis-
placed locations are in the (111), (111), (11 1), or (111)
directions of the n = 1 clusters; four locations in n =3 are
opposite to those of the n = 1 clusters; and six displaced
locations are in the (100), (100), (010), (010), (001), and
(001) directions of the n =2 clusters. These locations are
represented in Fig. 11 by the three projected (100), (110),
and (111)planes.

In order to make the model more realistic and closer to
the statistical results, we broaden the projected displace-
ments b,r,.( n ) by a symmetric Gaussian

G(bx, by)=e (C7)

where ~ was chosen arbitrarily to be equal for aH dis-
placements. The results of the model are shown on the
right-hand panels of Fig. 11. We see that the model qual-
itatively matches the results of the numerical simulation.
%'e conclude therefore that, at T=O, the equilibrium lo-
cations of the P atoms in the random Ga& In P alloy
are affected mainly by the nearest-neighbor environment.
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