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Abstract

Predictions of the local density formalism approach to cohesive properties of covalently bonded
solids (diamond and cubic BN) and prototype ionic system (LiF) are described using results of our
recently deveioped fully self-consistent numerical basis set LCAO-DVM approach. Comparisons
with restricted Hartree-Fock results and experiments for cohesive energies and equilibrium lattice
constants are presented. Some of the principal bonding mechanisms in these crystals are discussed
in terms of the contributions of local exchange and correlation to the binding and the charge re-
distribution relative to the noninteracting atoms.

1. Introduction

Despite the manifold successes of energy band theory in describing a wide
spectrum of solid state properties, the ab initio determination of cohesive energies
and equilibrium lattice constants remains as a relatively unexplored and un-
derdeveloped field of study. Thus, there has developed considerable interest in
the application of the local density formalism (LDF) [1, 2] for the study of the
ground state electronic properties of molecules and solids. Investigations of the
cohesive properties of small molecules [3-5], metals [6], and rare-gas solids [7]
have elucidated the possibilities of obtaining a reasonably accurate description
of binding energies and equilibrium geometries by incorporating exchange and
correlation effects directly into a one-body potential. Similar studies on com-
pounds, ionic insulators, and covalent semiconductors are beset with the dif-
ficulties of having to consider the full (nonmuffin-tin) crystal potential and to
explicitly account for charge redistribution and hybridization processes by means
of a fully self-consistent treatment. Such effects cannot be conveniently treated
within the standard Augmented Plane-Wave (APW) or Kohn-Korringa-Restoker
(KKR) techniques previously used for such studies.

We have recently developed (8, 9] the fully self-consistent numerical basis
set linear combination of atomic orbitals (LCAQ) discrete variational method
(DVM) for treating ground and excited state properties of solids in the LDF ap-
proximation. This scheme permits the treatment of general (i.e., analytic or
numerical) basis functions and crystal potentials, and the determination of fully
szlf-consistent solutions of the LDF one-particle equations without restricting
the iterative path to a superposition of spherical charge densities [4] or to
muffin-tin models [6, 7]. We have demonstrated a rapid convergence of the
self-consistent (SC) cycle when the treatment of the full crystal charge density
is suitably apportioned between real-space and Fourier-transformed recipre-
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cal-space parts and have indicated the large degree of variational flexibility
offered by a nonlinearly optimized (exact) numerical atomic-like basis set. We
have shown that all multicenter interactions as well as the nonconstant parts
of the crystal potential are efficiently treated by a three-dimensional Diophantine
integration scheme {10].

This paper is concerned with the predictions of the LDF method for the co-
hesive energy and equilibrium lattice constants in covalently bonded solids
(diamond and its heteropolar isoelectronic analogue, cubic boron nitride) and
a prototype ionic solid (LiF). It represents part of a detailed study we are
pursuing into the ground state properties of various solids, including the relative
role of exchange and correlation [11, 12]. Comparisons are made with the results
of restricted Hartree-Fock calculations and with experiment.

2. Methodology

Since a detailed description of the method has been given previously [8, 9],
we outline here only those aspects pertinent to the present study. Our purpose
is to solve the local-density one-particle eigenvalue equation for a periodic
solid:

=3 2+ VI (k) = ot (k) (1)

for band index j and Brillouin zone (BZ) wave vector k. Here V[p(7)] is the
crystal one-body potential given as a functional of the self-consistent crystal
charge density p(7) and includes an electron-nuclear and electron-electron
Coulomb term Veou[p(7)] (which includes the electron seif-interaction) and
a local exchange [2] V. [p(7)] and correlation [13] term Veorr[0(F)].

We first assume a population-dependent superposition model for p(7) made
up of the free-ion (or free-atom) densities po(7.1f5 ,0%]). These are obtained
from a self-consistent numerical solution of the LDF one-particle equation with
the assumed ionic central field occupation numbers {f%} and net charge 0« and
are lattice-summed to yield peup(7, |f7 ,0*1). This initial density is used to obtain
an initial guess for the crystal potential Vsyp[psup(7)] in terms of ¥coui[psup(7)]
and Vy[psup(F)] + Veorr[psup(7)]. The long-range part of the screened Coulomb
potential is calculated by the Ewald technique [14]. The crystal wave functions
ybj(l'c.r') are then expanded in an LCAO form in terms of the Bloch functions
tbm(lE,F) defined by (the uth orbital) basis functions x;(7) on lattice site «. These
basis functions are taken as exact numerical solutions of the single-site LDF
one-particle equations for the assumed occupations and charges {f5,0%]. For
first-row atoms we use the s, 2s, 2p, 3s, and 3p orbitals for the band calcula-
tions, while for total energy calculations, we add 34 orbitals.

The matrix elements of Vsup[psup(7)] in the Bloch basis cbm(IE,r‘) are evaluated
by direct three-dimensional Diophantine numerical integration [10] without
any shape approximation to the potential and include a// the overlap and mul-
ticenter integrals between orbitals on lattice sites separated by less than 23 a.u.
The secular equations are diagonalized for a set of six to ten special k-points



LDF CALCULATED COHESIVE PROPERTIES 541

in the irreducible Bz [15] and the linear LCAO expansion coefficients ij(lz)
are used to construct the output crystal density pery(7). Convergence tests for
the radius of real-space lattice sums, the BZ sums, and the basis set expansion
. have assured an overall stability of the eigenvalues to within 0.05 eV over the
entire band structure range studied.

We then start a two-stage iterative self-consistent (SC) procedure: in the first
stage |/, Q] are varied iteratively to minimize the difference Ap(F) = pery(F)
= psup(#.{f5.,@71) in the least squares sense over the unit cell space where the
basis set x.(F) and the potential Vuplpsup(F)] are optimized accordingly at each
iteration (about 4-6 iterations are needed). After Ap(F) has been minimized
by selecting the optimum superposition model in terms of {f%, 07}, we project
in the second stage of self-consistency the residual Ap(F) onto a set of symme-
trized plane waves and solve the associate Poisson equation analytically in terms
of the projected coefficients Ap(K,) for a list of reciprocal lattice vectors K.
This reciprocal space expansion converges rapidly (7-17 stars of K, are needed)
because the residual Ap(F) is prepared to be spatially smooth. The correction
to the Coulomb interelectronic potential AV(r) is then added to the Voyp[psup()]
obtained in the final iteration of stage 1 and this new Hamiltonian is diagonal-
ized. The iterations in stage 2 are carried out so as to diminish the residual
Ap(K;) to a prescribed tolerance of 10~5¢ (3-6 iterations are needed).

The calculation of the total crystal energy per unit cell is based on the LDF
total energy expression and uses the final crystal density pery(F). As described
previously [8], the various terms appearing in this expression must be grouped
so that the divergencies in the individual electron-electron and electron-nuclear
energies per unit cell are canceled. We have also shown how the kinetic and
Coulomb terms are combined in real space before their integration is attempted
5o as to affect a substantial numerical cancellation. Again three-dimensional
Diophantine integrations are needed to obtain quantities such as Spery
(7)V[p(7)]dF which converge more slowly than those necessary in the band
structure study (although the convergence rate is better than in analogous mo-
lecular studies [5]). For example, in LiF a large number of Diophantine inte-
gration points (2000 per Li and 3000-4000 per F) together with an improved
sampling point mapping scheme are needed in order to obtain an accuracy of
0.5-0.8 eV in the total energy. However, in diamond, we are able to obtain an
accuracy of 0.2 eV by using some 10-30 Diophantine integration points inside
the nuclear volume, about 300 integration points in the Ls orbital sphere, and
3500 points per atom in the rest of the unit cell volume. Since the BZ dispersion
of the total orbital charge density o(Fk)= j;;?ccn}-| %(IE,F)| 2 s rather small [12],
the use of only 10 k-points in sampling p(7.k) introduces only small errors (0.2%

in p(F)).

3. Results and Comparison with Experiment

Table I presents our LDF results for the binding energy (Eg) and equilibrium
lattice constants (Aeg), and, for comparison, those values calculated by the re-
stricted Hartree-Fock (HF) model [16-18] and the available experimental data



542 ZUNGER AND FREEMAN

[19-23]. The values of the atomic total energies for C, B, and N are obtained
from a spin-polarized local-spin density calculation [24] using the functional
[3] that approaches the Singwi et al. [13] result in the nonspin-polarized limit.
The corresponding values for the closed-shell Li* and F~ ions are obtained by
a direct integration of the LDF total energy expression. The LDF model is seen
to predict somewhat too low a binding energy (up to 7.5% for LiF) and too long
a bond length (by 0.3-2%). The HF model, on the other hand, seems to yield too
short a bond length. It is expected that those correlation corrections not present
in both models (i.e., dispersion forces that are present even at the limit of
nonoverlapping ions and arise from high-order perturbation terms involving
excitations of virtual states) will act to further stabilize the crystal over the
noninteracting atoms, and to yield, thereby, better agreement of the LDF results
with experiment but too small Aq for the HF predictions. Both the HF and the
LDF results show the predicted trend of decreasing binding and increasing lattice
constant with increasing ionicity in the system (Pauling’s electronegativity
differences between the atoms in the cells are 0.0, 1.0 and 3.0 for diamond, BN,
and LiF, respectively). Our charge analyses of the ground state bands for these
materials [12] predict about 35 and 100% charge transfer in BN and LiF, re-
spectively.

Analysis of the binding in these systems [9, 11, 12] has revealed the following
features:

(1) The correlation potential appearing in the LDF one-particle equations [13]
has the effect of increasing the charge localization both in the core region and
in the bond center region at the expense of deleting substantial charge from the
back-bond region. This results in an increase of the binding energy by a few
percent [9].

(2) In a self-consistent minimal basis set description of the covalent com-
pounds, substantial density is shifted from the core region into the bond region
(having a less attractive potential) to yield a reasonable description of the valence
charge (as judged from the agreement with the low-angle x-ray scattering factor
data [25]). However, only an extended basis set (including ion-pair functions)

TABLE |. Binding energies (£3) and equilibrium lattice constant (g.q) of diamond, boron nitride,
and lithium fluoride calculated by the restricted Hartree-Fock (HF) and the present local density
formalism (LDF) model. Zero point energy corrections to the observed binding energies were done
by means of a Debye formula.

System £y (eV/pair) 2 (A)

HF LDF Exp HF LDF Exp
diamond 9.25(18) 15.6 15261 | 3,547 3581 | 3.567020)
BN 10.60(18) 12.8 ~13.021) s 3.652 | 3.615¢%2)
LiF 11,1618 9.8 10603 3.972 4.003 | 4.01803%
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is capable of producing a reasonable binding energy by restoring the density in
the core region at the expense of the diffuse charge in the back-bond space.

(3) In the most ionic case studied (LiF), a large part of the binding (~80%)
is contributed by the electrostatic Madellung field, so that, for the observed
lattice constant, a reasonable binding energy is obtained even at the minimal
basis set level. On the other hand, the calculated equilibrium lattice constant
depends critically on the basis-set sensitive repulsive (short-range Coulomb)
field, and only an extended set is capable of accurately reproducing this quan-
tity.

(4) In contradiction with the conventional picture [26], we find, in the covalent
systems, substantial penetration effects of the orbitals on a given site into the
core region of neighboring sites. In the absence of such effects (e.g., by using
artificially short-range basis orbitals) we find, together with the correct buildup
of charge in the bond region, a dramatic lowering (~30%) in the binding energy.
These penetration effects are induced largely by the basis orbitals that are un-
occupied in the free atom (3s,3p for first-row atoms) and are slightly admixed
into the ground state of the solid. Similarly, we find in LiF that the Li* virtual
orbitals (2s,2p) are responsible for a nonnegligible amount of charge in the in-
terionic region (0.15¢/A3 at the bond center, compared with the observed [27]
values of 0.15-0.19¢/A3) while a simple description of the solid in terms of the
closed-shell ion orbitals (Li* 15 and F~ 1s, 25, and 2p) would predict almost
vanishing density in the bond center. The correct description of this charge
buildup is found to be essential for an accurate estimate of the equilibrium lattice
constant.

(5) For BN, we find that while the static ionicity Q (obtained here by a
least-squares projection of the variational crystal density onto a set of ionic
charge densities with fractional charges Qg and Q) is rather low (BF0-35N=0.35),
a rather different picture emerges from the study of the dynamic ionicity [28].
We have calculated the unit cell dipole moment 4 (by direct integration of 7-p{F)
for a series of atomic positions related to each other by a symmetric displacement
mode (i.e., the § = 0 optical mode) and have then differentiated i to obtain the
dynamic effective charge e7 = 2.85¢ (compared with the value of 2.47e deduced
from the infrared spectra [29]), which is substantially larger than the static value
of ~0.35¢. The ionicity of this system is hence substantially larger in the dynamic
limit than can be inferred from simple consideration of the static ground state
wave functions.

We close this discussion by commenting on the Gordon-Kim model [30] for
binding in ionic solids as applied to the present study on LiF. The main as-
sumptions of this model are: (i) E is assumed to be the sum of the point-ion
electrostatic term and a pairwise additive ion-ion central potential Vi, (F)
summed over nearest-neighbors only. This neglects the predominantly repulsive
three-center interaction terms present in our model. (if) The electron-electron
Coulomb part of V,,(F) is calculated from an overlapping superposition of
free-ion HF charge densities (i.e., nonself-consistent model). This implies the
neglect of the ion-ion orthogonality terms, the approximation that the individual
ionic charges are not radially distorted in the interacting system, and that the
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ground state HF orbitals are suitable as a basis for treating interactions in the
LDF model. (iii) The kinetic energies of both the interacting system and the
individual ions are calculated from a noninteracting homogeneous electron gas
formalism (i.e., proportional to p2/3(F) with no gradient corrections). This omits
the important (predominantly repulsive) contribution of the nonhomogeneous
system and hence tends to overestimate Eg and to underestimate 4.q. (iv) The
LDF is used to calculate the non-Coulombic part of V4 (F); long-range dispersion
forces are neglected.

The approximations made in i and iii tend to omit repulsive interactions while
approximation ii and the neglect of dispersion forces iv omit an essentially at-
tractive interaction. The effect of approximation i can be roughly estimated using
Kim's model for three-body forces [31] and next nearest-neighbor terms, while
the effect of approximation ii can be estimated from studies on scaling the HF
ionic wave functions [32]. These errors seem to be of roughly the same order
(the omitted repulsive potential being slightly larger) and tend to cancel each
other. The long-range dispersive interactions in LiF close to the equilibrium
distance are rather small (~0.15 eV /pair [23]). Thus, the net effect of these
approximations (i + ii + iii), seems to be the neglect of repulsive kinetic and
potential terms which leads to overbinding. Gordon and Kim’s [30] results for
LiF (Aeq of 3.86 A and Ep of 11.3 eV/pair) indeed confirm this conclusion.
Further analysis of the model was carried out to understand the nature of the
omitted repulsive terms. We have calculated the total energy of a LiF crystal
using a nonself-consistent superposition density made up from free-ion local
density orbitals. The potential energy terms PE (Coulomb exchange and cor-
relation) were directly calculated from this density, while the kinetic energy term
KE was calculated from the homogeneous gas equation (KE = p¥3(F)). Ap-
proximation i is then practically eliminated. The result (at the observed lattice
constant) showed that the kinetic contribution to Eg was 2.8 eV smaller (less
positive) than the corresponding contribution calculated with the full Laplacian
form, while the potential contribution was 0.8 eV larger (less negative) than that
calculated from the (nonself-consistent) crystal wave functions. This leaves a
net overbinding of 2 eV, in agreement with the arguments discussed above. Thus,
the success of this model appears to stem, in part, from the partial balancing
between the omitted repulsive kinetic terms iii and the attractive potential terms
1.

When approximation ii is removed (by using a self-consistently optimized
charge density to compute KE and PE), we find a new type of cancellation: the
kinetic energy contribution to Ez increases (mainly due to the contraction in
the anion wave function) while the potential contribution decreases (i.e., PE
becomes more negative, mainly due to shift of charge into the attractive core
region) leaving a net overbinding of only 1.3 eV due to the omission of repulsive
kinetic terms in iii. Finally, when approximation iii is also removed (i.e., in a fully
self-consistent calculation using the Laplacian form for KE, of Table I) one
obtains some underbinding, presumably due to the neglect of high-order cor-
relation contributions iv. Thus, it seems that in order to obtain better agreement
with experiment in a simple Gordon-Kim model, one should relax the underlying
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approximations in a carefully balanced manner (e.g., replacement of the near-
est-neighbor superposition density by a variationally calculated crystal density).
However, it is stressed that, in such a model, evena variationally chosen density
would still leave out some of the (gradient) kinetic contributions which can be
incorporated fully only in a detailed calculation as that reported here.
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