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Ising-like Description of Structurally Relaxed Ordered and Disordered Alloys
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We demonstrate the ability of generalized Ising-like cluster expansions to describe the energetics
and thermodynamics associated with large atomic displacements in alloys. Although the expansion is
constructed only from the energies of a few (small-unit-cell) ordered structures, it provides accurate
predictions of the atomically relaxed energies of random, ordered, or partially ordered alloys, as
compared with direct, large scale energy-minimizing simulations. Relaxed energies are obtained
without having to compute relaxed geometries. Combination of the expansion with Monte Carlo
simulations is shown to provide an efficient means for calculating thermodynamic properties.

PACS numbers: 71.10.+x, 05.50.+q, 64.60.Cn

One of the central problems in crystal and alloy physics
is the prediction of the T = 0 lowest energy configura-
tions and the thermodynamic evolution of these structures
with temperature [1—3] Even for a binary A/B system on
a lattice with a modest number of sites N, this is a for-
midable problem as the number 2 of possible "configu-
rations" o. (occupation pattern of each of the N sites by
A or B) becomes enormous. Additionally, in each config-
uration the energy might be lowered by atomic displace-
ments (R;) ("relaxation" ) about the nominal lattice sites i,
and the evaluation of the total energy of even one relax-
ation in a given configuration by first-principles quantum-
mechanical means is currently limited to relatively small
N by the computational effort of these techniques which
currently scale as N to N . Finding the ground state
structure of an alloy can be described as an energy mini-
mization problem minE[(S;); V; (R;)] in the space of the
configurational (5;), positional (R;), and volume V de-
grees of freedom. Here, 5, denotes the (pseudospin) oc-
cupation variable of site i with 5; = —1 or +1 if site i
is occupied by an A or 8 atom, respectively. All three
types of variables ((5;), V, and (R;)) are generally cou-
pled. While molecular dynamics explorations of the en-

ergy surface E'[(5;); V;(R;)] are suitable for finding the
relaxed positions (R;) of atoms in a given configuration
o. (or in a class of configurations), this approach does
not effectively probe the configurational space (cr) itself.
Conversely, representing E[(S;);V;(R;)] in terms of an
Ising-like cluster expansion (CE) [4]

&cE((5~)) = Jo + P Jik + g Ji)StS)
j&i

+ p Jt)k5;S) St, + . . (1)
k&j &i

lends itself (e.g. , via Monte Carlo simulation) to efficient
exploration of the configurational degrees of freedom, but
typically does not shed light on the effect of positional
relaxations. In Eq. (1), the J's are the interaction energies
("effective cluster interactions") and the first summation
is over all sites in the lattice, the second over all
pairs of sites, and so on. However, we now know that

configurational and positional degrees of freedom can be
strongly coupled and this coupling should not be ignored.
For example, atomic relaxations have been shown to
lower the miscibility-gap temperature in semiconductor
alloys by several hundred or thousand degrees [5,6], alter
the ground state structure of transition metal aluminides
[7], and change the sign of the mixing energy [8] and
cause large (-1 eV) shifts in the density-of-states peaks
[9] for transition-metal alloys. A direct approach to the
problem would involve minimizing E[(5;);V;(R;)] to
find T = 0 ground states or to conduct on it Monte
Carlo simulations with both configurational and positional
degrees of freedom to obtain finite-T properties [5,10,11].
Such calculations, however, require the energy functional
E to be sufficiently computationally inexpensive so that it
can be practically evaluated for large cells [O(10 ) atoms]
for many [O(10 )] trial configurations. This is currently
possible only with simplified empirical energy functionals
[5,10,11] but not first-principles methods.

In this paper we show how one can construct a gen-
eralized cluster expansion of the form of Eq. (1) (i.e. ,

integrating out the positional variables) so that its under-

lying ground state configurations and thermodynamic be-
havior refiect those of a given (first-principles or other)
direct energy functional Ed;„„[(5;);V; (R;)] with fully re
laxed geometries. Once the 1's are calculated, the effort
to evaluate E scales linearly with the number of spin prod-
ucts, so Eq. (1) lends itself to efficient explorations of the
configurational degrees of freedom. Thus, one can effi-
ciently find relaxed energies of arbitrarily complex con-
figurations without having to calculate the relaxed atomic
positions (R;) (via force minimization or molecular dy-
namics, processes that require numerous self-consistency
as well as displacive iterations). We will further show
the following: (i) the interaction energies in Eq. (1) can
be calculated conveniently either from empirical or from
first-principles energy functionals; (ii) Eq. (1) can be cou-
pled with standard lattice theory statistical techniques [1—
3] to compute alloy order-disorder transition temperatures,
composition-temperature phase diagrams, enthalpies of
formation, and short- and long-range order (SRO and
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LRO); and (iii) starting from the energies (E) of a given
set of ordered structures, one can predict accurately the
energies of relaxed random or partially ordered alloys.

The cluster expansion technique used here has been
evaluated previously for both GaP/InP and Cu/Pd [12]
using first-principles local density approximation input
of —30 fully relaxed energies. While the results of
these previous studies could be compared with experi-
mental measurement, they could not be contrasted with
thermodynamic calculations using ELDA[(5;); V; (R;)] di-
rectly. In the present work, we select a physically re-
alistic yet computationally efficient energy functional
Ed $[(S,); V; (R;)] so that direct energy minimization
and Monte Carlo simulations performed on it can be
compared with the results of the cluster expansion, ECF
drawn from the same functional. We use the ternary
valence-force-field (TVFF) as recently parametrized [5]
for the semiconductor alloy, Ga~, In P. In this alloy
the cations Ga and In form a substitutional arrange-
ment on one of the fcc sublattices of zinc blende, while
the P anions occupy the other fcc sublattice. The ba-
sic properties of ETvFF[(S;); V;(R;)] are as follows: (i)
It is fit (to within —1 —2 meV/atom to first-principles lin-
ear augmented-plane-wave calculations of formation en-
ergies for many ordered (GaP) (InP)„crystal structures
[5]. (ii) It exhibits large and nontrivial atomic relaxation
effects, e.g. , the miscibility gap temperature is lowered by
=2800 Kand the mixing energy is reduced by more than a
factor of 4 due to relaxation. (iii) It includes pair as well
as many-body effective cluster interactions of Eq. (1).
(iv) The functional includes generic bond-stretching and
bond-bending interactions, and thus it is characteristic of
a large class of (covalent) materials. These features make
the use of the TVFF a suitable and stringent test for our
purpose.

We first calculate directly from the functional the
relaxed formation energies of a few configurations o.:

AHd;„„(o)= Ed;„„,[(S;-);V; (R;)]
—[(1 —x)E„„„,(A) + XE„„„,(B)],

(2)
where x is the concentration of B atoms in the configura-
tion cr and A —= GaP and B =—InP. For each structure o.,
the relaxed formation energy is obtained by minimizing

Ed;„„, with respect to all coordinates (R;) and V (via a
conjugate gradient algorithm) with the condition that the
relaxations preserve the symmetry of the structure. Un-
relaxed formation energies are obtained by minimizing

Ed;„,&
with respect to V, but leaving all atoms on ideal

zinc-blende sites ((R;) = 0).
We will map Ed;„„,[(5,); V; (R;)] for fully relaxed

geometries onto a cluster expansion EcF[(5;)] using the
k-space formulation of Laks et al. [13]. Rather than
a cluster expansion of AHd;„, &, we will expand with
respect to a reference energy, AEcF(o.) = AHd;««(o)—.
E„,q. The reference energy is chosen to contain infinite-
range real-space elastic interaction terms, namely, the

constituent strain energy AEcs(k, x) defined as the energy
change when the bulk solids A and B are deformed from
their equilibrium cubic lattice constants a~ and a~ to a
common lattice constant a~ in the direction perpendicular
to k. Subtracting these long-range terms from AHd;„, «
before cluster expanding removes the k ~ 0 singularity,
and thus significantly enhances the convergence of the CE
[13]. A convergent CE generally necessitates inclusion of
both pair and many-body interactions. A large number of
pair interactions with arbitrary separation, often required
for convergence, may be conveniently summed using
the reciprocal-space concentration-wave formalism, thus

replacing an infinite sum over pairs with a discrete sum
over a few k points. Typically only a few many-body
interactions are required, and these may be efficiently
summed in real space. Thus, we will separate the real
space CE of Eq. (1) into two parts:

~EcF.(cr) = g J(k) IS(k o)l + PDf JfIIf(cr) (3)
k f

The first (reciprocal-space) summation includes all pair
figures and the second (real-space) summation includes
only nonpair figures. J(k) and 5(k, o.) are the lattice
Fourier transforms of the real-space pair interactions and
spin-occupation variables, J;& and S;, respectively. The
function J(k) is required to be a smooth function by
minimizing the integral of the gradient of J(k). The
real-space summation in Eq. (3) is over f, the symmetry-
distinct nonpair figures (points, triplets, etc. ), Dt is
the number of figures per lattice site, Jy is the Ising-like
interaction for the figure f, and IIJ is a product of the
variables 5; over all sites of the figure f, averaged over
all symmetry equivalent figures of lattice sites.

The CE methodology relies on the choice of real-space
figures (f) and configurations (o.) used to construct the
quantities J(k) and Jt. In our tests, we have used twenty
pair interactions in the reciprocal-space portion of the
CE and a real-space set of figures which includes the
"empty" and point figures, as well as four triplet and
four quadruplet figures. The energies 5Hz;„«[Eq. (2)] of
28 short period superlat-tices (all contain ~8 atoms/cell
except two which have 16 atoms/cell) were used to fit the
quantities J(k) and JJ in Eq. (3). The fitting procedure
leaves the energies of a large number of structures (not
used in the fit) amenable to testing by comparing direct
results (AHd;««) with CE predictions (AHcF. = AEcF +
E f). Note that only the T = 0 K energies of structurally
simple small-unit-cell ordered structures were used in the
CE fit, whereas below we will use this CE to predict
the energies of random alloys, complex structures with
partial order (-1000 atoms/cell), and thermodynamic
properties.

Figure 1 demonstrates the ability of the k-space CE to
accurately describe the energetics of atomic relaxations
in ordered structures. Figure 1 contains both the relaxed
and unrelaxed values of AHd;„, &, and contrasts these en-
ergies with the CE predictions. This comparison is il-

3163



VOLUME 75, NUMBER 17 PH YSICAL REVIEW LETTERS 23 OcTo~v. R 1995

lustrated for both structures which are used in the fitting
of the CE [Fig. 1(a)] and those which are not used in

the fit [Fig. 1(b)] and includes many low-symmetry struc-
tures with nontrivial relaxations. For clarity, not all the
structures considered are depicted in Fig. 1, but the er-
rors shown are typical: The average errors in the 28 fit-
ted energies, 42 predicted energies, and maximum pre-
dicted error are 0.5, 1.1, and 2.6 meV/atom, respectively.
The effects of relaxation on the energy of the ordered
(GaP) (InP) superlattices are quite large: The relaxed
values of AHq;„„are -4 times smaller than the unre-
laxed values. It may be seen from Fig. 1 that the predic-
tion errors of the CE are insignificant compared with the
energy gained upon relaxation.

Several anxieties may arise concerning the use of one
"class" of alloy structures (e.g. , small-unit-cell ordered
structures as used here) to describe the energetics of a
different class (e.g. , random or partially ordered alloys).
For instance, one might argue that the electronic structure
of the random alloy is qualitatively different from that
of small-unit-cell ordered structures, so that information
drawn from the latter may not be legitimately used to
describe the former. We address this issue in Fig. 2,
which shows the directly calculated (both unrelaxed and
relaxed) and CE (relaxed) [14] formation energies for
random Ga& In, P alloys as a function of x. The directly
calculated energies of random alloys were evaluated by
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FIG. 1. Formation energies of several Ga~ In P compounds.
Shown are directly calculated values and the results of the
k-space CE for both (a) structures used in the fit and (b)
structures not used in the fit. Structures are labeled by their
Structurbericht designation (where available). The amount of
relaxation is indicated by the length of the arrows. The degree
to which the k-space CE is able to describe the energetics of
atomic relaxations is indicated by the comparison of the open
and filled squares.
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FIG. 2. Formation energies of random Ga],.ln, P alloys as a
function of x. Directly calculated results for both relaxed and
unrelaxed geometries are obtained from 1000-atom simulations.

configurationally averaging the energy Ez;„„t of a 1000-
atom box, in which the cations were placed on one of the
fcc sublattices of zinc blende with random occupations.
For unrelaxed energies, all atoms were placed at ideal
zinc blende sites, whereas for relaxed energies all atoms
were fully relaxed via a conjugate gradient algorithm.
Averages were taken over 10—50 configurations, so that
the statistical error was ~0.1 meV/atom. The CE uses as
input only energies of simple ordered structures; however,
the predicted values of the energies of random alloys
closely mimic the direct calculations with fully relaxed
geometries. The dramatic effect of atomic relaxation on
the energy of random alloys is also shown in Fig. 2. As
with the ordered alloys (Fig. 1), the formation energy of
the random alloy is significantly reduced upon relaxation,
and the error in the CE prediction (0.1 meV/atom at x =
1/2) is insignificant compared with the energy gained
upon relaxation (59.1 meV/atom). Thus, we see that a
CF which is derived from the energies of small unit-
cell ordered structures is able to accurately predict the
energies of atomically relaxed r-andom alloys.

Figure 3 further shows that a cluster expansion derived
from completely ordered states (characterized by a LRO
parameter, g = 1) can be legitimately used to predict the
energies of states of partial order: 0 ~ g ( 1. Figure 3
contains a comparison of the CE and directly calculated
energies of states with partial LRO of the I.lo, I 1~, and
"40" [1] types. The direct calculations of states with
partial LRO were performed for a fully relaxed 1000-atom
simulation averaged over ten configurations (for each value
of g), with the occupations of the cation sites being chosen
consistent with the prescribed value of q. As was the
case for ordered and random alloys, the CE also accurately
predicts the energetics of states of partial LRO.

We next compare CE predictions with direct simula-
tions for finite Tthermodyna-mic properties The func-.
tional AHq;„„,t(5,};V;(R;H used here has been used
directly [5] (i.e., without the use of a CE) in Monte
Carlo simulations with both spins t5;) and positions
tR;) as dynamical variables. This calculation gave the
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FIG. 3. Formation energies of Ga05lno5P alloys as a function
of LRO parameter, g. Directly calculated results from 1000-
atom simulations are shown as are the results of the k-space
CE, using as input only rl = 1 energies. rl = 1 (0) indicates
complete and perfect order (randomness).

composition-temperature phase diagram (open squares of
Fig. 4). Here we apply the Monte Carlo algorithm to
DHOLE[(5;)] with only spin degrees of freedom, finding
the CE prediction for the phase diagram (solid line in

Fig. 4). The phase diagram computed using unrelaxed en-

ergies AHd;««H5, ); V; (R;) = 0] is also shown for com-
parison. In the Monte Carlo simulations using the CE, a
cell of 1024 atoms with periodic boundary conditions was
used. Simulations were performed in the Grand Canoni-
cal ensemble, 200—500 Monte Carlo steps were used for
equilibration, and subsequently, averages were taken over
1000 steps. For each temperature, phase boundaries were
determined from the discontinuity in concentration ver-
sus chemical potential. The effect of relaxation is dras-
tic, as it lowers the miscibility gap temperature TMG by
—2800 K. On this scale, the direct calculation and CE
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FIG. 4. Composition-temperature phase diagram of
Ga& In P. The squares indicate the the results of performing
Monte Carlo calculations directly on AH&;„„,[(S;);V; tR;H
including random spin flips and a atomic displacements while
the line is the result of applying Monte Carlo to AHcE[(S;)]
including spin flips only.

prediction for TMG are in good agreement. One should
note that the direct Monte Carlo calculations include vi-
brational effects whereas the CE results do not. Exclud-
ing vibrations in the direct simulations [5] raises TMG by
—30 K, thereby bringing the direct and CE results even
closer to each other. For Gaoqln05P, we have also com-
puted the nearest-neighbor Warren-Cowley SRO param-
eter u at T = 1600 K. SRO corresponds to correlations
which exist in the disordered alloy, and hence pertains to a
single, constant volume. Direct (n = —0.04, with vibra-
tions) and CE values (n = —0.02, without vibrations) of
SRO agree, with the negative signs indicating a very small
tendency towards association of unlike (CJa-In) atom pairs.
On the other hand, global stability or LRO corresponds
[Eq. (2)] to the absolute stability of a given compound
with respect to an equivalent amount of its constituents,
and hence does not pertain to constant volume. Both CE
and direct simulation show (Fig. 4) that the stable alloy
LRO is phase separation.
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