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First-principles and empirical pseudopotentials are used to study the effects of short-range and long-
range atomic order on the electronic properties of III-V semiconductor alloys. The alloy structure with
a given degree of long- or short-range order is modeled by two types of supercells: (a) Small (16—32
atom) supercells are constructed in the fashion of the special quasirandom structures (SQS) used previ-
ously to simulate random alloys [A. Zunger et al. , Phys. Rev. Lett. 65, 353 (1990)]. Their electronic
structure is treated via first-principles pseudopotential methods. (b) Large ( —1000 atom) supercells are
found by a simulated-annealing technique which optimizes the atomic configuration until a given degree
of short-range order is reproduced. The electronic structure is then determined using the empirical
pseudopotential method. Statistical tests prove that the small cell SQS mimic the much larger supercells
and thus provide an efficient means of studying the electronic band structure of disordered alloys in a
non-mean-field approach. For the direct band gaps of ideally random Al& „Ga„As, Ga& In„P, and

Al&, In As alloys, we find optical bowing parameters b=0.48, 0.46, and 0.52 eV, respectively. In the
presence of short-range order in the form of cation clustering, we find the following: (i) Clustering
elongates the Ga-P bond and shortens the In-P bond in Gao &Ino 5P and (ii) the optical bowing of the
direct band gap is greatly enhanced. This leads to an indirect-gap to direct-gap crossover in

Alo &Gao 5As with sufficient clustering. (iii) The band-gap reduction is accompanied by a localization of
band-edge wave functions on certain types of clusters. The clusters act as "isoelectronic impurities"
which localize states if their concentration (i.e., the degree of short-range order) is large enough. Elec-
trons at the conduction-band minimum localize on the cations with lower s-orbital energies. The band-

gap reduction and wave-function localization of alloys with short-range order is compared to the effects
of long-range order, where the gap reduction is due to level repulsion between zone-folding conduction
states. Numerical results are given for CuPt-type long-range order of A1GaAs2, GaInP„and A1InAs~.
For complete ordering, the band-gap reduction relative to the random alloys are 0.36, 0.49, and 0.16 eV,
respectively.

I. INTRODUCTION

Pseudobinary 2
&

8 C semiconductor alloys exhibit
deviations from perfect random arrangements of the A
and 8 atoms on their fcc sublattice. ' These deviations
take the form of long-range order (LRO), short-range or-
der (SRO), or both. LRO in III-V alloys appears most
frequently in the CuPt structure [an ( AC), (BC), mono-
layer superlattice along (111)] and is accompanied by a
reduction in the band gap relative to the disordered
phase. This gap reduction rejects zone folding and
level repulsion and depends quadratically on the degree
q of LRO.

In contrast to LRO, studies of the effects of SRO on al-
loy band gaps are scarce. The degree of SRO is generally
quantified by the Warren-Cowley parameter

where I's(j ) is the probability of finding a B atom on the
jth nearest-neighbor shell about 2 as an origin, and xz is
the concentration of B atoms. In the perfect random al-
loy Ps(j ) =xz and thus a =0 for all atomic shells. Pre-
ferred association of like atoms ("clustering" ) means
a &0, whereas association of unlike atoms ("anticluster-

ing") is manifested by a&0. Thermodynamically, clus-
tering and anticlustering tendencies are decided by the
energy change when the site occupancy is altered from
random to phase-separated or ordered structures, respec-
tively. In semiconductors, this depends largely on strain.
Theory ' shows that in such alloys much of the energy is
decided by elastic effects associated with packing size-
mismatched constituents onto a given lattice. There are
two extreme possible elastic states of the phase-separated
system ( A C-rich and BC-rich domains): either these
domains adopt the average lattice constant a(x) of the
homogeneous alloy from which they precipitated
("coherent phase separation"), or each component (AC
and BC) relaxes, adopting its own free-space equilibrium
lattice constant a„c and asc, respectively ("incoherent
phase separation"). Calculations showed that if coher-
ence is maintained, then one expects anticlustering [be-
cause the energy of AC+BC strained to a(x) is higher
than the energy of locally ordered structures at the same
a(x) j. On the other hand, if the constituents are relaxed
(incoherent phase separation), their energy is lowered and
the ground state is phase separation, so clustering is ex-
pected.

Direct measurements of SRO in tetrahedral semicon-
ductor alloys were carried out by diffuse x-ray scatter-
ing, ' ' transmission electron microscopy, ' ' and scan-
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ning tunneling microscopy. ' ' Indirect evidence for
SRO comes from nuclear magnetic resonance, ' Ra-
man scattering, infrared reAectivity, photo-
luminescence, ' and photoreAectance. Some experi-
ments on semiconductor alloys"' '8 ' ' report
clustering-type SRO (a & 0), others' ' ' report anticlus-
tering (a (0), and some' ' suggest near-perfect ran-
domness (a=0). Despite these extensive studies, little is
known about the effects of SRO on band gaps. Be-
cause some degree of SRO or LRO is always present in
the technologically important III-V semiconductor al-
loys, a good understanding of their effects on the elec-
tronic and optical properties is important. Controlled
use of these structural "degrees of freedom" may provide
additional tools for band-gap engineering. In this paper
we report results of pseudopotential calculations on the
band gaps of perfectly random (a=0) as well as clustered
(a & 0) models of Ala 5Gao 5As, Gao 5lno sP, and
Alo 5Ino ~As alloys. The results are compared with the
effects of LRO. We use structures whose sites are occu-
pied by A, B, and C atoms so as to create given degrees
of short- or long-range order in the AB sublattice. This
requires unit cells with 16—1024 atoms. Atomic positions
are then relaxed to minimize the total energy. We find
that local clustering can (i) reduce the band gap of III-V
alloys to a similar extent as LRO does, (ii) transform the
indirect-gap material Alo 5Gao 5As into a direct-gap one,
and (iii) localize the band-edge wave functions preferen-
tially on a particular type of cluster, even though an iso-
lated nearest-neighbor cluster does not produce a bound
state. We explain the wave-function localization and
band-gap reduction in terms of two complementary
mechanisms: an impurity" picture and a quantum-
well" picture. We discuss the chemical trends in the cat-
ion sequence Al —+Ga~In. A brief preliminary account
was given by us in Ref. 39.

II. METHODOLOGY

In this section we describe the main ideas behind the
computational methods used in this work. Details are
given in the Appendix, or published in archive form.

To calculate the electronic energy-level spectrum and
wave functions of a disordered solid, we need (i) a
structural model, which accurately simulates the chemi-
cal and positional disorder in the system, (ii) a Hamiltoni-
an, which describes the electron dynamics in such struc-
tures, and (iii) a method for solving the Schrodinger equa-
tion. Our approach to (i), (ii), and (iii) will be described in
Secs. IIA, IIB, and IIC, respectively. The structural
and electronic models are combined in Sec. II D to pro-
vide the necessary tools for a spectral analysis of the elec-
tronic structure of disordered alloys.

A. Structural models for alloys with short- or long-range order

In a binary substitutional alloy with N atomic sites
there are 2 distinct ways (configurations o ) to occupy
sites by 2 and B atoms. We are interested in calculating
configurational auerages of lattice properties P(cr), e.g. ,
band gaps, bond lengths, and formation energies. Denot-

ing the configurational average with angular brackets, we
have

(P) =g P(cr)p(cr), (2)

where p is the normalized configurational density ma-
trix. For example, in a perfectly random alloy
(et=i) =0) at composition x =0.5, all configurations
have equal probability, thus p(o)=2 Vcr. For disor-
dered systems with SRO or LRO, however, p(cr) is no
longer a constant.

There are several approaches to estimate (P). The
first is to calculate P(o ) directly for a sufficiently large
number of configurations, and then compute the average
(P) from Eq. (2), with a given (random or nonrandom)
density matrix p. Equivalently, one can construct one
very large sample, and calculate P(o') for this particular
configuration. Approximations to this approach in the
context of tight-binding Hamiltonians have been offered
for random Alo 5Gao &As by Hass, Davis, and Zunger '

and for random ZnSe& Te by Li and Potz, while
Silverman et aI. used this approach for Gao 5In05P in
the context of Monte Carlo simulations.

A second approach consists of choosing a suitable
orthonormal basis in configuration space (the inner prod-
uct being a sum over all 2 configurations), and expand-
ing I' and p in terms of this basis. This is the concept
behind the Ising-like "cluster expansion, " ' where the
basis functions are products Hf over pseudospin vari-
ables S, in "figures" f (single site, pair, triplet, etc.) of
atomic sites. Then, for any configuration o one expands
P (o. ) in a hierarchy of figures:

(P ) =g pfDf ( IIf ),
f

where (II&)=g II(cr)p(o ) are "multisite correlation
functions. " The contribution p& of figure f can be calcu-
lated from the property P (o ) of some ordered
configurations to J. The success of a cluster expansion
relies on the fact that for many physical quantities P (cr )

the parameters pf fall off rapidly with increasing separa-
tion between the sites, and with increasing number of ver-
tices in figure f. Therefore only a few p&'s are needed in

Eq. (4).
A third approach to finding configurational averages

(P ) is to identify the leading terms of Eq. (4) and then
construct a single special configuration cr, whose III(cr, )

match the given configurational auerages ( II~ ) for these
"important" figures. One then calculates directly P (cr, )

P(cr)=g pfDfIIf(o )

f
where p& is the contribution of figure f to the property P,
III(o ) is a lattice average of the spin products over
symmetry-equivalent figures, and Df is a degeneracy fac-
tor. The distinctive feature of this approach is that the
configurational average of P(cr ) is written in terms of the
average of the II&(cr )'s, rather than averages over
configurations, i.e.,
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for the single, special configuration cr, without using any
cluster expansion. (P) is thus approximated by P(o, ).
For the random binary alloy A& B„ the correlation
functions ( H~ ) are known trivially, i.e.,

(IIf ) =(2x —1) f, where kf is the number of vertices in
figure f. A special configuration which matches these
correlation functions up to a maximum figure is called" a
"special quasirandom structure" (SQS). Surprisingly, one
can find periodic SQS's with only —16 sites that have
zero deviations from the "ideal" correlation functions for
pair figures up to the seventh atomic shell. Direct calcu-
lation ' of their band structure reproduces remarkably
well the results obtained with huge supercells. This ap-
proach has been applied to various properties of semicon-
ductor ' ' and transition-metal alloys.

While previous applications of SQS ' concentrat-
ed on perfectly random phases, any state of order can be
described by the set of lattice-averaged spin products
[Hf (o )]. For example, the SRO parameters a~ of Eq. (1)
are related to the pair-correlation functions through

where f =(2,j) denotes the jth nearest-neighbor pair
figure, and q =2x —1. The long-range-order parameter
g, on the other hand, measures the relative concentration
of foreign atoms on each sublattice, and if we assume ab-
sence of correlations among atoms on the same sublattice
we obtain for the pair-correlation functions

( H(p )(il) ) =g +i) [HIp .~(o ) q ]

Here, q =2X —1, where X is the composition of the
fully ordered structure o.. We can thus characterize SRO
[Eq. (5)] or LRO [Eq. (6)] by the correlation functions
and construct special structures that mimic them. Thus
for either SRO [Eq. (5)] or LRO [Eq. (6)] we can search
for "special" configurations o., which minimize a "cost
function" Q, defined as

Q, ( cr ) =g wf Df [ ( IIf ) H f ( o ) ]
f

where the weights wf are chosen to refIect the estimated
magnitude of the interaction parameters pf, and are zero
beyond a specified maximum figure. Anticipating appli-
cations of band-structure techniques to the SQS's, we fur-
ther restrict the search to periodic structures. We will
denote these structures with N sites per unit cell as SQS-
N (even if they are not "quasirandom, " but exhibit some
degree of SRO or LRO). For N ~ 16 an explicit search
among all configurations is feasible. For larger X, we
use a simulated-annealing scheme to find SQS's which
minimize Q, . We start by choosing a unit cell with N
atomic sites, and randomly assign pseudospins S =+1 to
each site. We then perform spin Aips using the Metropo-
lis algorithm ' with Q, of Eq. (7) as the "energy, " thus
accepting or rejecting the new configuration. Annealing
to low temperature" will then freeze out structures
which are good SQS's.

Our purpose here is to identify the primary fingerprints

of SRO on the band gap and wave functions of otherwise
random alloys. Thus, rather than use realistic but com-
plex SRO parameters found in full thermodynamic phase
diagram simulations, ' we concentrate on the electronic
consequences of the leading forms of SRO. To this end
we have constructed SQS's for ai=+K and a&= —K
(clustering and anticlustering of the first shell, respective-
ly), setting a =0, for all shells j) 1. We use K =

—,',
which gives a substantial e6'ect. The results are corn-
pared with SQS for a=O, representing the random alloy.
For LRO, we use SQS's for CuPt-type ordering with
il= —,', i)=I/&2, and the fully ordered CuPt structure
with i)= l. These SQS's have N =8,16, 108, and 512 fcc
sites per unit cell, and those for LRO have X =8 and 16.
The unit cells parameters and atomic positions of all of
these SQS's are available electronically. Their quality is
demonstrated in the Appendix. Including in Eq. (7) seven
pair and the nearest-neighbor triplet and quadruplet
figures, we find a random SQS-16 with Q, =0, i.e., all in-
cluded correlations reproduce exactly the infinite random
alloy. With the simulated-annealing technique (using a
fixed supercell geometry), N ~ 500 lattice sites are typical-
ly needed to achieve such a good quality, i.e., Q, =0. For
the a=0 SQS-8 the first small error in a pair-correlation
function occurs at the third shell (II~23~= —,

' ). For the
a =

—,
' SQS-8 the first error occurs at the fifth shell

(H~~, ~= —
—,'). Another statistical test is the comparison

of the distribution of A4 „B„,n =0, . . . , 4, tetrahedral
clusters in the SQS with the exact random values. The
cluster distribution depends linearly on the composition
and the nearest-neighbor figures (pair, triplet, and quadr-
uplet), and obeys a Bernoulli distribution in the case of
the random alloy. We find that this distribution is exact-
ly matched by the a=O SQS-8 and SQS-16 (see the Ap-
pendix). The overall statistical quality of the SQS-N used
here is excellent, given that the smallest SQS has only
eight fcc sites.

So far we have discussed the topology of alloy struc-
tures. To determine the geometry we allow atoms to re-
lax to their (local) minimum energy position without
swapping sites. We perform this relaxation using
Keating's valence force field (VFF) model. ' For the
SQS-8 we confirm the validity of the VFF model by per-
forming a first-principles local-density-approximation
(LDA) calculation, and relaxing the structural degrees of
freedom using quantum-mechanical forces.

The VFF model provides a further test for the accura-
cy of the SQS approach as it affords comparison of the
elastic energies of the SQS's with those of very large su-
percells. Table I gives results of our VFF calculations on
Gao 5Ino &P using SQS-8 and SQS-512. The formation en-
ergies AH„, of the unrelaxed structures agree perfectly,
while those of the relaxed lattice (bH„) are within 10%.
Bond lengths calculated with small and large SQS's agree
within 0.1%. Figure 1 shows the VFF elastic energy of
Gao 5Ino 5P as a function of the CuPt-type LRO parame-
ter g squared. We compare the well-converged results
from 1024-atom supercells (SQS-512) with those from
16-atom supercells (SQS-8), finding the SQS-8 results to
be good approximations to the converged values. Thus
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TABLE I. VFF results (Ref. 53) for relaxed {subscript r) and unrelaxed (subscript ur) Gao, Ino, P SQS. hH and V are the forma-
tion energy and volume per GaInp2 formula unit, respectively. The equilibrium bond lengths are R z, p =2.360 A, R

~ p =2.541 A.

Quantity

hH„, (meV)
EH„(me V)

SQS-8

324. 1

80.6

a= ——1

6

SQS-512

324.1

81.1

SQS-8

324.9
86.0

SQS-512

324.9
91.0

SQS-8

325.7
111.5

o.=+—'
6

SQS-512

325.7
100.2

V„, (a.u. )

V, (a.u. )

599.1

595.2
599.1

595.2
599.1

595.2
599.1

595.0
599.1

594.7
599.1

594.9

R(Ga-P)
R(In-P)

2.377+0.011
2.518+0.007

2.377+0.012
2.518+0.009

2.379+0.009
2.516+0.011

2.380+0.014
2.515+0.011

2.386+0.021
2.509+0.01S

2.383+0.015
2.512+0.012

the small SQS gives an adequate approximation. Relaxa-
tion of the SQS's reduces the elastic energy by about 70%
with respect to the unrelaxed structures. This involves
relatively large relaxation of the bond lengths towards
their respective zinc-blende equilibrium values. This is
also illustrated in Table I, where we give the nearest-
neighbor (cation-anion) distances as a function of the
SRO parameter a. Relative to the random alloy, the
cation-anion bond lengths relax slightly more in the pres-
ence of anticlustering SRO and less in the presence of
clustering SRO. The short Ga-P bond elongates a bit due
to clustering while the long In-P bond shortens a bit due
to clustering. The calculated Ga-P and In-P bond
lengths at a=0 agree very well with experiment, which
gives R(Ga-P) =2.379+0.010 A and R(In-
P) =2.519+0.010 A. Our calculated values are
2.380+0.014 and 2.515+0.011 A for the Ga-P and In-P
bonds, respectively (Table I). We note that agreement be-
tween theory and experiment is better than the experi-
mental uncertainty. Furthermore, our SQS-512 results

indicate that the standard deviation of the bond-length
distribution is of the same order as the experimental un-
certainty ( -0.01 A ).

The structural model used here to represent random al-
loys or alloys with SRO differs from the structural mod-
els underlying the virtual-crystal approximation (VCA)
or the single-site coherent potential approximation (s-
CPA). The VCA assumes all atoms on the mixed sublat-
tice to be identical, and the s-CPA assumes 3 and 8
atoms to each have their respective mean-field-like envi-
ronment. The s-CPA thus neglects differences in the lo-
cal environments of the individual atoms, which would
result in different charge transfers (and thus a change in
the Madelung energy ) and bond lengths. In contrast,
the X sites in a SQS-X are in general not equivalent. An
empirical tight-binding implementation of the s-CPA has
been applied to pseudobinary III-V alloys to study elec-
tronic properties associated with random disorder by
Chen and Sher. 58

B. Empirical pseudopotentials

Ga In() 5P

30.0

CS

25.0

0
~ W

20.0

0.0 0.2 0.4 0.6 0.8 1.0

Degree g of CUPt LRO

FIG. 1. VFF formation energy of Gao 5Ino 5P with CuPt-type
LRO as a function of the LRO parameter g squared. Symbols
are SQS-X calculations; the solid line is a quadratic interpola-
tion between the SQS-512 result for i) =0 and the result for per-
fect CuPt ordering (g = 1).

The periodic structures with special site occupations
that represent a given degree of SRO or LRO are now
used to model the electronic structure of disordered al-
loys. Although we extensively will use SQS's with a
"small" number of atoms (X =8 or 16 fcc sites) for which
LDA calculations are practical, it is also desirable to use
large SQS's so that extremely well-converged SQS results
can be established. To this end the electronic structure of
large SQS's of Alo sGao 5As was calculated using carefully
fitted empirical, atomic pseudopotentials in a plane-wave
basis.

To achieve an accurate description of the electronic
structure of a large variety of atomic configurations, we
fitted the atomic pseudopotentials to (i) the band struc-
tures of the binaries, (ii) the valence-band offset between
the binaries, (iii) the correct "scattering strength" in vari-
ous substitutional configurations as rejected by LDA-
calculated level splittings in short-period superlattices,
(iv) the effective masses, and (v) the deformation poten-
tials. Reference 59 describes an algebraic form of local
atomic pseudopotentials for Al, Ga, and As that satisfy
requirements (i) —(v) very well. We do not constrain the
As pseudopotentials in AlAs and GaAs to be identical;
thus we account for the different charge transfer in the
two materials: after independently fitting the As pseudo-
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The analytic form and the parameters for the pseudopo-
tentials are given in Ref. 59. As shown there, these atom-
ic pseudopotentials for Ga, Al, and As provide excellent
fits to the band structures, effective masses, deformation
potentials, band offset, and work functions of GaAs and
A1As and of various ordered ternary compounds, includ-
ing short-period and long-period superlattices.

C. Calculating the electronic structure
of —1000-atom structures

Having established structural models (Sec. IIA) and
defined pseudopotentials (Sec. II B) for our semiconduc-
tor alloys, we must next calculate the electronic struc-
ture. As discussed in Sec. IIA, some of the special
quasirandom structures used here involve unit cells with
as many as 512 fcc sites (1024 atoms); our pseudopoten-
tials require for these structures a plane-wave basis with
as many as 30000 orbitals. Band-structure calculations
of such magnitude are extremely tixne consuming if con-
ventional methods are used. The reason is that most ap-
proaches focus on the Bf=eg representation that forces
one to calculate al/ eigensolutions below the physically
most interesting ones [e.g. , the valence-band maximum
(VBM) or conduction-band minimum (CBM)]. For ex-
ample, in a 1000-atom cell having 4000 electrons, the
VBM is level number 2000 and the CBM is level 2001,
yet conventional methods require that all 1999 levels
below the VBM be calculated also, even if we are only in-
terested in the value of the CBM —VBM band gap. This
requirement (refiecting the need for orthogonality) leads
to an overall lV scaling of the computational effort, thus
limiting practical applications to —100-atom systems.
This problem can be circumvented if one is interested in
eigensolutions only in an "energy window" (e.g., near the
VBM and the CBM). In this case it is advantageous to
use the alternative representation

(H —E„t) g; =(e;—E„t) p (9)

where c„f is a "reference energy" selected in advance.
The spectrum of the positive semidefinite operator
(H —E„&) is the "folded spectrum" of H around c,„&.
Therefore the lowest variational solution of Eq. (9) is the
eigenstate with eigenenergy E; closest to c„f. All eigenen-
ergies of M below c„fare folded onto positive roots of Eq.
(9). Hence, by placing E„~ in the range of physical in-
terest, one transforms an arbitrarily high eigensolution
into the lowest one, thus obviating the need for orthogo-
nalization to all other lower-lying eigenstates of 8. The
computational effort scales only linearly with X, permit-
ting large-scale calculations. In alloys, the most interest-
ing levels are often those around the Fermi level. Thus,
by placing c„f inside the energy gap, we find either the
VBM or the CBM, depending on which is closer to c„f.

potentials (denoted as U&,
' and U'&,', respectively) in GaAs

and A1As, the pseudopotential for As coordinated by
(4—n) Ga atoms and n Al atoms is taken as the weighted
average

(n) 4 v(o) + n v(4)
As 4 As 4 As

Changing E„f then assures that both levels are obtained.
Usually, we calculate a small number of eigensolutions of
Eq. (9) simultaneously. We expand P; in plane waves,
i.e., (rig; & =gG C;(G)e' '. We then minimize
( P; l(H —c„t) l P; & using a preconditioned conjugate gra-
dient method as described in Ref. 60. This method has
been used successfully for empirical-pseudopotential-
method (EPM) calculations on Si quantum dots contain-
ing -2000 atoms.

D. Spectral analysis of the electronic energy levels

lv&=g ink&(nklv& .
n, k

(10)

The alloy states lv& with "signature" of a zinc-blende

The approach to the electronic structure of disordered
alloys outlined in the previous sections is based on band
theory of periodic crystals with large unit cells and low
site symmetries. Here we show how to interpret such
band structures while accounting for the absence of
translational and rotational symmetry in a truly disor-
dered alloy.

Measured optical spectra of A i B„Czinc-blende al-
loys ' are generally interpreted in the literature using the
language of zinc-blende spectra; for example, the
E'i5, —+I i, transition of AC shifts continuously when BC
is added to it. However, an energy level belonging to a
particular (nontrivial) irreducible representation of the
zinc-blende structure, such as I » or X„does not lend it-
self to performing a configurational average in the sense
of Eq. (2). This is because it is ill-defined for most of the
2 possible configurations (e.g. , a I is state exists only in
configurations of cubic symmetry).

Intuitively, the survival of zinc-blende-like features in
the optical spectra of A i „B,C alloys follows from the
fact that on average the disordered phase has the full
zinc-blende symmetry. The naive virtual-crystal approxi-
mation exploits this fact by demanding that each and
every atomic site in the alloy has the zinc-blende symme-
try. In this unrealistic picture, all atoms on the mixed
AB sublattice are replaced by identical, virtual atoms
representing "chemical averages" of the two distinct
atoms A and B. The virtual crystal thus has a well-
defined band structure having the topology of the zinc-
blende constituents AC and BC. Switching on the chemi-
cal differences between the atoms and allowing for atomic
displacements results in a massive coupling between the
VCA wave functions that have different band indices and
wave vectors in the zinc-blende Brillouin zone. This
leads to mixing of wave functions and level repulsion and
results in optical bowing.

The extent to which alloy electronic wave functions ex-
perience the average atomic crystal structure rather than
a collection of local environments can be estimated quan-
titatively by projecting the wave functions of the alloy
(represented, in principle, by a huge supercell, and in
practice, by a SQS) on VCA states with zinc-blende sym-
metry. In fact, we can expand any alloy eigenstate lv & in
terms of zinc-blende states

l
n k & with band index n and

wave vector k as
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state are those with dominant contribution in Eq. (10)
from one particular state ink). We define the diagonal,
symmetrized spectral density function A„(k,E) for
configuration o. as

~„, (k E)= g l(n, Rklv&l'l(E E—), (11)
R, v(o. )

where the sum runs over the Nz operations R of the
zinc-blende point group, and over all electronic eigen-
states v(cr) of configuration o. with eigenvalue E . An
accurate theory of alloys would involve a sample with
N~ ~ sites, so its spectral function A„„(k,E) will be a
quasicontinuous function of E. The SQS approach can be
thought of as sampling this spectral density at a finite
number of wave vectors K in the SQS Brillouin zone (we
choose capital letters with overbar for these wave vectors
to distinguish them from wave vectors in the zinc-blende
Brillouin zone).

This discussion makes it clear that the quantity P(o )

having a well-defined configurational average (P & [Eq.
(2)] is the spectral density of Eq. (11). This is so because
(i) the spectral density depends only on the configuration
of atoms (through the Hamiltonian) and is defined for any
configuration o, and (ii) it is invariant under the space-
group operations of the host lattice (by summing over all
eigenstates). In the SQS approach, we approximate the
configurational average by its SQS value, i.e.,
( A„(k,E) & = A„s&s(k, E). Hass, Davis, and Zunger '

have shown that the spectral density obtained from a
SQS-8 tight-binding calculation indeed yields a good ap-
proximation to a well-converged supercell calculation
with -2000 atoms.

( A„(k,E) & can be expanded in terms of its moments, '

e.g. , its first moment is the expectation value of the ener-
gy eigenvalue of

l
nk & in the alloy,

f dE E( W„(k,E) &(.„(k)&
= (12)

f dE( A„(kE) &

In principle, the integration limits are Eo= —~ and
E, = ~. When several peaks are present in the spectral
density, we calculate "restricted" moments in finite,
nonoverlapping energy intervals [Eo,E, ] around each
peak. Comparing (E„(k)& with its unperturbed counter-

part E„(k) (from VCA or from the linear average of the
constituent eigenvalues) gives us information about opti-
cal bowing, whereas the second moment of ( A„(k,E) &

measures level broadening.
It is also desirable to make an analysis of SQS wave

functions in real space, to gain information about their
localized or delocalized nature. We do this by projecting
the SQS wave functions on atomic spheres around each
atom in the SQS unit cell. We use characteristic func-
tions ll(n(ro) ) which are zero outside a sphere of volume
0 about origin ro and I/O inside the sphere. A SQS
wave function can then be projected on spheres centered
on atoms belonging to a particular tetrahedral cluster
A4 „8„.We define a cluster weight as

(13)

where N„ is the number of A4 „B„clusters that occur in
the SQS unit cell and r; are the atomic positions in these
clusters.

III. RESULTS

A. EPM results: ER'ects of SRO
on the electronic properties of Alo 5Gao 5As

The band gaps of the Alo 5Gao 5As alloy calculated us-
ing the spectral average defined in Eq. (12) for different
degrees of SRO are presented in Table II. The total spec-
tral weights included in the average are given in percen-
tage. The agreement between the energies for SQS-N
with X =8, 16, and 108 is typically better than 0.01 eV.

We start our discussion with the perfectly random al-
loy. Table II shows that the lowest gap in the random
(a=O) A10~Gao ~As alloy is indirect at X. The a=O
spectral density functions from which the SQS-8 values in
Table II are obtained are plotted in Figs. 2(a) —2(c), where
the dotted line marks the average of the corresponding
GaAs and A1As band gap. As can be seen in Fig. 2(a),
the I „transition shows considerable bowing and small
mixing into states between 3.0 and 3.5 eV. Comparison
with the spectral density of the (four equivalent) I.„
states shows [Fig. 2(c)] that both the bowing and the mix-
ing with higher energy levels is similar to I „[Fig.2(a)].

TABLE II. Band gaps (in eV) of the Alo, CxaD, As alloy calculated by EPM using the spectral average [Eq. (12)] for different de-
grees of SRO. The total spectral weights are given in percentage. The fluctuations among different SQS-X are small when the includ-
ed spectral weights are comparable (see the two lines for ( I „)). The shifts of the a= —' SQS-108 energy gaps with respect to the ran-

dom ones are given in the eighth coiumn.

State SQS-8

2.167 (89%)

2.106 (99%)

2.229 (89%)

Random (a =0)
SQS-16

2.098 (69%%uo)

2.159 (88%)

2.108 (99%)

2.228 ( 89%)

SQS-108

2.119 (74%)
2.129 (79%)

2.106 (99%)

SQS-8

2.043 (64%)
2.074 (79%)

2.091 (99%)

2.215 (88%)

SRO (a=
6 )

SQS-16

2.039 (63%)
2.075 (80%)

2.097 (99%)

2.200 (85%)

SQS-108

2.087 (71%)
2.099 (75%)

2.098 ( 99%%uo)

Shift (meV)
SQS-108

—32
—30
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FIG. 2. EPM-calculated spectral densities of zinc-blende-like
conduction states in the spectrum of Ala, Gao, As SQS-8 with
(lower panel) and without (upper panel) SRO. The dotted verti-
cal lines denote the corresponding average gaps of the binaries,
and the arrows indicate the ( I „)energy of SQS-108.

Projection of the SQS-8 wave functions on the corre-
sponding VCA states reveals that the I „and L „states
indeed couple. In contrast, the X&, state shows virtually
no bowing and very little mixing [Fig. 2(b)]. Optical bow-
ing is usually quantified in terms of the bowing parameter
b, defined as E (x)=Eg(x) bx (1—x)—, where E (x)
denotes the linear average of the band gaps of the constit-
uents A C and BC at composition x. The u =0 bowing
coeKcients calculated from band gaps in Table II are
summarized and compared to experiment and other
theories in Table III. We also give the compositions x,
at which the bands cross when bowing is taken into ac-

count. The agreement between the present EPM results
and experiment is quite good for the I &, bowing and the
I ~X and X~L crossover compositions. Discrepancies
exist between our calculations and the rather uncertain
experimental data for the bowing of the L-like band
gap. On the other hand, the agreement of the EPM re-
sults with LDA SQS-8 calculations (to be described
below) is very good. This demonstrates again that the
present EPM reproduces very well the wave-function
coupling and level repulsion in ternary compounds with a
variety of local atomic arrangements.

Introducing clustering-type SRO (a i
=

—,
'

) leads to
stronger wave-function coupling, pushes the I &, level
down below the a =0 value by —80 meV, and broadens
its spectral density [Table II and Fig. 2(d)]. Again, the
L &, state shows the same trend of increased bowing and
level broadening [Fig. 2(fl]. Because Xi, is pushed down
by only —10 meV [Table II and Fig. 2(e)], the optical
band gap of clustered Alo 5Ga„5As is now direct. Thus
we predict an indirect-to-direct crossover in Alp gGao 5As
with sufhcient local clustering.

We next analyze the eFects of SRO on the wave func-
tions of the lowest conduction and highest valence states.
Figure 3 shows histograms of the cluster weights t0„[Eq.
(13)] measuring the probability to find a wave function on
an A14 „Ga, cluster in the alloy. As the degree e of
SRO increases, the number of both Ga& and A14 clusters
increases in the alloy by the same amount, while the
number of mixed clusters (n =1,2, 3) decreases (see the
Appendix). Figure 3 shows that as SRO sets in, the wave
functions at the conduction-band edge strongly localize
on the Ga4 clusters, while the corresponding states in the
random alloy are spread over all cluster types. Compar-
ing the large SQS-N results with those of SQS-8 and
SQS-16 in Fig. 3, we see that the smaller SQS's tend to
exaggerate the degree of localization, but in all cases clus-

SQS-108 sQs-16 SQS-8

Al4

I G ot = 1/6

O

AI4
Q
M

Ga4

Ga4

AI4

AI4

Ga4

Ga4

AI4

n= Ii6

AI4

FIG. 3. EPM-calculated cluster projections
[Eq. (13)] of the CBM wave function on
A14 „Ga„clusters in Alo, Gao, As SQS-N,
with X= 8, 16, 108, with (lower panel) and
without (upper panel) SRO. The units are ar-
bitrary but have the same scale for each X, and
the individual columns are normalized to one
cluster. The atomic sphere volumes Q used for
the projections are equal to the average atomic
volume in the alloy.

4 3 2 1 0
n

4 3 2 1 0

Ga .sAlo. sAs

4 3 2 1 0
II
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TABLE III. Band gaps E, bowing coefBcients b (in eV), and
critical crossover compositions x, of the Al& „Ga As alloy.
EPM band gaps are from Table II. LDA conduction-band ei-

genvalues have been rigidly shifted by 0.84 eV to agree with ex-
perimental band gaps of the binaries. Eg is the 50%-50% aver-

age band gap of AlAs and GaAs. Experimental band gaps are
low-temperature values; bowing coeKcients were measured at
various temperatures.

Present EPM
SQS-16

LDA
Experiment SQS-8 CPA'

E (x = —') (eV) 2.12 2.12 2.18

E (x = —') (X„)
b(r„)
b(X„)
b(L1, )

x(r X)
x, (L ~X)
x, (I —+L)

Z, (x =-,') (r„)
b(r„)
b(Xi, )

b(L), )

x(r X)
x, (L —+X)
x,(r-L)
'Reference 68 ~

Reference 63.
'Reference 64.
Reference 65.

'Reference 66.
'Reference 67.

Random
2.11 2.08"

0.48 0.37'
0.05 0.15"
0.45 0.055'
0.46 0.41'—0.43'
0.34 0.35
0.65 0.47

With SRO a=
6

2.08
0.81
0.09
0.56
0.52
0.37
0.74

2.17

0.23
0.04
0.33
0.47
0.35
0.88

2.13

0.58
0.11
0.45
0.51
0.35
0.94

0.27
0.18
0.20

For structures up to SQS-16, i.e., 32 atoms per unit
cell, we use finite-principles pseudopotentials in addition
to the empirical ones. This allows us to study the charge
transfer and its effect on the electronic structure in
different atomic environments in a self-consistent
manner. We construct the nonlocal pseudopotentials us-
ing the approach of Kerker. Exchange and correlation
effects are treated in the local-density approximation us-

ing the Ceperley and Alder potential in the parametri-
zation of Perdew and Zunger. ' The kinetic-energy cutoff
for the plane waves is 15 Ry, and Brillouin-zone integra-
tions are done using an equivalent of 29 special k points
of the fcc structure. ' As is well known, ' LDA calcu-
lations severely underestimate conduction-band energies.
To compare our results to experimental and EPM results,
we rigidly shift the LDA conduction energy eigenvalues
by an amount depending on the constituents and compo-
sition of the alloys. The Gao 5Ino 5P and Alo 5Ino 5As

tering leads to localization on Ga. We will see in Sec.
III C how this localization correlates with atomic s-
orbital energies of the cations.

B. LDA results: Effects of SRO on the electronic
properties of Alo 5Gao 5As, Gao 5Ino 5P, and Alo 5Ino ~As

supercell geometries have been determined with VFF, as
described in Sec. II A.

The LDA results for Alo 5Gao 5As have been compared
with the EPM results in Table III. The conclusions
drawn from the EPM calculations in Sec. III A are
confirmed by the LDA calculations.

We now extend the theory to Ga, In„P and
Al& „In As. The optical bowing obtained from the ran-
dom SQS-16 band structure of Gao ~lno sP is b =0.46 eV
(tight-binding s-CPA gives b =0.52 eV). Strong clus-
tering (a =

—,
'

) reduces the gap even further, as in the case
of Alo 5Gao 5As. The resulting bowing coefficient in the
presence of clustering is b =0.90 eV. The experimental
values range from 0.50 to 0.79 eV (Ref. 75). The relative-
ly wide scattered experimental data make it difficult to
draw conclusions on the possible presence of SRO in the
experimental samples, even though in the light of our
theory larger bowing parameters would seem to indicate
clustering-type SRO. However, different experimental
techniques and the models employed to extract bowing
parameters can also be responsible for the scattering of
the data. To clarify this issue, independent, direct mea-
surements of SRO on the same samples are needed. Like
Al, Ga, As, Ga, In P is an alloy of a direct-gap (InP)
and an indirect-gap (GaP) material. At composition
x =0.5, however, the random Ga& In„P alloy is direct,
and cation clustering does not change the nature of the
band gap, as is the case for Alo 5Gao 5As. Nevertheless,
strong clustering can reduce the direct band gap consid-
erably.

We have also performed a spectral analysis of the elec-
tronic structure of the SQS-8 with anticlustering SRO
(a = —

—,
' ). ~e find no significant difFerence with respect

to the +=0 alloy, i.e., no additional bowing or localiza-
tion of the wave functions as in the case of clustering-
type SRO. We conclude that nearest-neighbor ordering-
type SRO leaves no fingerprints on the near-band-gap op-
tical spectra of III-V alloys.

We obtain similar results for Al, In, As. Like
Al, Ga As, this alloy is made of an indirect-gap (A1As)
and a direct-gap (InAs) component. The bowing
coefficient for the random Alo 5Ino 5As alloy is calculated
as b =0.52 eV. Upon clustering (a= —,'), the bowing
coefficient increases to b =0.88 eV. The experimental
values are 0.24 eV (Ref. 75) and 0.74 eV (Ref. 76); tight-
binding s-CPA gives b =0.70 eV.

The spectral density function defined in Eq. (11) is
directly related to the oscillator strength of a given tran-
sition in the alloy. This can be seen by taking the dipole
matrix element between two alloy states expanded in
terms of zinc-blende states IEq. (10)] and recognizing that
only a few zinc-blende dipole matrix elements will con-
tribute to the expansion of the alloy matrix element.
Indeed, when calculating the dipole matrix elements be-
tween an SQS valence- and conduction-band wave func-
tion, we found that it was directly proportional to the I „
projection of the conduction state. In other words, even
if a zinc-blende conduction state away from the
Brillouin-zone center is mixed into the zone center wave
functions by alloying, it does not contribute to optical
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transitions from the VBM. This is analogous to the ob-
servation that "folded, " or pseudodirect, transitions in
superlattices carry almost no oscillator strength.

We now compare the SRO efFects on the alloy band
structure with those caused by LRO. In the presence of
LRO (Fig. 4), the spectral density is strikingly different

from that in the presence of SRO (Fig. 2). In the fully or-
dered CuPt structure, the I 1, and folded I.„strongly in-
termix and form two I „states of —50%%uo I „and -50%
L„character. ' The spectral function A„c„p,(I,E)
therefore has two peaks of about equal height [Fig. 4(c)].
Associated with the I -I. mixing is a spatial segregation of
the lower I „state on the Ga(111) planes and of the
higher I &, state on the In(ill) planes. The band-gap
reduction with respect to the random alloy associated
with this level repulsion is 0.23 and 0.34 eV for g= —,

' and
1/&2, respectively, and 0.49 eV for g= l. The band-gap
reduction as a function of the I.RO parameter g is often
used to determine q by measuring the band gap. ' From
our results on SRO above we now know that clustering
can also lead to a band-gap reduction. If SRO and LRO
coexist in the same sample, the band-gap reduction could
be partially caused by SRO, and great care has to be tak-
en when "inverting" the band-gap vs g relation.
Crystal-field splitting, which is not afFected by SRO, is an
optical probe of LRO (and strain) alone, and can there-
fore remove some of the ambiguity.

The LDA-corrected results for the band gaps of
Alp 5Gap 5As, Gap 5Inp 5P, and A1Q 5InQ 5As with SRO and
LRO are summarized in Table IV and are compared to
the random alloy values and the linear averages of the
constituents. Table IV also shows on which types of clus-
ters (planes) the band-edge wave functions are localized
in the presence of SRO (LRO). For the CBM of
Alp 5Gap 5As and Gap 5Inp 5P, as well as the VBM of
Alp 5Inp5As in the presence of SRO, the wave-function
localization is illustrated in Fig. 1 of Ref. 39. There, the
LDA-calculated cluster projections [Eq. (13)] of these
band-edge wave functions are shown (compare with the
EPM-calculated results in Fig. 3), together with contour
plots in a plane which intersects both an A4 and a 84
cluster.

0.0
C. Discussion: Physical mechanism and chemical trends

0.8

0.6

0.2

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Energy (eV)
FIG. 4. LDA-calculated spectral density of the zinc-blende-

like I &, state in Gao 5Ino 5P with CuPt-like LRO. For g=0 and
g= —', we use SQS-8; for g=1 we use the four-atom Cupt unit
cell. Energies are uncorrected LDA results.

Our results presented above show that clustering on
the cation sublattice of Alp 5Gap 5As, Gap 5Inp 5P, and
Ala 5Ino &As alloys leads to (i) strong enhancement of the
optical bowing of the direct band gap and (ii) localization
of the VBM and/or CBM wave function on one type of
cluster (Fig. 3 and Table IV). Observations (i) and (ii) are
related as follows. We have seen that the enhancement of
optical bowing with clustering reflects a stronger mixing
of wave functions with difFerent wave vectors in the zinc-
blende Brillouin zone (see Fig. 2). This, in turn, means
that in the presence of clustering, the alloy wave func-
tions are composed of a wider distribution of zinc-blende
states in k space [Eq. (10)], and hence are more localized
in real space. What is the mechanism leading to wave-
function localization, or equivalently, to strong wave-
vector mixing? We will answer this question using two
complementary physical pictures: (i) the "impurity pic-
ture, " where we emphasize the local nature of the poten-
tial change when atoms are substituted and small clusters
are formed, and (ii) the "quantum-well picture, ** where
the bulk properties of domains of pure constituents are
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TABLE IV. LDA-corrected band gaps in eV (measured from the top of the valence band) for three
alloy systems at different states of order: perfect randomness (a=ad=0), clustering-type SRO (a=

6 ),
and CuPt-type LRO (g=1). Here, Eg denotes the average gap of the binaries at their equilibrium
volumes. Chemical symbols in parentheses denote the sublattice on which the VBM and CBM are lo-
calized, respectively, and D denotes that the state is delocalized.

System

AlQ 5GaQ 5As

GaQ 5InQ 5P
AlQ 5InQ 5AS

r„
X„
r„I„

Eg

2.27
2.18
2.16
1.78

Random

2.22
2.17
2.06
1.65

2.13
2.16
1.93
1.56

SRO
1a=—
6

(Ga/Ga)

(In/Ga)
(In/D)

1.86
2.10
1.57
1.49

(D/Ga}

(In/Ga)
(In/D)

used to describe the wave-function localization in cluster-
ing alloys.

2. Quantum well -picture of carrier localization
in clustered alloys

I. Impurity picture of carrier localization in clustered alloys

%'e first consider the CBM. The CBM wave function
in Alo 5Gao 5As and Gao 5Ino 5P is strongly localized on
Ga-rich clusters (Table IV). In Alo sino 5As, the CBM is
weakly localized on the In-rich clusters. The chemical
trend pertinent to this observation follows the order of
atomic s-orbital energies, which increase in the sequence
Ga ~In ~Al (LDA values are —9.16, —8.46, and
—7.83 eV, respectively). Because the CBM wave func-
tions in the clustered alloys are mostly s-like (they derive
mainly from I „),this correlation implies that the clus-
ters act as "impuritylike traps": it is well known that an
isolated isoelectronic impurity binds a carrier if the
difference between its local potential and that of the host
atom exceeds a critical value. An isolated Ga impurity
in an A1As or InP host crystal is not strong enough to
bind an electron. Because the strength of the local po-
tential is determined by its depth as well as its range, a
natural question arises: At what critical size n will an 3„
cluster in a BC host crystal show a bound state? To in-
vestigate this question, we have performed EPM calcula-
tions on A1As supercells containing 512 atoms where a
cluster of n A1 atoms is substituted by Ga atoms. The
case of Al, „Ga As is particularly simple because there
is no size mismatch between GaAs and A1As, and the lo-
cal potential differences between Al and Ga reAect purely
chemical difFerences. Our findings are (i) A Ga„cluster
in an A1As host with n ~ 14, produces I -like resonances
within the conduction bands of A1As, but no gap states.
The I -like and I.-like resonances for n = 1 and 4 are close
in energy to the corresponding conduction states in an
Ali Ga As alloy of the same composition as the super-
cell (x =n /256), whereas for n =14 they are about 150
meV below their "parent states. " (ii) Although a single
Ga4 cluster does not produce a bound state, a 6nite con-
centration of such clusters, present in our a= —,

' SQS,
pushes the resonant levels down further, leading to a I-
like CBM in Alo 5Gao5As with wave-function localiza-
tion on Ga-rich clusters (cf. Table IV and Fig. 3). Thus it
is the existence of a finite concentration of small clusters
embedded in the alloy medium ' that causes wave-
function localization and band tailing, much like in the
substitutional alloy theory of Lifshitz.

In Gao 5Ino 5P and Ala 5Ino 5As, in addition to purely
chemical difFerences between the atomic
(pseudo)potentials, the size mismatch between the cations
leads to local strain in the crystal lattice. The lattice re-
laxation will considerably modify the perturbation intro-
duced by the chemical difference of the substituted
atoms. The importance of this effect is illustrated in
Fig. 5, where an energy-level diagram is plotted for the
GaP/InP system. We compare the energy levels of GaP
and InP at their respective equilibrium volume V, with
those at the Gao 5In05P alloy volume V. In the case of
coherent phase separation, each constituent is con-
strained to the fixed volume V: GaP is hydrostatically ex-
panded and InP is hydrostatically compressed. The
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FIG. 5. Band-gap diagram of the GaP/InP system (LDA ei-
genvalues in eV) assuming a zero valence-band offset. The band
gaps of GaP and InP bulk are given both at their equilibrium
volume V,q and at the volume of the GaQ5InQ &P alloy V. For
the alloy, the lowest conduction states of SQS-8 with and
without SRO are given.
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changes in the energy spectrum —as described by the hy-
drostatic deformation potentials —is dramatic: GaP
transforms from an indirect-gap material at X to a
direct-gap material, whereas InP transforms from a
direct-gap material to an indirect-gap material at X (Fig.
5). Therefore, in the coherently phase-separated
GaP/InP system, the CBM is localized on GaP, rather
than on InP, as would be the case if the constituents
would relax to their respective equilibrium volume (in-
coherent phase separation). This establishes the
"quantum-well picture, "where the electrons are assumed
to obey an effective-mass-like Schrodinger equation with
the potential given by the properly lined-up band edges.
In Fig. 5, the CBM of the +=0 and —,

' alloy are also
shown, as obtained from SQS-8. Note that localization of
the CBM wave function in the clustered alloy on Ga
agrees with both the impurity picture with its s-orbital
rule outlined above, as well as the quantum-well picture
(valid when coherent phase separation is complete, and il-
lustrated in Fig. 5). This qualitative agreement is not ob-
vious, and the evolution of the electronic spectrum when
going from a single isoelectronic impurity via a cluster
(or quantum dot) to bulklike domains in a host crystal is
not well studied at present.

3. Hole localization

So far we have discussed conduction-band (or electron)
localization. The physical mechanism leading to localiza-
tion of the VBM (or hole) wave function is qualitatively
similar. We have to consider whether an isoelectronic
substitution is attractive or repulsive to holes. The holes
at the VBM in the III-V semiconductors are p-like and
segregated mostly on the anion sublattice. The p-orbital
energies in the free Al, Ga, and In atoms are almost
equal. Nevertheless, it was shown by Wei and Zunger
that the relative position of the I », state in III-V
common-anion systems is mostly determined by p-d
repulsion of the cation orbitals. Because in Al the d or-
bitals lie above the p orbitals, the I », states in the Al
binaries are expected to be pushed below the ones in the
Ga and In binaries, where the orbital order is opposite.
Therefore the p-d repulsion argument suggests that the
holes will localize on Ga and In clusters in A1& Ga As
and Al, In As alloys, respectively. The predictions of
this simple two-level model indeed agree with the direct
calculations on clustered alloys, as shown in Table IV. In
a common-anion Ga/In system, p-d repulsion alone does
not give a clear indication where the holes are expected
to be localized. Let us use the quantum-well picture in-
stead. We need the valence-band offsets between the con-
stituents (assumed to be zero in Fig. 5) hydrostatically
strained to the alloy volume V. This allows us to predict
where the holes will be localized when coherent phase
separation occurs. In AlAs/GaAs, the VBM in GaAs is
about 0.50 eV higher than that of A1As. The valence-
band offset in hydrostatically strained A1As/InAs is not
directly available, but it can be estimated from the epitax-
ial A1As/InAs (001) system, where uniaxial strain ap-
plies. The offset of the crystal-field and spin-orbit-
averaged VBM has been calculated to be -0.45 eV,

and the VBM of InAs to be higher than that of A1As.
Upon hydrostatic expansion of AlAs and compression of
InAs, the VBM of InAs is expected to increase with
respect to A1As. Therefore, in A1As/InAs, the VBM in
InAs will be higher by ~0.50 eV than that in A1As.
Similarly, linear-augmented-plane-wave calculations in-
dicate that in GaP/InP the VBM will be on InP. The
hole localization in coherently phase-separated
Alo sGao sAs, Gao. sIno. sP a d Alo. sIno. sAs is therefore
expected to be on GaAs, InP, and InAs domains, respec-
tively. Again, this is in agreement with our findings for
the clustered alloys, as shown in the sixth column of
Table IV. The quantum-well picture works surprisingly
well, even when the phase separation is limited to
nearest-neighbor shells.

IV. CONCLUSIONS

We have presented a method to study the electronic
structure of pseudobinary semiconductor alloys with a
given degree of short-range order. The method accounts
in a statistically accurate fashion for a distribution of lo-
cal atomic environments and thus goes beyond mean-field
treatments of alloys. Special configurations of
8 X ~ 500 lattice sites were constructed that mimic
much larger supercells and thus allow for the calculation
of configurational averages with a single calculation of
manageable computational effort. For large supercells, a
simulated-annealing technique is used to find an atomic
configuration that corresponds to the desired ordering
state (random or short-range order). Whereas self-
consistent LDA calculations are practical for structures
with up to -32 atoms per unit cell, we have used the
empirical pseudopotential method for structures with
—1000 atoms per unit cell. An efficient algorithm, whose
effort scales linearly with system size, allowed us to
directly calculate the band-edge wave functions for these
large supercells without solving first for all lower-lying
states. We have described in detail how to analyze the
electronic energy-level spectrum of the "special" struc-
tures and obtain properly defined configurational aver-
ages pertinent to the electronic structure of the ideal al-
loys they represent. We have proven that the spectral
density function of a zinc-blende state in the alloy spec-
trum has a well-defined configurational average and that
this average can be approximated by the extended SQS
method.

We have studied the band gaps of Al& „Ga As,
Ga, In„P, and Al, In As alloys, with and without
short-range order. Our main findings are the following.

(i) Optical bowing, present in the random alloy, is
enhanced by clustering. Band gaps are lowered by as
much as 100 meV in the presence of strong nearest-
neighbor clustering. Local ordering (anticlustering), on
the other hand, does not change much the band gaps of
these alloys. The large scattering of experimental data on
bowing parameters could in part be due to clustering, al-
though other sources of uncertainties are very likely to be
equally important.

(ii) In the case of Alo &Gao &As, we predict an indirect-
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to-direct band-gap crossover with sufficiently strong clus-
tering.

(iii) The large band-gap reductions are accompanied by
localization of the band-edge wave functions on particu-
lar types of clusters. Electrons at the conduction-band
minimum are localized on Ga clusters in Ala 5Ga0 5As
and Gao 5In0 5P, and holes at the valence-band maximum
are localized on Ga clusters in A105Gao 5As and on In
clusters in Ga05In05P and A10~In05As. We have ex-
plained this phenomenon in terms of (i) an impurity pic-
ture, where the alloy is viewed as a host with randomly
distributed or clustered isoelectronic substitutional im-
purities, and (ii) a quantum-well picture, which considers
the limit of coherent phase separation with formation of
hydrostatically strained domains of the constituent ma-
terials. We have shown that both pictures are consistent
with our results. In particular, approach (i) implies an s-
orbital rule for electron localization: the wave function
at the conduction-band minimum is localized on clusters
of the cation with lower s-orbital energy. The localiza-
tion of VBM wave functions in A1X/GaX and A1X/InX
alloys (X denoting the common anion) follows the trend
of p-d repulsion: Al impurities and clusters are repulsive
to holes, and therefore the holes are localized on Ga or In
clusters.

(iv) Our findings for gap reduction in clustered alloys
have been compared to alloys which exhibit long-range
order. Although in both cases the band-gap reduction
with respect to the random alloy can be large, i.e., a few
tenths of an eV, the mechanisms leading to the gap
reduction are quite di8'erent. In the case of LRO, the gap
reduction is the result of level repulsion between a small
number of states that are coupled through the Fourier
components of the ordering potential taken at the re-
ciprocal lattice vectors of the fully ordered structure,
whereas SRO has no translational symmetry. Moreover,
the LRO-induced gap reduction increases monotonically
with the LRO parameter q. In experiments relating the
band-gap reduction to g, the presence of clustering needs
to be taken into account as a possible source of a portion
of band-gap narrowing.

(v) We reported band gaps for CuPt-ordered AlGaAs2,
GaInPz, and A1InAs2, which provide useful information
for correlating optical data with the LRO parameter in
partially ordered alloys.

(vi) Our results on bond lengths in random Gao 5Ino 5P
are in excellent agreement with extended x-ray-
absorption fine-structure measurements. In clustered al-
loys, we find that cation-anion bond lengths deviate more
from their zinc-blende value than in the random alloy,
thus increasing the strain energy. In Gaa 5In0 5P the
short Ga-P bond elongates relative to the random alloy
value, while the longer In-P bond shortens.

APPENDIX: QUALITY QF PRESENT SQS'S

(A 1)

where D is the degeneracy of pair figure f =(2,m). For
pair figures, D is half the number of sites (coordination
number) in the mth shell. For the random alloy, for
which (II~& l) =0, Eq. (Al) reduces to Eq. (All) in the

TABLE V. The number of fcc nearest-neighbor tetrahedral
clusters A„84 „present in SQS-N for composition x =

—,'. The
relative numbers of clusters are normalized to a total of 32 clus-
ters. Note that in SQS-N, there are 2N tetrahedral clusters per
unit cell. The exact number of clusters for 0.&0 is not known,
since the triplet and quadruplet correlation functions are not
determined by SRO. The description of these structures is
given in Ref. 52.

SRO SQS-N A4 A 3B A2B2, AB3 B4

The quality of a SQS can be quantified in terms of Q„
defined in Eq. (7), which measures differences between
Ilt(SQS) and the "ideal" (II&). In the case of SRO, the
ideal pair-correlation functions are determined from Eq.
(5), and in the case of LRO, they are determined from Eq.
(6). The weights wJ. in Eq. (7) are chosen to be—(k~ —2)
m&

=2 m ', where k& is the number of vertices
and m is the order of the largest shell in figure

f =(k&, m). Including in Eq. (7) pair figures up to the
seventh shell and nearest-neighbor triplets and quadrup-
lets, we obtain quality coefficients Q, of 0.920, 0.000,
0.073, and 0.000 for the random SQS-8, SQS-16, SQS-108,
and SQS-512, respectively. Note the excellent quality of
a=O SQS-16, which is actually superior to the best SQS-
108 (constrained to a unit cell of cubic shape) found by
simulated annealin. g. Similar results apply for the non-
random SQS's.

The number of tetrahedral A4 „8„(n=0, 1,2, 3,4)
clusters in the a=O and a= —,

' SQS's is shown in Table V.
For comparison, we also give the values for the large (512
fcc site) SQS which are nearly exact. Their distribution is
linearly related to the composition x and the II& of the
nearest-neighbor pair, triplet, and quadruplet figures.
For the random alloy, they obey a binomial distribution.
For clustering SRO, the relative number of the pure clus-
ters A4 and 84 increases at the expense of the mixed
clusters (see lower part of Table V).

A further test of the statistical quality of the SQS's
consists of counting the numbers 0 of atoms of opposite
type in the anth neighbor shell of each atom in the unit
cell. For the random alloy, the configuration average
(0 ) and its variance have been derived analytically by
Wei et al. and compared to SQS-8. More generally,
one can show that
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a=0 SQS-8(a +b) 2
SQS-16 2
SQS-512 2
Exact 2

4 8

4.08 7.64

a= + —' SQS-8
SQS-512

12
12
12
12

8

8.56
8 4
7.64 4.08



10 474 KURT A. MADER AND ALEX ZUNGER 51

TABLE VI. Average & 0 &~ and its standard deviation of the number of mth shell neighbors of opposite type in SQS-N and the
corresponding value (0 & „in an ideal infinite cell [Eqs. (A 1) and (A2)]. inc denotes the shell coordination number.

First
shell

c =12

Second
shell
c=6

Number of opposite neighbors in SQS-X
Third Fourth Fifth
shell shell shell

c =24 Nc =12 Nc =24

Sixth
shell

Nc=8

Seventh
shell

Nc =48

&Om &si2

&0. &

& O,„&s,z
&0. &„

6+1.8
6+1.7
6+1.7

7+0
7+0.8
7+1

3+0.5
3+1.2
3+1.2

3+0
3+1.2
3+1.2

SQS-8 with a=0
11.5+1.1

12+2.4
12+2.4

SQS-8 with

12+0
11.3+1.9

12+2

(random alloy)
6.5+0.5

6+ l.7
6+1.7

1
Al =

6+0
6+1.7
6+1.7

11+1.4
12+2.3
12+2.4

10+0
12+1.9
12+2

4+1
4+1.4
4+1.4

4+0
4+1.3
4+1.4

27+ 3
24+3.5
24+3.5

24+0
24+2. 8
24+2. 8

5+2
5+2.0
5+2.2

3+0
3+1.2
3+1.2

SQS-8 with a, =+ —'

12+0 6+0
12+2.8 6+1.7
12+2.8 6+1.7

14+4
12+2.5

12+2.8

4+0
4+1.3
4+1.4

24+0
24+3.7
24+4

(0' ) —(0 )'= ,'D 1++-d (j)a,
J

(A2)

where d (j) is the number of jth nearest neighbors per
atom which belong to the same mth neighbor shell. In
other words, d (j) is the intersection of the mth shell
and the jth shell with its origin on the former. For exam-
ple, in the nearest-neighbor shell (m = 1), each atom has
4 out of 12 nearest neighbors which also belong to the

Appendix of Ref. 47. In the presence of SRO, Eq. (5) can
be used to find ( 0 ) for given SRO parameters a . For
the variance of (0 ) we obtain

same shell, therefore d&(1)=4. If only a&%0, as in the
present study of SRO, we need d (1) to calculate the
standard deviation of (0 ) [square root of Eq. (A2)].
The ideal values, as calculated from Eqs. (Al) and (A2),
are compared with the corresponding lattice averages of
0 in the SQS in Table VI. The SQS errors in ( 0 ) are
proportional to the errors in H(z ~, but comparing the
standard deviations of (0 ) provides an additional test
of quality. Whereas the a=+ —,

' SQS-8 have rather large
errors in some of the standard deviations, the a =0 SQS-8
shows better agreement with the ideal values. In all
cases, the SQS-512 reproduces very well the statistics of
an infinite sample.
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