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Abstract. A large number of ab iritio calculated total energies of different GaP/InP
superlattices are used to fit a Bom—Oppenheimer energy surface. Monte Carlo simulations are
then performed on this surface, including treatment of configurational, positional and vibrational
degrees of freedom. This permits isolation of the effects of these degrees of freedom on the
thermodynamic behaviour. We find the following.

(i) Positional relaxation of the atoms to equilibrium, (off-site) locations fowers enormously
both the mixing enthalpy (by ~ 50%) and the miscibility gap (MG} temperature (from Tug =
1746 K to Tuc = 833 K).

(ii) Allowance for configurational correlations (absent in a mean-field treatment} reduces
both the entropy and the enthalpy, leading to a net increase of ~ 70 K in Tua.

(iii) Vibrations reduce Tug by ~ 3¢ K leading to a final Tug = 870 K. The calculated
phase diagram is in accord with experiment,

1. Introduction

The thermodynamics of alloys reflects the interplay of configurational, positional, vibrational
and electronic degrees of freedom [1]. Configurational degrees of freedom refer to the many
ways that atoms can be arranged on a static, non-vibrating lattice in its electronic ground
state. These degrees of freedom are conveniently labelled by pseudo spin variables S;.
In binary A;_ B, systems these take the values +1 or —1 if lattice site i is occupied
by atom A or atom B, respectively. The collection [$;} for i = 1... N sites defines any
one of the 2V possible (ordered or disordered) configurations o on a binary lattice with N
sites. In each configuration o, the N atoms can be displaced by amounts {R;} from their
‘ideal’, unrelaxed lattice positions. Such static positional relaxations, often induced by size
differences between the atoms, always lower the internal energy. A Born-Oppenheimer
internal energy surface of an alloy, Egiect[{S:); {z}; {R;}] can thus be parametrized in terms
of its configurational degrees of freedom {5;} as well as its positional cell-internal {R;} and
cell-external {r} variables. Knowledge of this surface and its spatial derivatives provides
the vibrational degrees of freedom. Unlike static relaxations, the ensuing dynamic lattice
vibrations are manifested by atomic displacements towards directions that do not necessarily
lower the internal energy. In the absence of electronic excitations connecting different Born—
Oppenheimer surfaces [2], knowledge of Edi,m[{.g}}: {z}; {R;}] thus defines the problem of
alloy energetics. In practice, this energy surface is obtained either from ab initio total energy

0953-8984/95/051167+14519.50 @ 1995 IOP Publishing Ltd - 1167



1168 A Silverman et al

calculations [3] or from parametrized effective potentials [4, 5, 6, 8]. Both approaches are
termed here as ‘direct calculations’. In this paper we will consider insulating alloys (i.e. no
electronic excitations) and discuss the effects of configurational, positional and vibrational
degrees of freedom on the temperature-composition phase diagram. 'We will introduce a
general approach that permits a separation between static and dynamic effects, and illustrate
this approach in application to the phase-diagram of the (GaP),_,(InP), semiconductor
alloy. We show dramatic changes introduced by static positional relaxations and smaller
effects due to dynamic vibrations.

2. Method of calculation

2.1. General discussion

Previous approaches that treat configurational and positional degrees of freedom can be
divided into ‘direct methods’ which apply statistical mechanics techniques directly to
the Born—Oppenheimer surface Egirea[{S:}; {t}; {R:}], and ‘cluster expansion’ methods
which utilize a generalized Ising description in which atomic displacements do not appear
explicitly. These approaches are illustrated schematically in figure 1. We now briefly
describe the guiding principles of these methods. The cluster expansion (CE) [1, 9] consists

Egirectl (S E{THAR;H

~ ~

Map Ey ey O0to Esing:
$13=ZIL*Y,
EcliS]] ot Use E ;.. explicitly:
Energetics: (T} and {R,] cither Eu . [[5}
i HTHIR,
{a)Relaxed EX or reel (ST ER ]
() Unrefaxed B2
/ ! AR N
- Lo Spin-flip Spin-flip + Random
- Spu:‘lﬂlp Spur:]ﬂlp only inimization Spin and
Statistics: only only f o
el e {7} + (R} o positional
E"USH |1 Ea LS unretared | [Egimal{T1(RI)]  flips
CE-(a} CE-(b) D-() D - () D-)
Configurational ¢ Yes Yes Yes Yes Yes
Positional : No Yes No Yes Yes
Yibrational T Noe No No No Yes

Figure 1. Schematic illustration of the different approaches for the calculations of the x — T
phase diagram, See text for explanation,

of mapping the set { Egireer(0)} of directly calculated total energies onto an Ising-like series.

In fact, for a lattice with N sites, the problem of finding the energies of the 2" possible

configurations can be exgctly [10] mapped onto the Hamiltonian

Ece(0) = Jo+ ) 1810+ ) JySi@)8io) + 3 Iudi@)f@)&@y+... )
i J<i ket j i

for configuration o, where the J’s are “interaction energies’, and the first summation is over

all sites (i) in the lattice, the second over all pairs of sites (if), the third over all triplets
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(ijk), and 50 on. These constitute the basic “figures’ of the lattice. The interaction energies,
{J}, are the same for all configurations ¢. The Hamiltonian of equation (1) contains 2%
interaction energies J, which are used to describe the energies of the 2V configurations
o. Consequently, equation (1) can be viewed as defining a set of linear equations, in
which 2V x 2¥ matrix of pseudo-spin products multiplies a 2% vector of J’s, giving a
vector of the energies of the 2V configurations. The practical utility of the CE rests on the
fact that the interaction energies {J} can be calculated using only partial information on
Ed,-,cc[[{g,-}; {z}; {&;}] [1, 11] and that in many cases only a small number of {J} (& 2%)
turn out io be numerically important [1]. Thus, if these important J's are known, the energy
Ece(o) of any of the 2V configurations can be calculated almost immediately by simply
calculating the spin products and summing equation (1). Because the Ising representation
of the energy can be calculated rapidly, and is also a linear function of the spin products,
one can readily (i) apply linear programming techniques to find ground state structures
{e.g., [12]), (i) use statistical mechanics techniques such as the cluster variation method
[13] or Monte Carlo [14] to calculate phase diagrams, and (iii) calculate the energy of
an arbitrarily complex configuration [15]. A direct calculation of configurational and spin
depended excess energies of simulated samples using equation (1} is much easier than
repeated quantum mechanical calculations.

When- the interaction energies {J} are calculated from Egiree: [1, 11], one can use either
relaxed or unrelaxed atomic geometries, thus finding the corresponding relaxed or unrelaxed
sets, {Jymer} OF {Jra}. These two possibilities are denoted as CE-(a) and CE~(b) in figure 1.
This choice is possible since the relaxed geometry for configuration ¢ is a unique function of
the unrelaxed geometry of . Most statistical mechanical descriptions of ‘chemical alloys’
Aj—zB, or ‘magnetic alloys’ belong to type Ce-(a) distegarding the positional degrees. of
freedom {R;}, and focusing only on the configurational degrees of freedom {8:}. (The spins
can be scalar Ising spins, or vector ones, and in some cases a combination [16].) These
standard CE-{a) models (figure 1) are reviewed, e.g. [9, 17]. The underlying assumption
of unrelaxed CE-(a) models is that the atomic positions are invariant under changes in site
occupations. Specifically, that the energy of a particular configuration is not affected much
by the relaxation of the atoms off their ideal lattice sites. This assumption appears to
be physically unreasonable for alloys made of size-mismatched constituents A and B: the
atornic positions {R;} of a structure with a small atom surrounded by large atoms must be
different from that of a large atom surrounded by large atoms, etc. Cluster expansions that
include relaxation (denoted CE~(b) in figure 1) have recently been applied to transition metal
alloys {1, 2, 18, 19, 20] and to semiconductor alloys [21, 22, 23, 24, 25].

In “direct (D) methods’ one avoids series expansion (thus, series truncation) of Egirect.
Instead, one couples the energy functional directly to a statistical mechanical lattice
treatment, e.g., Monte Carlo simulation [5,.6, 8]. Here, three principal choices exist, denoted
in figure 1 as D-(a), D-(b} and D-(c).

In the first level D-(a), one assumes that all atoms are located on the nomingl lattice
sites irrespective of the atomic configuration. In this case one samples in Egyee; [{5:}] only
the configurational (spin) degrees of freedom during the statistical simulation. This D-(a)
(direct, unrelaxed, static) approach thus neglects both positional and vibrational degrees
of freedom and is analogous to approach CE-(a) in the context of Ising expansions. Most

* direct-functional Monte Carlo simulations of alloys belong to this category [17, 26].

In the second [D-(b)] level, one minimizes Egiec {{7}; {R;}] with respect to {r} and {R;}
at each spin-configuration {S;} encountered in the statistical simulation. Here the atomic
positions {R;} are thus obtained dererministically for each spin configuration since one is
following & minimum energy path. This D-(b) (direct, relaxed, static) approach includes
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configurational and positional effects but, since only deterministic, energy-lowering atomic
displacements are sought, dynamic vibrational effects are neglected. Thus it is analogous
to CB-(b) in the context of cluster expansion.

Finally, in the third (D-(c)) level, one treats configurational and positional degrees of
freedom on equal fooring, e.g. by selecting rendom configurational changes (& } and random
displacements {A R;} during the statistical simulation. This D-(c) (direct, relaxed, dynamic)
approach includes configurational, positicnal and vibrational effects.

Given a convenient Born—-Oppenheimer surface Egi..: one can either parametrize it in
terms of a cluster expansion (equation (1)) and apply methods ce-(a) and CE-(b) or directly
apply methods D-(a), D-(b) and D-(c), in conjunction with Monte Carlo simufations. The
direct approach allows comparing the phase diagram in step (a), (b), and (c) and thus
isolating the effects of the different degrees of freedom. While it is interesting to inquire
as to how well cluster expansions mimic the direct approaches (e.g., CE-(a) versus D-(a) or
CE-(b) vs D-(b)), here we focus on the more accurate (but computationally more extensive)
direct methods,

In what follows we will describe the construction of an approximate but rather accurate
Born—-Oppenheimer surface Egeq [{S )i {7} {R;}] for the (GaP); _;(InP) FCC alloy (section
2.2) and describe how Monte Carlo simulations are carried out using approaches D-{a), D-
(b} and D-{c) (section 2.3). Results are provided in section 3 while a summary is given in
section 4.

2.2. Parametrizing an energy surface for (GaP),_x(InP),

The Born-Oppenheimer energy Egi.q (o) is modelled here by the valence force field (VFF)
of Keating [27] (see also [28, 29]):

Egien(0) = ZZ - d2 ——anclrn(l, 1) Tl 1) — 2P

DM 5

a=1 1 n=m+1

Ak

Sdic A—C_A[rm(f,é‘) <Tull, $) + ~‘—;—-] (2)
where dac = Rf-’j is the equilibrium interatomic distance in the binary constituents, rm{l, )
is the vector connecting atom £ in unit cell [ to its mth nearest neighbour, and oac and
Ba——c—_a are the bond stretching and bond bending force constants. Martin [29] calculated
the values of & and B of equation (2.2) for binary AC and BC materials. Since this VFF
correctly describes the elastic coefficients, lattice constants, bulk moduli and phonons of
the binary compounds InP and GaP, we leave the binary 8’s and &’s unchanged. For the
ternary A,B;_,C compound, Martin [29] suggested the relations

Ba-c-a = Pc-a-c
Bs-c-8 = fc-s-—c
-1
Ba-c-s = E(ﬁA—C—A + BB—c-B)- (3)
Generalizing this, we can introduce individual bond bending parameters for the ternary

alloy, namely Ba_c-a, Bc-a-c. Pe—c—8, Bc—p-c, and Ba_c.p. Figure 2 illustrates these
parameters for A=In, B=Ga, and C=P. We can write that in parametric form as

Br-tn—p =1+ fin)Bia—p1n
Bin-p-In = (1 - fln)ﬁ{n—P—ln
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Bou-pr-ca ={1+ fGa)ﬁE}a—P—Ga
BP--Ga-—-P = (1 - fGa)ﬁé}a—P—Ga

1171

@

where 8] ~_, are the VFF binary bond bending parameters. Note that the In-P-Ga bond
angle does not occur in binary compounds. It is easy to verify from equation (2.4) that
using the binary Ss.c—a, and Bg_c_p, and the three new parameters {Sm—p—Ga, fin: Jou}
does not change the VFF elastic constants for the binary compounds. The ternary force

Table 1. Formation enthalpies A H for ordered structures of InP/GaP, where A=GaP and B=InP.
The structures are described as (AC),(BC), superlattices with layer repeats (p, 4) and orientation
G. The formation enthalpies were calcnlated using LDA, the original Keating vFF potential (vFF)
[27, 29], and our ternary potential (T-vFE). The units are meV/four-atoms, and the symbols define

structure names (as defined in [30]).

Orientation Row average
Formula Source [I11} [0O1] [l11Q] [201] [i13] devistions®
Ccp CA CA CA CP
AB LbA 1442 903 90.3 0.3 144.2
T-VFF 1324 935 935 ‘935 1324 66
VFF i33.6° 875 875 87.5 1336 59
el Al vl ¥1 yl
AB; LOA 1280 819 4656 466 466
T-VFE 1274 908 43.6 436 436 5.0
VEF [287 8§73 58.9 589 589 98
ol g2 y2 ¥2 y2
AzB LDA 1267 79.1 45.6 456 456
T-VFF 1091 772 457 457 457 50
VFF 1097 728 594 594 594 149
V1 Al Yi Fl Wil
AB3 LDA 1104 729 543 320 629
T-VFE 1124 803 536 340 638 46
VFF 1135 780 608 436 720 10.9
V2 Z2 Y2 CH W2
F-%1:7 LDA 141.8 906 60.7 298 610
T-VFE 132.1 54.1 60.2 402 624 6.0
VEFE 1326 9.1 731 571 758 16.0
V3 Z3 Y3 F3 w3
AsB LDA 105.1 67.7 54.9 453 696
T-veF~ 887 627 58.1 522 678 6.9
VEE g9.1 594  64.1 610 747 132
Columns average ’
deviations®:
T-VEF 9.7 5.0 1.8 43 iz
VEF 9.4 4.7 10.3 13.9 1.0

“The average deviations relative to the LDA values for the rows.

bThe average deviations relative to the LDa values for the columns.

constants of equation (2.4) were fit to first-principle total energy calculations on ordered
periodic structures [30]. Most of these structures can be described [13] as (AC),/(BC),

superlattices of periods (p, ¢} and direction G (table 1). Table 2 gives the two additional
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structures which are not superlattices. The fully relaxed excess energies {AEpa(s, V)} of
25 ordered structures {5} of the (GaP),/(InF), compounds were calculated [30] in the local-
density approximation {LDA} as implemented by the general-potential, linear augmented-
plane-wave (LAPW) method [31]. (The calculations of [21] have been refined in [30] by
adding more k-points, using better basis set convergence, and adding many more structures).
Using equations (2.2) and (2.4) we have also calculated the excess energies of the ordered
structures {AEvee(s. V, Bin—r~ca» fin» faa)}- For each of the structures, the excess energy
of the relaxed cell was calculated where the cell external coordinates (i.e. 3 % 3 matrix
which describes the parallelepiped shaped unit cell) as well as the cell internal coordinates
(i.e. the atomic coordinates tensor) were relaxed using a Monte Carlo algorithm at T = 0.
To fit VFF to LDA we defined a cost function which expresses the difference between the
VFF and LDA excess energies as a function of the three parameters Br—p—Ga» fin, and fou

C{Bta-p-Cas fin: foa) = D |AELDA(S, V) =~ AEvE(s, V, Bra—p—Gar finr Sou)l. ©)

arkered
sruciures

Table 2. Formation enthalpies AH for the two luzonite (L1 and L3) ordered structures of
GalnP, where A=GaP and B=InP. The formation enthalpies were calculated using LDA, our
ternary potential {T-vrr), and Keating original veF potential (vFF). The vnits of the formation
enthalpies are meV/four-atoms.

Formula Name Potential AH

AB3 L1 LDA 574
T-VFF 60.7
VFE 57.1
AsB L3 LDA 779
T-VFF 81.8
VFE 80.8

A simulated annealing algorithm [32] was used to find the values of the parameters which
minimize C(By—pr—Ga, fin, fGa). The surface of the cost function C(Bm—r—ca, fin. fGa) I8
complex, having many local minima. In some cases, the simulated annealing algorithm
reached minima with | fio| > 1 or |fga} = 1, resulting (see equation (2.4)) in unphysical
negative values of one of the bond bending force constants 8, _c_a. We regard these local
minima of C(By_p_gu. fin. foa) as ‘forbidden minima’, so we add to the cost function a
constraint function, multiplied by a Lagrange multiplier

Cr(ﬁln-P—;Gés fins fGa) = C(Isin—-P—Gas fIm fGa) + A-(h[n + hga) (6)

where A, are the functions

By = 0 if I§fA~<J -
1 otherwise.
In this way, the modified cost function C’ is allowed to pass through the “forbidden minima’,
but it is most probable that it will not stay there, The value of the Lagrange multiplier A
was chosen to be comparable to the depth of the valleys of C (~5 meV) as observed during
test runs of the simulated annealing algorithm.
The best fit values for the parameters. of equation (2.4) are

IBII'I—P—Gﬂ. = 16715N/m,
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foa  =—04621
fin = 0.9705. : _ (8)

Note that the various structures included in the fit correspond to a significant range (:1:0.313;)
of atomic displacements, thus, in so far as the LDA is accurate, we can use our parametrized
surface for calculating vibrations. In all our calculations, each atom is fourfold coordinated.
The resulting 8 values are given in the insert of figure 2. Since our VFF is fit also to

Bpanpy  =122975 N
Bgn-pin}  =0.1841 Nan

Y
; B(Ga-p-in) BiGo-pIn) = 16715 N/m

Bep-Gab)  =152895N/m

Ban-pin) |
Bepin) :‘ B(Ga-P-Ga) = 56256 Nim
A )

Figure 2. Schematic diagram depicting the different bond bending force constants in the
Ga;_.In;P random alloy. The five force constants 8 of the vre potential are labeled. The
best values found in our fit to the LaPW results are given.

ternary (T) data, we will refer to it as T-VFF, to be distinguished from the Keating-Martin
binary VFF. Tables 1 and 2 compare the LDA values of AE(s. Veq) to the fitted T-VFF values.
We see that the current T-VFF potential considerably improves the overall fit compared’ to
the original VFF potential. This is particularly true for the superlattice structures in the
orientations [110], [201], and [113], where the fit of the original VFF potential is quite poor.
The fit of the original VFF potential for the superlattice structures in the orientations [111]
and {001] and for the Luzonite structures (table 2) is very good; our new fit thus leaves
these values essentially unchanged. The existence of a small RMS error over 4 wide range
of compositions and superlattice orientations (tables 1 and 2) suggests that our T-VFF can
also be used to predict energies AE(S’ Veg) of structure [S’} outside the set {S} used in
the fit.

2.3. Phase diagram calculations

We will describe in what follows our most general procedure D-(c) (see figure 1} in which
configurational, positional and vibrational degrees of freedom are retained. The simpler
procedures D~(a) and D-(b) will then be described by eliminating a few steps from the more
general approach D-{c):

(i) The initial spin configuration {5:} is chosen so that the A/B sublattice is occup1ed
randomly according to the alloy composition x. The initial atomic coordinates {R;} are
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chosen as the zinc-blende positions [R?} of a cubic cell with periodic boundary conditions
and a Vegard lattice constant a{x).

{ii) The displacement field is defined as follows: first, atoms (indexed by i) are chosen
randomly. Subsequently, three types of Monte Carlo displacements/flips are introduced: (a)
At each step, a random and small coordinate displacement AR; is chosen, and the new
positions {R]} are mapped : {Rj} — {R;}+ AR;. (b) About every 1/Ps steps the spin 5
is flipped so {S is mapped to {Sf 1. (¢} About every 1/Py steps a random small volume
change AV is chosen and the volume of the cell is mapped by {R;} — {R:} + {AR:},
where AR; = (1,1, DAV for all i. Hence, Ps and Py are the probabilities of spin flip and
volume change respectively. We chose Ps = 0.05 and Py = 1/N where N is the number
of atoms in the sample. We found that these are optimum values for stability as well as fast
convergence of the MC algorithm.

(iii) Each MC step is accepted with a probability Paceepr Where

P _ exp(8E)/kpT) if8E >0
A | otherwise

&)

where T is the temperature of the sample, and kg is the Boltzmann constant. The energy
change due to spin and position changes is

SE = ABgeal {8} AR + D i10:(8)) — AEareal {$i}; (R - Zu,(S) (10)

Here, AEdi,m[{.i-}; {R;}] is calculated from equation (2.2), and y; (S,) is the chemical
potential of the atom species S;. Procedure (ii) - (iii) defines the MC step. In the multi-step
MC equilibration process, each site is relaxed individually while all the other sites are held
fixed. Each site change affects its four bond lengths, six bond angles and 12 angles of its
nearest neighbours, thus, the energy change is calculated only for the above. This method
is very efficient as was demonstrated by Weidmann and Newman [33]. It was also used by
Glas [34].

The above defines our most general procedure D-(¢) in which random ‘flips’ are
considered for spins, atomic dispiacements and cell volumes. In our procedure D-(b) we
avoid the random atomic and cell volume changes (i.e., steps (ii)a and (ii)c above) replacing
this step by a deterministic minimization of Egre with respect to {R;} and {r}, keeping the
spin-configuration fixed. The minimization is done by a Monte Carlo equilibration process
at temperature T = 0. Finally, in our simplest procedure D-(a} we freeze all atomic position
and cell vectors of the ideal virtual lattice values and use pure spin flips (i.e., only step {ii)b
above) in our MC procedure.

GayxIn,P shows a phase-separating ground state, so the phase diagram exhibits a
miscibility gap. The phase diagram of a phase-separating alloy A,B;_,C can now be
calculated as described by Kelires and Tersoff [6]. The compositions x;(T) and x»(T) of
the two coexisting phases at a temperature T are obtained by plotting the composition
{x(Ap, T)) averaged over the MC iterations versus Al = plac — fpc. 1Lhe average
{x(Au, T)) exhibits a first order phase transition, where x;(T) and x2(T) are the coexisting
compositions. Plotting x,(T) and x(T) versus T gives the phase diagram.

The samples used in the present calculations consisted of periodically repeated cubic
cells of 8 x N x N x N atoms for N = 5. In order to accumulate enough statistics on
the structural properties some 200 such samples with different spin configuration {8:} were
equilibrated for each case. We also checked for finite size effects by the calculation of
selected points using our two basic algorithms, (i) internal energy minimization without any
spin flips and (i) MC equilibration process at T > 0 with spin flips. Using cubic cells of
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BX N x N x N atoms for 5 £ N £ 8, we estimate that finite-size errors are below 1% for
both algorithms.

3. Results

3.1. Effects of positional relaxation on the mixing enthalpy

The mixing enthalpy A M, is the excess enthalpy of the disordered alloy at (x, T’} taken
with respect to the energy of cquwalent amounts of pure AC and BC at their equilibrium
volumes

AHyir(x, T) = E(x Ty —{xEAC)+ (1 = x)E(BC)] . (11,

Figure 3 shows A Hpix(x, T = o) for the chemically perfectly random Ga1 ~:In,P alloy
neglecting vibrational effects. We give results with atomic relaxation AH 4 (dashed line),
and without relaxation AHY  (solid line). Relaxation lowers A Hpy, enormously The
maximum value for the relaxed system AH, (x = 047) =77.1£0.1 meV/our-atoms is
much lower than the unrelaxed value AHY (x = (.53) = 1524 1 meV/Aour-atoms. The
asterisks denote the formation enthalpies AHF of few of the ordered structures, defined in

table 1. The reduced enthalpy (interaction parameter) can be written as
Q. T) = AH(x, T)/x(1 — x). o (12)

If A Hpy, (x} were parabolic, the interaction parameter ﬁ(x) would be x independent. Fitting
our AHT. (x) to equation (12) shows, however a nearly linear behaviour £2(x} = € + ax.

Our fit to AH[, (x) is
Q(x, T = o) = 3.7 — 0.8x (kcal mol™") (13)

showing that A Hpx(x) is not symrmetric about x = % Interestingly, for the relaxed alloy
a < 0 while for the unrelaxed alloy > 0 (compare the solid line to the dashed line in figure
3). Indeed lim,_.p £2(x) and lim,_,; £2(x} is the ‘limiting solution enthalpy” representing the
change in enthalpy when impurity amounts of A are added to BC. Our resuit thus indicates
that for the unrelaxed alloy

AHRS (GaP :In) < AH

mix

(InP : Ga). {14}

Thus, it costs [ess energy to dissolve a large atom (In) in a small host (GaP) than to dissolve
a small atom {Ga) in a large host (InP). However, the opposite is true when relaxation is
allowed, i.e.

AH (GaP :In) > AH, (InP : Ga). (15)

This result implies that the effective two-body force constant ¢t of the In—P bond within
the GaP host is higher than that of the Ga-P bond within the InP host

ooy T (GaP) > a5 (InP). (16)

This is the reverse of the situation in the pure binary materials, where the VFF values are
[28] .

P (GaP) < o F(InP). (17)
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3.2. Effects of configurational, positional and vibrational degrees of freedom on the phase
diagram

Figure 4 shows the x—T phase diagram of the GalnP alloy calculated in our D-{c) approach.
The circles connected by dashed lines denote the results of the MC calculations (interpolated
near the top of the miscibility gap), while the squares denote the recent experimental results
of Ishida et al [35]. The agreement is very reasonable, given that we fitted our interactions
only to first-principle calculations on ordered superlattices. Table 3 gives the miscibility

Table 3. Different approximmation to the upper miseibility temperature Tug and composition
xpmG, Mean-Field (MF) versus Monte Carlo (MC) . All approximations are based on the present
interatomic T-VFF potential (see section 5.2).

Method (I} t81 ASib Tuc{K)  xmMo
D-{a) {MF) Unrelaxed Random Zero 1746 0.50
D-(b) (Mr)  Relaxed Random Zero 833 0.50
D-(b} (MC} Relaxed Nen-random  Zero 900 £ 40 0.42 4 0.03

D-(c) {MC) Relaxed Non-random Non-zere 8704+ 20 (.40 £ 0.02

gap (MG) temperature Ty and composition xyg for the various approximations D-(a), D-
(b) and D-(c) explained schematically in figure 1. In addition, table 3 shows the effects
of using a mean-field (MF), perfectly random spin variables instead of the correlated MC
results. Note that when perfectly random ailoys are considered, the (ideal) mixing entropy
does not depend on the structure (but does depend on composition), so the equilibrium
structure is decided by a positional relaxation without any spin flips. Thus, when perfectly
random alloys are considered, §E of equation (2.10) is evalvated at a constant (random)
spin configuration corresponding to a given composition x. This calculation resembles the
process of quenching a sample which was initially equilibrated at some high temperature.

Table 3 shows the following features:

(i) Comparison of approach D-(a) with D-(b), both executed using perfectly random
(uncorrelated) spins shows how enormous is the effect of positional relaxation in these
alloys: The miscibility gap temperature drops from 1746 K (unrelaxed random alloy) to
833 K (relaxed random alloy).

(ii) Comparison of approach D-(b) executed within mean field theory to the same
approach executed within Monte Carlo shows that aromic (configurational) correlations
present in the latter increase the miscibility gap temperature by ~ 70 K. In this calculation
we permit atomic correlations (i.e. short range order effects) in both AE and AS, while
still neglecting vibrational effects. This is calculated by allowing in the MC runs spin-flips
as well as complete atomic relaxations to the lowest energy of each spin configuration
(this is distinguished from continuous-space MC where atoms are displaced along random
directions which is not necessarily energy lowering). As usual, spin correlations tend to
reduce the entropy relative to the mean field value. However, for phase-separating systems,
spin correlation also made the enthalpy less positive [21]. Since Tyg ox AH/AS, these
correlation effects in AH and AS could have opposite influence on Tyg. We find that the
net effect of atomic correlations is to increase the miscibility temperature.

(iiil) In the final step one introduces vibrational effects through the use of random
displacements. Comparing approach D-(b) to D-(c) (both executed within the Monte Carlo
approach} shows that vibrational effects lower Ty to 870 £ 20 K and move xpyg to
0.40 = 0.02. The results of this calculation are shown in figure 4. Thus, vibrations
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Figure 3. The mixing enthalpy of the chemically random Gaj..xIn.P alloy, The solid line
denote the unrelaxed results while the dashed line denotes the relaxed mixing enthalpy. The
asterisks denotes the formation enthalpy of some ordered structures CP = CuPt, CA = CuAul,
CH = chalcopyrite, F1, F3 = famatinite, and L1, L3 = luzonite. These structures are defined in
[7] (figure 1 therein).
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tend to lower Tyyg. The same trend was observed in empirical models that introduce
vibrational effects into semiconductor alloy [36, 37] and nobile metal alloy [38] phase
diagrams. However, our direct calculation of vibrational effects suggests that previous
model calculations [36, 37] may have overestimated the vibrational effects. For example,
Garbulsky and Ceder [40] predict that the x = % miscibility gap temperature of FCC lattices
is affected by the chemical (Jipem) and vibrational {Jy,) nearest-neighbour effective cluster

interactions as

9.8
Tvg = Johem ——————. 18
MG chem 1 +9-BJvib ( )
Jip was estimated for 3D lattices as
3 KanKpg .
Juip = = log ———— 1
vik 2 0g Kig ( 9)

where K,z are ideal spring force constants for the o — £ pair. Using the above, considering
only nearest neighbour interactions in & 3D FCC binary alloy, and using a reasonable value
of KsaKpr/ Kﬁs = 1.3 for the force constants, they estimated that vibrations lower Tug
by a factor of 2 from the value one would get neglecting the vibrations.

In the case of ternary tetrahedrally bonded semiconductors A;—.B,C (like the Ga; _,In,P
alloy), each pair of cations A and B in the FCC sublattice are connected through an anion
C. Therefore, the spring force constants of the mixed FCC sublattice are of a second
neighbour interactions, and may be denoted as Ka_c—a., Kp—c—p. and Ka_c—g. The ratio
Ka—c-aKp_c—p/K%__g is much lower than the above ratio KasKpp/K2g, since for
example Ka_c—a considers a connection through two A-C bonds while K, _c_g considers a
connection through one A—C bond and one B—C bond, so the difference between the K4 _c_a
and Ks—¢—p spring constants is much lower than the difference between the above FCC Kaa
and Kap spring constants which consider different kinds of bonds. Thus, the vibrational
effective cluster interaction Ji, calculated using equation (19) for ternary semiconductors
will be much lower than Jy;, for the case of FCC materials, therefore we predict that the
vibrational lowering of Ty for ternary semiconductors will not be so high as estimated by
Garbulsky and Ceder [40] for FCC materials, but a minor effect.

4, Summary

Figure 1 explains the various approaches for calculating the thermodynamic properties of
an alloy from its Born-Oppenheimer surface. While it would be interesting to check the
extent to which various Ising cluster expansions mimic the original Born-Oppenheimer
energy surface, we have concentrated here only on direct calculation methods that avoid
Ising expansions. We find that for a size-mismatched phase-separating system (i) positional
relaxations change significally both A Hy, (from 152 to 77 meV/our atoms) and g
(from 1746 K to 833 K); (ii) atomic correlations (described via Monte Carlo) reduce both
the entropy and the enthalpy. These competing effects on Ty reflect in a net increase
by 70 K; (iil} vibrational effects reduce Tyg further by 30 K and do not shift the critical
composition.
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