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Abstract. A large number of ab initio calculated towl energies of different GafYlnP 
superlattices are used to fit a Bom-Oppenheimer energy surface. Monte Carlo simulations are 
then performed on this surface. including treatment of canfigumtional. positional and vibrational 
degrees of freedom. This permits isolation of the effects af these degrees of freedom on the 
thermodynamic behaviour. We find the following. 

(i) Positional relaxation of the atoms to equilibrium, (off-site) locations lowers enormously 
both the mixing enthalpy (by -50%)  and the miscibility gap (MG) temperature (from TMG = 
1746 K to TMG = 833 K). 

(ii) Allowance for configurational correlations (absent in a mean-field treatment) reduces 

(iii) Vibrations reduce TMG by - 30 K leading to a final TMG = 870 K. The calculated 
both the entropy and the enthalpy. leading to B net increme of - 70 K in TMG. 

phase diagram is in accord with experiment. 

1. Introduction 

The thermodynamics of alloys reflects the interplay of configurational, positional. vibrational 
and electronic degrees of freedom [l]. Configurational degrees of freedom refer to the many 
ways that atoms can be arranged on a static, non-vibrating lattice in its electronic ground 
state. These degrees of freedom are conveniently labelled by pseudo spin variables .?i. 
In binary AI,B, systems these take the values + I  or -1 if lattice site i is occupied 
by atom A or atom B, respectively. The collection [b) for i = 1 . . . N sites defines any 
one~of the 2N possible (ordered or disordered) configurations U on a binary lattice with N 
sites. In each configuration U ,  the N atoms can be displaced by amounts {Ri] from their 
'ideal', unrelaxed lattice positions. Such static positional relaxations, often induced by size 
differences between the atoms, always lower the internal energy. A Born-Oppenheimer 
internal energy surface of an alloy, Edrcct[{-$); { r ] ;  {Rj)] can thus be parametrized in terms 
of its configurational degrees of freedom (Si) as well as its positional cell-internal [Rj) and 
cell-external ( r )  variables. Knowledge of this surface and its spatial derivatives provides 
the vibrational degrees of freedom. Unlike static relaxations, the ensuing dynamic lattice 
vibrations are manifested by atomic displacements towards directions that do not necessarily 
lower the internal energy. In the absence of electr%nic excitations connecting different Born- 
Oppenheimer surfaces [2], knowledge of Edi,,[{S;]: [z]; (R; ] ]  thus defines the problem of 
alloy energetics. In practice, this energy surface is obtained either from ab initio total energy 
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1168 A Silverman et a1 

calculations [3] or from parametrized effective potentials [4, 5, 6, 81. Both approaches are 
termed here as ‘direct calculations’. In this paper we will consider insulating alloys (i.e. no 
electronic excitations) and discuss the effects of configurational, positional and vibrational 
degrees of freedom on the temperature-composition phase diagram. We will introduce a 
general approach that permits a separation between static and dynamic effects, and illustrate 
this approach in application to the phasediagram of the (GaP)l-,(InP), semiconductor 
alloy. We show dramatic changes introduced by static positional relaxations and smaller 
effects due to dynamic vibrations. 

2. Method of calculation 

2.1. General discussion 

Previous approaches that treat configurational and positional degrees of freedom can be 
divided into ‘direct methods’ which apply statistical mechanics techniques directly to 
the Born-Oppenheimer surface Ediren[{$]; (z}; {Rill, and ‘cluster expansion’ methods 
which utilize a generalized king description in which atomic displacements do not appear 
explicitly. These approaches are illustrated schematically in figure 1. We now briefly 
describe the guiding principles of these methods. The cluster expansion (CE) [I, 91 consists 

C.nlig”nL*l : Y 5  YU Y S  Y e  YU 

rabritional : NO Y.S NO YCr YU 
Vibrational : NO NO NO NO YS 

Figure 1. Schematic illustration of the different approaches for the calculations of the x - T 
phase diagram. See text for explanation. 

of mapping the set {Edircc~(U)) of directly calculated total energies onto an king-like series. 
In fact, for a lattice with N sites, the problem of finding the energies of the 2N possible 
configurations can be exactly [lo] mapped onto the Hamiltonian 
EcE(u)=Jo+CJ~S~(U)+CJ~~S~(U)S~(~)+ ~ j j ~ S j ( u ) ~ j ( u ) S ~ ( u ) +  ... (1) 

for configuration U ,  where the J’s  are ‘interaction energies’, and the first summation is over 
all sites (i) in the lattice, the second over all pairs of sites (ij), the third over all triplets 

i j ci k c j c i  
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( i j k ) ,  and so on. These constitute the basic ‘figures’ of the lattice. The interaction energies, 
( J ] ,  are the same for all configurations U .  The Hamiltonian of equation (1) contains ZN 
interaction energies J ,  which are used to describe the energies of the ZN configurations 
D .  Consequently, equation (1) can be viewed as defining a set of linear equations, in 
which ZN x ZN matrix of pseudo-spin products multiplies a ZN vector of J’s, giving a 
vector of the energies of the ZN configurations. The practical utility of the CE rests on the 
fact that the interaction energies ( J J  can be calculated using only partial information on 
&jrea[($); IT); {R~J] [I, 111 and that in many cases only a small number of (JJ (<< z N )  
tum out to be numerically important [I]. Thus, if these important J’s are known, the energy 
ECE(U) of any of the Z N  configurations can be calculated almost immediately by simply 
calculating the spin products and summing equation (1). Because the Ising representation 
of the energy can be calculated rapidly, and is also a linear function of the spin producrs, 
one can readily (i) apply linear programming techniques to find ground state structures 
(e.g., [IZ]), (ii) use statistical mechanics techniques such as the cluster variation method 
[13] or Monte Carlo [I41 to calculate phase diagrams, and (iii) calculate the energy of 
an arbitrarily complex configuration [15]. A direct calculation of configurational and spin 
depended excess energies of simulated samples using equation (1) is much easier than 
repeated quantum mechanical calculations. 

Whenthe interaction energies ( J )  are calculated from Edimr [ I ,  111, one can use either 
relaxed or uurelaxed atomic geometries, thus finding the corresponding relaxed or unrelaxed 
sets, (Jumel] or (JEIJ. These two possibilities are denoted as cE-(a) and CE-@) in figure 1. 
This choice is possible since the relaxed geometry for configuration U is a unique function of 
the unrelaxed geometry of U .  Most statistical mechanical descriptions of ‘chemical alloys’ 
AI-,B, or ‘magnetic alloys’ belong to type CE-(a) disregarding the positional degrees. of 
freedom (Ri), and focusing only on the configurational degrees of freedom ($). (The spins 
can be scalar Isiug spins, or vector ones, and in some cases a combination [16].) These 
standard CE-(a) models (figure l),are reviewed, e.g. [9, 171. The underlying assumption 
of unrelaxed CE-(a) models is that the atomic positions are invariant under changes in site 
occupations. Specifically, that the energy of a particular configuration is not affected much 
by the relaxation of the atoms off their ideal lattice sites. This assumption appears to 
be physically unreasonable for alloys made of size-mismatched constituents A and B: the 
atomic positions (R,] of a structure with a small atom surrounded by large atoms must be 
different from that of a large atom surrounded by large atoms, etc. Cluster expansions that 
include relaxation (denoted cfi-(b) in figure I)  have recently~ been applied to transition metal 
alloys [I, 2, 18, 19, 201 and to semiconductor alloys [21, 22, 23, 2.4, 251. 

In ‘direct (D) methods’ one avoids series expansion (thus, series truncation) of Edject. 
Instead, one couples the energy functional directly to a statistical mechanical lattice 
treatment, e.g., Monte Carlo simulation [5,.6,8]. Here, three principal choices exist, denoted 
in figure 1 as 0-(a), D-(b) and D-(c). 

In the first level D-(a), one assumes that all atoms are located on the nominal lattice 
sites irrespective of the atomic configuration. In this case one samples in Edirect [(Si}] only 
the configurational (spin) degrees of freedom during the statistical simulation. This D-(a) 
(direct, unrelaxed, static) approach thus neglects both positional and vibrational degrees 
of freedom and is analogous to approach &a) in the context of king expansions. Most 

and {Ri 1 
at each spin-configuration (ii) encountered in the statistical’ simuladon: Here the atomic 
positions (Ri) are thus obtained deterministically for each spin configuration since one is 
following a minimum energy path. This D-(b) (direct, relaxed, static) approach includes 

’ direct-functional Monte Carlo simulations of alloys belong to this category [17, 261. 
In the second [D-(b)] level, one minimizes &jeer [ { r ] ;  {Rill with respect to 
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configurational and positional effects but, since only deterministic, energy-lowering atomic 
displacements are sought, dynamic vibrational effects are neglected. Thus it is analogous 
to CE-(b) in the context of cluster expansion. 

Finally, in the third (D-(c)) level, one treats configurational and positional degrees of 
freedom on equal footing- e.g. by selecting random configurational changes (Si) and random 
displacements (A&) during the statistical simulation. This 0-(c) (direct, relaxed, dynamic) 
approach includes configurational, positional and vibrational effects. 

Given a convenient Born-Oppenheimer surface &irest one can either parametrize it in 
terms of a cluster expansion (equation (1)) and apply methods CE-(a) and CE-(b) or directly 
apply methods D-(a), D-(b) and D-(c), in conjunction with Monte Carlo simulations. The 
direct approach allows comparing the phase diagram in step (a), (b), and (c) and thus 
isolating the effects of the different degrees of freedom. While it is interesting to inquire 
as to how well cluster expansions mimic the direct approaches (e.g., CE-(a) versus D-(a) or 
CE-(b) vs D-(b)), here we focus on the more accurate (but computationally more extensive) 
direct methods. 

In what follows we will describe the construction of an approximate but rather accurate 
Born-Oppenheimer surface Eanct E(.%); ( T I ;  (Rj)] for the (GaP)I,(InP), FCC alloy (section 
2.2) and describe how Monte Carlo simulations are carried out using approaches D-(a), D- 
( b )  and D-(c) (section 2.3). Results are provided in section 3 while a summary is given in 
section 4. 

2.2. Parametrizing an energy sutface for (CaP),-,(lnP), 

The Born-Oppenheimer energy Edimcl(u) is modelled here by the valence force field (VFF) 
of Keating [U] (see also [28, 291): 

where dAc = R: is the equilibrium interatomic distance in the binary constituents, v,,,(l, s) 
is the vector connecting atom s in unit cell 1 to its mth nearest neighbour, and (YAC and 
,SA--~--A are the bond stretching and bond bending force constants. Martin €291 calculated 
the values of a and B of equation (2.2) for binary AC and BC materials. Since this VFF 
correctly describes the elastic coeffi-cients, lattice constants, bulk moduli and phonons of 
the binary compounds InP and GaP, we leave the binary ,Vs and a's unchanged. For the 
ternary A,Bl-,C compound, Martin [29] suggested the relations 

BA-C-A = Bc-A-c 
BB-C-B = Bc-B-c 
BA-C-B = ?(BA-C-A + BB-C-B). (3) 

Generalizing this, we can introduce individual bond bending parameters for the ternary 
alloy, namely ~ A - c - A ,  Bc-A-c, BB-C-B, Bc-B-c, and BA-c-B. Figure 2 illustrates these 
parameters for A=In, B=Ga, and C=P. We can write that in parametric form as 

' 1  

BP-1"-P = (1 + h"ML.1" 
Bln-P-I" = (1 - fi")B;"-P-l" 
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where ,9i-C-A are the VFF binary bond bending parameters. Note that the In-P-Ga bond 
angle does not occur in binary compounds. It is easy to verify from equation (2.4) that 
using the binary ,%,<-A, and BB-c-B, and the three new parameters [ p ~ ~ - p - ~ ~ ,  fin, f&) 
does not change the VFF elastic constants for the binary compounds. n e  ternary force 

Table 1. Formarion enthalpies A H  for ordered structures of InPIGaP, where A=GaP and B=lnP. 
The struclures are described as (AC),(BC), superlattices with layer repats ( p ,  y) and orientation 
G. The formation enthalpies were calculated using LDA. the original Keating vff potential (VFF) 

127,291, and our temilry potential (T-VFF). The mils are meVlfour-atoms, and the symbols define 
S V U ~ U ~  names (as defined in UOI). 

Orientation Row avenge 
Formula Source 11111 loo11 11101 12011 11131 deviationsa 

AB 

AB2 

AzB 

ABS 

AzB2 

A3B 

Columns average 
deviationsb: 

WA 
T-VFF 
VFF 

LDA 
T.VFF 
VFF 

LDA 
T-VFF 
VFF 

LDA 
T-VFF 
VFF 

W A  

T.VFF 
VFF 

LDA’ 

T.VFF 
VFF 

T-VFF 
VFF 

CP CA CA 
144.2 90.3 903 
132.4 93.5 93.5 
133.6 87.5 87.5 

or1 01 y l  
128.0 81.9 46.6 
127.4 90.8 43.6 
128.7 87.3 58.9 

rr2 02 y z  
126.7 79.1 45.6 
109.1 77.2 45.7 
109.7 72.8 59.4 

V I  ZI Y I  
110.4 72.9 54.3 
112.4 80.3 ~53.6 
113.5 78.0 60.8 

v 2  22 Y2 
141.8 90.6 60.7 
132.1 94.1 60.2 
132.6 91.1 78.1 

V3 23 Y3 
105.1 67.7 54.9 
88.7 62.7 58.1 
89.1 59.4 64.1 

9.7 5.0 1.8 
9.4 4.7 10.3 

CA CP 
90.3 144.2 
93.5 132.4 6.6 
87.5 133.6 5.9 

Y l  Y l  
46.6 46.6 
43.6 43.6 5.0 
58.9 58.9 9.8 

Y 2  Y2 
45.6 45.6 
45.7 45.7 5.0 
59.4 59.4 14.9 

FI W I  
32.0 62.9 
34.0 63.8 4.6 
43.6 72.0 10.9 

CH W2 
29.8 61.0 
40.2 62.4 6.0~ 
57.1 75.8 16.0 

F-3 w 3  
45.3 69.6 
52.2 67.8 6.9 
61.0 74.7 13.2 

4.3 3.2 
13.9 11.0 

“The average deviations relarive to the WA values for the mws. 
bThe avenge deviations relative to the LDA values for the columns. 

constants of equation (2.4) were fit to first-principle total energy calculations on ordered 
periodic structures [30]. Most of these structures can be described [15] as (AC),/(BC), 
superlattices of periods ( p .  q )  and direction 6 (table 1). Table Zgives the two additional 
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structures which are not superlattices. The fully relaxed excess energies [AELoA(s, V)) of 
25 ordered structures [s) of the (GaP)p/(InP)q compounds were calculated [30] in the local- 
density approximation (LDA) as implemented by the general-potential, linear augmented- 
plane-wave (LAPW) method [31]. (The calculations of [211 have been refined in 1301 by 
adding more k-points, using better basis set convergence, and adding many more structures). 
Using equations (2.2) and (2.4) we have also calculated the excess energies of the ordered 
structures (AEv&. V ,  f i ~ ~ - p - ~ ~ ,  fro, fc.)}. For each of the structures, the excess energy 
of the relaxed cell was calculated where the cell extemal coordinates (i.e. 3 x 3 matrix 
which describes the parallelepiped shaped unit cell) as well as the cell internal coordinates 
(i.e. the atomic coordinates tensor) were relaxed using a Monte Carlo algorithm at T = 0. 
To fit VFF to LDA we defined a cost function which expresses the difference between the 
VFF and LDA excess energies as a function of the three parameters &-p-ca, fr., and foa 

C(Pin-~-ca. f i n ,  fcd = IA.ELDA(s, V )  - A.EvFF(~, V ,  BI~-P-G~. fin. fdl. (5) 
O ” k , d  

m r t m  

Table 2. Formation enthalpies AH for the two luzonite (L1 and U) ordered structures of 
GaInP, where A=GaP and B=InP. The formalion enthalpies were calculated using LDA, our 
ternary potential (TwF), and Kating original VFF potential (w). The units of the formation 
enthalpies are meVIfour-arams. 

Formula Name Potential AH 

AB1 L1 LDA 57.4 
T.VFF 60.7 
VFF 57.1 

AgB U LDA 77.9 
T-VFF 81.8 
VFF 80.8 

A simulated annealing algorithm [32] was used to find the values of the parameters which 
minimize C(&-P-G~, fr., fca). The surface of the cost function C ( & - G ~ ,  f in,  fGa) is 
complex, having many local minima. In some cases, the simulated annealing algorithm 
reached minima with 1fr.l > 1 or lfenl > 1, resulting (see equation (2.4)) in unphysical 
negative values of one of the bond bending force constants ~.A.-c-A. We regard these local 
minima of C ( , ~ & - G ~ ,  fin, fa,) as ‘forbidden minima’, so we add to the cost function a 
constraint function, multiplied by a Lagrange multiplier 

C’(filn-~-~& fin, fca) C(Brn-~-ca, fin, f ~ a )  + Uhrn + h a )  (6)  
where ha are the functions 

0 i f - l < f A < l  
h A = (  1 otherwise. (7) 

In this way, the modified cost function C’ is allowed to pass through the ‘forbidden minima’, 
but it is most probable that it will not stay there. The value of the Lagrange multiplier A 
was chosen to be comparable to the depth of the valleys of C (-5 meV) as observed during 
test runs of the simulated annealing algorithm. 

The best fit values for the para meters^ of equation (2.4) are 

f i ~ ~ - p - ~ ~  = 1.6715Nfm. 
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fca = -0.4621 
fi. = 0.9705. 

Note that the various structures included in the fit correspond to a significant range (f0.3A) 
of atomic displacements, thus, in so far as the LDA is accurate, we can use our parametrized 
surface.for calculating vibrations. In all our calculations, each atom is fourfold coordinated. 
The resulting p values are given in the insert of figure 2. Since our VFF is fit also to 

Figure 2. Schematic diagram depicting the different bond bending force constants in the 
Gaj-,ln,P random alloy. The five force constants p of the VFF potential are labeled. The 
best values found in our fit to the LAPW results are given. 

ternary (T) data, we will refer to it as T-VFF, to be distinguished from the Keating-Martin 
binary VFF. Tables 1 and 2 compare the LDA values of A.E(s. Veg) to the fitted T-VFF values. 
We see that the current T-VFF potential considerably improves the overall fit compared to 
the original vFF potential. This is particularly true for the superlattice structures in the 
orientations [ l  lo], [201], and [ 1131, where the fit ,of the original VFF potential is quite poor. 
The fit of the original VFF potential for the superlattice structures in the orientations 11111 
and [Ool] and for the Luzonite structures (table 2) is very good; our new fit thus leaves 
these values essentially unchanged. The existence of a small RMS error pver a wide range 
of compositions and superlattice orientations (tables 1 and 2) suggests that our T-VFF can 
also be used to predict energies AI?(.?', Veq)  of structure [.?'I outside the set [.?I used in 
the fit. 

2.3. Phase diagram calculusions , 

We will describe in what follows our most general procedure D-(c) (see figure 1) in which 
configurational, positional and vibrational degrees of freedom are retained. The simpler 
procedures D-(a) and D-(b) will then he described by eliminating a few steps from the more 
general approach D-(c): 

(i) The initial spin configuration [ i t ]  is chosen so that the A/B sublattice is occupied 
randomly according to the alloy composition x .  The initial atomic coordinates (Ri) are 
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chosen as the zinc-blende positions (Rp) of a cubic cell with periodic boundary conditions 
and a Vegard lattice constant a(x). 

(ii) The displacement field is defined as follows: first, atoms (indexed by i) are chosen 
randomly. Subsequently, three types of Monte Carlo displacements/flips are introduced: (a) 
At each step, a random and small coordinate displacement ARi  is chosen, and the new 
positions (Ri) are mapped : (Ri) -+ [Ri] + ARi.  (b) About every I/Ps steps the spin .?i 

is Ripped so {3i] is mapped to {$). (c) About every 1/Pv steps a random small volume 
change A V  is chosen and the  volume^ of the cell is mapped by {Ri) + (Ri] + (AR;], 
where A R i  = ( I ,  1, l ) A V  for all i. Hence, Ps and PV are the probabilities of spin flip and 
volume change respectively. We chose Ps = 0.05 and .ft = 1/N where N is the number 
of atoms in the sample. We found that these are optimum values for stability as well as fast 
convergence of the MC algorithm. 

(iii) Each MC step is accepted with a probability Paccept where 

{ y ( b E ) / k ~ T )  if 6 E  > 0 
otherwise flacceeeepi = 

where T is the temperature of the sample, and kB is the Boltzmann constant. The energy 
change due to spin and position changes is 

SE = AEdirect[{$l; (R;)] 4- c i P i ( $ )  - A&ircct[(~il; {Rill - cLLi (3 i ) .  (10) 
i 

Here, A&i~ct[[L$]; {Ri)] is calculated from equation (2.2), and &(.?,) is the chemical 
potential of the atom species 3;. Procedure (ii) - (iii) defines the MC step. In the multi-step 
MC equilibration process, each site is relaxed individually while all the other sites are held 
fixed. Each site change affects its four bond lengths, six bond angles and 12 angles of its 
nearest neighbours, thus, the energy change is calculated only for the above. This method 
is very efficient as was demonstrated by Weidmann and Newman [33]. It was also used by 
Glas [34]. 

The above defines our most general procedure D-(c) in which random ‘flips’ are 
considered for spins, atomic displacements and cell volumes. In our procedure D-(b) we 
avoid the random atomic and cell volume changes (i.e., steps (ii)a and (ii)c above) replacing 
this step by a deterministic minimization of EdreCt with respect to [R;) and ( 5 ) .  keeping the 
spin-configuration fixed. The minimization is done by a Monte Carlo equilibration process 
at temperature T = 0. Finally, in our simplest procedure 0-(a) we freeze all atomic position 
and cell vectors of the ideal virtual lattice values and use pure spin flips (i.e., only step (ii)b 
above) in our MC procedure. 

Gal,In,P shows a phase-separating ground state, so the phase diagram exhibits a 
miscibility gap. The phase diagram of a phase-separating alloy A,BI-,C can now be 
calculated as described by Kelires and Tersoff [6] .  The compositions x l ( T )  and x*(T) of 
the two coexisting phases at a temperature T are obtained by plotting the composition 
(x(Ap,  T ) )  averaged over the MC iterations versus A@ = PAC - g ~ c .  The average 
(x(A@, T ) )  exhibits a first order phase transition, where X I  (T) and xz (T)  are the coexisting 
compositions. Plotting x l ( T )  and xz (T)  versus T gives the phase diagram. 

The samples used in the present calculations consisted of periodically repeated cubic 
cells of 8 x N x N x N atoms for N = 5 .  In order to accumulate enough statistics on 
the structural properties some 200 such samples with different spin configuration {.?;I were 
equilibrated for each case. We also checked for finite size effects by the calculation of 
selected points using our two basic algorithms, (i) internal energy minimization without any 
spin flips and (ii) MC equilibration process at T > 0 with spin flips. Using cubic cells of 
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8 x N x N x N atoms for 5 < N < 8, we estimate that finite-size errors are below 1% for 
both algorithms. 

3. Results 

3.1. Effects of positional relaxation on the mixing enthalpy 

The mixing enthalpy AH,, is the excess enthalpy of the disordered alloy at (x. T) taken 
with respect to the energy of equivalent amounts of pure AC and BC at their equilibrium 
volumes 

AH,,(x, T) = E ( x ,  T )  - [xE(AC)  + (1 - x ) E ( B C ) ]  . (11). 

Figure 3 shows AH,j.(x, T = 03) for the chemically perfectly random Gal,In,P alloy 
neglecting vibrational effects. We give results with atomic relaxation AHLx (dashed line), 
and without relaxation 4H:, (solid line). Relaxation lowers AH,, enormously: The 
maximum value for the relaxed system 4HAjx(x  = 0.47) = 77.1 fO.l meV/four-atoms is 
much lower  than^ the unrelaxed value AHZx(x = 0.53) = 152 f 1 meV/four-atoms. The 
asterisks denote the formation enthalpies AH, of few of the ordered structures, defined in 
table 1 .  The reduced-enthalpy (interaction parameter) can be written as 

~ 
~ A ( x .  T) = 4H(x,  T)/x(l - x ) .  (12) 

If AH,,,jx(x) were parabolic, the interaction parameter h(x) would be x independent. Fitting 
our AHAi,(x) to equation (12) shows, however a nearly linear behaviour h(x) = QO + a x .  
Our fit to AH;&) is 

A ( x ,  T = 00) = 3.7 - 0 . 8 ~  (kcal mol-') (13) 

showing that AH,,,jx(x) is not symmetric about x = 4. Interestingly, for the relaxed alloy 
a c 0 while for the unrelaxed alloy U z 0 (compare the solid line to the dashed line in figure 
3). Indeed lim,,a b ( x )  and limx+j h(x) is the 'limiting solution enthalpy" representing the 
change in enthalpy when impurity amounts of A are added to BC. Our result thus indicates 
that for the unrelaxed alloy 

AH&(GaF' : In) c AH:%(InP : Ga). (14) 

Thus, it costs less energy to dissolve a large atom (In) in a small host (Gap) than to dissolve 
a small atom (Ga) in a large host (InP). However, the opposite is true when relaxation is 
allowed, i.e. 

AHLX(GaP : In) z AH;,(InP : Ga). (15) 

This result implies that the effective two-body force constant o l , ~  of the In-P bond within 
the GaP host is higher than that of the Ga-P, bond within the InP host 

&'(Gap) > u:$-'(InP). (16) 

This is the reverse of the situation in the pure biimry materials, where the VFF values are 
[28] ' . 

a'"'(GaP) aG"P(InP). (17) 
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3.2. Effects of configurational, positional and vibrational degrees of freedom on the phase 
diagram 

Figure 4 shows the x-T phase diagram of the GaInP alloy calculated in our D-(c) approach. 
The circles connected by dashed lines denote the results of the MC calculations (interpolated 
near the top of the miscibility gap), while the squares denote the recent experimental results 
of Ishida et a1 [35]. The agreement is very reasonable, given that we fitted our interactions 
only to first-principle calculations on ordered superlattices. Table 3 gives the miscibility 

Tablc 3. Different approximation to the upper miscibiliiy temperature TMC, and composition 
-0. Mean-Field (MF) Venus Monte Carlo (MC) . All approximations are based on the present 
interatomic T-VFF potential (see section 5.2). 

Method [&I & I  Asvib TMGW) XMG 

D-(a) (m) Unrelaxed Random Zero 1146 0.50 
D-(b) (MF) Relaxed Random zero 833 0.50 
D-(b) (MC) Relaxed Non-mdom Zero WO * 40 0.42 * 0.03 
D-(c) (MC) Relaxed Non-random Non-rero 870 I 20 0.40 * 0.02 

gap (MO) temperature TMc and composition x ~ c  for the various approximations D-(a), D- 
(b) and D-(c) explained schematically in figure 1. In addition, table 3 shows the effects 
of using a mean-field (MF), perfectly random spin variables instead of the correlated MC 
results. Note that when perfectly random alloys are considered, the (ideal) mixing entropy 
does not depend on the structure (but does depend on composition), so the equilibrium 
structure is decided by a positional relaxation without any spin flips. Thus, when perfectly 
random alloys are considered, SE of equation (2.10) is evaluated at a constant (random) 
spin configuration corresponding to a given composition x .  This calculation resembles the 
process of quenching a sample which was initially equilibrated at some high temperature. 

Table 3 shows the following features: 
(i) Comparison of approach D-(a) with D-(b), both executed using perfectly random 

(unconelated) spins shows how enormous is the effect of positional relaxation in these 
alloys: The miscibility gap temperature drops from 1746 K (unrelaxed random alloy) to 
833 K (relaxed random alloy). 

(ii) Comparison of approach D-(b) executed within mean field theory to the same 
approach executed within Monte Carlo shows that atomic (confgurational) correlations 
present in the latter increase the miscibility gap temperature by - 70 K. In this calculation 
we permit atomic correlations (i.e. short range order effects) in both AE and AS, while 
still neglecting vibrational effects. This is calculated by allowing in the M c  runs spin-flips 
as well as complete atomic relaxations to the lowest energy of each spin configuration 
(this is distinguished from continuous-space MC where atoms are displaced along random 
directions which is not necessarily energy lowering). As usual, spin correlations tend to 
reduce the entropy relative to the mean field value. However, for phase-separating systems, 
spin correlation also made the enthalpy less positive [Zl]. Since TMG K AH/AS, these 
correlation effects in AH and AS could have opposite influence on TMG. We find that the 
net effect of atomic correlations is to increase the miscibility temperature. 

(iii) In the final step one introduces vibrational effects through the use of random 
displacements. Comparing approach D-(b) to D-(c) (both executed within the Monte Carlo 
approach) shows that vibrational effects lower TMG to 870 f 20 K and move XMO to 
0.40 =k 0.02. The results of this calculation are shown in figure 4. Thus, vibrations 
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tend to lower TMG. The same trend was observed in empirical models that introduce 
vibrational effects into semiconductor alloy [36, 371 and noble metal alloy [38] phase 
diagrams. However, our direcr calculation of vibrational effects suggests that previous 
model calculations [36, 371 may have overestimated the vibrational effects. For example, 
Garbulsky and Ceder [40] predict that the x = 4 miscibility gap temperature of FCC lattices 
is affected by the chemical ( Jhem) and vibrational (Jvib) nearest-neighbour effective cluster 
interactions as 

9.8 
1 +9.8Jvib' TMG 1 Jchcm 

Jvib was estimated for 3D lattices as 

where K,B are ideal spring force constants for the 01 - B  pair. Using the above, considering 
only nearest neighbour interactions in a 3D FCC binary alloy, and using a reasonable value 
of K A A K B B / K i B  = 1.3 for the force constants, they estimated that vibrations lower TMG 
by a factor of 2 from the value one would get neglecting the vibrations. 

In the case of ternary tetrahedrally bonded semiconductors AI-,B,C (like the Gal,In,P 
alloy), each pair of cations A and B in the FCC sublattice are connected through an anion 
C. Therefore, the spring force constants of the mixed FCC sublattice are of a second 
neighbour interactions, and may be denoted as KA-c-A- KB-C-B, and KA-C-B. The ratio 
KA-C-AKB-C-B/Ki-C-B is much lower than the above ratio K A A K B B / K i B ,  since for 
example KA-,-A considers a connection through two A-C bonds while KA-C-B considers a 
connection through one A-C bond and one B-C bond, so the difference between the KA-C-A 
and KA-C-B spring constants is much lower than the difference between the above FCC KAA 
and KAB spring constants which consider different kinds of bonds. Thus, the vibrational 
effective cluster interaction Jvib, calculated using equation (19) for ternary semiconductors 
will be much lower than Jvjb for the case of FCC materials, therefore we predict that the 
vibrational lowering of T M ~  for ternarysemiconductors will not be so high as estimated by 
Garbulsky and Ceder [40] for FCC materials, but a minor effect. 

4. Summary 

Figure 1 explains the various approaches for calculating the thermodynamic properties of 
an alloy from its Born-Oppenheimer surface. While it would be interesting to check the 
extent to which various Ising cluster expansions mimic the original Born-Oppenheimer 
energy surface, we have concentrated here only on direct calculation methods that avoid 
Ising expansions. We find that for a size-mismatched phase-separating system (i) positional 
relaxations change significally both AHmi, (from 152 to 77 meV/four atoms) and TUG 
(from 1746 K to 833 K); (ii) atomic correlations (described via Monte Carlo) reduce both 
the entropy and the enthalpy. These competing effects on TMG reflect in a net increase 
by 70 K (iii) vibrational effects reduce TMG further by 30 K and do not shift the critical 
composition. 
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