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We discuss the infiuence of point-ion electrostatics on the long- (LRO) and short-range order
(SRO) in binary fcc-, bcc-, and simple-cubic- (sc) based alloys. The electrostatic problem is studied
by a combination of (a) a model for the distribution of point charges on lattice sites, motivated by
recent first-principles calculations, (b) a mapping of the infinite-ranged Coulomb interaction onto a
rapidly convergent series of effective interactions, and (c) Monte Carlo simulated annealing of the
ensuing Ising-like expansion. This provides a means to identify the lowest energy structures ("ground
states") at zero temperature and the dominant wave vectors of the SRO at high temperatures, which
are stabilized by ionic interactions. (i) We confirm previous results that the three ground states of
the fcc Madelung lattice are the D022 (AsB and ABs) and "40" (AB) structures, which can all be
described as (210) superlattices. We further find that the ground states of the bcc and sc Madelung
lattices are CsCl and NaCl, respectively. (ii) Despite the fact that the structure "40" has the lowest
electrostatic energy of any fcc-type compound, this structure is very rare in nature. We find that
this rarity could imply that a highly ionic fcc AB compound will transform to the bcc structure
CsCl that is electrostatically more stable for the same charge distribution. The exception is when
the energy required to promote the e)cmental solids A+ B from fcc to bcc is larger than the gain
in electrostatic energy. (iii) Monte Carlo and mean-field calculations both demonstrate that the
dominant wave vectors of LRO and SRO coincide for the bcc and sc Madelung lattices. However,
for compositions x & 0.33 and x & 0.67 on the fcc lattice, mean-field calculations incorrectly predict
SRO peaks at the (1—0) points, whereas Monte Carlo calculations show SRO peaks at the (100)
points. Thus, in describing fcc electrostatics, the mean-field theory of SRO is seen to qualitatively
fail. (iv) Electrostatic point-ion interactions lead to significant SRO correlations. Near the transition
temperature, these correlations account for a & 60% change in the energy of the random alloy.

I. INTRODUCTION:
THE MADELUNG LATTICE PROBLEM

When different atoms are brought together to form an
alloy or compound, the redistribution of charge densities
as compared to their atomic densities may lead to what is
commonly referred to as "charge transfer. " The electro-
static contributions to the total energy of an alloy or com-
pound due to charge transfer have been widely used to
discuss the structural stability of not only alkali halides,
but also coordination compounds ' and semiconductor
and intermetallic alloys. Whereas in Ob initio total
energy calculations ' the electrostatic contribution is
calculated from the continuous electronic charge density
p(r), in simpler approaches one discretizes the (electronic
plus nuclear) charge density into a set of point charges.
The ensuing electrostatic Madelung (M) energy EM has
been widely used as one of the energy terms deciding
structural stability of compounds and alloys. ' We
discuss in this paper the manner in which the point-ion
electrostatics decides the long- and short-range order in
binary fcc-, bcc-, and simple-cubic- (sc) based alloys.
While the electrostatic contribution is clearly not the
only term entering the total energy, it is interesting to
see that it leads to clear structural preferences for both
short- and long-range order.

In the point-ion Madelung model of a given lat-
tice (e.g. , fcc, bcc, and sc), each of the N —+ oo sites

i = 1, 2, ..., K is assigned a net charge Q; and is occupied
by either an A atom (denoted by a spin variable S; =
—1) or a B atom (denoted by S; = +1). The Madelung
energy E~(a) of each of the possible 2 alloy configu-
rations 0. can be written as an infinite-range Ising-type
Hamiltonian

) ' SS~J,, (o),

where the primed sum is over all pairs of lattice sites i and
j, excluding the i = j terms, and ~d, —d~

~

represents the
distance between lattice sites i and j. The bare, pairwise
Coulomb interaction energy J;j can be written as

While nonelectrostatic bonding effects can certainly sta-
bilize a given crystal structure, it is interesting to deter-
mine which structures 0 have the lowest electrostatic en-
ergy for a given type of lattice (e.g. , fcc, bcc, and sc). Al-
though it is possible to use standard Ewald techniques
to evaluate E~(o) for some simple configurations o (e.g. ,
simple ordered A B structures), extension of this "di-
rect" approach to the 2 configurations appearing in an
Aj B alloy is complicated by two factors.
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First, evaluating EM(cr) from Ewald's method for all
possible 2 configurations of N lattice sites occupied
by A and B atoms can be laborious. This problem
can be addressed by using lattice-gas techniques which
efIiciently search the 2 space for the lowest energy
configurations. ' However, in the formulation of Eqs.
(1) and (2), the bare interactions J,i are infinite in range
and are dependent upon the configuration through the
configuration dependence of the charges Q;. Both these
facts make the Ising series written in terms of the bare in-
teractions cumbersome, as much of the literature to date
on Ising models concerns interactions which are rela-
tively short ranged and configuration independent. How-
ever, as shown recently, it is possible to exactly renor-
malize the infinite ranged series of Eq. (1) expressed in
terms of bare Coulomb interactions into a short-ranged,
highly convergent series expressed in terms of effective in-
teractions which are configuration independent. This will
be illustrated in Sec. II. Hence the standard techniques
used to deal with Ising models may be applied to
this series of efI'ective interactions.

The second difficulty with a direct search of E~(0) is
that this requires a model associating sites i with charges
Q;. The association of sites and charges is not trivial ex-
cept for the cases of ordered arrangements of atoms for
which all chemically identical atoms are also symmetry
equivalent and hence have identical local environments.
For instance, in the perfectly ordered NaCl structure, all
Na sites i have only Cl atoms as nearest neighbors and
thus can be assigned the charges Q, = +1 for all i. Simi-
larly, all Cl sites j are surrounded exclusively by Na and
have Q~ = —1 for all j. However, in a random Nao sClo 5

alloy, some Na atoms are coordinated locally only by Na
atoms and hence have Q; 0, like in metallic Na, while
other Na atoms could be surrounded locally by all Cl
atoms and consequently could have Q, +1, like in the
ionic Na~l crystal. Thus, in order to use Eq. (1) to re-
alistically model the electrostatics in alloys, one must
first determine a physically reasonable description for
the distribution of charges on lattice sites. Recent first-
principles charge density calculations for both ordered
and disordered transition metal ' and semiconductor
alloys have shown that the efI'ective charge on each site
primarily depends on the identity of atoms in the nearest-
neighbor coordination shell around it, e.g. , the number of
unlike nearest neighbors. This suggests that a realistic
model in screened solids is one with a linear dependence
of the charge on the number of unlike nearest neighbors:

where S; is —1 (+1) if an A (B) atom is located at site i.
S;+I, indicates the occupation of the Z lattice sites which
are nearest neighbors to i and hence the summation in
Eq. (3) indicates the number of unlike nearest neighbors
surrounding the site i. A is a constant that indicates
the magnitude of the charge transfer. The maximum
possible amount of charge transfer Q „=2ZA is then
given by Eq. (3) for an atom coordinated completely by

unlike nearest neighbors. For example, in the fcc lattice
the coordination number is Z=12, so the charge on an
A atom surrounded by n B atoms and 12 —n A atoms
isQ; =2An. AsO) n&12, wehaveO&Q, ) 24A
depending on the value of n. Using the charge model
of Eq. (3), deduced from first-principles calculations2e
and more recently derived from the coherent-potential
approximation, the lattice Madelung energy may be
written as

where nM(0) is the Madelung constant for the config-
uration o, d is the nearest-neighbor distance, and Q ~
is the optimum amount of charge transfer possible for
simple, ordered arrangements of atoms with only two
symmetry-distinct types of atoms. The Madelung en-
ergy [Eq. (4)] is purely attractive and thus EM ~ —oo
as d ~ 0. Therefore, we optimize the Madelung constant
n~ rather than the Madelung energy of Eq. (4). This
is equivalent to finding the states of minimum Madelung
energy for a fixed value of d and Q ~. Considering the
CuAu, CsC1, and NaC1 structures (based on the fcc, bcc,
and sc lattices, respectively), we have Q &

——16A, 16A,
and 12A. For the bcc and sc lattices, Q ~ = Q „=16A
and 12A, respectively, since for these lattice types it is
possible to completely satisfy the ordering tendencies of
alloys with structures in which each atom is coordinated
locally completely by nearest-neighbor atoms of unlike
type. Thus the bcc and sc lattices are said to be un-
frustrated However. , the frustrated fcc lattice contains
triangles of nearest-neighbor bonds and hence it is not
possible to surround every atom on the fcc lattice with
nearest neighbors of unlike type. Thus the optimal charge
for the fcc lattice is Q ~ = s Q „=16A. Throughout
this paper, we use the energy units of (16A) /2d for the
fcc and bcc lattices and for the sc lattice we use the en-
ergy unit (12A) /2d.

Magri et al. i9 and Lu et al. 4 (see the review in Ref. 18)
have recently used the model of Eqs. (1) and (3) ("the
binary Madelung alloy problem" ) in conjunction with a
cluster expansion technique (to be described below) to
determine for the fcc lattice (i) the ordered structures o
which maximize nM(0) ("ground state structures") and
(ii) the energy of the completely random alloy. In ad-
dition to the pure constituents A and B, they identified
three structures (Fig. 1) that are ground states of the
fcc Madelung lattice: D022 (AsB and ABs) and "40"
(AB). These compounds may all be described in terms
of composition-waves along the (120) direction in recip-
rocal space or as superlattices with layers oriented along
(210).is They also found that the Madelung energy of
the completely random state was nonvanishing, in con-
trast to previously accepted views. ' Thus previous
studies ' ' of the binary fcc Madelung lattice have ex-
arnined the cases of complete order (the zero-temperature
states) and complete disorder (pertinent to infinite tem-
perature), but did not consider the myriad of possible
states of partial long- and short-range order which will
be discussed here (for the fcc, bcc, and sc Madelung lat-
tices).
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FIG. 1. Conventional unit cells for the ground state struc-
tures of the fcc, bcc, and sc Madelung lattice. In addition
to the lowest energy states of each lattice, the energetically
competitive Llo and L12 fcc-based structures are shown.

In this paper, we focus on several problems regarding
the Madelung lattice.

(i) Although the equimolar (120) structure ("40") is a
ground state of the fcc Madelung lattice, surprisingly
it is rarely if ever observed experimentally in fcc-based
alloys. Given that Eq. (3) was demonstrated2 ' to
be an excellent approximation to direct local-density ap-
proximation (LDA) calculations, one must conclude that
either charge transfer is never the dominant effect at
equiatomic composition or when it is dominant, geomet-
rical factors such as lattice topology serve to make other
non-fcc structures more stable. We find that the CsC1
structure has the highest Madelung constant (and conse-
quently, the lowest energy) of any fcc-, bcc-, or sc-based
structure. Hence, even in alloy systems where charge
transfer is a dominant- effect, an fcc alloy would prefer to
transform to the bcc CsCl structure, which, for the same
ionic charges, produces the maximal electrostatic stabi-
lization. An exception would occur for an ionic alloy sys-
tem with fcc constituents for which the energy required
to promote the elemental solids &om fcc to bcc more
than outweighs the gain in electrostatic energy upon go-
ing &om the fcc-based "40" to the bcc-based CsCl struc-
ture. The promotion energies also provide an explanation
for the absence of the NaCl structure in transition metal
alloys. The NaC1 structure has the lowest electrostatic
energy of any sc-based compound (and is very close in
Madelung energy to the CsC1 structure). However, the
NaCl structure is never observed in transition metal al-
loys because the energy required to promote the elemen-
tal metals (usually in the fcc, bcc, or hcp structures) to
the sc structure is quite large and overcomes the large
negative electrostatic energy of NaC1.

(ii) Given that the long-range order (LRO) of the
fcc Madelung lattice is of (120) type, we will deter-
mine the dominant wave vectors of the short-range or-
der (SRO). Although mean-field theories often equate
the dominant wave vectors of SRO with those of LRO, 26

recent experiments and calculations ' have demon-
strated that the dominant wave vectors of LRO and SRO
need not necessarily coincide. Therefore, it is of interest

to determine the SRO of the Madelung lattice, both by
mean-field and non-mean-field (Monte Carlo) methods.
We find that for the un&ustrated bcc and sc lattices,
the mean-field description of SRO provides accurate re-
sults as compared with the Monte Carlo calculations for
all alloy compositions x. However, for the fcc Madelung
lattice at compositions x & 0.33 and x & 0.67, the mean-
Beld theory gives a qualitatively incorrect description of
the SRO. The qualitative failure of the mean-Geld the-
ory for x = 4, but not x = 2, will be explained by
considering simple, model calculations that demonstrate
the ranges of interactions for which the mean-Geld SRO
may be expected to fail. The failure of the mean-field
theory of SRO for the fcc Madelung lattice has impor-
tant consequences in light of its nearly universal use in
the Geld of SRO calculations based on the concentration-
wave extension of the coherent-potential approximation
(CPA) 26,32—35

(iii) Recently, a simple ("Onsager" ) correction has
been proposed to the mean-field SRO. We find that
the "Onsager-corrected" SRO fails in precisely the same
manner [see (ii) above] as the uncorrected mean-field
SRO.

(iv) We wish to determine whether the energy and
temperature scales pertinent to the Madelung energy are
relevant on the scale of typical heats of formation and
the temperatures at which SRO is normally measured.
We find that the scale of the Madelung contribution to
the energetics of random alloys may be quite sizeable (in
some cases, inclusion of Madelung energies even results
in a change of sign in the heat of formation). It is also of
interest to compare the magnitudes of the energetic con-
tributions of the Madelung energies which are due to the
completely random alloy with those due to short-range
order. We find that the Madelung energy leads to signifi-
cant SRO correlations which account for a & 60% change
in the energy of the completely random alloy. Thus any
attempt to compare calculated heats of formation in dis-
ordered alloys with those of experiment should include
not only the Madelung energy of the random alloy, but
also the contribution due to SRO as well.

The remainder of the paper is organized as follows. In
Sec. II we describe how the Madelung energy expressed
in terms of infinite-ranged bare interactions may be ex-
actly mapped onto a highly convergent cluster expan-
sion in terms of effective interactions. Analytic expres-
sions for the effective interactions are presented and eval-
uated. Section III contains a description of how sim-
ulated annealing may be used in conjunction with the
cluster expansion to determine the ground states, tran-
sition temperatures, and short-range order of the model.
The ground state results are given in Sec. IV A, and the
competition between Madelung and structural promotion
energies is discussed in Sec. IVB. The SRO is given for
the bcc and sc Madelung lattices in Sec. IVC and for
the fcc Madelung lattice in Sec. IVD. Implications of
the failure of the mean-Geld theory of SRO are given in
Sec. IVE and the magnitude of various contributions to
the energy and temperature scales presented here are ex-
amined in Sec. IVF. A brief summary of the results is
given in Sec. V.
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II. ANALYTIC CLUSTER EXPANSION
OF THE MADELUNG LATTICE

ncE(~) = ) Df JflIf(a),
f

(5)

To compute the LRO and SRO for the Madelung lat-
tice, we first show how the series of Eq. (1) in terms
of infinite-range bare interactions (J;~) may be exactly
mapped onto a rapidly convergent cluster expansion (CE)
in terms of effective interactions (Jf ):i4

where the sums over A: and k' are over all nearest neigh-
bors of i and j, respectively, and d,~ represents the dis-
tance between points i and. j. The Kronecker symbol

f 'f equals zero unless the figure f equals the pair fig-
ure ij (and equals one otherwise), and 8; kI equals zero
unless i = k' (and equals one otherwise), etc. The only
nonvaiushing efFective interactions in Eqs. (7) and (8)
are a constant interaction term (Jo) and those Jf 's cor-
responding to pairs of sites.

For the constant interaction term Jp, the summations
in Eq. (8) may be evaluated to give

where f is a figure comprised of several lattice sites (pairs,
triplets, etc.), Df is the number of symmetry-equivalent
figures per lattice site, and Jf is the effective interaction
for the figure f. The function IIf is definedi as a product
over the figure f of the variables 8;, with the overbar
denoting an average over all symmetry equivalent figures
of lattice sites.

To gain some insight into the nature of the effective in-
teractions Jf, one may utilize the orthonormal properties
of the functions IIf (o ) to obtain the following expression:

(6)

p
4&'op)

2Zi2 ). Z K
dy

where Z is the coordination of the mth shell, d is the
distance between i and i + m (di ——d is the nearest-
neighbor distance), and K is the nuinber of nearest-
neighbor atoms shared by sites i and i + m. Z, d
and K are purely geometrical quantities of the lattice
and may be obtained by inspection. These geometrical
quantities are given for the fcc, bcc, and sc lattices in
Table I as are the contributions from each shell m, to the
Madelung constant of the con6gurationally averaged ran-
dom alloy on each lattice type. Note that K vanishes
for all three lattices for m & 6 and thus the summa-

where nM(o) are the exact Madelung constants obtained,
for example, from the Ewald method. We see that the
efFective interaction Jf for any given figure f (e.g. , the
first nearest-neighbor pair) is a sum over configurations
o of Madelung constants, each representing an infinite
sum over atl pairs [Eq. (1)]. Thus, even the relatively
short-ranged effective interactions Jf represent an infi-
nite sum over all of the bare pair interactions J,~. Note
that the efI'ective interactions Jf represent the expansion
coefficients of the Madelung constant of Eq. (4) and thus
have opposite signs from the expansion coefBcients of the
Madelung energy.

Due to the orthonormality and completeness of the ba-
sis functions IIf, the cluster expansion of Eq. (5) is an
exact representation of any function of alloy configura-
tion, such as Eq. (1). Furthermore, due to the relatively
simple nature of the model of charges on the sites [Eq.
(3)], the effective interactions Jf may be derived analyti-
cally by combining Eqs. (1), (3), and (6) and using the
orthonormal properties of IIf. The result is

Lattice
fcc

m Z
1 12
2 6
3 24
4 12
)5

d /d K
1 4

4

v3 2

2 1
0

Contribution
(&M)R

+1.12500 - 0.18750
-0.06629
-0.10825
-0.02344
0.00000

Total +0.73952

bcc

3 12

24

8

1
2

~3

~3
~it
~3
2

+0.50000 - 0.00000
-0.08119
-0.05741

0.00000
-0.01562
0.00000

Total +0.34578

TABLE I. Geometrical factors of fcc, bcc, and sc lat-
tices and the contributions of various coordination shells
to the Madelung constant of the configurationally averaged
equiatomic random alloy (aM)z. Madelung constants are
given with respect to the nearest-neighbor distance d of each
lattice type and the charges Q p = 16A, 16A, and 12A for the
fcc, bcc, and sc lattices, respectively.

and

Jp
f —A'd1, 1

) =). '
d ).[

—~;,k —~, ,k+4,k],

(8)

sc 1
2

3
4
)5

6
12
8
6

1

v3
2

+0.50000 — 0.00000
-0.11785
0.00000

-0.02083
0.00000

Total +0.36132
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tion in Eq. (9) contains only a small number of nonzero
terms. Also, a nonzero value of Kq implies that there
are triangles of nearest-neighbor bonds in the lattice or
that the lattice is frustrated. It is then readily apparent
from Table I that the fcc lattice is frustrated (Ki g 0),
but bcc and sc are not (Ki ——0). Other values of K
simply indicate the extent to which more distant pairs
in the lattice are linked by common nearest neighbors.
Thus K gives some qualitative indication of the extent
to which the lattice is "open" or "close packed. " It is
apparent that the fcc lattice has many more nonzero val-
ues for K than do bcc and sc and hence is more close
packed. Similarly, the sc lattice has very few pairs of
atoms which share common nearest neighbors and thus
may be described as an open lattice structure. By using
Eq. (9) and the geometrical quantities of Table I, the
Madelung constant of the completely random (B) alloy

(nM)~ = 4x(1 —z) Jo may be evaluated analytically as a
function of alloy composition:

117 3 ~3
(nM)~" = 4x(1 —x) ——v 2—

128 64 16

= 4x(1 —z)0.739 518 1...,

31 3 3
(nM)~" = 4x(1 —x) —— ~6 ——~3

64 128 64
= 4x(1 —x)0.345 775 2...,

23
(~M)R = 4*(1 *) 48 12

= 4z(1 —x)0.3613155....

We have evaluated the analytic expressions for not only
the constant term of the cluster expansion [Jo, given by
Eqs. (10)—(12) evaluated at x = 1/2], but also the effec-
tive pair interactions [Eq. (7)] corresponding to the first
20 neighbor shells (denoted by J„ for the nth neighbor
shell). The effective interactions are given in Table II.
The extremely rapid decay of the effective pair interac-
tions with increasing shell number n is apparent and is
shown schematically in Fig. 2. This rapid convergence of
the effective interactions is in direct contrast to the 1/d, ~

decay of the bare interactions of Eq. (1) and is due to the
effective charge screening given by the charge model of
Eq. (3). For all three lattice types, the nearest-neighbor
pair interaction Jq is large and negative, indicative of a
strong ordering tendency between unlike atoms or unlike
charges. Beyond the fifth neighbor shell, the effective
pair interactions have decayed practically to zero for all
three lattices. Even within the fifth neighbor shell, the
interactions often show a significant reduction in magni-
tude for pairs of atoms which do not share any common
nearest neighbors (e.g. , Js for fcc, J4 for bcc, and Js and
J5 for sc; the nearest-neighbor interactions Jq for bcc
and sc are exceptions to this "rule" ). It is interesting,
however, that these effective pair interactions, although

TABLE II. EfFective interactions Jy for the fcc, bcc, and sc Madelung lattices, as evaluated from
the analytic expressions Eqs. (7) and (8). Given are the constant interaction term Jo and the first
20 efFective pair interactions J1 20. Interactions are given with respect to the nearest-neighbor
distance d of each lattice type and the charges Q ~ = 16A, 16A, and 12A for the fcc, bcc, and sc
lattices, respectively. Note the rapid decay of the interactions with increasing pair separation.

Interaction
Jo
J1
J2
J3
J4
J5
J6
J7
J8
J9
Ao

J12
J13
A4
A5
J16
A7
As
J19
J20

fcc
0.73951806

-0.32386629
0.08253284
0.06083717
0.03448110
0.00145513
0.00047521
0.00003596

-0.00027591
-0.00017215
0.00000107
0.00007166
0.00000900

-0.00000998
-0.00000233
-0.00000771
0.00000421

-0.00000613
0.00000042
0.00000225

-0.00000052

Lattice
bcc
0.34577520

-0.23474035
0.04413108
0.04758274
0.00485413
0.02999447

-0.00155476
0.00002684

-0.00006712
0.00031621

-0.00000772
-0.00029827
-0.00008697
0.00001475

-0.00000679
-0.00005639
-0.00000160
0.00000659
0.00001860

-0.00001356
-0.00000652

sc
0.36131554

-0.29691074
0.06108243

-0.00137607
0.04651912
0.00208957
0.00072596

-0.00054004
-0.00084100
-0.00012596
0.00008533
0.00013433

-0.00002687
-0.00001079
0.00000568

-0.00005213
-0.00000048
-0.00000604
-0.00001494
0.00000871

-0.00000745
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FIG. 2. Effective pair interactions for the fcc, bcc, and sc
Madelung lattices. Effective pair interactions J are shown
as a function of the nth-neighbor shell in units of Q /2d.

annealing determination corresponds to the true ground
state structure rather than a low energy metastable struc-
ture, we have also determined (for fcc Jo 4 and bcc Jo s)
the Madelung lattice ground states via an exact linear
programming solution. ' The linear programming so-
lution of the ground state problem is exact; thus the
entire space of 2 configurations is included in these
searches. In all cases, the ground states obtained from
linear programming and simulated annealing are identi-
cal.

(ii) Order-disorder transition temperatures. Values of
T are calculated (for first-order transitions) &om the dis-
continuity in the internal energy as a function of temper-
ature.

(iii) Short-range order. The Warren-Cowley SRO pa-
rameter for the nth atomic shell is related to the functions
IIf by

II
SRO(n) = (13)

significantly reduced in magnitude, are not strictly zero.
Because pairs beyond the fifth neighbor shell have ex-
tremely small effective interactions for all three lattice
types, we have truncated the expansion of Eq. (5), in-

cluding only J for 0 & n & 5 for the calculations of LRO
and SRO to be described below.

III. APPLICATION
OF SIMULATED ANNEALING

TO THE ANALYTIC CLUSTER EXPANSION

Having obtained the effective interaction energies (in
units of A d/Q2 ), we can now use Eq. (5) in conjunc-
tion with a Monte Carlo simulated annealing algorithm
to calculatess (i) the T=O K ground state structures, (ii)
the order-disorder transition temperatures T„and (iii)
the short-range order of the disordered solid solutions.

We use a system size of 16 = 4096 atoms with periodic
boundary conditions for all computations. Monte Carlo
simulations were performed in the canonical ensemble for
a variety of alloy concentrations x =

5 4 3 and 2. Due
to the fact that only even-body Jf terms are nonzero in
the cluster expansion of Eq. (1), this model is completely
invariant under the transformation x ++ (1—z) (A ++ B).
Thus we only consider x & 2, with no loss of generality.
Our method of calculation is as follows.

(i) T=O K ground states. The ground states are de-
termined from the simulation at a temperature where all
configurational changes proved to be energetically un-
favorable. In this way, we are able to search an ex-
tremely large number of configurations for the lowest
energy states, in contrast to many "standard" searches
which consider only O(10) competing structures: Ap-
proximately 10 changes in the atomic arrangements
("spin Hips" ) are performed in the simulated annealing
determination of the ground states. In addition, because
the Monte Carlo is based on a Metropolis algorithm, only
relatively low energy states are considered, which is in-
herently more efficient than simply searching the config-
uration space at random. To verify that the simulated

where q = 2x —1. We have calculated both SRO(n) and
its lattice Fourier transform SRO(k) using Eq. (13) f'rom

a Monte Carlo simulated annealing prescription. The
SRO is calculated using 500 Monte Carlo steps to equi-
librate the system and subsequently averages are typi-
cally taken over 500 Monte Carlo steps or until a suit-
able convergence is achieved. Thirty-five atomic shells
of SRO(n) are used in all calculations, except for Fig.
8, where twenty shells are used. Our direct Monte Carlo
calculations will be compared with the simple mean-field,
Krivoglaz-Clapp-Moss formula

SRO(k) =
1+4c(1 —c)J(1 )/kT

(14)

where J(k) is the lattice Fourier transform of the real
space Jf 's given above. In the case of the fcc Madelung
lattice, where there are significant discrepancies (see be-
low) between SRO calculated via Monte Carlo [Eq. (13)]
and mean-field [Eq. (14)], we also perform calculations
with the mean field formula, supplemented by an "On-
sager correction" A, as recently utilized by Staunton et
al. :32

SRO(k) =
1+4c(1 —c) [J(1 ) —A]/kT

where

A= d k Jk SROk. (16)

Equations (15) and (16) are solved self-consistently for A
using a standard root-finding algorithm, and this value of
A is subsequently used in Eq. (15) to determine SRO(k).
Thus we have three levels of approximation for calculat-
ing SRO: Monte Carlo [Eq. (13)], mean field [Eq. (14)],
and mean field with Onsager corrections [Eqs. (15) and
(16)]
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IV. RESULTS

A. T = 0 K long-range order ("ground states")

00'
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D
-0.4
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Q) -1.6
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Ground-state Energies of the Madelung Lattice
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0 I 10 ~ 1 .5944

"40" ~ 1.6366
NaCI + 1.7476
CsCI o 1.7627
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FIG. 3. Ground state structures and random energies of
the fcc, bcc, and sc Madelung lattices. The fcc-, bcc-, and
sc-based structures are shown as 611ed circles, empty circles,
and crosses. In addition to the lowest energy structures on
each lattice, several structures are also shown which have en-
ergies close to the ground state line. The inset shows the
equiatomic structures and also gives the numerical values of
the Madelung constants, as calculated from a cluster expan-
sion with the first 20 pair interactions Jo qo (see Table II).
The cluster expansion values for the Madelung constants all
agree with the exact (as per the Ewaid method) values to five
significant digits.

The LRO ground states and random energies for the
fcc, bcc, and sc Madelung lattices are shown in Fig. 3.
From the ground state searches, we find the following
features.

(i) As in the work of Magri et at. , we find (in addition
to the pure constituents A and B) the three lowest en-
ergy fcc-based configurations to be the D022 (AsB and
ABs) and "40" (AB) structures, all of which are com-
posed out of composition waves along the (120) direction
in reciprocal space. (The D022 structure is composed out
of a combination of (120), (100), and (000) composition
waves; however, the (120) wave has the largest ampli-
tude. ) The (100)-based structures Llo (AB) and L12
(AsB and ABs) are, however, energetically in close com-
petition. Conventional unit cells for all of these struc-
tures are shown in Fig. 1.

(ii) For each of the bcc and sc lattices, only one inter-
mediate compound appears in the ground state analysis
at equiatomic composition. These are the CsCl bcc-based
and NaCl sc-based structures, which may be described
by (100) and 2 (111) composition waves, respectively.
Thus, at equiatomic composition, there is an interesting
competition between the (1 2 0)-, (100)-, and 2 (111)-type
waves for the fcc, bcc, and sc lattices. This competi-

tion is illustrated in greater detail in the inset of Fig.
3. Of the ordered equiatomic compounds, both the bcc-
based CsCl and sc-based NaCl have a higher Madelung
constant (lower electrostatic energy) than the fcc-based
structures. The CsCl has the lowest Madelung energy
(highest Madelung constant). The relative orders of
electrostatic stability of the four equiatomic compounds
(CsC1, NaC1, Llo, and "40") are not directly amenable
to a simple nearest-neighbor-only description: If the clus-
ter expansion of Eq. (5) is prematurely truncated at the
first-, second-, third-, or fourth-neighbor effective inter-
actions (Table II), the lowest energy structure at x =
1/2 is incorrectly predicted to be Llo (degenerate with
"40"), Llo, "40", or NaCl, respectively. Only when the
first five shells of effective interactions are retained (Ta-
ble II) does the cluster expansion give the correct order
of stability (as confirmed by Ewald-method calculations)
as shown in Fig. 3. Subsequently adding more shells of
effective interactions (f'rom the 6th to the 20th neighbor
shell) does not change the qualitative order of stability
between the x = 1/2 structures and also makes a negli-
gible quantitative change to the Madelung constants of
these structures. These facts again imply the conver-
gence of the cluster expansion of the Madelung lattice
with only the first five shells of efrective interactions.

(iii) Although the ordered bcc (CsCl) and sc (NaCl)
structures are electrostatically more stable than those
of fcc, the random fcc solid solutions are much lower in
energy than the bcc or sc solid solutions (Fig. 3). In-
deed, it is observed in the ionic Cu-Pd system that,
although the LRO at equiatomic composition is the bcc-
based CsC1 structure, the alloy disorders into an fcc solid
solution. The relative energies of random alloys on dif-
ferent lattices are described in Eq. (9) by the subtle
geometrical interplay between the effects of coordination
numbers (Z ) and the f'rustration of the lattice for all
shells (It ) as shown in Table I: The contributions of
the first-neighbor shell to the random alloy Madelung
constants already gives the fcc random alloy a Madelung
constant larger than bcc or sc. However, to obtain the
correct order of electrostatic stability between the bcc
and sc random alloys, one must at least include up to
the third-neighbor shell. Inclusion of the first- through
fifth-neighbor shells gives the quantitatively exact result,
as all terms in Eq. (9) are precisely zero for m ) 6 in all
three lattice types.

(iv) In Fig. 3 we have drawn the convex hull which
connects the lowest energy configurations of all three lat-
tice types. Three compounds are the ground states of
the binary Madelung lattice: The x = 1/2 CsCl (bcc-
based) structure and the x = 1/4 and 3/4 D022 (fcc-
based) structures are ground states.

B. Competition between electrostatic
and promotion energies

We wish to use the Madelung energies for structures
based on the fcc, bcc, and sc lattices as a basis for the
prediction of the relative stability of the CsC1, NaC1, and
"40" structures in alloy systems. The Madelung energy



6883SHORT- AND LONG-R-RANGE ORDER OF THE BINARY. . .

d the fcc, bcc, or sc latticesnfi uration o base on e cc,
Fi . 3 refers to an energyas depicted in Fig. f t

f e constituent en--wei hted average o pure cona concentration-weig e
. In general, thesame lattice structure as o. n gergies in the same a

be the equilibriumich o is based may not e e elattice on which o
f the alloy. Henceboth the constituents o e a

pure wi
le the romotion energy om ccto another. For examp e, e pr

to bcc may be written

bcc + Efcc bcc= (1 —&) [E~ —E~-I + ~[Ea — aA+B A+

bcc fcc Ebcc&E"—&E "= [E~+a —E~+aj
+[EM (~) —EM" (~')]
+[E,':(~) —E,'::(~')]. (18)

1 wish to address the issue of structural

'"(') q( )
he romotion energy an t e a e

er . For alloys which have E&+& — &+&energy. or a
d b — romotion energies, t efor fcc-sc ana ucc-sc pro

structural stability will be deci e y

most of the elemen s o
1 s total energyb several first-princip es, o alattice structures by

—Eb" ) (() 0 ifNote that E~+~-

re. E uations similar to q.( ) ~ ~

for fcc-sc and bcc-sc energy i erencwritten or cc-
t 1 energy between a givenrite the difFerence in tota energythen wri e e

configuration oo basedont e cc ah f 1 ttice and a configura-
h m of the promo-' based on the bcc lattice as t e sum o

fcc Ebcc the difFerence jn Madelung
energies, an

cts which are explicitly nonelectro-accounts for all efFects whic are exp i
static

F . 3) which favor the sta-consideration ns as shown in ig.
H ever for most transi-f the CsCl structure. However, or

promotion energiess the fcc-sc an cc-sc pro- -E- -.,-.l-,.-d
t}1 tth 1 t 1 t 1g g

n ener that is quite ig wi
structure, whic is mos

c . Paxton et al. show that or e
dbSc~Cu, the eleme ntal fcc-sc an cc-s

gies are all nega
'ative and larger in magni u e

e as 1.0 eV/atom. Thusm and may be as large as . e a
th — d ii tructures are very un-the energy of ththe sc-base a oy s r

b -based alloy struc-s ect to the fcc- or cc- asep
uentl even thoug

1ate a lar e negative e ec ros a i
cture is never observed in transi ion methis structure is never o se

energy are more than
ofFset by large cos"costs' in e pro

consider the relative sta i i y obilit of fcc- and
bcc-base a oy sd allo structures ase on

t on energy terms. Weectrostatic and promotion ener
h M d 1 ng energies for thehave schematica y drawnt e a eu

f us values ofand D022 structures for various v

ll th 1 t d fmotion energ'r ies are very sma, e re a
it should be essentia yll those of Fig. 3,

bl H

us corn ounds will e a ec e

bcc 0 dth t bit
constituents in t e cc s ruc

1 o i o '1the CsC s ru1 structure due to electros a ic co
t' ergies regardless ofb the promotion energies,

nitude. However, the situa ion
ted in alloys for whic one or mo
is fcc. First, consi er e cas

and "40" structures will then be eci e y
t has t e ig er eh' h lemental promotion energy:

h h oto [gs the hi er promo
'

tured in Fig. 4 c then E "& — &+
th "40" hsCl will be lower in energy t anbcc-based s w

her romotion energy,ever if the fcc element has a ig er pro

a
I

CD

6$

CB
I

LLI

(b)

( c40!9

CsCI

CsCI

40

CsCI

~ ~

I 140o

CsCI

FIG. 4. Schematic represen-
tations of Madelung energies
as a function of composition

structures with vanous values
of elemental promotion ener-

structures are shown as squares
(circles) connecte yb solid
(dashed) lines.

Concentration



6884 C. WOLVERTON AND ALEX ZUNGER

E&+& —E&+& ( 0 and the orders of stability could be
reversed, provided that E&+& —E&+& is sufficiently neg-
ative so as to overcome the difI'erence between the CsCl
and "40" electrostatic energies. If both elements of the
alloy are fcc, the "40" structure will be stable if the pro-
motion energies of one or both of the elements is large
enough that E&+& —E&b'+& (( 0 [Fig. 4(e)]. If both fcc
elements have a small promotion energy [Fig. 4(f)], the
CsCl structure will still be lower in energy due to elec-
trostatic efI'ects. Of the six possible scenarios depicted in
Fig. 4, in only one case is "40" unambiguously predicted
to be stable. Thus this provides a partial explanation
for the near absence of experimentally observed alloys
with the "40" structure: For highly ionic systems, the
"40" structure is the lowest energy fcc base-d structure;
however, the CsCl structure can accommodate an even
more negative electrostatic energy. Thus in many ionic
alloy systems, this bcc structure will form even if the
constituents of the alloy are fcc, provided that the pro-
motion energies of the elements are not too large (e.g. ,
CuPd, AlNi, CaPd, etc.). However, we predict that the
")0"structure should be stable for an ionic alloy system
composed of fcc elements, one or both of which possess a
large fcc-bcc promotion energy

Many alloys (e.g. , CuOs, AuIr, AgRu, LaRe, and
CuRu) which possess the above criteria favoring forma-
tion of the "40" structure (high ionicity and a large fcc-
bcc promotion energy) have formation energies which are
positive, implying phase separation rather than order-
ing. Thus, in these alloys, although we predict that the
"40" structure should have an energy lower than the CsCl
structure, a phase separated mixture of the constituents

(A+ B) will have an even lower energy and thus could
be stable. Furthermore, our discussion has been limited
mainly to the relative stabilities of the CsCl and "40"
structures. In certain alloys, the residual, nonelectro-
static terms E, , can play a crucial role and even though
the "40" structure may be stable with respect to the CsCl
structure, another alloy conGguration could prove to be
still lower in energy. The above statements provide even
more explanation for the relative scarcity of the observa-
tion of the "40" structure in binary alloys.

C. T g 0 K SRO in the bcc and sc Madelung lattices

The Monte Carlo and mean-field calculated SRO(k)
are contrasted in Fig. 5 for the unfrustrated bcc and sc
Madelung lattices. The SRO in Fig. 5 is shown in the
form of contour plots in the (hk0) and (hkk) planes for
the bcc and sc lattices, respectively. Black shading inside
the highest contour locates the peaks in the SRO pattern.
For the Monte Carlo calculations of the SRO, tempera-
tures were chosen just above the order-disorder transi-
tion and the mean-Geld calculations were performed at
a temperature such that the peak intensity of the mean-
field SRO matched that of Monte Carlo. These temper-
atures are given in the caption of Fig. 5 and it may be
seen that the mean-field temperatures are roughly 10—
20% higher than the corresponding Monte Carlo values.
This relatively small error in the mean-field approxima-
tion is not uncommon for situations in phase stability in
which frustration plays only a minor role. The simu-
lated annealing calculations indicate that the transitions

SRO of the bcc Madelung lattice SRO of the sc Madelung lattice

(a) x=1/4

(020) (220)

(b) x=1/2

(020) '

Q~~~WJ (220)

(c) x=1/4 (d) x=1/2

Monte-Carlo

(ooo) '

f~~~Q~D l

(2oo) (000) (200) (000) (200)

(020) ' ~4~~3 i (220)

Mean-field

(000) Inn~~n ~, (2oo) Wwwnn~~ (000) (200) 1200)

FIG. 5. Short-range order of the bcc [(a) and (b)] and sc [(c) and (d)] Madelung lattices for alloy compositions z = 1/4 and
1/2. The Monte Carlo and mean-field calculated SRO patterns are shown as contour plots (in Laue units) in the (hko) plane
for the bcc and the (hkk) plane for the sc Madelung lattice. The black shaded regions inside the highest contours locate the
peaks in the SRO. The temperatures (in units of Q p/2dks, where ks is the Boltzmann constant) at which the Monte Carlo
(mean-field) calculations were performed for (a)—(d) are 2.15 (2.53), 3.02 (3.37), 1.98 (2.41), and 2.84 (3.24).



SHORT- AND LONG-RANGE ORDER OF THE BINARY. . . 6885

&om the high-temperature disordered phase to the low-
temperature CsCl or NaC1 structure are both second or-
der (or weakly first order) and therefore without further
refinements to the Monte Carlo (such as finite size scal-
ing), we cannot give accurate values of the transition tem-
peratures. The Monte Carlo calculations show that the
SRO peaks at the (1QQ) points for bcc and the —(ill)
points for sc lattices for all compositions. These k vec-
tors are identical to those for the long-range ordered CsCl
and NaCl states, the T=O K ground states for bcc and sc.
Consequently, the mean-field calculations show remark-
ably good agreement with Monte Carlo.

D. T g 0 K SRO in the fcc Madelung lattice:
A failure of mean-field theory

The SRO(k) for the fcc Madelung lattice from Monte
Carlo and mean-field (with and without Onsager correc-

tions) calculations are contrasted in Fig. 6 as contour
plots in the (hkQ) plane. Black shading inside the high-
est contour locates the peaks in the SRO patterns. The
Monte Carlo calculations show the transitions on the fcc
lattice to be first order (marked by a strong discontinu-
ity in the internal energy as a function of temperature)
and the transition temperatures are given in Table III.
As in the bcc and sc cases, temperatures for the Monte
Carlo calculation of the SRO were chosen just above the
order-disorder transition (typically, TsRci = 1.Q2T, ), and
the mean-field calculations were performed at a temper-
ature such that the peak intensity of the mean-field SRO
matched that of the Monte Carlo calculation. These tern-
peratures are given in the caption of Fig. 6. The mean-
field calculations both with and without Onsager correc-
tions in Fig. 6 show that at all compositions x, the SRO
peaks at the (1z0) points, consistent with the nature of
the I RO states, but in conHict with the Monte Carlo
calculations (see also Table III). Thus the Onsager cor-

SRO of the fcc Madelung lattice

(a) x=1/5 (b) x=1/4 (c) x=1/3 (d) x=1/2

Monte-Carlo

Mean-field

Mean-field

(with Onsager)

PIG. 6. ShShort-range order of the fcc Madelung lattice as a function of allo corn osition x.
Carlo and mean-field (without and with 0

ice as a unc ion o a oy composition x. The SRO patterns from Monte
i ou an wi nsager corrections) calculations are shown for (ai x = 1 '5 b x =

1/3, and (d) x = 1/2 as contour plots in the (hk0) plan (' I ' Th bl k h
1o t th k i th SRO Th
Monte Carlo the mean-fi ld d

'
s o Q ~/ ii, w ere kii is the Boltzmann constant) at which the

(b) 0.96 1.62 0 84; ( ); (c) 0.95, 1.95, 1.02; and (d) 0.93, 2.08, 1.00.
g corrections calculations were performed are (a) 0.86 1.41 0.74 )



6886 C. WOLVERTON AND ALEX ZUNGER

TABLE III. Properties of the fcc Madelung lattice as a function of composition x. The long-range
ordered ground states are given, as are the reciprocal-space peak positions of the SRO, as determined
by Monte Carlo (MC) and mean-field (MF) statistics. AE/Ji is the normalized T=o Madelung
energy difference between the (100)- and (1—0)-type structures normalized by the effective near-

est-neighbor pair interaction Ji. For x = 1/4 it is AE/Ji ——[E(Llz) —E(D022)]/Ji and for x =
1/2 it is AE/Ji ——[E(Llo) —E("40")]/J i. Transition temperatures T, as determined by Monte
Carlo are given in units of (16A) /2dke, where ke is the Boltzmann constant.

Stoichiometry
Ground state
SRO (MC)
SRO (MF)

AE/ Ji
T, (MC)

x = 1
5

A4B
A+ Dpgg

(100)
(1-'0)

x == 1
4

A3B
Do„
(loo)
(110)
+0.065

0.95

x=3—1

A2B
D022 + "40"
(100), (1—0)

(1-'0)

x=1
2

AB
cc40))

(1 —,'o)
(1-', 0)
+0.130

0.91

rection does not change the dominant wave vectors of
the SRO (this correction serves, however, to renormalize
the temperature scale). In contrast to mean-field cal-
culations, which show SRO peaks at the (120) points,
the Monte Carlo calculations clearly show that the SBO
peaks actually exist at the (100) points for x = — and —,
tvhereas for x = s, there are peaks at both the (120) and
(100) points of nearly equal intensity. Of the composi-
tions considered, only x =

2 shows peaks at the (120)
points, as computed by Monte Carlo. Thus, for several
compositions, the dominant wave vectors of the SRO are
not equivalent to those of the LRO, in qualitative con-
trast with mean-field theory.

The crossover between the (1&0)- and (100)-point SRO
intensities is shown in Fig. 7. In this figure, the normal-
ized SRO of type k, i.e. , B(k) = SRO(k)/[SRO(100) +
SRO(120)] is plotted (for k=(1&0) and k=(100)) as a
function of alloy composition. The crossover occurs for
compositions x 0.33 and x 0.67. The mean-field

0.8
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~ o 0.6
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C +
(D

c o 0.5
CD 0
e ~ 0.4
E
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0.2

(100)

Mean-field result

0.2 0.4

(1 1/2 0)

R(1 1/2 0)

R(100)
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(100)

0.8

Concentration (x)

FIG. 7. (100) versus (1—0) SRO intensity for the fcc
Madelung lattice as a function of alloy composition. The
crossover between (100)- and (1—0)-point SRO occurs at
x 0.33 and x 0.67 for the Monte Carlo calculations,
whereas mean-field calculations of the SRO show no such
crossover and indicate (1—0)-point SRO throughout the en-
tire concentration range. (The symbols represent the actual
calculated points; curves are drawn merely to guide the eye. )
The Monte Carlo (mean-field) results are shown by the solid
(dashed) curves.

calculations show no such crossover and thus fail quali-
tatively for x + 0.33 and x & 0.67. Also, it should be
noted that there exists no composition for which there
is quantitative agreement between mean-field and Monte
Carlo calculations.

The non-mean-Beld behavior of the SRO of the fcc
Madelung lattice may be understood in terms of the
model calculations of Fig. 8. In this figure, the normal-
ized SRO of type k at x =

2 is plotted as a function of
the energy difference AE = E(Llo) —E("40") normal-
ized by Ji. For x = 4, we use AE = E(L12) —E(D02z).
These calculations are performed for a variety of diferent
sets and ranges of model efFective interactions Jt (i.e. ,

not those of the Madelung lattice). The solid vertical
lines delineate (100) from (120) LRO and the dashed
vertical lines separate (100) from (120) SRO, as com-
puted by Monte Carlo. Thus the region between the ver-
tical solid and dashed lines indicates regions of parameter
space where the SRO is of (100) type while the LRO is of
(1z0) type. Mean-field calculations exhibit no such re-
gion; thus we refer to this portion of parameter space as
the "non-mean-Beld region. " It was initially believed
that Pd3V alloys should fall in this non-mean-Beld region
since they are observed to exhibit (100) SRO and (1&0)
LRO. However, it was later shown that realistic interac-
tion parameters place Pd3V well outside this region, with
ksRci g kLRo in PdsV being due to finite-temperature
excitations, which at high temperatures lower the value
of AE/Ji. As we see here, it is possible to have the
non-mean-field behavior not only at x = 4, but also at
x = —,i.e. , one can have (100) SRO coincident with a
ground state of "40," composed entirely of (1-0) compo-
sition waves. Thus, since this non-mean-field behavior is
possible at both x =

4 and x = 2, one might ask why
it occurs for the Madelung model at x = 4, but not at
x = 2. This question can be answered by considering
the values of AE/Ji for the fcc Madelung lattice (given
in Table III), in conjunction with the model calculations
of Fig. 8 which involve interaction sets consisting of first-
through fourth-nearest-neighbor pair interactions [Figs.
8(b) and 8(d)]. For x = —,the fcc Coulomb lattice has

AE(Llz —D022)/ Ji ——+0.065, which places it well within
the non-mean-field region of Fig. 8(d), which extends
from 0 ( AE(L12 —D022)/Ji + +0.14. However, for
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FIG. 8. Model calculations of the normalized SRO intensity R(k) as a function of AE/Ji with (a) and (c) first- and
second-neighbor pair interactions and (b) and (d) first- through fourth-neighbor pair interactions. Parts (a) and (b) indicate
calculations performed for composition x = 1/2 and (c) and (d) indicate analogous calculations for x = 1/4. The squares and
circles indicate the Monte Carlo results for R(100) and R(1—0), respectively. The Monte Carlo computations were all performed
at T = 1.1T„and T = 2.6T (2.2T, ) was used for the mean-field computations at x = 1/2 (1/4). In (b) and (d) the four pair
model interactions were chosen at random with the constraints that no interaction (except Ji) has magnitude greater than
0.2Ji and all interactions sets for x = 1/2 (1/4) have as ground states either Llo or "40" (L12 or D022). The vertical solid
(dashed) lines delineate (1—0) from (100) LRO (SRO).

x = —,the fcc Coulomb lattice has AE(Llo "40")/Ji =—
+0.130, precisely twice as large, and consequently does
not fall within the non-mean-field region of Fig. 8(b),
which encompasses 0 & DE(Llz —D022)/Ji & +0.10.
Thus, due to the following two facts, the Madelung lat-
tice does not exhibit non-mean-field behavior for x = 2,
but does for x = 4'. The non-mean-field region is slightly

smaller and EE/ Ji is twice as large for x = —compared
to x = 4.

E. Implications of the failure
of the mean-field theory of SRO

The qualitative failure of the mean-field theory of SRO
[Eq. (14)] for the Madelung lattice has important ram-
ifications for practitioners of electronic-structure tech-
niques based on the single-site coherent-potential approx-
imation (S-CPA). The energy of the random (R) alley of
composition x can be written as

Here the first term Eh( (x) denotes the contribution
of a hypothetical system lacking any correlations among
the charges of site i and its neighbors i + k [so Q, oc S;

and hence EM —0] and any atomic relaxations (size

efFect). E& (x) could therefore be obtained, in princi-

ple, for a huge supercell with Q; oc S, using LDA. This
term E& (x) is often calculatedzs'2s by the S-CPA.(R)

The next two terms in Eq. (19) denote the contributions
to the random alloy energy of correlated charge transfer
and atomic relaxations, respectively. The calculations of
the properties of the random alloy using the S-CPA ne-

glect both correlations between charges [EM of Eq. (19)]
and atomic relaxations [E„i„ofEq. (19)]. Recently, a
modification of the S-CPA has been adopted which ac-
counts for the previously neglected nonzero Madelung
contributions EM to the total energy of a random alloy
which arise due to the correlations between charges. It
was shown not only that this "charge-correlated" (CC)
CPA produced formation energies of random alloys which
were significantly disparate Rom those computed without
charge correlations, but also that the inclusion of charge-
correlations into the CPA lead to excess charges which
depend very nearly linearly on the number of unlike near-
est neighbors, i.e. , that the CC-CPA was in quantitative
agreement with Eq. (3) and hence in agreement with the
Madelung model used in this paper. Thus the SRO cal-
culations of the fcc Madelung lattice in this paper may be
thought of (in terms of the CPA) as the difference in SRO
one would calculate between using the S-CPA and the
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CC-CPA. Many current SRO calculations based on the S-
CPA (Refs. 26 and 32—35) employ the mean-field approx-
imation but neglect charge correlations. Even if these
SRO calculations are improved to include charge corre-
lations, our results demonstrate that for fcc alloys with
compositions x & 0.33 or x & 0.67 a mean-field statisti-
cal treatment (mith or mithout Onsager corrections) mill
qualitatively fail for the difference in SRO between the
current calculations (with the S-CPA neglecting charge
correlations) and ones that take into account Madelung
contributions to the total energy.

F. The scale of Madelung energies
in random and short-range ordered alloys

From Figs. 6 and 7 it is clear that the differences be-
tween fcc Monte Carlo and mean-field SRO computations
are significant at the calculated temperatures, given in
the caption of Fig. 6 in units of (16A) /2dk~. However,
it still remains to assess the approximate scale of A for
real alloy systems and hence to determine whether or
not the temperatures of the calculations in this paper
correspond to a relevant range at which SRO is normally
measured or computed. Prom Fig. 3 it is clear that the
scale of the formation energies of the Madelung lattice
(in units of Q /2d) is roughly equal to the scale of the
temperatures used in this paper (in units of Q /2dk~),
as both these energies are of the order of one. Thus, if we
could estimate the portion of the formation energy due to
charge correlations of the random state for real alloy sys-
tems LE~, this would provide a rough estimate for the
temperature scale of the calculations presented here T~.
Recent model calculations of GEM come &om several(R)

authors, ' who compared the formation energies of a
few random Ai B alloys using the S-CPA (which has
a zero Madelung energy) and a charge transfer corrected
CPA. The difference between these calculations gives us

an estimate of GEM((R)

GEM (Cup sZnp s) = —1.25 mRy/atom, T~ = 200 K;(R)

GEM (Cup sAup s) = —5.3 mRy/atom, TM = 840 K;(R)

(20)

GEM (Nip sAlp s) = —7.7 mRy/atom, TM = 1200 K;

GEM (Lip sAlp s) = —16.0 mRy/atom, TM = 2500 K.

Additionally, Lu et al. give values2 of A = 5.5 x
10 3, 6.2 x 10, and 1.3 x 10 2 for fcc Cup 5Pdp 5,
Cup 75Pdp ~5, and Cup 75Aup 25 alloys, which lead to the
estimates

GEM (Cup sPdp s) = —1.1 mRy/atom, TM = 170 K;(R)

4E~ (Cup 75Pdp 2s) = —1.1 mRy/atom, TM = 170 K;(R)

(21)

AE~ (Cup ysAup s) = —4.8 mRy/atoin, TM = 760 K.(R)

For the more ionic alloys, the addition of the Madelung
energies results in significant changes in the calculated
heats of formation, as the Madelung corrections are the

AE '"(x, T) = AEh~ l (x) + AE~~l(x)

+DE~„„(x)+ bE (x, T). (22)

Now bE GEM, and LE,
&

„must all lower the mix-

ing energy with respect to LEh . Thus it is sim-

ply not appropriate to compare AEh (as, e.g. , com-

puted by the S-CPA) with values of AE '" given by
experiment, unless one has independently verified that
the contributions bE, GEM, and LE,

&
are allSRO (R)

small. For Cup 5Aup 5 alloys, there are estimates of all
the terms of Eq. (22) reported in the literature: Wein-

berger et al. have recently reported LE& ———57(R)

meV/atom for Cup sAup s, using a fully relativistic S-

CPA. Johnson and Pinski calculated GEM ———72
meV/atom and Amador and Bozzolosi calculated hEsRO

—65 meV/atom. As for AE„& „, Lu et al. cal-
culated the relaxation for the ordered CuAu structure
to be —29 meV/atom. The value is presumably more
negative for the random alloy having lower symmetry.
Thus it is clear that for Cup 5Aup 5, a comparison of
LEh directly with the experimental values of —53 or
—71 meV/atom (Ref. 52) neglects contributions bEsR+,

GEM, and AE„&, which may contribute as much as(R)

—170 meV/atom to the mixing energy.
The term bEsR (x, T) in Eq. (22) due to SRO im-

plicitly contains contributions due to the homogeneous
medium, Madelung corrections, and relaxations. Thus
the mixing energy of the short-range ordered Madelung
lattice may be divided into a contribution of the random
alloy and a correction due to SRO:

REM'"(x, T) = b,E~~l(x) + hEM (x, T). (23)

It is interesting to determine the size of each of the contri-
butions GEM and bE~ . Figure 9 shows the internal
energy versus temperature for the fcc Madelung lattice
at x = 0.5, as calculated by Monte Carlo simulated an-
nealing. Even up to a temperature that is four times the
transition temperature, the effect of SRO on the energy

same order of magnitude as typical heats of mixing. In
the Li-Al system, the magnitude of the Madelung energy
of random alloys is so large as to even change the sign
of the calculated heats of formation. Also in the more
ionic alloys, TM is certainly consistent with the scale of
temperatures at which SRO is normally measured. Thus,
for ionic materials, the effects described in this paper are
not small and could likely show a sizeable contribution
to the diffuse scattered intensity.

It is interesting to compare the Madelung correction
GEM for the random alloy energy to the total mixing
energy. The mixing energies of disordered alloys are ex-
perimentally measured not for the random state (which
would only occur at infinite temperature), but rather for
the short-range ordered state. Thus, in addition to the
contributions of the random alloy given in Eq. (19), the
mixing energy for disordered alloy at finite temperature
has a contribution due to SRO:
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TABLE IV. Dominant wave vectors of the long- and
short-range order for the fcc, bcc, and sc Madelung lattices.
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FIG. 9. Internal energy as a function of temperature for
the fcc Madelung lattice at x = 1/2. Indicated are the contri-
butions to the Madelung energy due to (i) the random alloy,
(li) the short-range ordered alloy (the difference between the
calculated energy at finite T ) T, and the energy at infinite
temperature), and (iii) the long-range ordered alloy (the dif-
ference between the calculated energy at finite T ( T, and the
energy at T = 0 K). Note the sharp discontinuity at T = T,
as the alloy undergoes a first-order transition between the
disordered and LRO ("40") state.

is sizeable, as the hENI at T = 4T, is roughly 25'/ of

GEM . At temperatures closer to T, the effect due to(R)

SRO is ampli6ed and the energy of the SRO state may be
& 60'/ lower than the random alloy energy. Also shown
in Fig. 9 is the contribution to GEM due to LRO, i.e.,
the difference between GEM of the completely ordered
state and that at finite T ( T . In contrast to the effect
of SRO, GEM(LRO) appears to be quite small, even at
temperatures close to T,. Thus, any attempts to compare
theoretical formation energies of disordered alloys with
those of experiment should of course include the contri-
butions to SRO. As has been recently demonstrated
for total energies, the contributions due to SRO can be
quite sizeable: For the slightly reactive alloys Nip 5Ptp 5
and Cup 5Aup 5, Amador and Bozzolo have estimated
the effects of SRO on the energy of mixing to be roughly
—70 meV/atom at teinperatures slightly above the ex-
perimental order-disorder transition. In both of these
materials, the inclusion of SRO is shown to reverse the
sign of energy of mixing, compared with a calculation
of the completely random alloy. We show here that, for
ionic materials, any attempt to include Madelung con-
tributions to the formation energy of a disordered alloy
must include not only the random state Madelung energy,
but also the contributions due to SRO.

lations. The ground states and dominant wave vectors
for long- and short-range order are summarized in Table
IV. We find the following. (i) We confirm the results
of Magri et at. that the three lowest energy configura-
tions of the fcc Madelung lattice are the D022 (AsB and
ABs) and "40" (AB) structures, all of which are com-
posed out of composition waves along the (120) direction.
Additionally, we find the ground states of the bcc and sc
Madelung lattices to be the CsCl and NaCl structures,
composed entirely out of (100) and 2(ill) composition
waves, respectively. (ii) The bcc-based CsCl structure
has the highest Madelung constant of any fcc-, bcc-, or
sc-based structure. (iii) For the unfrustrated bcc and sc
lattices, the wave vectors of SRO coincide with those of
LRO, as would be predicted by a mean-field theory. Con-
sequently, Monte Carlo and mean-field calculations of the
SRO agree weil for these cases. (iv) For the frustrated
fcc lattice at x = 1/2, both Monte Carlo and mean-field
calculations show the dominant wave vectors of the SRO
to be (120). (v) However, for 2: & 0.33 and x & 0.67,
Monte Carlo results show SRO which peaks at the (100)
points, in qualitative contrast to mean-6eld theory, which
predicts peaks at the (120) points. Thus, for the dif-
fuse scattering contribution due to electrostatics in fcc
alloys, mean-6eld theory qualitatively fails, as the domi-
nant wave vectors of LRO do not coincide with those of
SRO. (vi) This non-mean-field behavior of the SRO has
a serious implication with respect to calculations based
on the coherent-potential approximation: Mean-6eld cal-
culations of the difference in SRO between the standard-
and charge-transfer-corrected CPA will fail qualitatively.
(vii) The energy and temperature scales of the Madelung
model presented here have been assessed and it is found
that the contributions of Madelung energy to structural
stability and diffuse scattered intensity due to SRO may
be quite large for ionic alloys. (viii) The contribution
of SRO to the energetics of the Madelung model near
the transition temperature is & 60% of that due to the
completely random alloy. Thus any attempt to compare
calculated and experimental formation energies of disor-
dered alloys must include not only the Madelung energy
of the random alloy, but also the electrostatic contribu-
tion due to SRO.

V. CONCLUSIONS

We have examined the long- and short-range order of
the binary Madelung fcc, bcc, and sc lattices. Our results
are based on the charge xnodel of Eq. (3), which has been
shown to be correct for transition metal and semi-
conductor alloys by first-principles charge density calcu-
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