
PHYSICAL REVIEW B VOLUME 52, NUMBER 12 15 SEPTEMBER 1995-II

First-principles theory of short-range order, electronic excitations,
and spin polarization in Ni-V and Pd-V alloys
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The short-range order (SRO) and long-range order (LRO) of Ni-V and Pd-V alloys are stud-
ied theoretically by a combination of first-principles calculations of Ising-like interaction energies
(Jf) with a Monte Carlo solution of the Ising Hamiltonian. We find the following: (i) There are
several compositions in these alloys for which the dominant wave vectors of LRO and those of
SRO do not coincide, indicating that the low-temperature (T) LRO may not always be inferred
from the high-T SRO. (ii) In Ni&V and PdsV, the density of states at the Fermi level, n(es), is
much larger in Llz than in the stable DO&z structure. This has two consequences: (a) thermal
electron-hole excitations across e~ are energetically more favorable in the L12 structure and lead to
a T dependence of Jt, and (b) magnetic stabilization is larger in Llz, so spin polarization affects
structural stability. As a result, (iii) calculations using T-dependent Jt s are needed to obtain quan-
titative agreement with experimental measurements of LRO, SRO, and transition temperatures in
Nio. rsVp. zs, Nip. sqVo. s3, and Pdp rsVp . qs (. iv.) We provide predictions of the SRO patterns where
there is currently no experimental evidence for Pdp. Q7VQ. 33 Nip. sVp, 4, Pdp. sVp. 4, and Pdo. sVp. s. (v)
For Ni3V and Pd3V, discrepancies are found between the total-energy difFerences of the L12 and
DO&z structures as determined by T=O first-principles calculations and those inferred from diff'use
neutron scattering measurements at high T. By performing temperature-dependent self-consistent
local-density-approximation calculations, we find that electronic excitations are responsible for re-
ducing the discrepancy by 25'%%uo and the combination of spin polarization and electronic excitations
reduce the discrepancy by 30—50'%%uo. Thus, electronic excitations and spin polarization are not fully
responsible for the T dependence of Jf used in the SRO calculations.

I. INTRODUCTION

In many solid-state intermetallic alloys, an order-
disorder transition marks a structural transformation
&om a low-temperature long-range ordered (LRO) state
to a high-temperature short-range ordered (SRO) solid
solution. Bragg diÃraction and disuse scattering in be-
tween Bragg peaks are often used to measure the de-
gree and type of LRO and SRO, respectively, present
in alloys. For a binary Aq B alloy, any configuration
of A and B atoms may be described by Ising-like spin
variables, S; = —1(+1) if site i is occupied by an A(B)
atom. The SRO is characterized in real space by the pair
correlation function IIO for the nth atomic shell, given

A A

by S,.S;+ averaged over all symmetry-equivalent pairs
of lattice sites. The Warren-Cowley SRO parameter for
shell n is then

(IIp „)—q2
astro (x, n) =

1 —q

where the brackets denote a thermal average, and q =
2x —1. For a completely random alloy, the spins are un-
correlated, so (S;S;+„) = (S;)(S;+ ) = q, and hence
nsn~ (x, n) = 0 for all shells. Thus, the SRO pa-
rameters, ns+Q(x, n) measure the extent to which spa-
tial correlations exist in disordered alloys. In diKrac-
tion experiments, these correlations give rise to inten-

sity modulations in the monotonic Laue background be-
tween the Bragg peaks. Thus, the correlations in disor-
dered alloys may be experimentally measured by extract-
ing the portion of disuse scattered intensity due to SRO,
which is proportional to the lattice Fourier transform of
crsRQ(&~ n))

&R

aspic (z, k) = ) nsno(z, n)e'

where n~ is the number of real-space shells used in the
transform.

A theoretical treatment that is commonly used to
evaluate SRO is the mean-field Krivoglaz-Clapp-Moss
formula, which relates ns+Q(x, k) to J2(k), the lattice
Fourier transform of the Ising-like e8'ective pair interac-
tion energies, J2(n) (between a site at the origin and one
at the nth atomic shell):

1

1+4x(1 —x)J2(k)/kT

The mean-field formula of Eq. (3) guarantees that the
wave vector at which the SRO peaks, ksgo, is given by
the minimum of J2(k). Provided that there are no multi-
body (three or more sites) Ising-like interactions, the pair
interaction J2(k) can also be useds to determine the en-
ergetically favorable low-temperature LRO states. Of-
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tentimes (but not always ) the minimum of J2(k) also
corresponds to the peak wave vector of the LRO state,
ki, RQ (e.g. , as observed in Bragg difFraction). Thus, in
many cases, the mean-field expectation based on Eq.
(3) is that the peak wave vectors of SRO and LRO co-
incide: ksRO ——kqR~. This equivalence between ksR~
and kI,Ro actually occurs in an overwhelming number
of alloys. In particular, a peak at ksRQ = (000) in-
dicates association of like atoins ("clustering" ) and is
accompanied via Eq. (3) with phase-separating LRO,
while an "off-I" (ksRQ g (000)) peak in asRQ indi-
cates association of unlike atoms ("anticlustering") and
is accompanied by compound-forming LRO. Cases (i)
(ksitQ ——kLitQ = (000)) and (iii) (ksitQ = ki, RQ W (000))
in Table I refer to these classic cases of clustering/phase-
separating and anticlustering/compound-forming alloys,
respectively. Sometimes it is assumed that this is ahoays
the case. For example, recent calculations of SRO in ¹i
Pt by Pinski et al. have been interpreted to imply LRO
with the same underlying wave vectors. Direct calcula-
tions of the LRO with the same nonrelativistic Hamilto-
nian showed, however, that ksRQ $ ki, RQ.

Calculations that go beyond the mean-Geld approx-
imation (such as those in this paper) use J2(k) in a
Monte Carlo algorithm. The resulting ksRO need not
be related to kz, R~. A number of possible relations be-
tween SRO and LRO wave vectors are enumerated in
Table I. Cases involving "non-special-points, " (ii)5 and
(iii)b, are exemplified by Ni-Au (Refs. 13 and 14) and
Cu-Pd (Refs. 15—17) alloys, respectively. In the Ni-Au
system, the assessed composition-temperature phase di-
agram shows a miscibility gap and total-energy cal-
culations of many compounds give positive formation
enthalpies, both of which are clear indications of phase-
separating tendencies (kr, RQ = (000)); however, both re-
cent first-principles calculations and measured x-ray
diffuse scattering show ordering-type SRO (ksRQ
(000)), which peaks along the ((00) line, with g = 0.6—

0.8 (not at one of the special points listed in Table I).
Thus, for Ni-Au, ksRQ $ kLnQ ~ For Cu-Pd alloys,
there are several compositions near Cu3Pd for which the
stable LRO structure is a long-period superstructure,
which has dominant wave vectors along the (1(0) line,
bettoeen the special points, (100) and (120). Experimen-
tal measurements and Grst-principles calculations
both show ksRo, which is also split oK of the special-point
(100) along the (lj,'0) line.

In this paper, we examine theoretically the fcc-based
LRO and SRO of the anticlustering/compound-forming
alloys, ¹iVand Pd-V. Using a non-mean-field method
(Monte Carlo simulated annealing) for determining the
alloy SRO and LRO, we illustrate the cases (iii), (iv)
(iv)5, and (iv), of Table I, which occur in these al-
loys. We show examples for which (iii) the LRO and
SRO wave vectors coincide [Nio 75V0 25], (iv) 5, the
LRO and SRO wave vectors are distinct [Nios7V0 33,
Nlo 50V0.50 Pdo. 75V0.25, Pdo. 07Vo.33 and Pdo 50Vo.so],
and (iv)5, the wave vectors of either LRO or SRO occur
at a non-special-point in the Brillouin zone [Nio 57V0 33,
Nio 50V0 50, Pdo 07V0 33, and Pdo 50V0 50]. These exam-
ples demonstrate that there are clearly many exceptions
to the mean-field expectation of the correspondence be-
tween SRO and LRO wave vectors.

II. METHODOLOGY

We illustrate the methodology of our approach
schematically in Fig. 1 ("approach I") and contrast it
with the "inverse" problem ("approach II").Here we only
give the salient ideas of each method, and we refer the
reader to Refs. 19 and 17, for more details of approach
I, and to Ref. 20 for more details of approach II. In the
method used in this paper (approach I), we begin by
mapping a set of first-principles total energies (Et t) for
a variety of ordered compounds onto an Ising-like cluster

TABLE I. Possible situations involving dominant wave vectors of long- and short-range order.
"Off (000)" refers to dominant wave vectors, which are not located at the origin, but occur at the
special points of the Brillouin zone. The special points are de6ned as the points for which any
k-space function with the symmetry of the reciprocal lattice must have extrema, simply due to
symmetry reasons. For example, for the direct-space fcc lattice (reciprocal-space bcc), the special
points are (Ref. 8) (000), (100), (1 —0), and —(111). ki, ao = (000) indicates a phase-separating
system, while ki, ao g (000) refers to a compound-forming alloy. ksao = (000) indicates a "clus-
tering" solid solution (local association of like atoms), while ksao g (000) refers to a solid solution
which is "anticlustering" (local association of unlike atoms).

Case/type
(i)

(ii) 5

(lii)
ill

(iv)
(iv) 5

(iv),
(1V)g

kLRo
(ooo)

(000)

(ooo)
off (ooo)

non-special-point
off (000)
off (ooo)

non-special-point
non-special-point

ksR0
(000)

ofF (OOO)

non-special-point
off (ooo)

non-special-point
difFerent ofF (000)
non-special-point

off (ooo)
difFerent non-special-point

Examples
Cu-Ni, Pd-ah,

Ga~ Al As
Size-mismatched-

III-V semiconductor alloys
Ni-Au

Cu-Au, Ni3V
Cu3Pd
Pd3V

Pdo. 5V0.5
NigV) PdgV

?
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Input Output

Ground States

Approach I

(First-principles input)

CE
(Et t ( )) (Jf) Tc

SRO

Ground States

Approach II

(Measured SRO input}
SRO = (Jt j

MC
Tc

FIG. 1. Methodology used in this paper to deduce SRO,
LRO, and transition temperatures from erst-principles total
energies (approach I). Also shown is the inverse approach
(approach II) often used by experimental groups in which
LRO, transition temperatures, and total energies are deduced
from the measured difFuse intensity due to SRO. In both ap-
proaches, an intermediate step involves an Ising-like cluster
expansion (CE) expressed in terms of effective interactions,
Jy. "MC" refers to Monte Carlo calculations.

expansion involving effective interactions Jy for figures of
lattice sites f (e.g. , pairs, triplets, etc.). We emphasize
that we are not limited to the case of effective pair in-
teractions only. Once the set (Jy) is obtained, it can be
used in a Monte Carlo simulated annealing prescription,
which provides a means to calculate (i) the T=O LRO
ground-state structures, (ii) the order-disorder transition
temperatures T„as well as (iii) the alloy SRO.

Figure 1 also schematically depicts the inverse ap-
proach (approach II), which is often used by experi-
mental researchers ' ' '6' who measure diffuse scat-
tered intensity due to SRO. Prom the measured SRO
pattern nsRo(x, k), one may deduce a set of interac-
tion parameters (Jy) via an inverse procedure: Monte
Carlo, ' Krivoglaz-Clapp-Moss, or cluster variation
method. ' These Jy's may then be used in a stan-
dard (not inverse) Monte Carlo to deduce the LRO, tran-
sition temperatures, or total-energy differences. The in-
verse approach is not generally valid for "case (ii)" al-
loys: Using SRO data showing anticlustering ("antifer-
romagnetic" Jy's) behavior, one cannot predict a phase-
separating ("ferromagnetic") LRO. References 14 and 17
give the answer to this apparent paradox for transition
metal (Ni-Au) and semiconductor (GaP-InP) case
(ii) alloys.

In this paper, we use approach I with the following
details: For ¹iV,the total energies of 24 fully relaxed
structures as calculated &om the linearized augmented
plane wave (LAPW) method are mapped2s'i4 onto 12 ef-
fective interactions Jy, while for Pd-V 18 total energies
of unrelaxed structures from the method of linear mufIin-
tin orbitals are used to fit ' 14 interactions. The set
of (Et t) computed at T=O is mapped onto an Ising-like
Hamiltonian, is thereby extracting a set of (Jy) at T=O.
In these calculations, the total energy is a functional of
the charge density p(r) that is determined by summing all
l4';l (iIJ, is the one-electron Kohn-Sham wave function

for state i) up to the Fermi energy, e~. This procedure
may be generalized to finite T by allowing some occu-
pied (unoccupied) states to exist above (below) e~. In
other words, e~ [or, more properly, the finite-T Fermi
level, p, (T)] can be computed from a finite T-Fermi dis-
tribution. The ensuing T dependence of p(r, T) prop-
agates into Et t, and thus into (Jy(T)). We refer to
this T dependence as the effect of electronic excitations
on (Jy), as was recently discussed in the context of
Ni3V and Pd3V. We report here computations involv-

ing the temperature-independent (Jy(T = 0)), as well

as computations that include a quadratic T dependence
in several of the Jy's. The contribution of electronic
excitations and spin polarization to this T dependence is
examined in Sec. IV.

In the Monte Carlo calculations presented here, we use
a system size of 16 = 4096 atoms with periodic bound-
ary conditions for all SRO calculations. (For LRO com-
putations, the system size is adjusted so as to be com-
mensurate with the composition considered. ) The SRO
is determined using 500 Monte Carlo steps to equilibrate
the system, and subsequently, averages are taken over at
least 500 Monte Carlo steps. Thirty-five atomic shells

[n~ = 35 in Eq. (2)] of nsRQ(z, n) are used in all SRO
calculations. Computations for SRO are performed at
temperatures slightly above the calculated order-disorder
transition temperature T, and also at high T (several
hundred degrees above T,). These SRO calculations pro-
vide a measure for the spatial correlations in ¹iVand
Pd-V alloys, and in some simple cases (Table I) give the
wave vectors of the underlying LRO states.

III. RESULTS: SRO OF Nip V
AND Pd V

The SRO patterns calculated using both Jy(T = 0)
and Jy(T) for Nii V and Pdi V alloys are shown
in Figs. 2—5. These results are summarized in Table II,
which gives the wave vectors ksRo that produce peaks in
the calculated nsRQ(z, k) as well as the dominant wave
vectors kl.R~ of the low-T LRO state. The calculated
SRO wave vectors are compared with those of diffuse
scattering experiments, where available.

Recently, Johnson et al. performed local-density-
approximation-based calculations (LDA) of the SRO
of Nip 75Vp 25, Nip 67Vp 33, arid Pdp 75Vp 25 using a

. concentration-wave extension of the coherent-potential
approximation. These authors found (i) ksRQ: (120)
and (100) for Nio 75VQ 25 and Pdo qsVo 2s, respectively,
in qualitative agreement with both the present calcula-
tions and the neutron scattering results of Caudron et
aL2o (ii) However, Johnson et a/. found ksRQ —(100)
for Nip 67Vp 33 in qualitative conHict with our results
(Fig. 3) and those of the experiment, 2o which both give
ksRa = (12o).

A. Effects of composition on LRO and SRO: Niq V

The Monte Carlo calculated nsRQ(k) is shown in the
(hk0) plane for Nii V alloys in Figs. 2 and 3 using T
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SRO of Ni V with T-independent J's1-x x

x = 0.25 x = 0.33 x = 0.40 x=050

0)

(200)

(0

(200)

(0

(200) (200)

(k) for Ni V alloys in the (hi'cO) plane. The calculationsFIG. 2. Monte Carlo simulated annealing calculated values of nsRo or iq a
tota ener ies. The black shading in the contour plotsendent J 's derived from first-principles tota energies. e

00 2250 1700,
were performed using T-indepen en f s

= 0.25 0.33, 0.40, and 0.50 were performed at 230,0 attern. The calculations for x = 0.
f =025 ' h' h 10and 1400 K, respectively. Contours are all sp ys aced b 0.5, except or x = . , in

SRO of Ni V with T-dependent J's1-x x

x=025 x = 0.33 x = 0.40 x = 0.50

0)

(200)

(0

(200) (200) (200)

= 0 25 0.33 0.40 and 0.50 were performednt J 's. The calculations for x =FIG. 3. Same as Fig. 2, except with T-dependent f s.
at 1700 1875, 1900, and 1600 K, respectively. Contours are all spaced by 0.5.)
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SRO of Pd
&

„V„with T-independent J's

x = 0.25 x = 0.30 x=Q33 x = 0.40 x = 0.50

0) 5

(200)

(0

(200) (200) (200) (200)

FIG. 4. Monte Carlo simulated annealing calculated values of nsao(k) for Pdq V alloys in the (hkO) plane. The calcula-
tions were performed using T-independent Jf s derived from first-principles total energies. The black shading in the contour
plots locates the peaks in the SRO pattern. The calculations for x = 0.25, 0.30, 0.33, 0.40, and 0.50 were performed at 1800,
1300, 1500, 1200, and 1150 K, respectively. Contours are all spaced by 0.5, except for z = 0.25, in which contours are 1.0 apart.

independent and T-dependent Jf's, respectively. Specif-
ically, nsRQ(x, k) is shown for x = 0.25, 0.33, 0.40, and
p 5p 31

For x=p 25) as shown previously, the T-dependent
Jf's serve to quantitatively reduce the peak intensity
at the (1&0) points in Nip ysVp gs thereby bringing the
calculations much closer to the diffuse intensity due to
SRO observed by neutron diffraction. The calculated
ground state LRO of NiQ 75VQ Q5 is the Dpq~ structure,
(kz, Ro = (1&0)), in agreement with the experimentally

well-established phase diagram. Thus, for Ni3V, we
have ksRo ——kLRo [Case (iii) from Table I].

Nip syVp 33 shows peaks at ksRo ——(1&0), in agree-
ment with experimental measurements, but in conQict
with recent first-principles calculations based on the
coherent-potential approximation, which show peaks at
the (100) points. NiqV in the MoPtq structure (kLRo =
z (110)) is the predicted ground state of the calculations,
in agreement with experimental observations. Thus,

SRO of Pd
&

„V„with T-dependent J's

x = 0.25 x = 0.30 x = 0.33 x = 0.40 x = 0.50

0) 5 0)

(200)

(0

(200) (200) (200) (200)

FIG. 5. Same as Fig. 4, except with T-dependent Jf's. The calculations for x = 0.25, 0.30, 0.33, 0.40, and 0.50 were
performed at 1550, 1500, 1400, 1300, and 1300 K, respectively. Contours are all spaced by 0.5.
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TABLE II. Dominant wave vectors of long- and short-range order in fcc-based Ni-V and Pd-V
alloys. "Case/type" refers to the classification of Table I. Jt(T) denotes temperature-dependent
Jg's, while Jy(0) denotes temperature-independent Jy's.

Alloy
N&0. 75Vo.25

Nio. 67 Vo.sa
»o.6oVo.4o

»o.5oVo.so

kr. RO

J~(0)
T=O K
(1-,'0)

2 (110)

kexpt ~
LRO

T&Tc
(1-', o)

—(110)

~SRO
Jt (0)

T&T,
(1-,'o)
(1-'0)
(((0)
(&«)

kexpt b
SRO

T&T,
(1-,'o)
(110)

&SRO kSRO
Jt(T)

High T
(100)
(1oo)

Case/type

(iii)
(iv).

(iv) b

Pdp. 75V0.~5

Pdo. 7oVo.so
Pdp. 67Vo.aa
Pdo. 6oVo.4o

Pdo. so Vo.5o

(1-,'0)

—(110)

(1-,'o)

—(110)

(1-', o)
(1-'0)
(1-'0)
(CC0)
(C«)

(100) (100)
(1oo)

(1-,' 0),(100)

(iv)

(iv),

(iv) b

See Ref. 32.
See Refs. 20 and 22.

Nl(j Q7Vp 3$ corresponds to a case (iv), alloy (Table I) .
As x is increased to 0.40 and 0.50, the SRO peaks show

a shift to non-special-points along the (g'0) line, near
(but not precisely at) ( = s. (The dominant wave vector
of the Ni2V structure is kLRo = s (110).) The experimen-
tally observed LRO (Ref. 32) at Nip 5Vp 5 composition is
a two-phase mixture of Ni2V and an off-stoichiometric,
V-rich cr phase (isostructural with o CrFe). In this paper,
we deal only with fcc-based phases, and thus the o phase
is not amenable to our LRO calculations. Our simulated
annealing calculation shows a LRO state at x=0.5 with a
complex structure, nearly degenerate in energy with the
L 1p structure.

B. EfFects of composition on LRO and SRO: Pdq V

The Monte Carlo calculated nsRO(k) is shown in the
(hkO) plane for Pdq V alloys in Figs. 4 and 5 using
T-independent and T-dependent Jf 's, respectively. Cal-
culations are shown for x = 0.25, 0.30, 0.33, 0.40, and
0.50."

For x=0.25 as was recently shown, only when a T de-
pendence is included in the Jf 's, does one obtain ksRO ——

(100), in agreement with the SRO observed from neutron
diffraction experiments. However, although the SRO
peaks at the (100) points, the predicted and observed
ground state is the (120) D022 structure. Thus, although
both the LRO and SRO of Pdp y5Vp 25 peak at special
points in the Brillouin zone ((120) and (100), respec-
tively), these wave vectors do not coincide, thus putting
this alloy in case (iv) of Table I.

For x g 0.25, calculations (Figs. 4 and 5) show
ksRO = (120) for Pdp s7Vp ss. No experimental mea-
surements of SRO exist for this composition (Caudron
et al. attempted to measure the SRO of Pdp 67Vp 33,
but reported difFiculties in growing single crystals of the
material), thus the shift of SRO &om (100) to (120)
as one goes from x = 0.25 to 0.33 represents a predic-
tion of the present work. The simulated annealing cal-
culation of LRO for Pd2V using Jy(T) shows LRO of

the MoPt2 type, in agreement with the observed Pd2V
structure. s2 When using Jy(T = 0), however, the simu-
lated annealing algorithm converges to a structure that is
degenerate (within 1 meV/atom) with the MoPt2 type,
but is nonetheless a distinct ordered state. Both struc-
tures have kLRQ —s(110), as does the observed Pd2V
structure. Thus, Pdp sqVp ss is a case (iv) alloy (Table
I).

For x & 0.33, the SRO peaks of Pdq V show the
same shift as did Niq V to non-special-points along
the (g'0) line, near s(110). The assessed Pd-V phase
diagram shows no stable low-temperature phase at
Pdp 5pVp 5p composition, but rather shows fcc solid solu-
tion extending down to low temperature ( 700 K). Our
simulated annealing calculation for Pdp 5pVp 5p shows a
LRO state with a complex structure, nearly degenerate
in energy with the Llp structure.

C. Calculations using T-independent Jy's:
Summary of discrepancies with experiment

Using our calculational scheme (approach I, Fig. 1),
we find several results using T-independent Jf's, which
are unsatisfactory. We next summarize these discrepan-
cies between experimental measurements and our calcu-
lations using Jf(T = 0). We will then discuss the T de-
pendence introduced into Jy(T) in order to rectify these
disagreements.

(i) The SRO of PdsV calculated using Jf (T = 0) shows
(Fig. 4) ksR0 = (120) points, whereas experimentally
it is seen to be (100).

(ii) Measured difFuse scattering at high temperatures
has been used to deduce ' 2 via approach II (Fig. 1),
Jf 's that should be capable of describing the energy of
any configuration (i.e., not just the equilibrium state) at
the temperature of the experiment. Using these Jf 's in a
cluster expansion, Caudron et al. have recalculated the
values of the energy difFerence between the perfectly or
dered L12 and D022 structures (depicted in Fig. 6), which
we may compare with our erst-principles calculated val-
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BL0
'% F

00 2

o 0

L12

0
0 0

~ —
g&

0

Pl

D022

1st A: 8A+48 1st A: 8A+4B, 8A+48
1st 8: 12A+OB 1st 8: 12A+OB

2nd A: 6A+OB 2nd A: 6A+OB, 4A+2B
2nd 8: OA+68 2nd B: 2A+48

FIG. 6. The A3R structures, Llq and DOq2. The unit
cells of the two structures are shown as are the first- and
second-neighbor coordinations for A and B atoms. Note that
the two structures have indistinguishable nearest-neighbor en-
vironments, but distinct second-neighbor environments.

ues. The "experimentally inferred" values (appropri-
ate to high T) of the energy difFerences between I 12 and
D022 for Niq V and Pdq V have the same sign, but are con-
siderably smaller (+12 + 5 and +2.4 + 0.3 meV/atom,
respectively) than the corresponding LDA values (+105
and +70 meV/atom) calculated s at T=O K.

(iii) Using our approach-I-type methodology, we have
calculated transition temperatures (Table III) for Ni-V
and Pd-V alloys. The calculated values using Jf(T = 0)
are T = 1900K and 1600K for Ni3V and Pd3V, respec-
tively. These values are much too high when compared
with those obtained from the experimental phase dia-
grams (1318 K and 1088 K, respectively). s~

From problem (ii) above, we conclude that there must
be some excitation that modifies the energies of the L12
and D022 configurations such that the energy difference
between these two structures is much smaller at high
T than at low (or zero) T Configura. tional excitations
(e.g. , long- or short-range order) cannot resolve the dis-
parity between the high- and low-T energy differences
because both experiment and calculation determine the
energy difFerence between two perfectly ordered (i.e. , not
partially ordered) compounds. Thus, there must be a
significant excitation in these alloys which is noncon-
figurational in nature and which modifies the energies
of the L12 and D022 structures at Rnite temperatures.
Thus, the temperature-dependent free energy difference
between the perfectly ordered L12 and D022 con6gura-

tions may be written as

AF (T)—:E(L12) —F(D022)
= AE(T = 0) + AE.„.;,(T) —TAS.„.;,(T) . (4)

The first term on the right-hand side of Eq. (4), AE(T =
0)—:E(I12) —E(D022), is the total internal energy
difference between L12 and D022 at zero temperature.
This term can be calculated by spin-polarized or non-
spin-polarized LDA calculations, as appropriate. The
quantities AE,„„.i(T) and AS,„„t(T).refer to the en-

ergy and entropy difFerences associated with nonconfig
urational excitations, which give a temperature depen-
dence to the free energy difFerence AF(T). Examina-
tion of the density of states (DOS) at the Fermi energy
n(e~) of the I 12 and D022 structures (Figs. 7 and 8)
shows that the former has a much higher n(e~). This
suggests that the energy of thermal excitations associ-
ated with electron-hole excitation across the Fermi sur-
face [AE,i(T) and AS,i(T)] is much lower in L12 than
in D022. Hence, we next explore the contribution of
electron-hole excitations to AE,„„t(T)and AS,„„q(T).
Subsequently, we will examine the combination of spin-
polarization and electron-hole excitations.

IV. ELECTRONIC EXCITATIONS
IN Nisv AND PdsV

Consider the energy and entropy associated with
electronic excitations, i.e., the temperature-dependent
free energy associated with the Fermi-Dirac distribution
f(e, T). There are three different levels of approxima-
tion (1, 2, and 3; in decreasing order of accuracy) by
which the energy and entropy associated with electronic
excitations (E,i and S,i) may be determined from first-
principles (e.g. , self-consistent LDA) electronic structure
calculations. In all cases, we consider the thermal popu-
lation effects in a static, nonvibrating lattice.

A. Level 1

In this level, the temperature dependence of the Fermi-
Dirac distribution is included in the self-consistency loop
of the LDA calculation (in the case of this paper, LAPW).
The charge density is computed by summing the square
of the one-electron wave functions, weighted by the Fermi
factor

p(r, T) = ) f(e, T)~@;~', (5)

Ni3V
Ni2V
Pd3V
Pd2V

@scale

T-indep. J's
1900
1850
1600
1050

/pC &1C
C

T-dep. J's
1400
1750
1250
1200

rye xpt
C

1318
1195
1088
1178

TABLE III. Calculated (Monte Carlo simulated annealing)
and experimental (Ref. 32) order-disorder transition temper-
atures T (in Kelvin) for Ni-V and Pd-V alloys.

where the sum is over all states i. Because the charge
density and potential (and hence, the eigenvalues) must
be determined self-consistently, the T dependence of the
charge density leads to an explicit T dependence of the
DOS, n(e, T). The Fermi level p(T) is then determined
by the following condition:

f
+oo

n(e, T) f(e, T) de = N&~t,



8820 C. WOLVERTON AND ALEX ZUNGER 52

Ni3V - L12 Ni3V - DQ22

200

100
0

LL

0

& -100

f/)
O

-200

150

100

E 50
0

LL

0

-50

Vl
O -100
C5

FIG. 7. LAP W calculated
DOS for Ni3V in the DO22
and L12 structures. Shown
are both nonmagnetic (NM)
and ferromagnetic (FM) calcu-
lations. (Note that the FM cal-
culation for the DOq2 structure
converged to the NM solution. )
The vertical dotted lines indi-
cate the calculated Fermi level.
The calculations shown are for
knT = 2 mRy (T = 316 K).
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where Nq q is the total number of valence electrons. Once
n(e, T) and p(T) are determined for a given temperature,
the entropy due to electronic excitations may be com-
puted &om the integral

9
~ (T): f B(E T)(f(E T)hfdf(E T)

+[1—f (e, T)]in[1 —f (e, T)]) de. {7)

where the third term is the T-independent ion-ion
Coulomb energy and the second term E[p(r, T)] is a func-
tional of the charge density

E[ (, T)]
1 p(»T)p(r' T) ds, ds,
2 /r —r'/

+E-[p(r T)1

p(r, T)V„,[p(r, T)] d r .

The terms in Eq. (9) are the electron-electron Coulomb
energy, the exchange-correlation energy, and the term
involving the exchange-correlation potential, V, . In level
1 then, the energy due to electronic excitations is not
merely given by the sum of one-electron eigenvalues, but
rather due to self-consistency, is truly a difFerence of total
energies:

E.( (T) = E»o»(T) —E»»(T = 0) .

The total &ee energy change due to electronic excitations

is given by Eqs. (7) and (10) as F,I (T) = E,&
(T)—

TS,
&

(T). In the self-consistency loop of the LDA cal-
culations, the potential used is the functional derivative
of the internal energy with respect to charge density,
BE[p]//Bp, (rather than the correct expression, BF[p]/Op)
and hence minimizes E»»(T). Once self-consistency is
achieved, the entropy of Eq. (7) is computed and TS,~—
is added to E«. For the alloys considered. here, we ex-
pect this approximation to introduce only small errors in
F,~(T). A level 1 approach has recently been used to de-
termine the kee energy of electronic excitations in pure
Cu in the context of multiple-scattering calculations.

The entropy S,
&

in Eq. (7) has a temperature depen-(~) ~

dence due to (i) the explicit and implicit [due to the
p(T)] T dependence of the Fermi distribution, and (ii)
the T-dependent DOS. The contribution of electronic ex-
citations to the internal energy is given by the difFerence
between the T = 0 total energy &om LDA, and that
calculated at 6nite temperature by using the Fermi dis-
tribution in evaluating the charge density and sums of
eigenvalues. The total-energy expression is given by

E»»(T) = ) f(e, T) e; + E[p(r, T)]

1 ZZ3
+2 ~,- /R. K,

/

by Eq. (7) using the T = 0 DOS:

g( )(r) f
+[1—f (e, T)]in[1 —f(e, T)])de.

n(e, T = 0)(f (e, T)lnf (e, T)

Thus, in the level 2 approximation, S ~ is given a temper-
ature dependence only through the Fermi distribution.
This approximation has been used to determine the elec-
tronic entropy of several pure transition metals in Ref.
36. The energy E ~ in level 2 is given by only one-electron
terms, i.e., from integrating the T = 0 DOS:

@(~) f e n(c, T = 0) f (e, T) de

e r»(e, T = 0) de .

The free energy of electronic excitations in level 2 is
F~) l (T) = E~) l (T) —TS~) l (T).

and the entropy expression is

S,) —— k~Tn(ep) —.(3) 2

Equation. s (13) and {14)are commonly referred to as the
Sommerfeld model (to lowest order in temperature) for
electronic excitations. The Bee energy of electronic ex-
citations in the Sommerfeld model (level 3) is quadratic
in temperature:

F.,' (T) = E.,' (T) —TS.,
'

(T) = AT',
2

where the constant A = —
s k&2n(e~). In the Sommerfeld

model, not only is the DOS at the Fermi level assumed. to
be a constant, independ. ent of temperature, but implic-
itly, the Sommerfeld approach also of Eqs. (13) and (14)
assumes that (to lowest order), the Fermi level is rela-
tively temperature independent. It is evident from Eqs.
(13) and (14) that electronic e2:citations contribute to the
relative stability of two equal-composition structures only
for the rare case when the DOS of these structures at e~
is significantly diferent.

C. Level 3 (Sommerfeld approximation)

Here, one assumes not only that the density of states
is temperature independent, but also that the density
of states near the Fermi energy varies slowly with e, and
that the electron states are probed in a suKciently narrow
range (at a sufficiently low temperature) about the Fermi
level such that the DOS is roughly constant and may be
taken outside the integrals of Eqs. (11) and (12) as the
constant, r»(e~). The resulting energy associated with
electronic excitations is given by

7r2
(13)

B. Level 2 D. Phenomenological fitting

Here it is assumed that the DOS has no explicit tem-
perature dependence, and therefore, the entropy is given

Motivated by Eq. (15) one may model the
temperature-dependent &ee energy difFerence between
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the L12 and D02z structures [Eq. (4)] with a quadratic
temperature dependence

AF(T) = AE(T = 0) —AT

where A is a constant. In a previous paper, we used
Eq. (16) in our calculations of SRO in NisV and PdsV
by mapping a quadratic T dependence onto a three- and
four-body interaction, J3 and K4, respectively. In the
spirit of a model calculation, we adjusted the constant A
in Eq. (16) so as to bring the calculated SRO of NisV and
Pd3V in agreement with neutron diffuse scattering mea-
surements. The values of A (= Ast) that reproduce the
observed SRO patterns in NisV and PdsV [Ast ———54.4
and —50.1 (Ry atom ), respectively] are used here in
Figs. 3 and 5 for all compositions. The T dependence of
the Jf 's leads not only to calculated SRO, which is in ex-
cellent quantitative agreement with experiment, but also
significantly reduces the transition temperatures (Table
III), thereby bringing them much closer to experiment.
Thus, the T-dependent Jf 's are clearly more accurate in
describing the LRO and SRO of Ni-V and Pd-V alloys
than their T-independent counterparts. Using Jy(T), we
have also calculated the SRO at high T. The wave vec-
tors of these high-T SRO patterns are given in Table II.
In several cases, the high-T limit of the SRO shows a
shift of peak wave vector. For example, in Nip 75Vp 25
and Nie sqV0 ss, the calculated ksRQ shifts Rom (120)
to (100) as temperature is increased. This shift of ksRQ
in Nip 75Vp 25 has also been predicted by previous first-
principles calculations.

E. First-principles calculation
of electronic excitations

We now examine the accuracy of the Sommerfeld
model (level 3) with respect to levels 1 and 2. This
comparison will quantitatively determine to what extent
the phenomenologically fitted T dependence of AF(T)
[Eq. (16)] is due to electronic excitations as described
by no-phonon band theory. Using first-principles full-
potential LAPW calculations of Ni3V and Pd3V in the
fully relaxed D022 and L12 structures, we have com-
puted the DOS and total energies as explicit functions
of temperature. In the LAPW calculations, we have
used the exchange correlation of Ceperley and Alder,
as parametrized by Perdew and Zunger. The mufBn-
tin radii are chosen to be 2.2 a.u. for Ni and 2.4 a.u. for
Pd, and 2.3 (2.4) a.u. for V in the NisV (PdsV) calcu-
lations. Brillouin-zone integrations are performed using
the equivalent k-point sampling method. We used 20
and 40 k points in the irreducible zone for the L12 and
D022 structures, respectively, with both mapping onto
to same 60 special k points for the fcc structure. This
mapping guarantees that the total energy per atom of an
elemental metal calculated either with the fcc unit cell
or with a lower symmetry (L12 or D022) are identical.
All total energies are optimized with respect to volume
as well as the c/a ratio in the D022 structure. Lattice
constants were not reevaluated at each temperature, but
rather the low-T calculated values were used for all tem-

peratures. The calculated lattice constants are a = 3.48
and 3.80 A for NisV and PdsV in the L12 structures,
and a (c) = 3.45 (7.04) and 3.78 A. (7.62 A.) for the D022
structures. Our calculated values for the tetragonal dis-
tortion in D022 are c/a = 2.040 and 2.016 in NisV and
Pd3V, which agree well with the experimental values
of 2.036—2.040 and 2.015.

In this section, we describe the results of non-spin-
polarized calculations, and in the following section, we
examine the corrections due to spin polarization on the
DOS and the T dependence of AF(T). The calculated
DOS are shown for Ni3V and Pd3V in Figs. 7 and 8,
respectively, and illustrate that n(e~) is much larger in
the L12 structures than in the D022 structures, for both
Ni3V and Pd3V. The calculated DOS and total energies

have also been used to determine E &, E &, and S
&

for(') (') {')

all three levels (i = 1, 2, 3) described above. The results
for the Ni3V and Pd3V alloys are shown in Figs. 9 and
10, respectively. We note the following:

(i) In all non-spin-polarized cases considered, the tem-
perature dependence of the DOS was found to be negli-
gible; thus, in all cases level 2 provides an accurate ap-
proximation, as compared with level 1 as evidenced by
the proximity of the solid lines (level 2) to the solid circles
(level 1) in Figs. 9 and 10.

(ii) The Sommerfeld approximation (level 3) slightly
underestimates the magnitude of E ~ and S j for Ni3V
and PdsV in the D022 structure, but 8ignificantly over
estimates E,~ and S ~ for these alloys in the L12 structure.
The reason is that in the L12 structure, the DOS at the
temperature-dependent Fermi level y.(T) is rapidly vary-
ing. At zero temperature p(T = 0) = e~ falls near a
sharp peak in the DOS (Figs. 7 and 8). However, p(T)
shifts towards lower energies with increasing T, coming
close to the pseudogap region of the DOS, and hence
at high T, n[p, (T)] is significantly reduced. For the D022
structure, e~ falls in a slowly varying portion of the DOS,
and thus, as the Fermi level moves with increasing tem-
perature, n[p, (T)] is hardly affected, and the Sommerfeld
model proves to be a much more accurate approximation.

(iii) Due to thermal expansion, the bandwidth of the
DOS contracts as T is increased, and hence the DOS at
the Fermi level should increase. Thus, thermal expansion
leads to a slight upward curvature of S ~, opposed to the
pronounced downward curvature seen in Figs. 9 and 10
for the L12 alloys. However, we find that this effect is
negligible (for a ling increase in lattice constant), and thus
do not include it in our calculations.

(iv) It is possible to experimentally measure S,i.ss For
Ni3V and Pd3V in the DO22 structure, the low-T elec-
tronic specific heat coefBcient, has been measured
and (in the low Tlimit) may be -relatedss to n(e~) by
the expression: p = sa k&n(e~)(1 + A), where A is
an electron-phonon enhancement factor. Using the first-
principles values of n(e~) in this expression reproduces
the experimental values of p, for enhancements p of the
order of 2.

By combining the results of Figs. 9 and 10 with the
calculated LDA values of b,E(T = 0), we show in Fig.
11 the T dependence of AF(T) due to electronic exci-
tations. Figure 11 shows that electronic excitations do
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PdsV, respectively). For the L12 structures, however,
spin polarization splits the large peak in the DOS near
eJ;, so that n(e~) i8 signifi'cantly reduced as compared with
NM calculations. This leads to larger magnetic moments
on the V atoms in the L12 structures (p~ = 0.8 and
1.2 for NisV and PdsV, respectively) than in the D022
structures. This reduction of n(e~) due to spin polar-
ization has recently been shown to affect the D02q/Llz
structural stability in a large variety of PdsA (A = Sd)
compounds ~ ~ and has also been shown to qualitatively
change the ordering tendency of Fe-Co alloys. ~ ~ Also,
in contrast to all the NM calculations, the T dependence
of the I12 DOS is not negligible for the spin-polarized
calculations: At low T, the FM DOS is significantly dis-
tinct from the NM DOS; however, as T is increased, the
FM calculations converge towards the NM solution (with
no magnetic moments) and thus, the FM DOS evolves
towards the NM DOS.

The effect of spin polarization on E,~, S I, and E ~ is
illustrated in Figs. 9 and 10. Contrasting the most accu-
rate (level 1) FM and NM calculations (open and filled
circles), one can see that for L12 NiqV and PdsV, spin
polarization reduces the magnitude of S ~ and F ~ rela-
tive to the NM calculations. This reduction is due to
the lowering of n(e) upon spin polarization. Note that
spin polarization has a negligible effect on the electronic

excitations in the D022 structures. Also, as was the case
for NM calculations, the FM level 3 calculations overesti-
mate the effect of electronic excitations, but this overesti-
mation is not as great as in the NM case [again, due to the
spin-polarized reduction in n(e~)]. Level 2 is fairly accu-
rate compared with level 1 (as in the NM case); however,
the T dependence of the FM DOS in the I12 structures
leads to some inaccuracies in a FM level 2 approach.

Figure 11 illustrates the effects of spin polarization
on the temperature-dependent &ee energy difference be-
tween the L12 and DOzz structures AF(T) [Eq. (4)]. At
low T, spin polarization of the L12 structure leads to
a significant reduction in AF(T) in the direction of the
experimental result. The energy lowering we find here
due to spin polarization at T=O is in excellent agree-
ment with previous LAPW calculations for Pd3V, and
is slightly smaller than that found by Lin et al. for
NisV using LMTO calculations. The reduction of b,F(T)
(with respect to NM calculations) due to spin polariza-
tion becomes smaller with increasing temperature. For
Ni3V, the difFerence between FM and NM calculations
becomes negligible at 900—1200 K. At T, the most ac-
curate (level 1) FM calculations of AF(T, ) in NisV and
PdsV are reduced by 0 and 30% relative to the NM
AF(T,). However, these reductions due to the combi-
nation of electronic excitations and spin polarization ac-
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count for only ~30 and 50% of the discrepancy between
AF(T) of experiment and that of LDA at T=O in NiqV
and Pd3V, respectively.

Our results for the effects of electronic excitations
(level 1) and spin polarization on b F(T) are summarized
in Fig. 12. We see that the two nonconfigurational exci-
tations are not ad.ditive: In Ni3V, electronic excitations
and spin polarization each independently reduce b,F(T)
by 27 and 8%, respectively. These percentages are 26
and 44% in PdsV. However, the combination of the two
effects leads to reductions of 28 and 51%%uo in NisV and
PdsV, significantly less than the sum of the two e6'ects
independently. Hence these efFects do not fully account
for the T dependence of the interactions used here (Afit)
to calculate SRO.

At present, we do not have a satisfactory explanation
for the physical mechanism behind the fitted value of A.
It is interesting to consider physical mechanisms other
than electronic excitations or spin polarization, which
could be responsible for the discrepancy between Ast and
ALD", i.e., for further lowering BF(T) at finite temper-
atures. One such excitation is that of lattice vibrations:
If the vibrational &ee energy of the L12 and D022 struc-
tures are sufBciently different, they may also contribute
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TWK
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to a T dependence of AF(T). Also, electron-phonon or
spin-orbit coupling could distinguish L12 from DOq2.

Johnson et al. performed a non-spin-polarized level
2 LDA calculation for the energy differences between
L12 and D022 for Ni3V and Pd3V at 6nite T. These
authors' calculations involved a concentration wave ex-
tension of the coherent potential approximation, im-

plemented within the Korringa-Kohn-Rostoker multiple-
scattering &amework, as well as the following speci6cs:
The atomic sphere approximation (ASA) was used with
equal sphere sizes, the calculations were performed scalar
relativistically, no charge correlations were included, and
relaxation of the DO~2 structure was neglected. Johnson
et al. found AF(T) values of —0.4 and —1.5 meV/atom
for Ni3V and Pd3V at T = 700 and 850 K, respectively.
These values are to be contrasted with our non-spin-
polarized level 2 values at these temperatures: +94 and
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FIG. 11. LAPW calculated free energy difrerences due to
electronic excitations between the Llq and D022 structures
for Ni3V and Pd3V.

FIG. 12. Ni3V and Pd3V free energy differences
(meV/atom) between the L12 and DOqq structures due to
electronic excitations, spin polarization, and a combination
of the two eKects. The dotted lines indicate the "experimen-
tally inferred" values (Refs. 20 and 22) of+12 + 5 and +2.4
+ 0.3 meV/atom for NisV and PdsV, measured at T = 1373
K and 1128 K, respectively.
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+58 meV/atoin. Our calculations include charge corre-
lations and are full potential, thus avoiding the ASA. An
LDA-based theory, which includes E,~ in a level 2 fash-
ion should, at best, obtain a value of AF(T) at finite T,
which is only slightly reduced compared to that of LDA
at T=O, i.e. , AE(T = 0) of +105 and +70 meV/atom
[see Eq. (4)]. We therefore find the strong reduction of
AE(T = 0) —AF(T) that Johnson et al. found to be
inexplicable.

V. CONCLUSIONS

We have studied the effects of composition and tem-
perature on the SRO, electronic excitations, and spin po-
larization in Niq V and Pdq V alloys. We find sev-
eral compositions for which the dominant wave vectors
of LRO and SRO do not coincide, and several shifts of
the SRO peaks as a function of composition and tem-
Perature: (i) In Niq 7sVo 2s, the SRO shows Peaks at
the (120) points near T„but this peaks shifts to the
(100) points at high temperature. (ii) As x is increased
&om 0.33 to 0.40, the peak SRO of both Niq V and
Pdi V shifts from the special point (lz0) to a non-
special-point along the g'(0) line. (iii) The calculated
[using Jf(T)] and observed SRO of PdsV peaks at the
(100) points, even though the LRO at this composition
is a (120)-type structure. (iv) The SRO of Pdi V
shifts from (100) ~ (120) -+ (g'0), as x increases from
0.25 m 0.33 + 0.40.

In Ni3V and Pd3V, first-principles calculations show
that the DOS at the Fermi level is significantly higher in
the L12 structure than in D022. This indicates that ther-
mal electronic excitations could play an important role in
the configurational energetics of these alloys at finite T.
These excitations lead to an explicit temperature depen-
dence of Jf, and we find that only when an explicit (phe-

nomenologically fitted) temperature dependence of the
Jf's is included do calculated SRO patterns and transi-
tion temperatures agree quantitatively with experiment.
Configurational excitations do not manifest themselves
as Jf(T), thus, in these alloys some nonconfigurational
excitation must be significant.

For Ni3V and Pd3V, discrepancies arise between total-
energy differences of the D022 and I12 structures as
determined &om T=O LDA calculations, and those en-
ergy differences deduced &om diffuse scattering measure-
ments. We have performed temperature-dependent self-
consistent total-energy calculations (both spin polarized
and non-spin-polarized) using a Fermi-Dirac distribution
in evaluation of the charge density and Fermi level. In
this way, we have calculated the energetic and entropic ef-
fects of electronic excitations on the D022 and I 12 struc-
tures. We find in the non-spin-polarized case that elec-
tronic excitations are responsible for reducing the dis-
crepancy between experiinent and T=O LDA by 25%.
The combination of spin polarization and electronic ex-
citations reduces the discrepancy by 30—50 %. Thus,
electronic excitations are not fully responsible for the
discrepancy, and also are not the entire physical rea-
son for the T dependence of the Jy's used in the SRO
calculations. Some other nonconfigurational excitation
(e.g. , vibrational) must be responsible for further lower-
ing AF(T) at finite temperatures.
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"One form of the energy and entropy associated with elec-
tronic excitations used for the one-electron terms in 6nite-T
density-functional theory is

e n(e) f(e —p) de

+kT n e ln + 1 — ln 1 — dr,

while another is
+OO C
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While the latter form does not immediately appear to con-
tain the entropy associated with electronic excitations (due
to the absence of explicit "flnf"-type terms), it can be
demonstrated that the two forms are equivalent by inte-
grating by parts twice. [D. D. Johnson (private communi-
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