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Theory of reAectance-difference spectroscopy in ordered III-V semiconductor alloys
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Spontaneous CuPt-like ordering in III-V alloys causes an anisotropy in the intensities of the transi-
tions between the split valence-band maximum states and the conduction-band minimum. This optical
anisotropy has been detected in ordered III-V alloys using modulated reAectivity, and more recently, us-

ing reAectance-difference spectroscopy (RDS). We derive here a general formula relating the ordering-
induced bulk RDS intensity with the degree of long-range order. We show that the previously neglected
coupling between the spin-orbit split-off band and the crystal-field split-off band is crucial for determin-
ing the RDS intensity of the Cka, In& P alloy.

I. INTRQDUCTIGN

Spontaneous CuPt-like ordering of 3 8& C alloys
has been widely observed in vapor-phase growth of many
III-V systems on (001) substrates. ' The ordered phase
consists of alternate cation monolayer planes

+(„~2)8, („~2) and 2 („~2)8, , +(~~2) stacked
along the [111]or [111]directions, where 0~ i) ~ 1 is the
long-range order parameter. Perfect ordering (g=1)
corresponds to successive planes of pure A followed by
pure 8, etc. CuPt-type ordering was predicted ' to cause
a splitting at the valence-band maximum (VBM) and a
lowering of the band gap relative to the random alloy.
These e8'ects have been observed in electroreAectance, '

polarized photoluminescence, and polarized piezo-
reAectance measurements. These experiments have
demonstrated that due to the lower symmetry of the or-
dered bulk alloy, there is a strong anisotropy in the opti-
cal responses for light polarized along the ei = [110]and
e2 = [110]directions. We have previously analyzed these
experiments, explaining the origin of the polarization an-
isotropy. Recently, Luo et al. measured the ordering-
induced reflectance difference for light polarized along ei
and e2 using rellectance-diff'erence spectroscopy (RDS).
RDS was originally proposed by Aspnes and co-
workers' to measure surface induced optical a-nisotropy
in cubic semiconductors for which R, =R in the interi-

e& e&

or of the sample. Since, as noted above, optical anisotro-
py also exists in bulk CuPt-ordered alloys, measure-
ments of RDS can shed light on the degree of bulk order-
ing, if there is no interference from surface eAects. In
this paper we derive a simple general formula relating the
near-band-edge bulk RDS intensity to the degree of
long-range order (measured by the ordering parameter g).
%'e find that our calculated near-band-edge peak RDS in-
tensity agrees well with the experimental results of Luo

or Gao. 5Ino. sP. We show that the coupling be-
tween the spin-obit split-o8' band and the crystal-field
split-o6'band is important in determining the RDS inten-
sity for this alloy due to its relatively small spin-orbit
splitting and large crystal-field splitting. Previous
theory using a 4 X 4 Luttinger model and neglecting cou-

pling with the spin-orbit split-ofF band is found here to be
inadequate for interpreting the experimental results for
the Ga In& P alloy.

II. RDS INTENSITY

RDS is de6ned as

R —R
=2

R R +R

n =
—,'[e, +Qe, +ez], (3)

k=
272

(4)

Hence, RDS can be obtained from Eqs. (1)—(4) by calcu-
lating the complex dielectric function e.

To obtain the dielectric function near threshold, we use
the one-electron model. " For transition energy F near
the band edge this gives

Here the sum is over the top valence-band states,
I, , (e, il) is proportional to the square of the dipole tran-
sition matrix element between valence band v and
conduction-band minimum c, and p, ,(E) is the joint den-
sity of states at energy E. In Eq. (5) the angular and
momentum dependences of the matrix elements I, , in a
small energy range (of the order of crystal-field splitting)

where the reflectance coe%cient R for polarization e is

given by

(n, —1) +k~
R

(n, +1) +k,

Here n and k are real and imaginary parts of the complex
refraction index and are related to the complex dielectric
function e =e j+i e2 by the relations
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are neglected. %'e also assume that for a small energy in-
terval the joint density of states p, „(E) can be obtained
using the parabolic band model, thus

QE;„„E—in the Taylor expansion), near-band-edge
RDS can be expressed as

p, „(E) (2m,*) i QE E—;„„, R
=Pg(2 m,*) bI, „(q)+E;„, E— (8)

where m „*= ( m „m, ) /( m, +m, ) is the reduced valence-
conduction effective mass, and E;„, is the minimum
transition energy from band v to the conduction-band
minimum. These are good approximations for ordered
and disordered" alloys. In CuPt-ordered alloys the top
of the valence bands (denoted I s, and I 7, in the disor-
dered alloy) consists of the three states I ~, ~, —= ~

1 ),
I 6", =—2), and I ~6,

' ——~3). The transitions I ) ~~c ),
~2) ~ c), and ~3) ~ c) from these valence states to the
conduction-band minimum ~c ) occur at the energies
denoted E;„,=E~, Eg +DE&2, and Eg +hE», respec-
tively, where AE,. =E; —E.. Using Kramers-Kronig re-
lations" we can obtain the real part of the dielectric func-
tion e, from e2 of Eq. (5). Near the band edge this gives'

where the intensity difference at e
&

and e2 is

bI, , (q) =I, ,(e„rl) I,—, (e2, g),
and the coefficient P is

2e 2p2

zfi cosm ono(" o 1)
(10)

Here A'co =E, mo is the free-electron mass, no is the re-
fraction index in the absence of ordering, and
I'„=

~
(x P„~s ) ~

is the Kane matrix element. "' Equa-
tion (8) indicates that RDS can be calculated readily once
the normalized dipole matrix elements AI, „(rl) [Eq. (9)]
and the transition energies E;„,(g) are known. In Sec.
III we will show how these quantities can be calculated.

e, (e, q, E) eo~ g——(2m,*) ~ I, , (e, 1)7
U

(7)

where eo is the static dielectric constant.
RDS of Eq. (1) can be calculated directly using Eqs.

(1)—(7). However, for most III-V alloys, near the band
edge E—E;„«E~, AE, z &&Eg and hE» &&Eg; and
also near the band edge e2«e&. Hence, to a good ap-
proximation (keeping the lowest-order terms of

III. MATRIX EI.EMENTS AND TRANSITION
ENERGIES

To calculate I, ,(e,q) and E;„,(r)), we follow our
method given in Ref. 8 in which the spin-up and spin-
down states for p, p, and p, orbitals are allowed to cou-
ple by ordering and by spin-orbit interactions. This
neglects s and d character at top of the valence bands.
Under this assumption, the I 4, 5„ I 6", , and I 6,

' valence
states for (111) ordering can be described by the 6X6
Hamiltonian:

1H (q)=-
U 3

0
a0+i iso

g0

0
iso

0
~ iso

0

iso
~ ISO

0
iso
0

g0 .ISO

g0

0
iso

a0+iaso

0

ISO

0
g0

Here b, (q) is the crystal-field splitting due to ordering
and b, (g) is the spin-orbit splitting. We have previous-
ly shown that these can be expressed in terms of the
values for completely ordered (71=1) and perfectly ran-
dom (q=0) alloys as

6 (g)=b, (0)+r) [b. (1)—b, (0)],

a'o(q) =a' (0)+q'[a' (1)—a' (O)] .
(12)

The end-point parameters b. (0), 6 (1), b, (0), and
(1) are obtained from first-principles band theory. '

If the 61m is not lattice matched to the substrate, an addi-

tional strain term, neglected here, has to be added to the
diagonal blocks of Eq. (11).'

The eigenvalues and eigenvectors of the valence states
are obtained by diagonalizing Eq. (11). The energies of
the three spin-degenerate levels E„Ez, and E3 (for
r4„„,r,".' and I 6,

' states, respectively, in decreasing or-
der) are

E,(g)= —,'[b, +b. ],
(~)— i [iso+go]+ & Q[gso+go]2 g gsogo

(13)
E (q)= '[b, +b, ] '+[6, +6 ] 'b, —— —— ——
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where b, s =hs (q) and b, =b, (q) are given by Eq. (12).
For the random alloy E, and E2 are degenerate, since
b, ( =0)=0. Notice that we apply the g rule to b, and7l=

[Eq. (12), not to E,.(g)], thus, due to the coupling be-
tween the crystal-field and spin-orbit splittings, E2 and
E3 in Eq. (13) have more complicated functional forms
than the q dependence.

We assume that the lowest conduction state I 6, con-
sists of pure spin-up and spin-down s orbitals. Hence the
conduction-band Hamiltonian can be represented by a
2 X2 diagonal matrix with

E,(ol)=E (0)+DE (1)r) + —,'[b. (r))+6 (q)] . (14)

Here E (0) is the band gap of random alloy and
b,E (1)=E (1) Es(0—) is the band-gap reduction of theg
fully ordered alloy. By definition, E;„,( q ) =E, ( g )—E„(q) in Eqs. (7) and (8).

The valence eigenstates 0', of Eq. (11) are linear com-
binations of the six basis functions [p,&], where & are
the spinors para11el or antiparallel to the z direction. The
conduction states are %', =s&. The transition intensity
between 4, and %', is proportional to the matrix element
squared I, , (e, r)) =a[(4, ~H;„,(e )~%', (q) ) ~, where
H (e ) is the interaction Hamiltonian. For linearly polar-int

ized light along the e = [l, m, n] direction we have
H. cx-Ix+my+nz. %'e chose the normalization con-int

stant a such that I, , is a dimensionless quantity and
I =2. This specifies the parameter f3 give in Eq.Mv =1,2, 3 c:, v

(10). The transition matrix elements can now be calculat-

ed by writing the orbital wave functions and H;„t in terms
of the spherical harmonics Yz~ and by noticing that for
allowed dipole transition AM=+1. This gives the simple
selection rule

(s& ix„ip.o'& =b,„.be ~, .

Figure 1 shows our calculated difference in matrix ele-
ment squared I, , (ei&o, g) —I, , (e&to, g) for the three tran-
sitions U = 1, 2, and 3 in Gao &Inc sP [Fig. 1(a)] and
Ga In As [Fig. 1(b)] as a function of ordering parame-a0.5 0.5

0 SOter ri. Diagonalization of Eq. (11) requires b and b,
For Gao sino 5P, we calculated 5 (g= 1)=0.20 eV and

(1)—=6 (0)=0.10 eV. For Gao &Inc &As, the calcu-
lated values are 5 (ri = 1)=0. 10 eV and

(1)—=b, (0)=0 35 eV. We see from Fig. 1 that for
the I 4, 5, —+ I 6, transition the intensity difference AI, 1

does not depend on the degree of long-range order q.
This is so since there is no coupling between the I 4„5„
state and the two I states. In contrast, the intensity6v

(1)differences bI, z and AI, 3 (for the I 6, —+ I 6, and
I (6„'—+I 6, transitions, respectively) depend on q, because
the two valence states have the same I 6, symmetry,
hence they can couple to each other. The coupling mixes
the wave function of these states, and thus changes the
intensity differences AI. The coupling strength depends
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FIG. 1. Calculated normalized transition intensity difference
( )

—I (e — g) for (111)ordering as a function of thec, v e11P& I c, U elTP~

ordering parameter g. AI
&

AI z and AI, 3 are for the transi-
r"' and I I,", .tions between the states I 6, ~ I"4, 5„ I 6, ~~6, , a

(a) Gap ~Inp &P, (b) Gap &Inp 5As. Note the deviations of AI, z

and EI, , from the simple approximation of constants [Eq. (19)
t

and Ref. 9].

FIG. 2. Calculated peak RDS intensity at E~ for (111)order-
ing as a function of the square root of the band-gap reduction
( —AE )' . (a) Gap 5Inp 5P. The solid dots are the experimental
data of Luo et al. (Ref. 9). Solid lines are calculated using the
present theoretical model [Eq. (17)] using A = —0.0395
(eV ' ). The dashed line is calculated using Eq. (21), where
coupling between crystal-field and spin-orbit splittings are
neglected. (b) Gap, Inp 5As. Solid lines are calculated using
present theoretical model [Eq. (17)] using A = —0.070 (eV '~ ).
The dashed line is calculated using Eq. (21).
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on the ratio between the crystal-field splitting 5 (il) and
the spin-orbit splitting 5 (il) and increases with rt F.or
Gao sInz sP with its small b, and large b, (Ref. 2), the
effect of coupling is very large [Fig. 1(a)]. On the other
hand, for Gao 5Ino ~As, having a larger 6 and a smaller
b, (Ref. 2), the effect is somewhat smaller [Fig. 1(b)].

When 6 =0 (the cubic regime), states ~1) and ~2) are
degenerate [see Eq. (13)]. In this limit the combined in-
tensity difference AI, , +AI, 2= —AI, 3 =0, hence there is
no optical anisotropy (as appropriate for a cubic system).

orbit-split I 6,
' state is weak. Taylor expansion of Eq. (13)

shows that in this limit one can approximate

bE,2(q)= ', b, (rt—)= ', b, (g—=l)rt

Furthermore, in this limit one can also approximate the
dipole matrix elements squared using its value at g=0,
which yields (see Fig. 1)

AIc, 1

(19)

IV. RESULTS

Ordering-induced RDS [Eq. (8)] has a peak (p) intensi-
ty at the energy E =E . The RDS value at that energy is

hI, 3=0 .

Using these values in Eq. (8) leads to

AR =—', & [ I/E (t)) E~—E (7/)+b. E, (7J)—E ] .

U =2, 3

Xbr„(q)&E,„„(q) E,(q) —. (16)
The peak RDS is then (20)

= 2 [bI~, (q)+bEi2(i))

+bI, (il)+bE, (r))] . (17)

where A =P(2m*) . Our results are compared in Fig.
2(a) with the experimental data of Luo et al. for
Gao 5Ino 5P. We find that the best fit can be obtained by
using A = —0.0395 (eV '/ ). Using' ' m'=0. 06mo,
no=3. 3, E =1.92 eV, and 2P,„/m&=21 eV, we esti-
mate that A = —0.0378 (eV ' ), which is very close to
the fitted value. From Fig. 2(a) we conclude that Eq. (17)
can be used along with our previously calculated
b.I, ,(e, rt) and E;„„(g)to predict the ordering-induced
bulk RDS intensity at threshold. Equating the measured
and calculated RDS intensity can then be used to deduce
the degree of ordering in a given sample.

For Ga05In05As we use the values' ' rn'=0. 03mo,
no=3. 7, Eg =0.75 eV, and 2P,„/m0=24 eV. This gives
A = —0.070 (eV '/ ). This value is larger than the one
for Gao 5Ino 5P, mainly because Gao 5Ino 5As has a much
smaller band gap. No experimental RDS results are yet
ava a 1 f Gao. 5I 0.5

Figure 2 shows our calculated peak RDS intensity at E
for Gao 51nz sP [Fig. 2(a)] and Gao sin 5As [Fig. 2(b)] as a
function of the square root of band-gap reduction
( —bE~)' =[—bEs(I )]' iI, where bEg(1) is the band-

gap reduction of the fully ordered alloy. For Gao 5Ino &P

we calculated b,E (1)= —0.32 eV, while for
Gao sino sAs we have bE (1)=—0.30 eV. In what fol-
lows we assume that the reduced effective masses are the
same for the three transitions. This leads to

= ——', A "II/ b.E,2 ( 7) )

3

—'b, (1)
b,Es (1)—

1/2

bE, (q) . —(21)

(111) Ordered Ga~ 5lr!o ~P
o 2 I I I ! ! I I I I

1.0
0.8

m 0. 6

0.2—

Equation (21) indicates that when band coupling is
neglected, the peak RDS intensity is a linear function of
'II/ bE&(rt) a-—iI. Equations (20) and (21) were derived

(using a difFerent approach) in Ref. 9, and were used there
to fit their experimental data for Gao &In05P. We show

Eq. (21) as dashed lines in Fig. 2, using our best-fit value
A = —0.0395 (eV '

) for Gao 51no sP and A = —0.070
(eV '/

) for Gao sino sAs. Figure 2(a) compares this re-
sult with the experimental data (solid dots) and with our
more complete theoretical results (solid lines). We see
that the approximated result of Eq. (21) agrees with the
more complete result of Eq. (17) only for a small range of

b,E, ~is. —
oo see why this is so, Fig. 1 tests approximation (19)

while Fig. 3 tests approximation (18). As we can see,

V. TESTING APPROXIMATIONS
0. 0

0 0.2 0.4 0. 6 0.8 1.0
Ordering Parameter q

We next explore approximations to our general result
of Eq. (17) which will shed light on the recent calculation
by Luo et al.

When b, &(5 (the quasicubic regime) the coupling
between the crystal-field-split I 6", state and the spin-

FICJ. 3. Calculated ratio [bEI2{i))]/[—', b. {1)i)']as a func-

tion of ordering parameter g for Gao, Ino &P. If the coupling be-
tween crystal-field and spin-orbit splittings is neglected [Eq. (18)
and Ref. 9] this ratio should be 1 for all i)
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these approximations hold for Gao 5Ino 5As up to
( bE—)'~ ~ 0.2 eV'~, while for Gao sino sP the applica-
bility of Eqs. (20) and (21) is restricted to
( b,E—&)' ~0. 1 eV' . In general, however, the cou-
pling between the crystal-field splitting and the spin-orbit
splitting causes AI, 2, AI, 3, and AE, 2/6 to vary with q,
unlike what simplifications (18) and (19) suggest. We fur-
ther see that all experimental data points shown in Fig.
2(a) exceed the [ —AE ]'~ ~ tl region where Eqs. (20) and
(21) are applicable. Consequently, by fitting experimental
data to Eqs. (20) and (21), the valence-band splitting bE, 2

is overestimated. ' Furthermore, a large value of the pa-
rameter A = —0.068 (eV '~ ) was needed in Ref. 9 to fit
Eq. (21) to the experimental data for Gao sino sp. This
number, however, is about 80% too large' relative to our
theoretical estimate A = —0.038 (eV ' ).

UI. SUMMARY

We have derived a general formula for ordering-
induced bulk RDS intensity near the band edge as a func-

tion of ordering parameter g. Our results do not include
the surface contribution to RDS, which could be impor-
tant. We find that our calculated peak RDS intensity at
E agrees well with the experimental results. We show
that coupling between the spin-orbit split-of band and
the crystal-field split-of band is important in determining
the RDS intensity for the Ga In& „P alloy due to its rel-
atively small spin-orbit splitting and large crystal-field
splitting. Previous theory, which neglects coupling be-
tween the crystal-field split states and the spin-orbit split
state, is not applicable to the full range of ordering pa-
rameters covered by current samples.
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