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Electronic consequences of random layer-thickness fluctuations 
in AIAs/GaAs superlattices 

Kurt A. MZder,a) Lin-Wang Wang, and Alex Zunger 
National Renewable Energy Laboratory Golden, Colorado 80401 

(Received 12 June 1995; accepted for publication 24 August 1995) 

We study the effects of a few types of atomic disorder on the electronic and optical properties of 
AlAs/GaAs (001) and (111) superlattices: ii) atomic intermixing across the interfaces; (ii) replacing 
a single monolayer in a superlattice by one containing the opposite atomic type (isoelectronic 6 
doping); and (iii) random layer-thickness fluctuations in superlattices (SL). Type (i) is an example 
of lateral disorder, while types (ii) and (iii) are examples of vertical disorder. Using 
three-dimensional empirical pseudopotential theory and a plane-wave basis, we calculate the band 
gaps, electronic wave functions, and optical matrix elements for systems containing up to 2000 
atoms in the computational unit cell. Spin-orbit interactions are omitted. Computationally much less 
costly effective-mass calculations are used to evaluate the density of states and eigenstates away 
from the band edges in vertically disordered SLs. Our main findings are: (i) Chemical intermixing 
across the interface can significantly shift the SL energy levels and even change the identity (e.g., 
symmetry) of the conduction-band minimum in AlAs/GaAs SLs; (ii) any amount of thickness 
fluctuations in SLs leads to band-edge wave-function localization; (iii) these fluctuation-induced 
bound states will emit photons at energies below the “intrinsic” absorption edge (red shift of 
photoluminescence); (iv) monolayer fluctuations in thick superlattices create a gap level whose 
energy is pinned at the value produced by a single S layer with “wrong” thickness; (v) (001) 
AlAs/GaAs SLs with monolayer thickness fluctuations have a direct band gap, while the ideal (001) 
superlattices are indirect for IZ <4; (vi) there is no mobility edge for vertical transport in a disordered 
superlattice, because all the states are localized; however, the density of states retains some of the 
features of the ordered-superlattice counterpart. We find quantitative agreement with experiments on 
intentionally disordered SLs [A. Sasaki, J. Cryst. Growth 115, 490 (1991)], explaining the strong 
intensity and large red shift of the photoluminescence in the latter system. We provide predictions 
for the case of unintentional disorder. 0 199.5 American Institute of Physics. 

I. INTRODUCTION 

Experimental and theoretical research on semiconductor 
superlattices (SL) has, for a long time, focused on ideal, 
periodic structures: Growers attempt to achieve SLs with 
atomically abrupt interfaces having fixed, predetermined 
layer thicknesses n and fn of the two materials A and G, 
respectively, while theorists calculated the electronic stmc- 
ture of these idial structures by applying periodic boundary 
conditions to a small SL unit cell (A),/(G), . Possible con- 
flicts between experiment (e.g., spectroscopy) and theory 
(e.g., envelope function k.pj are often settled by adjusting 
some of the theoretical fitting parameters (band offsets, Lut- 
tinger parameters, layer thicknesses), thus restoring agree- 
ment with experiment. In recent years, attention has shifted 
somewhat away from ideal to nonideal SLs in two ways: 
Fist, with the advent of more sensitive characterization tech- 
niques, it has become evident that not only are semiconduc- 
tor interfaces almost never ideal, but that this unintentional 
disorder in real samples has discernible spectroscopic and 
transport consequences ‘-lo that should be taken into account 
by theory. Second, intentionally disordered SLs have been 
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EkoIe Normale Supkrieure, 46, All&e d’halie, 69364 Lyon Cedex 07, 
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proposed”.” and grown,13-15 revealing very interesting 
disorder-induced effects on the electronic, transport, and op- 
tical properties. 

Disorder in a SL can be broadly classified in two catego- 
ries: 

ti) 

(ii) 

Lateral disorder in the (x,y) substrate plane’-’ [Fig. 
lb41, and 
Vertical disorder along the SL growth direction (z) in 
the form of discrete layer-thickness fluctuations6-10 
[Fig. 1 (b)]. 

Lateral disorder occurs in the form of chemically inter- 
mixed interfaces,le3 steps, or islands’ protruding from ma- 
terial A into G, and vice versa. The translational symmetry 
of the SL is broken in the (x,&y) plane. When averaging over 
the composition fluctuations in the (x,y) plane, lateral disor- 
der produces a graded, continuous composition profile along 
the z axis. Thus, if all of the interfaces in a laterally disor- 
dered SL are equivalent, the one-dimensional (1 D) periodic- 
ity along the growth direction is preserved on average. 

Vertical disorder, on the other hand, is characterized by a 
discrete composition profile along Z. Here the interfaces are 
reasonably flat in the (x,y) plane, but the A and G layer 
thicknesses fluctuate around their nominal values. The trans- 
lational symmetry of the SL along z is broken, and the dis- 

J. Appl. Phys. 78 (li), 1 December 1995 0021-8979/95/78(11)/6639/19/$6.00 0 1995 American Institute of Physics 6639 
 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.138.41.170 On: Tue, 14 Jul 2015 11:52:34



HG. 1. Schematic representation of various types of disorder in nonideal 
(A),/(G), superlattices: (a) lateral disorder in the interface plane; (b) ver- 
tical disorder along the superlattice orientation. The interface structures 
sketched in cross section in (a) are atomically abrupt (A), “microrough” or 
intermixed (M), rough (R), and stepped or islanded (S/I). (The latter cannot 
be distinguished in cross section.) In (b) the layer thicknesses fluctuate, 
assuming integer values n,m,n’,m’,n”,m” ,... monolayers, while the indi- 
vidual interfaces are atomically flat. “Extended” regions in (a) of uniform 
layer thicknesses n,m,n + 1 ,m? I,... between steppedklanded interfaces 
are indicated with arrows. 

order is “quasi one dimensional” (which does not mean, 
however, that the S&r&linger equation can be separated into 
a 1D disordered and a 2D ordered system). 

Unintentional disorder is likely to consist of both types 
of disorder.‘6*17 The experimentally observable types of dis- 
order depend critically on the coherence length of the experi- 
mental probe (x-ray diffraction, electron microscopy, Raman 
scattering, etc.). Lateral disorder, for example, has been 
shown to exhibit a rather complex “roughness spectrum,” 
i.e., interface roughness occurs on many different length 
scales.“*18 If the roughness spectrum is bimodal’* having 
both a small (“microroughness”) and large (steps, islands) 
size scales, and the coherence length of the probe is much 
larger than the small roughness scale, but smaller than the 
large roughness scale, then the probe will “see” an ensemble 
of different layer thicknesses.16 Photoluminescence spectra 
of multiple quantum wells have often been rationalized in 
these terms, because they exhibited a set of rather sharp 
emission lines that could be attributed to excitonic transitions 
in quantum wells of various thicknesses.7~‘0~‘g If the probe 
involves excitation of a valence hole or a conduction electron 
in a cubic semiconductor, its response will predominantly 
reflect the small length scales (of the order of a few lattice 
constants). Therefore, if lateral imperfections occur in the 
form of atomic intermixing, the effect on the SL band struc- 
ture is noticeable predominantly in short-period SLs, but less 
significant in long-period SLs or multiple quantum wells 
(where the electrons “see” mostly bulk, and little interface). 

If, on the other hand, lateral imperfections consist of large 
islands, or well-separated steps, the system resembles, in 
terms of the electronic structure, a SL with vertical thickness 
fluctuations, since the electrons experience layers of definite, 
but fluctuating, thickness that extend in the (x,y) plane [see 
the interfaces labeled “S/I” in Fig. l(a)]. 

Intentional disorder has been studied mostly in the form 
of vertical disorder.13-15 The general procedure is to define 
certain constraints (“rules”) on the layer thicknesses, and to 
use a random-number generator to establish a particular 
growth sequence obeying these constraints (see Sec. II). Lat- 
eral disorder (e.g., interdiffusion) is unwanted in this case, 
and great care is taken to assess the effects of any possible 
lateral imperfections that could interfere with the wanted ef- 
fects of random vertical disorder. 

Theoretical studies on nonideal semiconductor SLs have 
largely concentrated on strictly one-dimensional one-band 
models, such as Kronig-Penney models using the effective- 
mass approximation (EMA),20-N or one-dimensional tight- 
binding models.*‘.25,26 Within ..lD models, lateral imperfec- 
tions are simulated by graded, continuous potential profiles 
corresponding to composition profiles averaged in the (x,yj 
plane.“,28 Vertical disorder, on the other hand, can be studied 
in the form of mathematically ID models, if one is willing to 
ignore the truly 3D crystal structure of a SL. A vast literature 
exists on localization in ID disordered systems,‘g*30 and 
many exact analytic results have emerged.31-33 For example, 
it is well established that in a one-dimensional disordered 
system all states are in general localized.34 Exceptions to this 
rule exist for deterministic forms of 1D disorder,‘” some of 
which have been realized experimentally in 3D SLs, e.g., 
AlAslGaAs Fibonacci SLs. 13.35,36 

Studies on nonideal SLs using three-dimensional band- 
structure theories are scarce, because large computational 
unit cells are required to simulate the absence of periodic&y 
in one, two, or even three dimensions. For example, atomic 
intermixing in (A~As),/(G~As), (001) SLs has been studied 
using the local-density approximation (LDA) by considering 
reconstructed interfacial unit cells with atomic swaps across 
the interface.s7 3D tight-binding calculations on disordered 
SLs were described by Wang et ~l.,~‘-~’ and on quasiperi- 
odic SLs by Hirose and co-workers36 and by Kumar and 
Ananthakrishna.“’ Chen and Xiong42 used a four-band 
Luttinger-Kohn Hamiltonian to calculate the hole subband 
structure in disordered AlAs/GaAs SLs. 

In this article we present 3D electronic structure calcu- 
lations on AlAs/GaAs (001) and (111) SLs with fluctuating 
layer thicknesses (vertical disorder) and with interfacial 
roughness (lateral disorder), thus simulating both intentional 
and unintentional thickness fluctuations. A 3D description of 
the energy bands is particularly important for short-period 
AlAslGaAs SLs, because of strong coupling between bands 
originating from different points in the Brillouin zone. Dis- 
ordered SLs have shown surprising and unique optical prop- 
erties relative to their ordered counterparts with the same 
composition: 

(a) strong and initially fast decaying (lifetime Q- =0.25 ns 
at T=77 K) photoluminescence (PL) intensity 43 even 
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though the equivalent ordered (AUs),/(GaAs), SL has 
an indirect band gap and thus emits both weakly and 
slowly; 

(b) A large red shift (-60 meV) of the PL peak44*45 with 
respect to the equivalent o-SL; 

(c) An order-of-magnitude slower rate of reduction of the 
PL intensity with temperatureP6 and 

(d) Nonexponential PL intensity decay -at long times45 
(-Pd. 

These unusual properties of d-SLs appear very attractive for 
optoelectronic applications.a A short account of our results 
on these two types of intentionally disordered SLs has been 
published in Ref. 47. 

In modeling the electronic structure of a d-SL, one faces 
difficulties arising from the existence of two entirely differ- 
ent length scales: 

Ci > The lack of translational symmetry requires the use of 
unit cells with a macroscopic length N=lOOO mono- 
layers @IL), equal to the total length of the d-SL 
@Id=300 nm, where d is the monolayer thickness); 

(ii) The spatial variations of the electron potential, how- 
ever, occur on a microscopic length scale of about 0.1 
nm. 

While it is possible to rescale the microscopic length scale 
by replacing the periodic atomic potential by an external, 
rectangular potential, this approach fails to describe impor- 
tant features of the band structure [e.g., the indirect gap of 
the (AlAs)s/(GaAs), o-SL] in the present regime of rapid 
layer fluctuations. To overcome the problems arising from 
the existence of two disparate length scales, we extended a 
microscopic pseudopotential description of the electron 
structure to a macroscopic length scale necessitated by the 
absence of translational symmetry. We use fixed (screened) 
atomic pseudopotentials that were carefully fitted to bulk 
band structures, effective masses, deformation potentials, 
band offsets, and energy levels in superlattices. This is also 
called the empirical pseudopotential method (EPM) in the 
following. The wave functions are expanded in a basis of 
plane waves. We solve the Schrijdinger problem using the 
“folded-spectrum” method,4g where eigenstates are obtained 
directly in an energy window of interest (e.g., near the band 
gap), without having to solve for any of the lower-lying 
eigenstates first, thus circumventing the need for orthogonal- 
ization. The effort scales linearly with the number of atoms, 
allowing us to use the realistic, three-dimensional pseudopo- 
tentials, and to solve the Schrijdinger equation in a highly 
flexible plane-wave basis even for N=lOOO ML. Following 
these accurate pseudopotential calculations, we also per- 
formed EMA calculations 

Cij to check the validity of the effective mass method, 
and 

(ii) to obtain some statistical properties of the electronic 
states away from the band edge. 

The remainder of the article is organized as follows. In 
Sec. II we describe the structure of the studied SLs. The 
electronic Hamiltonians are discussed in Sec. III. In Sec. IV 

pseudopotential and 1D effective-mass results on disordered 
SLs are presented. Conclusions and a summary are presented 
in Sec. V. 

II. MODELING THE STRUCTURE OF SUPEFlLATTlCES 
WITH RANDOM LAYER-THICKNESS FLUCTUATIONS 

An ordered, ideal superlattice is characterized by a unit 
cell A JG, -that is repeated periodically, and which contains 
n monolayers of material A and m monolayers of material 
G, respectively. The repeat period of the SL is A4 = n + m. If, 
however, instead of the periodic sequence n,m,n,m,... we 
have random layer-thickness fluctuations, the growth se- 
quence is given by n,m,nf,m’,nN,mN,..., where the indi- 
vidual layer thicknesses are no longer repeated periodically 
[see Fig. l(b)]. The SL is thus no longer described by the 
small, n + m atoms unit cell A,IG, . Instead, we use a large 
unit cell that can be described by (normalized) distribution 
functions p*(n) and pG(n) denoting the probability of find- 
ing a layer of material a=A, or LY=G with thickness of-n 
monolayers. We usually require that an A layer will be fol- 
lowed by a G layer, and vice versa. [This constraint can, 
however, be easily relaxed by allowing p,(O)>O. For ex- 
ample, pG(0)>O means “skip a layer of material G” with 
probability pG(0).] By requiring the two materials A and G 
to. alternate, one considers in effect the joint distribution 
function P(A,G,) of one-dimensional “molecules” A,G, , 
rather than the individual p (y. If the distribution functions pA 
and pG are uncorrelated, we have 

P!A,G,)=PA(n)Pc(m). (1) 

Sasaki et al.” chose this type of random sequence, with 
pA(n)=po(n)=p(n), for A=AlAs and G=GaAs. These 
authors chose p(n) to be nonzero only for a set of small 
i.ntegers,e.g.,p(l)=p(2)=p(3)=~andotherwisep(n)=O. 
The form of Eq. (1) is also expected in SLs with uninten- 
tional random thickness fluctuations, if these fluctuations do 
not depend on the material deposition sequence (i.e., if there 
are no asymmetries of growing G-on-A with respect to 
growing A-on-G). 

Modifications of Eq. (1) have also been considered in 
intentionally disordered SLs. Chomette et al. l4 fixed the 
thickness of the AlAs segments to a constant no, hence, 
P(A,G,) =pc(m) &n-no), (where no= IO), and pa(m) 
was chosen to be a discrete Gaussian distribution around a 
mean thickness (m) -10 ML. Arent et aZ.,45 on the other 
hand, fixed the length M= n + m of each “molecule” using 
P(A,G,-,) =p(n), where the distribution p(n) was chosen 
to be the same as that used by Sasaki et ~1.‘~ In this approach 
PA(n) and pc(m) are completely correlated, since knowl- 
edge of one completely specifies the other. Therefore, in con- 
trast to Sasaki et aZ.‘s d-SL, Arent et al’s variation corre- 
sponds to partially ordered SLs (PO-SL), retaining long-range 
order. 

The presence or absence of long-range order along the 
SL direction is conveniently measured in terms of the 
“layer-layer pair correlation function: (II,(i)). To calculate 
it, one assigns a pseudospin variable Si of value + 1 (- 1) if 
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R=I 

-0.50 

-0.75 

-1.00 
I 2 3 4 s 6 7 8 9 10 11 12 

Inter-layer separation 

FIG. 2. Layer-layer correlation function (lI&j) [Eq. (2)] of (a) an ordered 
(A)*/(G)? superlattice (o-SL), (b) a disordered superlattice (d-SL) with a 
small degree R= l/10 of thickness fluctuations [Eq. (3)], and (c) a dSL with 
maximum disorder R = 1. 

monolayer i is occupied by material A(G). The pair- 
correlation function for two monolayers separated by dis- 
tance j is 

0-1 

where sum runs over the N monolayers of a particular real- 
ization of the SL, and the angular brackets denote a configu- 
rational average. In an ordered A,IG, SL we have in Eq. (2) 
N=n fm and (II,(j)) is a periodic function with periodicity 
n+m. This is illustrated in Fig. 2(a) for an AZ/G2 o-SL, 
where (II,(j)) is seen to be a (discrete) periodic function 
with amplitude unity and periodicity N=a + m =4. For a 
disordered SL, however, we must perform the contigura- 
tional average in Eq. (21, or equivalently consider the limit 
N-+m of a particular realization of length N. Figure 2(b) 
shows (l&(j)) of a d-SL with a small degree of disorder 

6642 J. Appt. Phys., Vol. 78, No. 11, 1 December 1995 Milder, Wang, and Zunger 

b(2)=% andp(l)=p(3)=$, i.e., for a d-SL with average 
layer thicknesses (n)=2 corresponding to the exact layer 
thicknesses of the “parent” o-SL depicted in Fig. 2(a). Fig- 
ure 2(c) shows the same quantity for a large degree of dis- 
order, viz, p(l)=p(2)=p(3)=f. We see that (JJ2(jj) de- 
cays much more rapidly than in Fig. 2(b), and its magnitude 
is less than 0.1 for j&6. 

In the special case of monolayer thickness fluctuations 
n ’ = n + 1 around a given (ideal) layer thickness n we can 
define a single “order parameter” R. It is given by the rela- 
tive frequency of the respective thickness Fluctuations p1+ 1 
and n-l, i.e., 

R=Pin+l) p(n-1) -=--- 
pia) P(n) * 

(3) 

Because the distribution p(n’> is normalized, we can write 
p(n)=l/(l+2R) andp(ntl)=R/(l+2R). Fortheideal, 
ordered ni(n superlattice R=O, and p(n’)= 6(n’-n), 
whereas for a d-SL with R= 1 all three layer thicknesses 
{n - 1 ,YL,IZ + 1) occur with equal probability p = 3. The mini- 
mum value of R that can be reached in a SL of finite length 
N corresponds to a single “chain mutation,” (a single 
&doped layer), and is R=2nIN. In the following we often 
refer to this limiting case by the notation R - -+O (distinct from 
R=O), since even in the limit N--+m the presence of a single 
thickness fluctuation should be distinguished from the or- 
dered SL with R =O. To connect the parameter R to the more 
general Eq. (2), we plot in Fig. 2(b) the function (l&(j)) of a 
d-SL with a small amount of thickness fluctuations R =& 
(i.e., one out of ten layers has a thickness of n+l or n-l 
ML, respectivelyj. Indeed, the correlation function decays 
much more slowly than in the d-SL with R= 1 depicted in 
Fig. 2(c), and the “ideal” periodic&y of 4 ML is still clearly 
discernible. 

The one-dimensional Fourier transform of the real-space 
correlation functions of Eq. (2) equals lS(k,,)12, where k,, is a 
wave vector along the SL direction. The form factor [ S(k,,) I2 
is proportional to the diffuse scattering intensity of a kine- 
matic scattering experiment at zero temperature. Figure 3(a) 
shows j~(k,,) I2 of the ordered SL with correlation function 
(II,(j)) depicted in Fig. 2(a), fork,, lying in the first Brillouin 
zone of the empty linear chain. Clearly, the “diffuse scatter- 
ing” of the o-SL consists of the new Bragg, or satellite peaks 
at k,,=$, f, 1 of a linear chain with a unit cell four times as 
large as that of the empty chain. (The peak at k,,=$ vanishes 
because of the particular unit cell choice n=m=2.) (~(k,,)j~ 
of the d-SLs with R = b and R= 1 are shown in Figs. 3(b) 
and 3(c), respectively. The absence of long-range order leads 
to true diffuse scattering throughout the 1D Brillouin zone. 
The average periodicity ( PZ) + (m) =4 still leaves fingerprints 
at the peak positions of the o-SL. (In the case R = 1, there is 
also a maximum at the previously forbidden wave vector 
k,,=&) 

In the special case of a partially ordered SL,45 the layer- 
layer correlation function (II,(j)) is periodic, but its ampli- 
tude is smaller than that of the ideal o-SL. Figure 4 shows 
(II,(j)) for po-SLs with (n) =2, R =&, and R = 1 exhibiting 
clear long-range order without amplitude decay. The corre- 
sponding diffuse scattering (Fig. 5) is characterized by the 
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‘a 
disordered 

K L---l Q ,w (d-S’-) 
R = l/10 

R=l 

0.25 0.50 0.75 

wavevector along [OOl] (2 nl d) 

FIG. 3. The diffuse scattering intensities IS(k,,)l’ of the d-SLs shown in 
Figs. 2(a), 2(b), and 2(c), respectively. 

coexistence of rather strong peaks at the O-SL peak positions 
(marked by vertical impulses) and a diffuse background of 
comparable amplitude than in a d-SL (Fig. 3). 

The appearance of diffuse scattering intensity in a d-SL 
is in fact a manifestation of the relaxation of the k,, selection 
rule due to the breaking of translational symmetry in the 
d-SL. We see in the following sections that the relaxation of 
the k,,-selection rule has a profound effect also on the elec- 
tronic structure of disordered superlattices. 

Ill. ELECTRONIC STRUCTURE CALCULATIONS 

A. Three-dimensional pseudopotential representation 
of the electronic structure 

1. The pseuciopotential and the basis set 

Given the crystal structure of an ordered or disorderd SL 
(Sec. II), we describe its electronic properties via the solution 
of 
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’ ’ 1 ’ ’ ’ 
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FIG. 4. Layer-layer correlation function (U,(j)) [Eq. (2)] of a partially 
ordered superlattice (PO-SL) with (a) R =& and (b) R= 1. 

partially ill I 

R = MO 
1oo _ ordered 

(PO-SL) * 

1.00 

3 
9 0.01 

tf 

wavevector along [OOl] (2 IC/ d) 

FIG. 5. The diffuse scattering intensities IS(k,,)l’ of the po-SLs shown iu 
Figs. 4(a) and 4(b), respectively. 
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[-3V2+V(x,~,~)I~j(x,~,z,k)=~j(k)~j(x,y,z,k), (4) 

where V(x,y,z) is the three-dimensional screened local 
pseudopotential, 

V(r)=? F ~,(b--~m-RnIL 
n 

constructed as a superposition over atom types (Y and unit 
cells y1 of the screened atomic pseudopotentials U,(T). We 
have recently parameterized u ,(r) for a=Ga, Al, and As, so 
as to fit the experimentally measured band structures of bulk 
GaAs and AlAs (throughout the Brillouin zone), effective 
masses and deformation potentials, and the LDA calculated 
electronic wave functions of the short-period 
(GaAs),/(AlAs), superlattices. A detailed comparison of the 
bulk properties calculated with these empirical pseudopoten- 
tials and the experimentally observed properties is given in 
Ref. 48. An important aspect of this pseudopotential is that 
the arsenic potential depends on the identity of its four near- 
est neighbors, i.e., the number of Al and Ga atoms around it. 
This introduces important inter-facial effects: the potential 
V(r) changes from GaAs-like to a mixed GaAlAs type at the 
interface and finally to AlAs-like. Thus, while V (r) is not 
calculated self-consistently, it was constrained to correctly 
describe LDA-calculated superlattices via introduction of 
such interfacial effects. This feature distinguishes our empiri- 
cal pseudopotential calculations from other calculations of 
superlattices (see review of other calculations in Ref. 48). 

Equation (4) is solved by expanding $(r,k) in plane 
waves, 

G 

qbj(r,k) = f$ Ag(k,G)e’(k+G)“, (6) 

where (G} are the reciprocal lattice vectors of the SL. The 
matrix elements of V(r) in the basis set of Eq. (6) are ca.lcu- 
lated by a Fourier transform, with no approximation except 
truncation: The basis set (6) is truncated at some maximum 
value of G,, =2.24 a.u. (resulting in about 30 plane waves 
per atom in GaAs/AlAs systems) determined in the construc- 
tion of the pseudopotential. Note that in Eqs. (4)-(6) we do 
not factor (x,-y) from z; instead, we treat the system as a real 
3D problem. Note also that no use is made of effective-mass, 
k. p, or envelope-function approximations here. 

2. Solving the Schriidinger equation 

Substitution of the plane-wave expansion of Eq. (6) into 
the Schrijdinger equation Eq. (4) results in a matrix (secular) 
equation whose dimension is NoXNo , where No is the 
number of plane waves entering Eq. (6). In practice, this 
number is related to the number of monolayers 
N=n+m+n’+m’+... in a unit cell. For an N monolayer 
SL with two atoms per monolayer the corresponding matrix 
dimension is about 60NX60N; typical d-SLs require 
N- 1000 ML. Standard techniques for solving Schri5dinger’s 
equation require orthogonalization of each state to all other 
states, thus leading to an NL scaling of the effort involved. 
This is impractical for No values (-60 000) appropriate 
here. Fortunately, our physical interest lies only in the near- 

gap levels, rather than in the many thousands of lower-lying 
energy levels. It was recently shown49 that one could replace 
Eq. (4) by 

[-~V2+V(r)-~,,f12~j(r,k)=(~j--E,,f>2~j(r,k>, (7) 

where prep is an arbitrary “pointer” and { Ej, @ji are identical 
to those appearing in Eq. (4). The lowest eigenvalue of Eq. 
(7) corresponds, however, to the eigenvalue closest to eref. 
Thus, by placing the “pointer” Eref inside the band-gap re- 
gion, one is guaranteed to find the valence-band maximum 
(VBM) or the conduction-band minimum (CBM). Since 
these are the lowest eigensolutions of Eq. (7), one does not 
spend any effort on orthogonalization. The total effort to find 
these states thus scales as No, rather than as N& so large 
problems can be solved readily. Reference 49 provides tech- 
nical details on the preconditioned conjugate-gradient algo- 
rithm used to solve Eq. (7). The solutions of Eq. (7) obtained 
this way are exact, equalhng those of Eq. (4). 

B. One-dimensional envelope-function model 

In this subsection, we describe the effective-mass model 
used in addition to the pseudopotential method to calculate 
the electronic structure of the disordered SL. By using the 
effective mass model, we are able to find the eigenstates 
even far away from the band edge and obtain statistical prop- 
erties of the states by calculating many different random se- 
quences of the d-SL. Calculating the same quantities with 
the pseudopotential method would be very expensive. 

Using the Kronig-Penney effective mass model, the 
three-dimensional problem of Eq. (4) is reduced to the one- 
dimensional problem 

Id 1 d -- - - - + VexAz) 2 dz m*(z) dz h(z) = 4i(Z). (8) 

Here m*(z) is the effective mass, V.&z) is the external 
potential [to be distinguished from the microscopic atomic 
potential of Eqs. (4) and (5)], and pi is the envelope func- 
tion. Vext(z) is a constant within each material, as is the 
effective mass m*(z). Like in the empirical pseudopotential 
calculation, we assume periodic boundary conditions for the 
supercell. This is equivalent to connecting the left-hand end 
of the SL with its right-hand end. Written in the form of Eq. 
(8), we imply that the boundary condition at the GaAs/AlAs 
interface is the continuity of #ii(Z) and 
m*(z) - ’ (dldz) &( z j . More explicitly, we have 

im*-’ egq&( me-1 ff.g)),,,,. (9) 

where IF denotes interface. 
Equation (8) can be solved using a transfer matrix 

technique,50 taking advantage of the fact that within each 
layer both nt* and V,, are constants. Let us denote by I the 
layer index (I= 1 , . . . N, running from left- to right-hand side). 
Then, rn: , V,, and the layer length dl specify the physical 
property of the Ith layer. If we define a two-variable array A, 
as 
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(10) 

(where zl is the left-hand-side position of the lth layer), then 
from Eq. (8) Al+ 1 is given by 

A L+I=M~EMI, (11) 

where E is the energy of the wave function. Transfer matrix 
M,(E) is defined as follows. -~ 

For Ea V, and k = fif(E- V,), we have 

‘!fdE)= ( - kmfff~~~~dl)lm~ 
sin( kdl)lk 

mr+ , cos(kd,)im f ) ’ 
(12) 

while for E < V, and k = l/2111? ( VI- E) we have 

cosh( kdl) sinh( kd#k 
km:+, sinh(kdl)lmf m&1 cosh(kdl)lmT 

(13) 

To solve for an eigenstate &i(z) and an eigenvalue ei of 
the N-layer SL, we require that the wave function satisfy the 
periodic condition 

A (14) 

The ith solution of E yields 4 whereas the ith solution of Ai 
yields +i(z). 

The effective masses calculated from the empirical 
pseudopotential for the (001) and (111) directions using 
rn*m Ak2/2AE are shown in Table I. Using the band offsets 
of Fig. 6 and the masses given in Table I, we can, calculate 
the electronic structure of superlattices using the EMA of Eq. 
@I. 

To solve Eq., (14), we calculate the determinant IV. RESULTS 

d(Ei=det(i Ml(E)- 1): W? 

and scan d(E) within the interesting range of E. ,4 change of 
sign in d(E) when E increases indicates a solution. Then 
Newton’s iteration method is used to lind the exact E value 
which yields the zero of d(E). However, for the d-SL, when 
E is close to the band edge, this procedure is numerically 
unstable for large N due to the typical exponential growth of 
HKtIW,(E) as a function of N. In this case, we need another 
procedure to find localized states. We start with A, =[O,l] 
and scan A N+I(E)=[a(E),b(E)] as a function of E. Then 
a(E) =0 gives the eigenvalue of a localized state. However, 
if 4 (zI) belonging to this E has large amplitude near I= 1 or 
near I= N, then the eigenenergy of this state has to be recal- 
culated by shifting the starting (the ending) position from 
I=1 (Z=N) to another point, so that this localized state is in 
the middle of the starting and ending points. 

By switching between the above two procedures, we can 
reliably calculate all the states of a one-dimensional system 
for almost arbitrarily large N. 

To solve the ID problem we need to determine the ex- 
ternal potential V,,, (i.e., band lineups) and effective masses. 
The EPM calculated band offsets at the GaAs/AlAs interface 
are given in Fig. 6. Since the AlAs X,, state is near the 
CBM, for small period superlattice, the X valley derived 
electron state could be important. For large period superlat- 
tices, the absolute CBM is the GaAs lYle state, thus lY valley 
derived electron states are important. Thus, for electron 

2.528 Go I. . . . . . . . . . . . . . 
2.003 ------------------------~-, 2.365 Llc 
1,805 ,,........................,.......................,.......,.. ; : ____” __________________ x,c 
1.519 1.730 

0.0 -_ .~- 

-0.509 r 15v 

GaAs Al As 

PIG. 6. Band offsets (eV) used for the GaAs/AlAs interface. These band- 
edge energies yield their corresponding potential V(z) in the effective-mass 
calculation of Bq. (8). 

states, we calculate states derived from l’ and X valleys. The 
L valley derived states is also calculated in some cases to 
oompare with the pseudopotential results. For holes we only 
calculate F valley derived heavy-hole states. 

In this section, we discuss the following cases: 

(a) The ideal ordered superlattice of period n. Here R=O 
and p(n’) = iS(rz’ - n) _ This will establish the elec- 
tronic structure of our “unperturbed system” (Sec. 
IV A); 

TABLE I. EPM effective masses (in units of free electron mass) at different 
valleys along different directions. The GaAs X valley energy minimum is at 
(O.S9,0,0)(2T/uj, where a is the lattice constant. Its effective mass is evalu- 
ated at this energy minimum point. All other valley minima are at their 
corresponding high-symmetry k points. 

GaAs (100) 
GaAs (111) 
AlAs (100) 
AlAs (111) 

GaAs 
AlAs 

GaAs 
AIAS 

Heavy hole 

0.416 
0.975 
0.439 
1.020 

Parallel: [ 1001 

1.912 
2.194 

Parallel: [ill] 

1.664 
2.120 

I’ valley: (000) 

Light hole 

0.079 
0.065 
0.157 
0.111 

X valley: (100) 

Perpendicular: [OlO] 

0.246 
0.262 

L valley: +(lll) 

Perpendicular: [?l I] 

0.128 
0.168 

Electron 

0.077 
0.077 
0.158 
0.158 

Along [ill] 

0.3466 
0.371 

Along [ 1001 

0.183 
0.242 
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FIG. 7. Energy levels of ideal (AlAsj,/(GaAs), superlattices along (a) (111) and (b) (OOl), as a function of period n. Solid lines: pseudopotential results; 
dashed lines: effective-mass results. The bulk levels in the middle column are reached asymptotically as n-+m. The SL states are denoted with an over bar, 
while their parent zinc-blende states r, .Y, and L are given in parentheses. 

(b) 

(4 

k? 

SLs with laterally intermixed interfaces. Here, the 
(x,y)-averaged composition profile is periodic along z 
(Sec. IV B); 
The single &doping layer case. Here, a monolayer of 
AlAs or GaAs embedded in a perfectly ordered SL. 
This will establish the existence of bound states due to 
the chemical disparity between the Slayer and the host 
SL (Sec. IV C); 
An ordered array of interacting Slayers. Here, starting 
from the single Slayer with R40 one reduces the fixed 
separation between the S layers, thus increasing5’ R. 
This case will establish the electronic structure of the 
chemically perturbed system without any disorder (Sec. 
IV D); finally, we consider 
Random arrays of interacting S layers. Here O-CR< 1. 
This system has both chemical perturbations and sub- 
stitutional randomness, and includes the disordered SLs 
considered by Sasaki et al.,15 and the partially ordered 
ones by Arent et a1.45 (Sec. IV E). 

A. Ideal periodic AIAs/GaAs superlattices: Abrupt 
interfaces 

The solid lines in Fig. 7 depict the dependence of the 
pseudopotential-calculated high-symmetry superlattice en- 
ergy levels on the period a, for (OOl)- and (Ill)-oriented 
SLs. The results correspond to the scalar-relativistic limit 
without spin-orbit interaction. Since we do not use envelope 
functions, the results are not limited to near zone center 
states. We show in fact the r-folded (denoted T), X-folded 
(denoted fi or x), and L-folded (denoted I? or 2) states. In 
agreement with previous theoretical LDA studies,52 we find 
the following for the (111) SL [Fig. 7(a)]: 

(i) The ideal SL has a direct band gap for all y1 values, 
since the conduction-band minimum is the r-folded 
f,,( r 1c) state. This SL has a “type-I” band arrangement for 
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all period n. Both the highest valence and the lowest con- 
duction states are localized on the GaAs layers. 

(ii) The second conduction band at I’, i.e., I’(L), is 
folded from the zinc-blende T-L, line. For small n, this 
pseudodirect T,(L,) state mixes strongly with the direct 
p,(I’,) state. The mixing, and thus the level repulsion, shows 
odd-even energy oscillations for small n (reflecting localiza- 
tion of repelling states on the same or on either sublattice52). 

(iii) For n>6 the X-folded, injirect &!,(X,) conduction 
state lies below the pseudodirect, lY,(L,) state. The SL states 
asymptotically approach their respective bulk values (see 
middle column of Fig. 7). 

The situation is very different for (OOl)-oriented ideal 
SLs. The prominent properties apparent in Fig. 7t.b) are: 

(i) The n = 1 SL has an indirect band gap at the L-folded 
point52,53 rT. 

(ii) For n<4, t&e lateral Xss valleys (folded to a) and 
the X, valley (folded to l?) are nearly degenerate;“4 

(iii) For l<ns8 the pseudodirect, &&-like r,(X.J state 
is below the direct, GaAs-like I’,(;,) state, thus the 
SL is type II;55 for n>8, however, r,(l?,) is lower, so 
the system is type I (experimentally, the type-II/type-I 
crossover is found54 at rz= 11) . 

The effective mass energies of (001 j and (111) SLs are 
compared in Fig. 7 (dashed lines) with the EPM results (solid 
lines). The effective masses used in the EMA are from Table 
I which is calculated from the EPM. At large superlattice 
period IZ, the EMA results agree very well with the EPM 
results. [For the (001) R/J?(L) curve, there is a small dis- 
crepancy]. For f,(r) and n/r,/&(X), we find good agree- 
ment with EPM results even down to y1= 1. This is because 

(9 for Mc(Xxy> (001) and M&?,(X) (111) states, there 
is no mixing between states from different valleyqs2 

{ii) unlike the cases in 2D and 3D systems, in ID systems 
the heavy hole does not mix with the light-hole states; 
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(iii) the potential offsets for the GaAs/AlAs interface are 
small (Fig. 6), thus, even for n= 1, the k in Eqs. (12) 
and (13) is small, so nonparabolicity is small. 

In contrast to the good agreement between EMA and 
EPM for the above states, the EPM f’,(F) curve for both 
(001) and (111) bends down at small IZ, while in the EMA 
there is a monotonic dependence. The EPM bending is due to 
the mixing of f;,(.l?) with r,(X,) in the (001) case and with 
l?,(L) in the (111) case.52 This cannot be described by the 
one-band effective mass model (or even four-band h--p 
modeP6). The large oscillations in the EPM results for 
&IX,(L) (001) and for f;,(L) (111) (also due to mixing) 
cannot be described by a one-band EMA model (or a four- 
band k.p mode156), either. 

B. Periodic AIAs/GaAs superlattices: Laterally 
intermixed interfaces 

I. Intermixing in (001) superlattices 

Chemical nonabruptness of interfaces in short-period su- 
perlattices has been suggested by Laks and Zungers7 as a 
reason for the discrepancy between the experimental assign- 
ment of the conduction-band minimum and theoretical pre- 
dictions. In particular, for the monolayer (n=lj superlattice 
along (0011, our calculation [Fig. 7(b)] places the 
conduction-band minimum at the L-derived i? point in the 
tetragonal Brillouin zone,58 whereas experimentally a 
X,,y-derived gap at A? is found.54 We tested the idea of Laks 
and Zunger 57 using intermixed interfaces. The monolayer 
superlattice can be viewed as a partially ordered structure, 
i.e., it can be written as 

where 77 is the long-range-order (LRO) parameter. 77 = 1 de- 
notes the ideal superlattice with abrupt interfaces, whereas 
17 =0 characterizes the random alloy. To simulate interfacial 
roughness in the monolayer superlattice we expand the re- 
peat period (XX Y) in the interface plane to an (8X8) unit 
cell. We can thus have 7 = 1 -n/32, where n is the number 
of Ga/Al pairs interchanged across the interface. In each cat- 
ion layer, the Ga and Al atoms are randomly distributed on 
the lattice sites, hence, microscopically the interfacial rough- 
ness pattern does not repeat itself from one interface to the 
next interface. As a result, there is in principle no periodicity 
even along the growth axis [OOl]. For computational reasons, 
however, we assume a repeat period of 4 ML along [OOI], 
resulting in a 5 12 atom supercell. Hence, within the supercell 
there are four distinct Al-rich and four distinct Ga-rich lay- 
ers, with compositions 0.5 + 77 I2 and 0.5 - 17 12, respectively. 

The energy eigenvalues of the large supercell are ana- 
lyzed in terms of their “parent” zinc-blende states from 
which they originate. Because zinc-blende states are allowed 
to mix in the superlattice (subject to k selection and point- 
group selection rules), a superlattice wave function can be 
expanded in terms of a usually small number of zinc-blende 
wave functions. We use the expansion coefficients of the 
latter expansion as weights in evaluating spectral averages of 
zinc-blende-like eigenvalues.59 For example, (I,,) denotes 
the expectation value of the zinc-blende I”,, energy level in a 

Degree ?l of (001) LRO 
FIG. 8. Pseudopotential calculated spectral averages of the zinc-blende-like 
I‘,, (diamonds), X,, (pluses), and L,, (squares) energy gaps, respectively, 
olotted as a function of n, the degree of (OOL) long-range order. The solid 
iine is a quadratic interpolation between the T,I =0 and 7 = 1 values of (r,,) 
and the broken lines are linear interpolations between the respective end 
points of (X,,) and (L,,). 

given supercell. (F,,), (Xi,}, and (L,,) are shown in Fig. 8 
for v =O, 0.25, 0.50, 0.75, and for the perfect monolayer 
superlattice (9 = 1). Interpolation curves based on simple 
scaling laws37 pertinent to LRO are shown as lines. We pre- 
dict a transition from an X-like CBM to an L-like CBM at 
77 ~0.4, in close agreement with the LDA result57 (7 -$). 
Thus, our calculated result agrees with the experimental 
observatio?” if 77 CO.4 in the studied samples. 

2. Intermixing in (111) superlattices 

As the repeat period n of the ideal SL increases, chemi- 
cal intermixing across the interface should have a decreasing 
impact on the band structure. Nevertheless, even for n=6 
the band gaps can shift considerably. We have considered 
the (AIAs)~(G~As)~ (111) SL, because of a controversy 
about the nature of the band gap between theory52,60 
and experiment6’ Cingolani and co-workers” concluded 
from their photoluminescence experiments that the n=6 SL 
had an indirect band gap, i.e., a type-II alignment, whereas 
theory52*60 predicts a direct band gap if the interfaces 
are abrupt [see Fig. 7(a)]. To test the effect of interfacial 
intermixing on the nature (direct versus indirect) of this 
SL, we have used a planar (4X4) unit cell to simulate chemi- 
cal intermixing within + 1 ML across the interfaces, resulting 
in a 384 atom 3D unit cell. The superlattice is thus converted 
into a sequence of four GaAs layers, two alloy layers, four 
AlAs layers, and two alloy layers. We chose the composition 
of the alloy layers to be 50%, corresponding to maximum 
intermixing. Table II compares the band gaps of the inter- 
mixed SL with those in the ideal SL. We find that the direct 
band gap (folded from F6,) is blue shifted by 80 meV, while 
the pseudodirect I@ and indirect gaps fi,,jX&) 
are blue shifted by 20-50 meV. The lowest transition, 
however, does not change upon intermixing, remaining 
I&(F6c) although the pseudodirect transition T,,(L,,j 
is now only 20 meV (down from 50 meV) away. 
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TABLE II. Band gaps (in eV) of the (A~As)&GzIA& (111) superlattice with 
ideal and chemically intermixed interfaces. The zinc-blende (ZB) parent 
states are found by projecting the SL wave functions on ZB states. 

GaAs S - layer in (AIAs)2/(GaAs)2 GaAs S - layer in (AIAs)2/(GaAs)2 

Gap 
(ZB origin) 

~6crbJ 
~bC@LC) 

&(x6c) 

M&6c) 

Ideal SL Intermixed 

1.81 1.89 
1.86 1.91 
1.92 1.95 
2.02 2.04 

Experimentally, the absorption edge was determined to be at 
1.90 eV,61 close to our calculated band gap of the intermixed 
SL. The observed PL emission peak at 1.80 eV, however, 
cannot be explained by chemical intermixing: Table II shows 
that intermixing leads to a blue shift while experimentally 
the PL is red shifted. A possible explanation for a large red 
shift of the PL emission is offered in Sec. IV E, where it is 
shown that monolayer thickness fluctuations lead to a red 
shift. 

0.06 

C. A single Slayer inside an ordered superlattice 

We next model the case of a single layer of A or G 
inserted in an ordered AZ/G2 SL. It is well knowne2 that, 
while in 3D an impurity potential has to exceed a certain 
threshold value in order to create a localized gap level, in 
1 D, an attractive S potential of any magnitude always has a 
bound state. To understand the possibility of impuritylike 
localization, consider, for example, a Gs Slayer embedded in 
the otherwise perfect o-SL ***A,G,A,G2A,G2*--, thus con- 
verting it into ***A,G2A,G,A2G,*-- , denoted as A,IG, :Gg . 
If the G1 Slayer is attractive to electrons (holes) it will bind 
a state below the CBM (above the VBM) of the o-SL.‘~ We 
find that a (GaAs), S layer in the (A~As)~/(G~As)~ o-SL in- 
deed binds an electron and a (double degenerate) hole [Fig. 
9(a)], while an (AlAs), layer binds an electron but does not 
bind a hole (Fig. 10). Figure 11 shows as dashed lines the 
dispersion of the bound states of a single Slayer in A2/G2. 
The thin solid lines denote the dispersion of the energy bands 
of the n=2 ordered SL along the symmetry lines % and 5, 
i.e., from r to fi=l/fl(l,l) and from T to %= l/fl(l,O), 
respectively. The thin horizontal Iines denote the band edges 
of the o-SL: We see that the n=2 o-SL has a CBM at fi 
(2.09 eV above the VBM), and a VBM at T at E=O. Any 
state of the perturbed SL that falls between these states will 
therefore correspond to a “bound state.” For the S layer, we 
see no bound state at x but the electron binding energies of 
A2/Gz: G3 at r and &l are As,= 17 and 4 meV, respectively, 
while those of A2/G2:A3 are A&,=33 and 5 meV, respec- 
tively. The hole binding energy of A2/G2:G3 is A~,=37 
meV. 

N= 128ML 
(001) growth axis 

PIG. 9. Pseudopotential calculated planar average of the wave functions 
squared in an o-SL host containing a single (GaAs), Glayer. Occupied states 
are plotted in the negative direction with a small offset for clarity. (a) Shows 
the &layer bound states, (b) shows the first extended states. 

lowing length scales (in ML units). The effective localization 
length for wave function & at energy E is defined asb4 

L,&E) = f (16) 

AlAs S - layer in 
, - .--._. -._-____ 

,~ -,.- -, 

CBI 

All other states for single Slayer doping in 
(GaAs)&4lA~)~ are extended states, as illustrated in Fig. 
9(b) for the next higher (lower) state following the bound 
electron (hole) in A21G2 : G3. 

0.02 I -...--L--.- - 
> 

N=128ML. (001) growtll axis 

The wave-function localization perpendicular to the PIG. 10. Like Fig. 9, but for an (AlAs), 6 layer. In this case, there is no 
Slayer plane is conveniently quantified in terms of the fol- bound hole state. 
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X Yi r c Fi 

FIG. 11. Pseudopotential calculated dispersion of the band-edge state in a 
d-SL (solid tines), o-Z_ (thin_lines), and a single S layer in an o-SL host 
idotted lines) along the A and I: symmetry lines in the planar Brillouin zone. 
Also shown are the (OOl)-projected bands of the o-SL (shaded area). The 
supercell size is N= 128. 

and measures the region along z where & is “sizeable.“.In 
Eq. (16) the planar average of I&l2 is taken before integrat- 
ing along z, d is the monolayer thickness, and the wave 
function is assumed to be normalized in the volume of the 
supercell. It is easy to see that an extended state has LeE--N, 
whereas a state that is completely confined to one monolayer 
has Leff= 1. The asymptotic decay length r’ far away from 
the localization region is given by (I eE(z)l) CC e - Yz, where 
the angular brackets denote averaging over the fast oscilla- 
tions of the planar average 1 $&z) I along Z. The bound-state 
localization lengths 7-I and L,, obtained with a single S 
layer are given in Table III. We see that these values are 

TABLE IJI. Effective localization length .LeR [Eq. (16)] and exponential 
decay length 7-l for the &-layer systems depicted in figs. 9 and 10, and the 
disordered and partially ordered SLs depicted in Figs. 15 and 16, respec- 
tively. Reported are the values for the states at the conduction-band mini- 
mum KBM) and at the valence-band maximum (VBM) in ML units. 

CBM VBM 

kff 
-1 Y L -L cff Y 

AZ/G2 : G 11 5.0, 10 5.0 
A,IG,:A 7 2.9 N . . . 

I-SL 14 4.8 12 4.3 
po-SL 18 5.0 12 3.3 
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FIG. 12. Pseudopotential calculated band-edge energies of disordered (d- 
SL, diamonds), partially ordered superlattices (PO-SL, plusesj, and a peri- 
odic array of 6 layers embedded in an o-SL (thin horizontal lines) as a 
function of R [E?q. (3)]. Lines are guides to the eye. The thick horizontal 
lines denote the unperturbed band edges of the parent o-SL. The vertical 
bars on the d-SL data points denote the range of binding energies obtained 
from -10 different realizations of a d-SL with length N= 128. 

similar to those obtained in the fully disordered SL, suggest- 
ing that the same mechanism of localization could be at work 
in both cases. 

D. .An ordered array of 6 layers inside an ordered 
superlattice 

As one increases the density of the S layers inside the 
o-SL ,4,Gz, these layers start to interact. As a first step, we 
arrange the S layers periodically, i.e.,‘without any disorder. 
The density .of 6 layers is proportional to R defined ins1 Eq. 
(3). The calculated energies as a function of R are depicted 
as the thin solid line in Fig. 12. We see that even for an array 
of closely spaced S layers (R-1) the binding energy does 
not increase, indicating negligible interaction between the 
neighboring, coherently arranged bound states. In fact, at 
R = 1 the SL sequence consists of one layer of each thickness 
n=l, 2, 3, e.g., G,A2GlA,G2A1, which is repeated periodi- 
cally. Since ,the repeat period is only N= 12 ML, this struc- 
ture is too short to describe a localized state bound to one S 
layer {see Fig. 9), which has a localization length L,,=lO. 
The energy eigenstates and eigenvalues are thus those of a 
new superstructure with a complex unit cell, rather than 
those of a disordered system. Consequently, short supercells 
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TABLE JY. Overview of different disordered systems [superlattices (SL) and multiple quantum wells (MQW)] 
in the parameter space of R [E?.q. (333 and An/n. 

Small mean density Large mean density 
(R-=Zl) (R-1) 

Small fluctuation nearly “ideal” SUMQW strongly disordered MQW 
(An+n) impnritylike localized states effective-mass-like bound states 
nPl0 local level in gap discrete spectrum with QW-like quantum numbers 

Large fluctuation Strong perturbation of band edges d-SL, po-SL 
(An-n) Band-gap pinning Band tail of localized states 
n-Cl0 

with N=+ 10-20, as have been used before to describe disor- 
dered SLS,~’ are unable to simulate the behavior of truly 
disordered SLs. 

E. A disordered array of 8 layers 

Next, we introduce disorder in the SL by arranging the S 
layers in the o-SL host at random. We have shown in Sec. II 
that very large supercells are required, if one wishes to ac- 
curately describe the layer-layer correlation function of a 
disordered system. We have used total lengths N of up to 
1000 ML for EPM, and up to 2000 ML for EMA calcula- 
tions, in order to verify the convergence of the results ob- 
tained with smaller supercells (typically N-100-250). In 
principle, a configurational average of the properties of inter- 
est needs to be evaluated; in some cases (see below) we have 
used -10 realizations of a d-SL of given total length N and 
disorder parameter R, and have found that the EPM- 
calculated quantities of interest (band gap, localization 
lengths) have very small fluctuations. Therefore, we have 
often used a single realization of a d-SL to calculate band- 
edge energies and wave functions. For the EMA-calculated 
density of states, on the other hand, we have performed con- 
figurational averages over 100 realizations of a d-SL. 

line is 2L,, using the one-dimensional version of Eq. (16). 
Figure 13 shows that all states are localized, as expected 
from one-dimensional Anderson localization theory.2g730 
There is no transition from localized states to delocalized 
states. Around the band edge, the localization of the states is 
more properly described by the Lifshits theory.3o Figure 13 
gives the distribution of the d-SL states, iri both energy and 
coordinate space. 

One way to display the information in Fig. 13 more 
quantitatively is to calculate the density of states (DOS) and 
localization length LeK as functions of energy E. We have 
calculated 100 d-SL systems (each with 2000 ML as in Fig. 
13) and averaged the results. The DOS as a function of en- 
ergy is shown in Fig. 14(b). (Notice that the DOS calculated 
here are the DOS considering the r point only, thus, truly 
one-dimensional DOS. If the lateral dimensions were consid- 
ered, the shapes of the DOS would change.) For electron 
states, we calculated both the X valley states and I? valley 
states. Notice that summing up these two density of states 
only makes sense for low-energy regions where two separate 
valleys are well defined. For high-energy regions, the states 
from X and I- valleys may not be distinguishable, and thus 
are not well defined. They may correspond to a single state in 

ln the following, we discuss separately two regimes of 
thickness fluctuations. First, we consider the case where the 
thickness fluctuations An are of the same order as the unper- 
turbed thickness, i.e., An-n. This case includes the d-SLs 
of Sasaki et al.” and the po-SLs of Arent et al.45 Second, we 
treat the case where the thickness fluctuations are relatively 
small perturbations of the ideal SL, i.e., An*n. An overview 
of the different regimes considered is given in Table IV. 

7. Disordered SLs with An-n: EMA density of states 
To calculate the spectral properties of a d-SL over a 

large energy range, we use the effective-mass model de- 
scribed in Sec. III B. The advantage of the EMA method is 
that we can easily calculate a large number of eigenstates 
(not only near-gap states). This permits obtaining a good 
statistical description of the density of states and other global 
properties. We have thus modeled a 2000 ML Sasaki-type 
d-SL, obtaining all the states up to 1 eV away from the band 
edges. We calculated heavy-hole states for the hole and X 
valley states for the electron. The results are shown in Fig. 
13. Each state is represented by a single horizontal line. The 
vertical position of the line indicate its energy and horizontal 
position denotes its point of localization. The length of each 

go 
LLIO 

-0.5 

-1 

(a ) X valley electron states GaAs CBM = 0 -- 

--- 
GaAs VBM = 0 1 

- N=2000ML 
(001) growth axis 

FIG. 13. Effective-mass calcutated localized states of a 2000 ML d-SL. 
Each line represents one eigenstate. The line length equals 2Len. 
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FIG. 14. Effective-mass calculated density of states of (a) the (OOl)-ordered (GaA&/(AlAs), and (b) Sasaki-type disordered superlattices, and the localization 
lengths (c) L,R, (d) y-’ of the disordered superlattice. The conduction-band energy is measured from the bulk GaAs CBM and the valence-band energy is 
measured from the bulk GaAs VBM. 

a multiband calculation. A very interesting fact is the peaks 
in the DOS of X valley electronic states. To understand these 
peaks, we have calculated the DOS for the (G~As),/(A~As), 
ordered superlattice. The results are shown in Fig. 14(a). It is 
evident that the peaks of X valley states of the d-SL in Fig. 
14(b) are the remnants of the peaks seen in Fig. 14(a) for the 
o-SL with some shifts. On the other hand, for I? valley states 

and heavy-hole states, there is only one peak in the ordered 
superlattice, thus their DOS of d-SL have simple structures. 

The effective localization length L,, [Eq. (16)] is shown 
in Fig. 14(c). Notice that L,, increases a bit near the band 
edge. As described by the Lifshits theory, this phenomenon is 
due to consecutive wide potential wells. At energy far away 
from the band edge, L,, of the X valley electron states and 
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heavy-hole states bend down. Part of the reason- is that we 
used the boundary condition of Eq. (9). As a result, for very 
large E, when the effect of the potential is no longer impor- 
tant, the mass confinement still plays an important role. This 
might not correspond to the real situation, because the effec- 
tive mass model could fail in those energy regions. Another 
characteristic length of the states is the asymptotic decay 
length y-r as described in Sec. IV C. It turns out that this y 
is just the exponential growth rate of ANfl(E) [defined in 
Eq. (14), which does not equal A, for arbitrary E] as a func- 
tion of N. If E is an exact eigenvalue ei of an localized state, 
then AN+, = A t, thus, the magnitude of AN+ 1 is 0( 1). How- 
ever, the measure of these E E { ei) is zero, so in-most cases 
AN+iCCe . yN Using this fact, w e can calculate y(E) from 
AN+ r(E) directly and the result is accurate and reliable. The 
f’(E) are shown in Fig. 14(d). Note that, in the DOS tail 
region, LeR is larger than 2y-‘, indicating Lifshits localiza- 
tion. For large energy, L,, and y-r are close to each other. 
This can be understood by the fact that L,c$y’ for a lo- 
calized wave function cos(kzje-dZI with k much larger than 
7. In Figs. 14(c) and 14(d) corresponding to the peaks of 
DOS for X valley states, its L, (E) and y-‘(E) show dips 
and peaks, respectively. In the light of the peaks of the DOS, 
the dips of LeR (E) and peaks of y’(E) can be understood 
as follows. The existence of the eigenstates around a given 
energy E will slow down the exponential growth of 
A,, r(E) [in the case of precise resonance, AN+1 will be 
O(l)], thus y-‘(E) increases. So a peak in the DOS will 
induce a peak in y-‘(E). On the other hand, because of 
orthogonalization, more eigenstates means less physical 
space for each state, hence the dip in LeR (E). 

2. Disordered SLs with An-n: Band-edge states and 
oscilla for strength 

We now focus on the band edges near the band-gap re- 
gion. The band-edge states are involved in optical absorption 
and emission in the visible-light and near-infrared regions, 
and thus determine the optoelectronic properties of the 
d-SLs. Fist, we discuss the results of our pseudopotential 
calculations. In Fig. 11 we show the EPM-calculated disper- 
sion of the band-edge states of the d-SL (solid lines) with 
p(l)=p(2)=p(3)=k along the symmetry lines 2 and x. 
The thin horizontal lines denote the band edges of the under- 
lying o-SL (see Sec. IV A). We find that the conduction 
bands of the d-SL dip below these lines. The difference 
(“binding energy”) increases in the order &%-r--+X. The 
large binding energy at X is a consequence of the level re- 
pulsion of the folded L,, states; which is much stronger for 
odd values of the repeat period n than for even n [see Fig. 
7(,b)]. In the d-SL the odd-even selection rule is broken, 
leading to a stronger level repulsion in the d-SL than in the 
n =2 o-SL. Nevertheless, the large binding energy at T pulls 
the conduction-band edge below the ones at X and a by 60 
meV, making the d-SL a direct-gap material, even though the 
o-SL is indirect (with CBM at G). 

Thus, the transition between the two localized states VBl 
and CB3 in,Figs. 15(c) and 15(d) is truly direct, rather than 
pseudodirect. The latter result explains the experimentally 
observed strong PL intensity.15 The enhanced oscillator 
strength is reflected by short radiative lifetimes, 7: We calcu- 
late r = 1 ns for the VB l-CB3 transition at energy 1.96 eV. 
These radiative lifetimes are 1000X faster compared to those 
measured in indirect-gap o-SLs (r-5.5 ys at T-2 K.).54 
Furthermore, the calculated transition energy agrees very 
weIl with measured PL emission lines in d-SLs, which were 
found at -1.96 eV.@ 

We have seen that in ordered SLs the distinction between 
direct and pseudodirect transitions can be made by mapping 
SL states on “parent” states in the zinc-blende structure: 
Pseudodirect transitions at a SL wave vector K involve one 
folded state and one state genuine to K. An example is the 
f(lY,,,)-+T(XJ transition in (001) SLs (see Sec. IVA). 
While folding is not a very useful concept in a disordered SL 
(the height of the d-SL Brillouin zone is equal to 2rr/Nd), the 
parentage of a d-SL state can still be defined in terms of its 
projection on zinc-blende states. We have performed such an 
analysis for a few conduction-band-edge states in (001) 
d-SLs. We found two types of states: 

6) localized states whose projection on zincblende (ZB) 
states is peaked at the F point, and 

(ii) localized states whose projection is peaked at the Xz 
point of the ZB Brillouin zone. 

In order to establish whether the direct transition does In real space, the F-like states are localized in GaAs-rich 
indeed lead to efficient recombination, we have to consider regions [e.g., where a few (GaAs), layers are separated by 
dipole matrix elements between the band-edge states in- monolayer AlAs barriers], and the X,-like states occur in 
volved in the optical excitation. Figures 15(c) and 15(d) AlAs-rich regions. This chemical selectivity reflects the 

show a few band-edge wave functions of an N= 1000 ML 
d-SL, which are plotted using the planar average introduced 
in Fig. 9. For example, the states labeled CB3 and VBl are 
localized at the same positions along the chain, and conse- 
quently their dipole matrix element can be large, whereas 
states with no spatial overlap will have a zero matrix ele- 
ment. From the dipole matrix element we obtain the oscilla- 
tor strength f of an optical transition, which is defined as 

Here fiw is the transition energy, (clplu} the dipole matrix 
element between states Ic) and Iv}, and m the free electron 
mass. The factor of 3 in the denominator is introduced to 
average over the three polarizations x,y,z. In Table V we 
report calculated values off for direct transitions in various 
systems. We see that 

!i) oscillator strengths of pseudodirect transitions in or- 
dered SLs are l-2 orders of magnitude smaller than 
those-of the (higher energy) direct transitions, 

(ii) The transition between an extended state and a local- 
ized one (as occurs for the AlAs Slayer, see Fig. 10) 
is of the similar strength as a pseudodirect transition, 

(iii) Transitions between two states that are localized in 
the same region along z are of comparable strength 
than the direct transitions in bulk materials. 
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FIG. 15. The valence-band maximum states and conduction-band minimum states of a 1000 ML disordered superlattice, obtained by empirical pseudopo- 
tential model (EPM) and e&ctive-mass approximation (EMA). The numbers are the eigenenergies of the states in eV. For the conduction-band states and 
valence-band states, they are measured from bulk GaAs CBM and VBM, respectively. 

type-II band alignment of the ordered (001) SLs. Unlike in 
the 2X2 o-SL, however, the lowest states in the d-SL are the 
I’-like states [e.g., all conduction states depicted in Fig. 15(c) 
are I?-like]. Note that the 1 X 1 o-SL also has the TCI’ iC) state 
below the r(XZ) state [Fig. 7(b)]. This band order is not 
reproduced by the EMA, and we see below that also for the 
d-SL the EMA predicts the lowest conduction states to be 
X,-like. 

The localization lengths of the band-edge wave func- 
tions in the d-SL are comparable to those of the single 
Slayer-bound states (see Table III). This indicates that the 

mechanism of localization in both cases is essentially the 
same, and that the localization is well described by chemical 
impurity binding to a single S layer. As one increases the 
concentration of S layers, an increasing number of bound 
states is introduced, which are degenerate at small concen- 
tration R. Unlike in the case of the periodic array of 6 layers, 
the bound states repel each other when R--+ 1, and the band 
edges move further away from the unperturbed edges. Figure 
12 shows via the diamond symbols the band-edge energies as 
a function of R, calculated for - IO different realizations of 
d-SLs at each R. The vertical bars centered on the configu- 
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TABLE V. Oscillator strengths of direct optical transitions in bulk materials, 
ordered (001) SLs, S layers in the 2X2 o-SL, and disordered SLs. The 
oscillator strengthf is given in Eq. (17), where the initial state is always the 
valence-band maximum (in case of a degenerate VBM the squared dipole 
matrix elements are averaged over the degenerate manifold). For the disor- 
dered systems, the final states are identified in Figs. 9, 10, 15, and 16, 
respectively. 

System Final state 
Energy 

WI f 

Bulk GaAs 
Bulk AlAs 

r 1.2 

r lc 

1.52 
3.04 

4.03 
1.91 

(AIAs),/(G~As), 
0 -SL 

2.21 
0.02 

(AIAs)~/(GBAs), 
o-SL 

m-1,) 
RX;) 
RX,) 
Rrd 

2.02 
2.12 

2.09 0.08 
2.14 2.40 

GaAs alayer CBl 2.04 1.67 
AlAs 6 layer CBI 2.06 0.02 

d-SL CB3 1.96 1.68 
po-SL CBl 1.87 2.76 

rational averages give the size of the fluctuations of the 
eigenenergies. It is interesting to note that the band tail is 
larger for the conduction electrons than for the valence elec- 
trons. This asymmetry is contrary to expectations based on 
1D one-band models, and reflects the strong band coupling 
and 3D character retained in our calculation. In a one-band 
model, localization effects decrease with increasing energy, 
because the kinetic energy becomes increasingly dominant 
over the (randomized) potential energy. 

Also shown in Fig. 12 are the band-edge energies of the 
partially ordered SL (PO-SL), which was studied experimen- 
tally by Arent et a1.45 The corresponding wave functions are 
depicted in Fig. 16. While the trends are similar to those 
observed in the d-SLs two distinct features are noteworthy: 

ii) Occupied and unoccupied levels with corresponding 

0.03 1 I I 

0.05 t I , I 

4 - -N = 1000 ML z- 

(001) growth axis 

FIG. 16. Pseudopotential calculated planar average of the wave functions 
squared in a 1000 ML partially ordered SL (PO-SL). Unoccupied states are 
labeled CBl, CB2,...; occupied states are labeled VBl, VB2,..., and are 
plotted in the negative direction with a small offset for clarity. 

labels are localized at the same positions along z, i.e., 
CBl and VB1+2, CB2 and VB3+4, etc., [see Fig. 
161; 

(ii) the band-gap reduction is slightly larger for the po-SL 
than for the d-SL at equal R (see Fig. 12). 

Indeed, PL emission lines have been measured at energies as 
low as 1.87 eV,66 in agreement with our calculated band gap 
of 1.87 eV. The CBl and VBI +2 states are localized in a 
region where five (GaAs), wells are separated by four 
(AlAs)i barriers. Similarly, the CB2 and VB3+4 states are 
localized in region with four 3 ML GaAs wells separated by 
three 1 ML AlAs barriers. Note that in the po-SL the prob- 
ability of such a “one-dimensional clustering” is larger than 
in the d-SL. For example, the probability to tind the mol- 
ecule G3A,G3A, is equal to p(3)p(3)=($)’ for the po-SL, 
and equal to p(3)p( l)p(3)p( l)=(i)” for the dSL, etc. [see 
Eq. (l)]. Furthermore, we saw that the particular molecule 
distribution function of the po-SL leads to LRO (see Fig. 4), 
which causes an enhancement of the structure factor \S(k,,) [’ 
at certain wave vectors (Fig. 5). The structure factor enters 
the matrix elements pertinent to first-order perturbation 
theory, which could also explain why LRO present in the 
po-SL changes binding energies of localized states with re- 
spect to the d-SL. 

Next, we calculate the Sasaki-type d-SL using the 
effective-mass model. The EMA results are also shown in 
Fig. 15, where they are compared with the EPM wave func- 
tions. We find very good agreement between EMA and EPM 
band edge states for the holes: The highest hole states are 
localized at the same spatial position with almost the same 
wave-function shape; the eigenenergies differ by only 3 meV. 
The wave functions are localized at positions where consecu- 
tive wide GaAs wells are separated by thin AlAs barriers. 

For electron states, the situation is more complicated. 
For EMA states, again, the location of the localized states is 
simply determined by the geometry of the potential. For ex- 
ample, the EMA F valley states in Fig. 15(a) are localized 
where a few consecutive wide (n=3) GaAs wells are sepa- 
rated by thin (n = 1) AlAs barriers. Thus, these EMA I? valley 
states have the same locations as the EMA hole states, as 
evident from Figs. 15(a) and 15(e). The EMA X, electron 
states [Fig. 15(b)], on the other hand, are localized where a 
few consecutive wide (n=3) AlAs wells are separated by 
thin (n = 1) GaAs barriers. From the EMA calculations, we 
see that the X valley electron states have lower energies than 
the F valley derived states. The projection analysis described 
above showed that the EPM conduction-band-edge states are 
more F-like than X-like states. This is at variance with the 
EMA results: The d-SL has a pseudodirect band gap in the 
EMA description, and a truly direct gap in the EPM 
description.“7 However, for the wave functions we do get an 
agreement between EPM CB3 state in Fig. 15(c) and EMA F 
derived CB2 state in Fig. 15(a). Thus, the EMA can still be 
useful to describe some properties of the electron state in the 
d-SL. The fact that we do not get agreement for all other 
CBM states indicates that the EPM results are complicated 
by possible F-X coupling. 
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FIG. 17. Pseudopotential calculated gap levels in the presence of 1 ML thickness fluctuations in (AlAs),/(GaAs), superlattices along (a) (111) and (b) (OOl), 
as a function of period n. Energies are measured with respect to the band extrema of the ideal n X n SL (see Fig. 7). R = 1 and R -0 denote, respectively, the 
concentrated and dilute limit of chain mutations [Eq. (3)]. 

3. Disordered SLs with Atwin 
We now generalize to arbitrary ideal repeat period n, 

while keeping the thickness fluctuations fixed at An = I ML. 
The EPM-calculated band-edge shifts of (AlAs),/(GaAs), 
SLs with 1 ML thickness fluctuations about y1 are plotted in 
Fig. 17 relative to the band edges of the ideal SLs (the en- 
ergy zero, see Fig. 7). We see that: 

6) The band-gap reductions A E, = A E k + A E, decay 
with n, and have a definite dependence on super-lattice 
direction; they are 166, 67, 29, and 14 meV for y1=2, 
4, 6, and 10 in the (111) direction, and 133, 64, 36, 
and 27 meV in the (001) direction, respectively; 

(ii) AE,(R--+O) merges with AE,(R=l) at nZ6, at 
which point the gap reduction becomes independent 
(“band-gap pinning”) of the number of chain muta- 
tions. 

In order to explain these findings, we discuss the inter- 
mediate case of the y1=6 (111) SL, where the VBM is al- 
ready pinned (independent of R), but where the CBM still 
shows dispersion with R (see Fig. 17). Figure 18(a) shows 
the CBM and VBM wave functions for the R= 1 SL. The 
CBM wave function is localized on -4 GaAs wells, with 
minimal amplitude in the AlAs barriers and maximal ampli- 
tude on the two neighboring mutated (7 ML) GaAs wells 
(“twin” fluctuation denoted by bold arrows). The CBM thus 
resembles a bound state in a coupled double quantum well. 
The hole wave function at the VBM is likewise localized on 
a number of mutated, 7 ML GaAs wells [Fig. 18(a)]; in con- 
trast to the CBM, however, the reason for the multiwell pat- 
tern of the VBM wave function is that these states are in fact 
decoupled, quantum-well confined states, which are degen- 
erate in energy within the accuracy of our calculation (50.1 
meV). A typical hole and electron wave function localized on 
an isolated (GaAs), mutation in an otherwise ideal 6X6 
(111) SL are shown in Fig. 18(b). We see that the hole wave 
function of an isolated mutation (R-0) resembles that of the 
concentrated (R=l) mutations [Fig. 18(a)], and its binding 
energy A.s,(R+O)=ll meV equals the value at R=l. At 
the CBM, the larger penetration of the wave function into 

neighboring GaAs wells can produce deeper gap states [see, 
for example, the twin fluctuation depicted in Fig. 18(a)], and 
consequently pinning occurs at a larger pinning period 
np= 10 than for hole states. 

Experimentally, the fluctuation-induced localized bound 

4 ,1 s 
8 
3 ‘3 8 
B 
s 

0.03 (a) m 
0.02 i I 1111 

t t t t t, t t t. t 
‘l’.“‘(I”‘t”“,’ ~“‘~((“‘1”(““‘1’~“1” 30 60 90 120 150 180 210 240 270 

138 144 I50 156 162 

Position along [ 11 l] (ML) 

FIG. 18. Pseudopotential calculated planar averages of wave functions 
squared of the CBM and VBM in the (AlAs)$(GaAs)e SL along (111) with 
+I layer-thickness fluctuations. Hole wave functions are plotted in the 
negative direction, with a small offset for clarity. (a) Concentrated limit 
(R = I), (b) dilute limit (R-+0), i.e., a singIe (GaAs), mutation embedded in 
a 6X6 SL host. The rectangular lines show the growth sequence of the SL, 
with GaAs layers represented by wells, and AlAs layers represented by 
barriers, respectively. The vertical arrows in (a) indicate the 7-ML-thick, 
“mutated” wells. 
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states should be observable as photoluminescence centers 
whose energy is below the absorption edge of the underlying 
“ideal” SL structure. This photoluminescence will lack pho- 
non lines, because the optical transitions are direct in the 
planar Brillouin zone (the transverse wave vector k, is still a 
good quantum number), and because the k, selection rule is 
relaxed by vertical disorder. Indeed, while we have shown in 
Sec. IV A that ideal (111) (AlAs), /(GaAs), SLs have a di- 
rect band gap with a type-1 band arrangement, Cingolani and 
co-workers” noted a - 100 meV red shift of the photolumi- 
nescence at 1.80 eV relative to the absorption in 
(AlAs& /(GaAs), (111) SLs, interpreting this as reflecting a 
type-II band arrangement. However, since they noted that 
their SL had a f 1 ML period uncertainty, it is possible that 
the red-shifted photoluminescence originates from thickness- 
fluctuation bound states. Our calculated band gap of the n =6 
superlattice with t 1 ML thickness fluctuations is 1.78 eV for 
R = 1, and 1.80 eV for R-0, close to their observed photo- 
luminescence peak position (1.80 eV).6l Recall that chemical 
intermixing leads to a blue shift of the band gap (see Table 
II), whereas larger thickness fluctuation is needed to explain 
the observed 100 meV red shift. 

(i? The n =l SL has an indirect band gap at R; Insuffi- 
cient interfacial abruptness in the experimentally stud- 
ied sampless4 leads instead to an X-derived CBM. 

(ii) For nC4, the M(X,,, folded) states and the F(X, 
folded) states are nearly degenerate; 

(iii) The crossover from AlAs-like i?,,(X,) (type II) to 
GaAs-like l?,,(lY,,) (type I) happens around n=8. 

(b) (111) =ordered superlattices: 

ii) T’,,(r,,) is the CBM (type I) for all n; 
(ii) There is a strong even-odd oscillation of the CBM 

energy due to mixing. 
(iii) Despite the prediction of direct gap of all (lll)- 

ordered SLs, Cingolani and co-workers” found for 
n =6 a type-II SL with a - 100 meV red shift between 
absorption and PL; we find that lateral interfacial in- 
termixing can not explain this discrepancy, but mono- 
layer thickness fluctuations in the measured sample do 
resolve the disagreement. 

(c) Single S layer doping in o-SL: 

Figure 17 shows that the bound states of isolated muta- 
tions (R-+0) merge with those of concentrated layer- 
thickness fluctuations (R-+1) at some pinning period np . At 
this point the band-gap reduction is pinned at the value 

BE,(R)= limAE,(R)=As,+Ash, (18) 
R-+0 

ii) 

(ii) 

A (GaAs), S layer in (GaAs), /(A~As)~ (001) SL pro- 
duces an electron and a hole bound state with binding 
energies AE,= 18 meV and A~,=37 meV, respec- 
tively; 
An (AlAs)a S layer in (GaAs),/(AlAs), (001) SL pro- 
duces only an electron bound state with A~,=33 meV 
at F. 

where Ace (A+) is the electron (hole) binding energy of an 
isolated (R -0) layer mutation. Qualitatively, Eq. (18) can be 
understood in terms of the 1D effective-mass picture (Sec. 
III B). Each of the (n + 1) ML mutations gives rise to a bound 
state below the band edge of the n X n SL.20,‘4 For very large 
n, when the quantum wells are completely decoupled (the 
tunneling probability and, hence miniband width, decrease 

~ exponentially with n>, the SL energy spectrum is simply that 
of degenerate single quantum wells of thicknesses n’ with 
eigenenergies c&z’). Hence, the extra binding energy of an 
(n + An) ML mutation approaches asymptotically 

(d) An ordered array of 6 layers: 

The bound states in neighboring S layers start to have 
large interaction when their distance is less than 20 ML. 

(e) A disordered SL with An-n (i.e., n = 1,2,3): 

(9 

(ii) 

(iii) 

There is a 130 meV red shift in the band gap com- 
pared with the o-SL; 
The conduction-band minimum is at r, not at X as for 
the n=2 o-SL 

2An 
As,=ea(n)-e,(n+An)wn co(n), (19) 

where co(n) is the ground-state energy of a carrier with mass 
m* in an n-ML-wide quantum well, which scales like 
l/m*n2 for large n. For example, using a fixed An/n = lo%, 
rather than a fixed An, we obtain from the first equality of 
Eq. (19) Ace= 10.0, 2.4, and 0.7 meV for n=20, 50, and 100 
in the (111) SL [the last equality of Eq. (19) gives 14.3, 3.0, 
and 0.8 meV, respectively]. The band-gap reduction for a 
given Anln is obtained by inserting Ach and A.se from Eq. 
(19) in Eq. (18). 

(iv) 

iv> 

(vi) 

The conduction-band-edge states are more F-like than 
X-like, thus the oscillator strength is as large as the 
bulk GaAs value for a physically close electron-hole 
pair, 
The band-edge state localization length of the d-SL is 
about the same (20 ML) as the 6 layer bound state; 
The localization lengths increase as the energy moves 
away from the band edge-all states are localized, so 
there is no mobility edge; 
The DOS of the d-SL has a peak near the edge of 
o-SL DOS and has a tail into the band-gap region; if 
the original DOS of the o-SL has several peaks, the 
DOS of the H-SL retains those peaks with some posi- 
tion shifts. 

V. CONCLUSIONS 

Our main conclusions can be summarized as follows. 
(a) (OOl)-ordered superlattices: 

(f) A disordered SL with Anen: 

For An=1 and n>6, the band-edge energies are nearly 
pinned at their S doping level, independent of the magnitude 
of the disorder. 
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