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There are numerous instances in semiconductor nanostructure physics where effective-mass ap-
proximations are deemed insufBcient and "direct diagonalization" approaches that retain the mi-

croscopic quasiperiodic potential are needed. In many of these cases there are no free surfaces and
charge transfer effects are small, so $s:ed, non self c-onsi-steat potential approaches suffice. To this end
we have developed a continuous-space, fully relativistic empirical pseudopotential for A1As/GaAs,
which is carefully Stted to the measured electronic structure of bulk AlAs and GaAs, and to ab
irutio local-density calculations on short- and long-period A1As/GaAs superlattices. Variations in
the anion-cation charge transfer in AlAs and GaAs are simulated by using an As pseudopotential
that depends on the number of Al and Ga nearest neighbors. Excellent agreement is demonstrated
between the results of the present empirical-pseudopotential method and experiment or ab initio
calculations for crystal structures exhibiting a variety of local atomic arrangements. The method
is suited for large-scale electronic-structure calculations, where a realistic, three-dimensional band
structure is important. We illustrate this in the context of plane-wave calculations on (i) 512-atom
supercells describing (001) A1As/GaAs superlattices with rough interfaces, (ii) 2000-atom supercells
describing (A1As)„/(GaAs) superlattices with randomly selected periods (n, m), and (iii) 512-atom
A1As supercells containing clusters of isoelectronic Ga impurities. Our main findings are (i) a tran-
sition from an L-like to an X-like conduction-band minimum occurs in the (A1As)i(GaAs)i (001)
superlattice as one introduces local interfacial intermixing, (ii) the band-tail states in random super-
lattices are strongly localized along the growth direction; this is accompanied by a large band-gap
reduction, and (iii) while single substitutions in A1As:Ga do not produce bound states, clusters of
Ga„within AlAs produce quasibound impuritylike states already for n = 4.

I. INTRODUCTION

Most electronic-structure methods currently in use for
describing bulk semiconductor systems —ordered com-
pounds, disordered alloys, superlattices with abrupt or
rough interfaces, impurities, quantum dots, wells, films,
and wires —fall into two general categories: (i) first-
principles methods that retain the quasiperiodic micro-
scopic potential V(r) in the Hamiltonian JI = —2V +
V(r) and determine it self-consistently from the charge
density, (ii) methods such as the effective-mass approx-
imation (EMA) and the Kronig-Penney model that re-
place the array of micro8copic atomic potentials by rect-
angular empty boxes separated by walls. Being com-
putationally intensive, class (i) methods are limited to
rather small systems (e.g., &100 atoms per computa-
tional unit cell), but within this size constraint, arbi-
trarily complex atomic geometries can be treated (e.g.,
low-symxnetry molecular clusters and supercells, super-
lattices with interdiffused interfaces, structurally relaxed
impurities in solids). Class (ii) methods have the re-
verse attributes: because the effect of the true xnicro-
scopic potential is replaced by constant potentials and
parabolic bands, only suKciently tarye systems can be
reliably treated. Ru'thermore, only geometrically simple
cases can be handled expediently. For exaxnple, super-
lattices with interdiffused interfaces or three-dixnensional

random alloys pre difficult to describe by such methods.
Many physically interesting semiconducting systems—
"large systems" with nontrivial geometries —cannot be
treated by either type of method. This includes many
structurally inhomogeneous quantum structures, such
as partially ordered alloys, clustering in alloys, rough
interfaces, quantum dots and wires, and nanometer
quantum wells. 4 All of these systems require for their
description coxnputational unit cells containing 1000
atoms (so first-principles methods are impractical), yet
the geometric complexity and the existence of multiband
coupling in the quantum-size lixnit sometimes preclude
the use of simple efFective-mass approximations. A pos-
sible strategy for this class of problems is offered by the
tight-binding (TB) approach. " This approach retains
a microscopic potential V(r), but restricts severely both
the variational flexibility of the basis set and the range of
interaction between atoms. A small number of fictitious
atomic orbitals per atom serve as basis functions and
interactions are cut off at the second-nearest or third-
nearest neighbor. EKcient algorithms, which exploit the
localized nature of the basis functions, can be used to
solve the tight-binding Harniltonian. A far more Bexible
basis set is formed by plane waves. However, the Hamil-
tonian matrix in this basis is not diagonally dominated
or sparse.

Recently, it was shown how [—2%2+ V(r)]g; = s;Q;,
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with a quasiperiodic potential V(i'), can be diagonal-
ized directly very efBciently, even for 1000-atom sys-
tems in a highly fIexible plane-wave basis set, provided
that V(v ) is a given, fixed potential. Such an approach
circumvents the weaknesses of both the EMA and the
TB model. Applications require a reliable microscopic
potential. Although such potentials are complicated for
systems containing free surfaces, it should be possible to
And accurate potentials for bulk systems. In the past,
V(i') was fitted to the observed bulk band structure of
zinc blende compounds. This is insufBcient for nano-
structures, because (i) the long wavelength (small mo-
mentum q) components of V(q) needed in nanostructures
are undetermined by 6tting bulk zinc blende properties.
Extrapolation of V(q) from zinc blende reciprocal lat-
tice vectors ([q~ ) —v 3, where a is the lattice constant)
to smaller ~q[ values can be inaccurate, so one needs to
exp/icitly fit properties of structures with larger repeat
unit cells; (ii) fitting the binary compounds AC and BC
does not by itself produce a consistent potential for the
common atom C needed in calculations for, e.g. , AC/BC
interfaces; (iii) adjusting a local V(r) to produce some
given energy levels s, = (g, ~

—2V' + V(v ))g,)/(g, ~Q, )
can be accomplished with almost arbitrarily poor wave
functions Q, (r), unless one constrains the latter in some
physically meaningful fashion.

In this work, we present an empirical pseudopotential
that overcomes the limitations (i)—(iii) noted above: We
fit it to the bulk results at a series of volumes (thus, a
range of q's), as well as to local-density approximation
(I DA) results for superlattices (thus, small q's). Fur-
thermore, we make it depend on the local atomic environ-
ment, thus simulating charge transfer effects. Finally, we

compare the wave functions with I DA-calculated ones.
In the traditional fitting procedure of the empirical-

pseudopotential method (EPM), s one adjusts the
Fourier transform of the potential V(G) ("form factors")
at a small number of reciprocal lattice vectors G of the
zinc blende structure, until the band structure agrees
with experimental data. To obtain a more complete
knowledge of the potential, a table of form factors at
a large number of additional reciprocal lattice vectors
[i.e. , a quasicontinuous function V(q)] is needed This.
was obtained in the past by interpolation, ' or by fit-
ting an algebraic form of the potential to the zinc blende
form factors. i4 We can write the crystal potential V(v')
as a superposition of atomic potentials v (v ), which we
assume to be spherically symmetric, i.e. ,

V(~) = ) v ([r —v —R„l)

where the first sum runs over all positions v within the
cell as well as the unit cell vectors R„, while the second
reciprocal-space sum runs over all atomic types o. and
reciprocal lattice vectors G', and 0 is the unit cell vol-
ume. By writing the crystal potential V(v ) in Eq. (1) as
a sum over fixed, screened atomic pseudopotentials, we

assumed that the atomic potentials da not change much
from one system to another ("transferability" ). This is
not always the case. For example, deep inside the AC
region in a AC/BC superlattice, we expect the poten-
tial of the C atom to be similar to that in bulk .4C
and similarly for the C potential deep inside the BC re-

gion. At the interface, however, the C atom can have n.4
and mB nearest neighbors, so neither the C potentials of
bulk AC nor that of bulk BC are appropriate. Standard
empirical-pseudopotential approaches still attempt
to describe the AC/BC system using a single, "average"
C potential, assuming, therefore, that the charge trans-
fer is environment independent. Assuming a single C
potential has an important consequence: the form fac-
tors V(G) at superlattice reciprocal lattice vectors that
are not zinc blende reciprocal lattice vectors (NZB), de
pend on the difference of the A and B atomic form fac-
tors, but not on the C atom. In fact, one can write
U(GNza) = [&~(GNza) —&a(GNza)I ~(GNza), where

S(G) is a geometrical structure factor. In other words,
there is no additional scattering of the valence electrons
from the C-atom sublattice in an AC/BC superlattice.
In other approaches, ' one assumes that interfaces are
infinitely thin, so an electron is either in an AC region or
in a BC region, but never at an "interface. " In this case,
one retains two distinct C potentials (fitted to AC and
BC bulk properties, respectively), using each in the cor-
responding region of the superlattice. Neither approach
appears satisfactory. Because the dominant contribution
to the screened potential is electrostatic in origin and
thus linear in the charge, we can gain insight into the
local-environment dependence of the atomic potential by
considering the e1ectronic charge. The local charge at
atomic sites in III-V semiconductors depends mostly on
the nearest-neighbor. atomic environment. This is true
even in transition metal alloys. Thus, assuming efFicient
screening we can de6ne a C-atom potential that depends
on the number of nearest-neighbor A and B atoms. For
example, in the pseudobinary alloy Az B C, the com-
mon ion C can have 6ve distinct nearest-neighbor con-

figurations, viz. , the five tetrahedral clusters A4 „B„,
where 0 & n & 4. The potential of the C atom can
depend on n through

~c (A4- B C) = f ~c(AC) + e„vc (BC),

where vc(AC) and vc(BC) are the C potentials in pure
AC and BC, respectively, and f„and g„are some weight
functions. We will present below a simple madel to
Eq. (2) that incorporates this local-environment depen-
dence into the C pseudopotential.

To achieve an accurate description of the electronic
structure of a large variety of atomic con6gurations, we

fitted the atomic pseudopotentials u (q) (o. = A, B,C),
using representation (2) for ec, to (i) the measured
band structures, efFective masses, and deformation po-
tentials of the binaries, (ii) the experimental AC/BC
valence-band ofFset between the binaries AC and BC,
and (iii) the correct "scattering strength" in various sub-
stitutional con6guratians as re8ected by LDA calculated
level splittings in short-period (AC) /(BC)„superlat-



50 EMPIRICAL ATOMIC PSEUDOPOTENTIALS FOR A1As/GaAs. . . 17 395

tices of various orientations. (iv) We verified that the
wave function of bulk and superlattices obtained with
our pseudopotentials agree well with those obtained in
first-principles LDA calculations. To illustrate the util-
ity of these potentials we have applied them to superlat-
tices with nonabrupt interfaces, disordered superlattices,
isoelectronic impurity clusters (Sec. IV), and disordered
alloys with short-range order (Ref. 19).

II. FITTING OF THE POTENTIALS

A variety of algebraic forms have been used in the
past to fit empirical pseudopotentials. ' ' We have
not found an existing form that has suKci.ent fIexibil-
ity to fulfill all the requirements (i)—(iv) listed in Sec.
I. The algebraic form we propose here has been found
in the following way. By choosing the origin in the
zinc blende unit cell halfway between the two atoms
n = A and a = C, Eq. (1) can be written for the zinc
blende structure as V(r) =

@ P&[cos(G ~ a) u, (G) +
i sin(G ~ a) u (G)] exp( —iG ~ r), where a = s (111),
v, (G) = v~(G) + vc(G), and v (G) = v~(G) —vc(G)
are the symmetric and antisymmetric form factors, re-
spectively, and a is the lattice constant. We have ini-
tially adjusted v, (G) and v (G) at a small number of
zinc blende reciprocal lattice vectors G to fit band ener-
gies and effective masses at difFerent unit cell volumes 0,.

1
Because the G-vector length scales as 0 ', this gave us
information about the form factors in the neighborhood
of each G' vector. The shape of the continuous functions
v, and v became thus de6ned on a much finer mesh,
and interpolation was less ambiguous. Moreover, deter-
mining v, (G) and v (G) at a range of volumes provided a
means of 6tting the hydrostatic deformation potentials,
i.e., the volume derivatives of the band gaps. By in-
specting the thus obtained 20 discrete form factors, we
found that v, and v could each be 6tted very well by a
linear combination of two Gaussians. We were then able
to reconstruct the atoxnic potentials v~ = 2(v, + v ) and

vc = z(v, —v ) from the form factors. Each atomic
pseudopotential v (q) is, therefore, a linear combination
of four Gaussians, multiplied by a smooth function that
allows adjustment of the small q components,

4

v (q) = 0 ) a; e " ~ ' l 1 + f e I 'x . (3)

Here, 0 is an atomic normalization volume. The qual-
itative shape of Eq. (3) resembles analytic forms found
previously. In the next step, we allow all of the parame-
ters of Eq. (3) to be adjusted independently (the original
form factors v, and n may thus change), fitting the prop-
erties (ii) to (iv) described in the Introduction. In par-
ticular, the AIAs/GaAs valence-band ofFset [requirement
(ii)] is calculated in a long-period superlattice geometry
and fitted to the measured I'xs (GaAs) —I'xs„(AIAs) =
0.50 eV. The valence-band offset is controlled by the pa-
rameters f and P in Eq. (3). The present EPM yields
a work function of 5.5 eV for GaAs, compared with

the measured value of 5.56 eV for the (110) surface.
Concerning requirement (iii), we have found that a good
fit to the s-orbital binding-energy difFerences of the Pee
Al and Ga pseudoatoms is crucial for obtaining correct
level splittings and thus band gaps in short-period su-
perlattices. Therefore, rather than fitting level splittings
in superlattices directly, we have solved the Schrodinger
equation for the &ee Al and Ga pseudoatoms, and ad-
justed the parameters in Eq. (3) until we found good
agreement with the s-orbital energy difference obtained
with LDA, under the constraint that the previously fitted
bulk properties do not change. We note that the 8-orbital
energy is mostly controlled by the core region of u (r),
i.e. , by the tail of v (q). Usually, empirical potentials are
designed to be used with rather small G-space cutoffs;
however, it is diKcult to control the core region of the
real-space atomic potential if too small a cutoff is used.
Our parametrization of v (G) [Eq. (3)] allows us to in-

dependently adjust small-G and large-G regions of the
potential.

As mentioned in the Introduction, we do not con-
strain the As pseudopotentials in A1As and GaAs to
be identical, thus, we account for the different charge
transfer in the two materials: After 6tting independently
the As pseudopotentials in GaAs and AlAs [denoted as
u~, (GaAs) and vA, (AlAs), respectively], the pseudopo-
tential for As coordinated by (4 —n) Ga atoms and n Al
atoms is taken as the weighted average [see Eq. (2)]

4 —n n
v~, (Ga4 „Al„As) = v~, (GaAs) + —v~, (AlAs).

4 4

(4)

Note that this As potential only depends on the number
of Ga and Al nearest neighbors and not on the orien-
tation of the tetrahedron in a crystal. The orientation
dependence enters through higher-order neighbor shells
and is neglected in the present nearest-neighbor model.

The optiniized parameters of Eq. (3) are given in Table
I. The resulting bulk band gaps, deformation potentials,
and effective masses are summarized in Table II, where
we compare the present EPM band structures24 of zinc
blende GaAs and AlAs with experimental results
and theoretical calculations. ' We obtain an excellent
fit of the 8-like conduction-band edges at the high sym-
metry points I', X, and L, whereas the p-like I'q5, states
are by ~ 0.7 eV too low in energy. The inclusion of non-
local pseudopotentials is needed if a better agreement of
the high-energy conduction bands is desired. The de-
formation potentials agree with experiment within about
2 meV/kbar, and the sign of the small, but negative X-
edge deformation potential is reproduced correctly. Com-
parison of the calculated band efFective masses with ex-
periment is not straightforward, because at this stage our
EPM neglects spin-orbit interaction (see, however, be-
low). We have converted the experimental hole efFective
masses to the nonrelativistic band structure using a k - p
expansion around the I' point, and compare the results
with the EPM calculation in Table II. The deviation
from the experimental values can be as much as 50% (for
the I'i, electron efFective xnass), and as small as 2% (for
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TABLE I. Atomic pseudopotential paraxneters [Eq. (3)], in
Rydberg units, and 0 in atomic units. The four rows for each
atom correspond to the four Gaussians i = 1, 2, 3, 4 in Eq. (3).
We use f~,~~ = 0.02, P~~ = 10 (a.u.),and f,o = f,p„= 0.
The maximum momentum q we included in our calculation is
3.53 a.u. , and the plane-wave kinetic-energy cutoff for which
these potentials are designed is 5 Ry. A relativistic version is
given in Table V.

0
(a.u. )

Al
111.3

+ia

—1.32712
0.158114
0.0601648
0.0168167

bi

(a.u. )

0
1.77453
2.59550
2.93581

(a.u. )

1.59819
2.10827
0.527745

11.2708

Ga
131.4 —1.24498

0.0366517
0.0464357

—0.0133385

0
2.09782
2.01935
2.93581

1.52748
0.959082
0.574047

11.2708

As (in A1As)
145.2 —1.10411

0.0174946
-0.00368081

0.0921512

0
2.46793
1.22845
1.35897

0.972439
6.53147
5.50601
1 ~ 18638

As (in GaAs)
145.2 -1.05821

—0.00217627
—0.0434312

0.10569

0
2.46808
0.851644
1.22436

0.959327
6.53145
2.94679
0.820922

the parallel electron mass at the X valley). The overall
quality of the EPM 6t to the bulk electronic properties is
very satisfactory, and thus establishes requirement (i) of
the introduction. In the appendix, we describe how spin-
orbit interaction can be included in the present approach,
and we also give the relevant parameter sets correspond-
ing to Table I. In the applications below and in Sec. IV,
however, we have neglected the spin-orbit interaction.

To demonstrate the quality of the present EPM in
ternary compounds, we compare in Table III the cal-
culated band gaps of (AlAs)„/(GaAs)„(001) superlat-
tices with experiment and other theories. ' Al-
though the present potentials are aimed at a large va-
riety of A1As/GaAs nanostructure applications, short-
period superlattices provide a stringent test of the trans-
ferability of the potentials, because they provide differ-
ent local atomic environments, and the interfaces have
a nonnegligible effect on the band structure. The es-
tablished electronic properties of ideal-structure short-
period (A1As)„/(GaAs) superlattices along [001] are (i)
an L-like conduction-band xninimum (CBM) of the n = 1
superlat tice, (ii) an X-like indirect (at X „)or pseu-
dodirect (at X,) CBM for 1 & n & 4, and (iii) a type-II
to type-I transition at n = 11.4 Furthermore, (iv) we
compare the EPM wave functions and level splittings of
[001] and [111]superlattices with LDA calculations. The
present EPM reproduces these "benchmark" properties

quite well:

(i) We find the conduction-band minimum in the
abrupt (AlAs)i/(GaAs)i (001) superlattice to be at the
I point of the fcc Brillouin zone (B point in the tetrag-
onal Brillouin zone), in agreement with quasiparticle
and LDA-corrected calculations. This result is non-
trivial, since in this superlattice the conduction band is
strongly localized on the Ga sublattice; simple, bulklike
pseudopotentials tend, in turn, to erroneously produce a
delocalized, mixed (Al-Ga) CBM state, much like in the
alloy. We will address this problem in more detail in Sec.
IV A below.

(ii) For small n superlattices, where 1 & n & 8, we ob-
tain a pseudodirect or indirect gap, i.e., the conduction-
band minimum originates either &om the X, or the X
states. This is in good agreement with LDA-corrected
ab initio calculations and with experiment, ' when
accounting for small strain effects that are neglected in
the present calculation.

(iii) The crossover between a pseudodirect band gap to
a GaAs-like direct band gap (and hence, from type II to
type I) is calculated to take place at n —9. Experimen-
tally, the crossover is found at n = 11+1.

(iv) Whereas it is easy to reproduce by the EMA the
wave functions of /ong-period superlattices, it is difB-
cult to do so for short periods. In this regime the in-
terfaces occupy a large &action of the total superlat-
tice volume, whereas in long-period superlattices this
fraction becomes very small. The present pseudopoten-
tials yield wave functions that closely resemble the LDA
results even for short-period superlattices. This is il-

lustrated in Figs. 1 and 2 that show contour plots of
the wave functions squared of the (AlAs)i/(GaAs)i su-

perlattices oriented along [111]and along [001], respec-
tively, as obtained from a self-consistent LDA calculation
and the present EPM, respectively. (The contour level
spacings are the same in both cases. ) Note the strong
non-effective-mass behavior of the two I'-like conduction
states shown in Fig. 1: one state is localized on the Ga
(111)planes (I'i, ) and the other (I'i, ) is localized on the
Al(ill) planes. This segregation reflects the strong level
repulsion of the zinc blende states I q and Iq„ leading
to a I ] I y, energy separation of about 1 eV. Sim--(2) -(~)

ilarly, in the [001] superlattice, both the I'-like and L
like conduction states depicted in Fig. 2 are localized on
the Ga(001) planes. This wave function segregation and
level repulsion is a crucial test for any empirical potential
that is designed for systems with relatively small repeat
unit cells, because poor wave functions and potentials
caD lead to wrong wave function coupling. In fact, while
6tting our potentials we often found parameters that re-
produced the bulk GaAs and AlAs band structure very
well, and yet produced a CBM in the (A1As)i/(GaAs)i
[ill] superlattice that was localized on the A/ p/anes,
rather than on the Ga planes.

rZZ. COMP&RISON VrXrH PREVIOUS
PSEUDOPOTENTIAI S

The construction of previous potentials required (1) fit-

ting of atomic form factors ii (G) [see Eq. (1)] or crystal-
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potential form factors V(G) at the bulk reciprocal lattice
vectors GzB, and (2) specification of the method used
for obtaining form factors at lattice vectors q that are
not zinc blende reciprocal vectors (e.g. , whether small-q
form factors were fitted, rather than extrapolated). Note
that for a fit of small-q components one must use crystal
structures that have large unit cells. Table IV provides
an overview of some key features of previously proposed
EPM's for AlAs/GaAs. z xs Results of a "performance
test" for the monolayer (AlAs)x/(GaAs)x [001] super-
lattice are also shown. The main differences between
most of these methods and our approach are (1) we use
a continuous, algebraic reciprocal-space form that is fit
ted to intermediate q values, rather than interpolated, (2)
we use an environxnent-dependent As potential, (3) we
find agreement of EPM superlattice wave functions with
I DA-calculated ones, and (4) we fit many bulk proper-
ties, not just the band structure.

The first extension of the bulk EPM to AlAs/GaAs

superlattices was perforxned by Caruthers and Lin-
Chung. 2 They used a table of atomic form factors v (q)
for a = Ga, Al, and As (with a single As potential),
adjusting the Ga and Al forxn factors to fit the GaAs
and AlAs band structures, respectively. The resulting
(AlAs) x/(GaAs) x [001]superlattice had a quasidirect gap
I'4, (X,) of 1.585 eV, x i.e., 0.5 eV below the experimen-
tal or theoretical values given in Table III. Furtherxnore,
the symmetry (X type instead of L type) is incorrect.

Andreoni et al. have later suggested that the diHer-

ence Av = vG —v~x ["scattering strength" in require-
ment (iii) of Sec. I above] xnight have been overestimated
in Ref. 12, leading to the too large level repulsion in the
n = 1 superlattice. Andreoni et al. used discrete bulk
form factors for AlAs and GaAs, and extrapolated the
values of b,v(q) to the additional superlattice reciprocal-
lattice vectors GNzxx = ]GsL]. Because Ev in Ref. 13
was much smaller than that in Ref. 12, the superlattice
band structure obtained in Ref. 13 resembled in fact the

TABLE II. Comparison of the electronic structure of bulk GaAs and AlAs as obtained in the
present nonrelativistic EPM (Ref. 24), experiment, and ab initio theory Th.e zero of energy is
at I'xs„, the top of the valence band. Hydrostatic deformation potentials are given in meV/kbar.
The GaAs experimental cyclotron effective masses have been converted to the nonrelativistic band
structure using Ie.p theory. The electron effective masses at the X valley are given as mll and m&
along and perpendicular to the b, axis, respectively. For analogous relativistic results, see Table VI.

Property
Present

GaAs
Experiment Ab initio Present

AlAs
Experiment Ab initio

Energy
r,„
r,.
res
X5„
Xg,
X3,
Lsv
Lg,

levels (eV)
—12.12

1.52
4.01

—2.33
2.00
2.32

—0.96
1.81

—13.10
1.52
4.72

—2.80
1.98'
2.38'

—1.30
1.81'

-12.77
1.47'
4.52'

—2.73'
2.08'
2.30'

—1.11'
1.82'

—11.68
3.04
4.21

—2.29
2.24
3.04

—0.94
2.87

3.13'
4.34~

—2.31
2.23'
2.68'

—1.29"
2.54"

—11.93
3.26'
5.05'

—2.34'
2.09'
2.99'

—0.88'
3.03'

Deformation potentials (meV/kbar)
(E,[r]) 8.46 10.82'

a(Es[&]) —2.51 —1.26', —1.8
a(E [L]) 2.59 5.5'

103
—2.2d

39

8.49
—3.04

2.52

10.6
—2.2'

5.1

Effective masses (m )
at I'.

m~ (b, s [100])
m„(Ax [100])
at A;„or X:
mll
mJ

0.82—1.2 '

0.099
0.431
0.102

2.02
0.25

0.066
0.403"
0.063"

1.98
0.37
1.49

0.179
0.457
0.171

1.30
0.26 0.19P

Reference 25.
Reference 26.

'Reference 27.
LDA corrected, Ref. 40.

'Quasiparticle calculation, Ref. 41.
Reference 35.

Reference 36.
"Reference 37.

'Reference 28.
'Reference 29.
"Reference 30.
'Reference 31.

Reference 32.
"Reference 33.
Reference 34.

~Reference 38.
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Alo 5Gao 5As alloy, treated in the virtual-crystal approx-
imation. Therefore, the CBM of the n = 1 superlattice
was a virtual-crystal-like X state, rather than an I state.

Gell and co-workers constructed the potentials using
the original discrete bulk form factors of AlAs and GaAs.
It is not clear how the potentials were extrapolated to
the superlattice reciprocal lattice vectors G'sg. Apply-
ing these potentials to the monolayer (n = 1) superlat-
tice along (001), they found a delocalized, X-hke CBM
state, 5 in contradiction to subsequent calculations,
showing an L,-like CBM (localized on the Ga sublattice,
see Fig. 2). The pseudodirect-to-direct transition of the
(001) superlattice was calculated to be at n, = 8 rnono-
layers, in reasonable accord with experiment.

Ikonic et al. also used bulk form factors of A1As and
GaAs to construct the superlattice potential: in their
method the GaAs bulk EPM is used up to the interface, at
which point the AlAs bulk EPM is switched on abruptly.

No intermediate region is allowed. It can be shown that
in reciprocal space this scheme amounts to convolut-

ing the zinc blende potentials with a one-dimensional
Kronig-Penney model. An analytic "interpolation for-
mula" to superlattice reciprocal lattice vectors can thus
be derived. The valence-band offset was accounted for by
shifting the two bulk band structures with respect to each
other. For the (001) superlattices an L-like CBM was ob-
tained for all n 7 (in contradiction with other modern
calculations for n g 1), whereas for n & 8 a I'-

like CBM was obtained. Thus, these authors predicted
an indirect-to-direct crossover at n = 8. The pseudodi-
rect F(X,) state was found to be above the CBM for all

periodicities n.
Another approach, similar to ours, was followed by

Xia, who used continuous, parametrized functions for the
pseudopotentials 6tted to the bulk band structures and
to the valence-band offset. Xia used. two difFerent al-

TABLE III. Energy levels of high-symmetry conduction-band states in (AIAs)„/(GaAs) [001]
superlattices calculated by the present EPM and compared with experiment (Refs. 42 and 43),
quasiparticle (QP) (Ref. 44), and LDA-corrected (Ref. 45) results. The reference energy is the
(spin-orbit- and crystal-field-averaged) valence-band maximum. The superlattice Brillouin zone

points are denoted by an overbar, and the corresponding folded zinc blende points are given in

parentheses. The minimum gap for each period n is indicated by a star. The k-selection rule of the
lowest optical transition is indicated in the eighth column. The spatial nature of the fundamental
transition is given in the last column.

n Method

1 present
expt.
QP
LDA

1(1„)
2.02
2.20
2.11
2.06

Superlattice state (folding ZB state)
1(x.) M(X. ,„) Ã]X(I,)

2.12 2.12 1.93*
2.09 2.07*
2.23 2.13 1.85*
2.22 2.16 1.95*

Minimum gap
(A,'selection)
indirect
indirect
indirect
indirect

SL
type

2 present
expt.
QP
I DA

2.15
2.19
2.23
2.21

2.10*
2.08
2.18
2.09*

2.10
2.07*
2.16*
2.12

2.25

2.34
2.35

2.21 pseudo direct
indirect
indirect
pseudo direct

type II

3 present
expt.
LDA

2.13
2.18
2.15

2.08~
2.06
2.05*

2.08
2.05*
2.08

2.12

2.19

2.09 pseudo direct
indirect
pseudo direct

type II

4 present
expt.

2.08
2.19

2.02*
2.04*

2.06
2.06

pseudo direct
pseudo direct

type II

5 present

6 present
expt. '

2.05

2.00
2.03

1.98

1.94
1.92*

2.03 2.10 1.97* indirect

1.94* indirect

type II

type II

8 present

10 present

12 present

20 present

1.91

1.82*

1.77*

1.64*

1.88*

1.85

1.77

1.94

1.90

1.87

1.99

1.95

1.88

1.83

1.77

1.64

pseudodirect

direct

direct

direct

type II

type I

type I

type I

Reference 42.
Indirect by less than 10 meV.

'Extrapolated to T = 0 K, from Ref. 43.
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gebraic forms, one for the Ga, and one for the Al and
As potentials. These functions were fitted to the discrete
form factors of the bulk zinc blende solids. The L-like
band gaps of the (001) n x n superlattices are not given
in Ref. 14, and the pseudodirect-to-direct crossover is not
determined. However, the I'-like gap at n = 10 is still
110 meV above the X -like gap and by extrapolation the
crossover will probably be well above the experimentally
found value of n 11.

All of the previously constructed empirical pseudopo-
tentials for A1As/GaAs assumed a single As potential for
both GaAs and AlAs, or used the two bulk band struc-

EPM

(010)

(AIAs), /(GaAs), (001)

Self-consistent LDA

(AIAs), /(GaAs) „(111)
Self-consistent LDA EPM

(a) RI Qu

FIG. 2. Comparison of (a) I'q, and (b) Rq, wave func-

tions squared of the (A1As) q /(GaAs) q [001] superlattice
(the "CuAu structure" GaAIAss) as obtained with the
self-consistent LDA (left) and the empirical-pseudopotential
method (right), respectively. The results are shown in

the (010) plane, using the same contour level spacings [0.5
&)~ electrons/(a. u. ) ] for both the LDA and the EPM wave func-

tions. Rq, corresponds to the folded zinc blende Lq, state and
is lower in energy than I'~, .

tures only. In short-period superlattices, however, a large
&action of the As atoms is located at the interfaces. We
believe that a local-environment dependence of the As
potential such as given in Eq. (4), is crucial for the EPM
to accurately reproduce the band structure in this regime
(see Table III). Furthermore, a correct band offset and
good effective masses are important for large-period. su-
perlattices, and hence a correct prediction of the type-II
to type-I transition.

IV. ILLUSTRATIVE APPLICATIONS

FIG. 1. Comparison of (a) f'I, , (b) I'~, , and (c) I'q

wave functions squared of the (AIAs)z/(GaAs)z [111]super-
lattice (the "CuPt structure" GaAIAss) as obtained with the
self-consistent LDA (left) and the empirical-pseudopotential
method (right), respectively. We plot the results on
the (110) plane using the same contour level spacings [1
electron/(a. u. ) ] for both the LDA and the EPM wave func-
tions. Diagonal lines denote the (111) planes. I'q„ is the
nondegenerate crystal-field split state originating from the
zinc blende I'z5 states. It is below the doubly degenerate
r.„state by A~F. f„and f, are the symmetry-repelled-(~) -(2)

conduction states originating from F~ and folded Lq, . Their
splitting energy is 0.98 eV for LDA and 1.01 eV for EPM,
respectively.

To apply the present EPM to very large systems, an ef-
ficient algorithm is needed to solve the Schrodinger equa-
tion with a fixed potential in a plane-wave basis. Such a
scheme (the "folded-spectrum method"), whose compu-
tational efFort scales linearly with the number of atoms
in the supercell, was recently developed by Wang and
Zunger. We illustrate the utility of the present pseu-
dopotentials by applying them with the folded-spectrum
method to the calculation of the electronic structure of
three prototypical systems that require large supercells
with complex geometries. All calculations are done by
expanding the wave functions in a plane-wave basis set
with a cutofF of 5.0 Ry, evaluating exactly the matrix el-
ements of our pseudopotentials and using the method of
Ref. 8 for finding eigensolutions near the band edges.



KURT A. MADER AND ALEX ZUNGER

TABLE IV. Comparison of previous EPM's vrith the present one. In the second column, the
potential type is specified, i.e. , "atomic, " if atomic form factors are used [see Eq .(1)], "bulk, "
if the bulk potential of A1As and GaAs is retained aud au infinitesimal interface in A1As/GaAs
is assumed. Columns three to Sve indicate whether deformation potentials aud the A1As/GaAs
band ofFset were fitted, and how V(q) was obtained at those reciprocal vectors that are uot zinc
blende vectors Gza (see text). The symmetry of the CBM of the n = 1 (A1As) /(GaAs) (001)
superlattice is reported in the last column. Quasiparticle calculations (Ref. 44) place the n = 1
CBM at R(I).
Method Potential type

Caruthers and Lin-Chung va, vA~, vA,
(Ref. 12) atomic potentials

Def. pot.
6tted
No

AE
6tted
No

V(q) at

Interpolated

(001) SL
n, =1 CBM

I'(X, )

Andreoni et al.
(Ref. 13)

Av = v~& —vAl

bulk/atomic
No No Interpolated

Gell et aL

(Ref. 15)
AlAs, GaAs
bulk potentials

No Yes I'(X, )

Xia
(Ref. 14)

VCa, VA1, VAS

atomic potentials
No Yes Algebraic 6t f (X,)

Ikonic et al.
(Ref. 16)

AlAs, GaAs
bulk potentials

No Yes Convolution R(L)

Present Vaa1 VAl,

v~, [Ga4 „Al„]
atomic potentials

Yes Yes Algebraic fit
sup ercells

A. Superlattices with chemical interfacial roughness

Chemical nonabruptness of interfaces in short-period
superlattices has been suggested4 as a reason for the
discrepancy between the experimental assignment of the
conduction-band minimum and theoretical predictions
(see Table III). In particular, for the monolayer (n =
1) superlattice along (001), state-of-the-art quasipar-
ticle calculations place the conduction-band minimum
at the I-derived R point in the tetragonal Brillouin
zone, whereas experimentally a X „-derived gap at M
is found. 4z Using (2x 1), (3x 1), and (4x 1) interfacial unit
cells [where (Xx Y) denotes the two-diniensional unit cell
in the (001) plane spanned by the basis vectors X 2 (110)
and Y 2(110)],Laks and Zunger showed that exchang-
ing a fraction f &

s of Ga and Al atoms across the inter-
face changes the identity of the CBM in the monolayer
superlattice &oxn R(L) to M(X „). Thus the observed
M(X „) CBM was interpreted as a consequence of in-
terfacial roughness. However, because these calculations
were performed within the LDA, rather small (Xx Y & 4)
interfacial unit cells were used.

The present EPM allows us to use much larger su-
percells, thus eliminating any size e6'ects that could
lead to artefacts in the band structure. The mono-
layer superlat tice can be viewed as a partially or-
dered CuAu structure, i e., it can be written as
(Al +aGa nAs)i/(Al~ nGa +a As)i, where vj is the
long-range order (LRO) parameter. so il = 1 denotes the
ideal superlattice with abrupt interfaces, whereas g = 0

characterizes the random alloy. To simulate interfacial
roughness in the monolayer superlattice we expand the
repeat period (X x Y) in the interface plane to an (8 x 8)
unit cell. We can thus have q = 1 —n/32, where n is
the number of Ga/Al pairs interchanged accross the in-

terface. In each cation layer, the Ga and Al atoms are
randomly distributed on the lattice sites, hence there is
in principle no periodicity along the growth axis [001].
For computational reasons, however, we assume a repeat
period of four inonolayers along [001], resulting in a 512-
atom supercell. Hence, within the supercell there are
four distinct Al-rich and four distinct Ga-rich layers, with
compositions 0.5+ il/2 and 0.5 —il/2, respectively.

The energy eigenvalues of the large supercell are an-

alyzed in terms of their "parent" zinc blende states
&om which they originate. Because zinc blende states
are allowed to mix in the superlattice (subject to Iz-

selection and point-group selection rules), a superlat-
tice wave function can be expanded in terms of a usu-

ally small number of zinc blende wave functions. We
use the expansion coef6cients of the latter expansion as
weights in evaluating spectraL averages of zinc-blende-like
eigenvalues. For example, (I'i ) denotes the expecta-
tion value of the zinc blende I'q energy level in a given
supercell. (I'i, ), (Xi,), and (Ii,) are shown in Fig. 3
for q = 0, 0.25, 0.50, 0.75, and for the perfect monolayer
superlattice (il = 1). Interpolation curves based on sim-

ple scaling laws pertinent to LRO are shown as lines.
We predict a transition &om an X-like CBM to an L-
like CBM at g = 0.4, in close agreement with the LDA
result ' {il = s). At il = 1, the spectral averages of the
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2.4

(AIAs) il(GaAs)i (001)
2.3-

Ov

2.1— I4, , M5

1.9-
(I )

1c

1c

"ho 0.2 0.4
I

0.6 0.8

Degree q of CuAu LRO

FIG. 3. Spectral averages of the zinc-blende-like I'q, (di-
amonds), Xq, (pluses), and Lq, (squares) energy gaps, re-
spectively, plotted as a function of g, the degree of CuAu
long-range order. The solid line is a quadratic interpolation
between the rl = 0 and 0 = 1 values of (I'q, ) and the bro-
ken lines are linear interpolations between the respective end-
points of (Xq, ) and (Lq, ).

zinc blende states have definite tetragonal symmetry, i.e.,
(I'g, ) m I'g„(Lg,) m Rg„and (Xg,) -+ I'4, +Ms, . Note
that the latter two states, which derive &om X, and X~ „,
respectively, are almost degenerate in our EPM calcula-
tion, whereas experimental observation gives a splitting
of 19 meV (see Table III). The fact that experimentally
an X-like band gap at M is found, 42 is consistent with
our calculation if the superlattice is only partially ordered
with g & 0.4. From the figure it seems that we can rule
out the possibility of a I'z, -like CBM at any g, because a
correct X, —X ~ splitting would push the M-like level
to even lower energy.

Due to the absence of periodicity along the growth
direction (001), we need very large supercells to real-
istically model the electronic structure of a d-SL. %e
have constructed a random sequence of 1000 monolay-
ers, corresponding to a 300 nm thick saxnple, which is
comparable to the actual dimensions of molecular-beam-
epitaxy grown d-SL's. 52 In the plane perpendicular to
the growth axis we assumed perfect translational symxne-

try (2 atoms per cell), thus our overall three-dimensional
supercell contains 2000 atoms. We have calculated the
near-band-edge energy levels and wave functions of a d-

SL(1,2,3) and show the VBM and CBM wave functions
in Fig. 4.

Our results are as follows.

(i) The calculated energy gaps are 2.11, 2.10, and 1.94
eV for the random alloy, o-SL, and d-SL(1,2,3), respec-
tively. The observed photoluminescence peak energies
are 2.05, 2.02, and 1.96 eV for the respective systems.
The calculated energy gap of the d-SL is reduced by 170
meV with respect to the random alloy of equivalent com-
position and by 160 meV with respect to the o-SL.

(ii) The wave functions near the valence-band and
conduction-band edges are strongly localized along the
growth direction; they spread over 25 xnonolayers
and decay exponentially outside this region with decay
lengths of 2—3 monolayers. Electrons and holes that are
localized in the same region will recombine very quickly,
because the wave function overlap and thus the oscillator
strength is large. A more detailed account of our results
will be presented in a future publication.

0.025

0.020-

0.015-

0.02$

0.020-
CB1

C. Substitutional isoelectronic impurity clusters

The study of very small quantum dots, or clusters, em-
bedded in a crystalline host is another example where a

B. Disordered, short-period superlattices 0.010-

[ y 0.005-

O.m

Disordered superlattices (d-SL's) represent a one-
dixnensional sequence A„G A„r G A„r G ~, where
A and G denote A1As and GaAs layers, respectively,
and the individual layer thicknesses n, m, n', m', . . . are
chosen at randoxn. Short-period d-SL's are generated
in practice by restricting the layer thicknesses to a
set of small numbers, e.g. , n, m E (1,2, 3) with occur-
rence probabilities p(1),p(2), p(3). Such a superlattice,
denoted d-SL(1,2,3), can be viewed as a randomization
of an ordered Az G2 superlattice (o-SL), with fluctuations
around the average layer thickness n = m = 2. Such su-
perlattices were grown by Sasaki and co-workers using
molecular-beam epitaxy (MBE) and their basic proper-
ties were measured. The main experimental findings
were: (i) a large redshift of the photoluminescence (PL)
peak with respect to both the random Alo 5Gao 5As al-
loy and the o-SL, (ii) an enhanced PL intensity at higher
temperatures, and (iii) shorter PL decay times.

0.000

o.oos-

0.010- d-SL(1,2,3)

0.015

282.5 nm

(001) growth axis

FIG. 4. Planar average of the wave function squared along
the growth direction [001j of d-SL(1,2,3). The lowest con-
duction state (CB1) and the highest valence state (VBl) are
shown. The latter is twofold degenerate, hence the two-peak
structure. The wave functions are normalized to one. The
inset shows a blown-up region around CB1, together with a
schematic of the growth sequence of the d-SL. "Wells" denote
GaAs layers and "barriers" denote AlAs layers. Both the mell
and barrier widths vary 6.om one to three monolayers.
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microscopic potential and at the same time large super-
cells are needed. The experimental feasability of such
small nanostructures has been demonstrated recently,
e.g. , by intentional MBE growth of Ino 5Gao 5As quan-
tum dots embedded in GaAs, and by unintentional for-
mation of GaAs "quantum dots" at the AlAs/GaAs in-
terface of A1As/GaAs quantum wells. s4 We illustrate the
usefulness of our present method for theoretical studies of
embedded quantum dots by considering substitutional n-
atom Ga clusters with idealized geometries in an AlAs
host crystal, denoted AlAs:Ga„, where n connected Al
atoms are substituted by Ga atoms. It is known that
a single Ga isoelectronic impurity (n = 1) in AlAs does
not have a bound state in the energy gap. Very large
clusters may be described by the particle-ia-a-box, or
effective-mass model. In terms of the efFective-mass pic-
ture, a GaAs quantum dot in A1As acts as a quantum
well with a potential depth of about 1 eV. The xninimum
size of a spherical quantum dot above which effective-
mass theory predicts a bound electron can easily be cal-
culated to be n 160. However, the CBM of AlAs is
at the X point in the Brillouin zone rather than at the
I' point, hence quasibound states with small binding en-
ergies can lie in the continuum of the A1As conduction
bands and will form resonant states even for very small
cluster sizes. An analogous situation occurs in the case
of ultrathin GaAs quantuxn wells in AlAs, where it was
calculated that for (001) quantum wells with thickness d
smaller than ll monolayers, the quantum-well states are
resonant with the AlAs conduction bands, and only for
d & 11 do bound electrons below the CBM exist. s In the
case of a spherical quantum dot, a simple effective-mass
calculation gives a cluster size of n —4200 above which
a bound electron exists below the AlAs X edge. Here,
we are interested in much smaller cluster sizes, where
resonant electron states are expected.

To simulate a Ga„cluster in an AlAs host, we use a
cubic supercell containing 512 atoms, which is sufBciently
large to prevent interaction between the periodically re-
peated clusters for small n. We then replace n = 1, 4,
and 14 Al atoms by Ga, taking the shape of cubic cluster
geometries, i.e. , for n = 4 we have a tetrahedron and for
n = 14 we have a cube. We can classify the eigenstates
of the systems according to molecular orbitals of cubic
point symmetry. In Fig. 5 we plot the near-band-edge
spectra of the substitutional clusters as a function of the
efFective supercell composition x = n/256. For all clus-
ters considered, we 6nd the lowest unoccupied state to
be an X-derived threefold degenerate t2 level. This state
is clearly not effective-mass-like. In fact, inspection of
the wave function for n = 14 reveals that this t2 state
is AlAs-like, i.e. , it is extended in the A1As region and
slightly attenuated in the GaAs cluster. Therefore, we
identify this state with the true, A1As-like CBM of the
system, even though it lies by 30 meV below the bulk
A1As CBM (see Fig. 5). This apparent "binding energy"
of 30 meV has in fact a contribution from the hole bind-
ing energy of 20 meV. (Note that in Fig. 5 the zero
of energy is at the VBM of the impurity system. ) The
remaining shift ( 10 meV) is probably due to the on-
set of interaction between Gaq4 clusters in neighboring

3.0—
a 1(f)

t2(L) t& (L)

a 1(L) a 1(LQ

I edge

a&(Q

t2 (L),

AIAS:Ga„
4x4x4 cube

2 2

t2(X) t2 (X) CBM

t2(X)

supercells. The I'- and I-derived states appear as reso-
nances in the conduction band of the A1As host. In the
largest cluster (n = 14), these resonances are about 150
meV lower in energy than their "parent states. " Note
that this appreciable resonance energy occurs for a clus-
ter size well below the minimum cluster size n = 160 for
which effective-mass theory predicts the occurrence of a
"bound" state with zero binding energy. Of course, for
n ~ (x), the lowest unoccupied state would be the bulk-
GaAs I'i, level, hence at some finite n ) 14 the ai(I') res-
onance evolves into a bound state below the AlAs CBM.
However, larger supercells are needed. to study clusters
with n & 14 and the best estimate of the critical cluster
size remains the effective-mass value of n —4200.

V. SUMMARY

We presented empirical pseudopotentials for Ga, Al,
and As that can be used in a large variety of atomic en-

vironments in A1As/GaAs ternary systems. The main
features of the potentials are (i) a continuous, algebraic
form v (q) for the atoms n = Al, Ga, and As, (ii) an
explicit dependence of the As potential on the num-

ber of Ga and Al nearest neighbors, (iii) a good fit
to the bulk A1As and GaAs electronic properties, (iv)
a good fit to LDA-calculated Ievel splittings in short-

0.01 0.02 0.03 0.04 0.05 0.06

Ga composition x = n/256

FIG. 5. Energy levels of a Ga„cluster in an AlAs host,
simulated by a 512 atom cubic supercell. The abscissa de-

notes the effective stoichiometry of the supercell, when n Al
atoms are substituted by Ga atoms. Solid lines indicate the
band gaps as a function of the effective composition x, ne-

glecting optical bowing. The dashed line denotes the X-like
conduction-band minimum of the AlAs host. Due to the cu-
bic symmetry of the system, the three X&, states give rise to
threefold degenerate tq levels, whereas the four I ~, states split
into t2 + a&, and the F&,-derived states have a& symmetry.
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TABLE V. Same as Table I, when spin-orbit interaction is included [Eq. (Al)]. f~,~i = 0.02,
PAl = 10 (a.u.), and f,o = f~,z, = 0 [see Eq. (3)] remain unchanged. The cutoff radius for the
spin-orbit potential in Eq. (A2) is r, = 2 a.u. for all atom types, and A = A ~

—z is given in the
Brst column below the atomic volume.

0 (a.u. )s
(Ry)

Al
111.3

AA1 —0

—1.32512
0.137042
0.00877023
0.0231561

(a.u. )

0
1.7575
2.5963
2.9377

sosa
(a.u. )

1.60516
2.10803
0.527774

11.2707

Ga
131.4

AG = 0.2453

—1.22489
0.0438261
0.0565582

—0.0108889

0
2 ~ 11885
2.02596
2.94278

1.51845
0.959082
0.581972

11.2711

As (in AlAs)
145.2

AA, ——0.294

—1.14809
0.0187039
0.00613087
0.0979212

0
2.46814
1.23022
1.36895

0.971094
6.53134
5.50596
1.18829

As (in GaAs)
145.2

A~, = 0.294

-1.07477
—0.0146395
—0.0512007

0.111554

0
2.46945
0.837519
1.22457

0.963769
6.53143
2.94696
0.824441

period (A1As)„/(GaAs) superlattices. The wave func-
tions obtained with the present EPM are very similar
to LDA-calculated wave functions. For short-period su-
perlattices, the present pseudopotentials represent a sig-
nificant improvement over previous ones, which typically
fail to reproduce the LDA-calculated energy-level order
in short-period superlattices. We have applied our pseu-
dopotentials to large systems with complex geometries,
i.e., superlattices with rough interfaces, disordered short-
period superlattices, and isoelectronic impurity clusters.
The supercells needed for their simulation contained up
to 2000 atoms. We expect that these new pseudopo-
tentials can be used in realistic calculations of quantum
structures, whenever effective-mass approximations are
inappropriate.
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TABLE VI. Comparison of critical point energies of bulk
GaAs and AlAs as obtained in the present relativistic EPM
(using the parameters of Table V and spin-orbit interaction)
with experiment. The zero of energy is at I'8, the top of the
valence band.
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EfFective masses at
mn 0.092
mhh 0.394
m~h 0.134
mso 0.189

r (m.):
0.066"
0.450'
0.082'
0.170'

0.156
0.459
0.208
0.302

APPENDIX: SPIN-ORBIT INTERACTION

The spin-orbit interaction can be added to the present
method in the form of an atomic difference potential for
a given orbital quantum number l,

Reference 25.
Reference 59.
Reference 26.
Reference 27.
Reference 36.

Reference 35.
IReference 37.
"Reference 32.
'Reference 33.
'Reference 39.
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V ) 7
2

2I+, v. ,i+-, (r) -v. ,i-;(r) (Al)

where j = l + 2 is the total angular momentum resulting
Rom the spin-orbit coupling, and v ~ is the pseudopoten-
tial of atom o. acting on the (atomic) pseudowave func-
tion with angular momentum j. Equation (Al) is then
included for each atom in the crystal potential in Eq. (1).
We have implemented the resulting nonlocal part of the
potential using the scheme of Kleinman and Bylander,
which approximates the fully nonlocal operator in recip-
rocal space by a separable one, thus reducing the compu-
tational cost considerably. We use a two-parametric an-
alytic form to model Eq. (Al), which is positive within a
small cutoff radius r„and zero elsewhere. For r & r„we
choose a zero-order spherical Bessel function, truncated
at its first minimum, i.e. ,

v' i(r) = Aa t
sin pr sin pr,

QT pre
r 4r~) (A2)

where p is the smallest positive root of pr, = tanpr, .
The shift in Eq. (A2) makes the spin-orbit potential pos-
itive for r ( r„and continuous at r = r, . From rel-
ativistic atomic LDA calculations we know that r, = 2
a.u. (and p = 2.2467 a.u. i) is a reasonable choice, and
we have then used A ~ q as a single parameter to fit the
experimental spin-orbit splittings in zinc blende GaAs
and AlAs. We neglect spin-orbit interaction for l ) 1.

Note that the parameters in Table I were obtained by
fitting the EPM band structure without spin-orbit cou-
pling to experimental band extrema, thus mimicking a
relativiatic band structure. For example, the I'q5„ level
was fitted to the experimental I'8 level, thus neglect-

ing the split-off I'Y„state. Adding the spin-orbit in-
teraction to the nonrelativistic potential without mod-
ification of the parameters would, therefore, distort the
band structure. We have found that small adjustments
of the parameters in Table I su%ce to fit the relativistic
band structure with equal quality like the nonrelativistic
fit shown in Table II (with obvious changes from single-
group to double-group notation). The modified parame-
ters, to be used when spin-orbit interaction is included,
are given in Table V. The resulting band gaps and spin-
orbit splittings are shown in Table VI. The experimental
spin-orbit splittings can be fitted within less than 10%
with the simple two-parametric model potential of Eq.
(A2).

When spin-orbit coupling is included, the computa-
tional effort approximately quadruples, since both the
number of bands and the spin degrees of freedom are
doubled. For large supercells, however, a nonrelativis-
tic calculation can first be performed, and the spinors
constructed &om the spin-less eigenfunctions (e.g. . ex-
act eigenstates of o.,) provide an excellent first guess for
the relativistic eigenfunctions. We have found that with
our conjugate-gradient code one to two additional itera-
tions usually suKce to find the correct relativistic eigen-
functions. Finally, we point out that the inclusion of
an l-dependent potential (spin-averaged potential of or-
bital quantum number /) adds no extra cost, when spin-
orbit interaction is included, because in the Kleinman-
Bylander scheme the latter is already treated as a (spin-
dependent) nonlocal potential. A p potential that is
different from the 8 potential may improve certain de-
tails of the band structure (see discussion in Sec. II), but
in the present work we have used the same local potential
for / =0 andi =1.
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