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The use ofa  pseudopotential to replace the core electron d e n s i t y  within electronic structure calculations of Kohn-Sham 
type is proposed. An heuristic derivation of such a potential is given. Within the local exchange-correlation scheme, the 
pseudopotential employed is precisely equivalent to solving a frozen-core problem; this is quite different from the situation 
encountered in using pseudopotentials in Hartree-Fock calculations, where additional approximations are involved. Numer- 
ical resu l t s  fo r  several excited and ionic states of first row atoms are given: the errors due to the frozen core are less than 10 -3  
hartree. 

I. Introduction 

The H a r t r e e - F o c k  ( H F )  scheme is a widely  used and  well  accep ted  m e t h o d  for  pe r fo rming  e lec t ronic  s t ruc ture  
calculations.  Numerous  p rograms  exist  for  pe r fo rming  HF calculat ions for  a toms ,  molecules  and  solids. Chemical  
intui t ion,  a long wi th  a vast  l i terature o f  e lec t ronic  s t ruc ture  calculat ions,  indicates tha t  mos t  changes in e lec t ronic  
s t ruc ture  occur  in w h a t  is cons idered  the valence region. Since the tirne to p e r f o r m  such calculat ions goes up  rapidly  
as the  n u m b e r  o f  orbitals  is increased,  one  would  like to  e l iminate  the core orbitals ,  t he reby  reducing the  c o m p u t a -  
t ional  t ime and ef for t ,  and  stressing the behavior  o f  the valence electrons.  Unfo r tuna te ly ,  q u a n t u m  theo ry  tells us 
tha t  we canno t  s imply  ignore the  core orbitals.  To  r e m e d y  this s i tuat ion,  the pseudopo ten t i a l  scheme is o f t en  in- 
t roduced  into HF  calculat ions [1 - -6 ] .  This al lows one  to replace the core orbi tals  by  an effect ive po ten t i a l  (pseudo-  
potent ia l ) .  This  p seudopo ten t i a l  is designed to  have the same effec t  on  the valence e lec t rons  as do  the  core orbi ta ls  
w i thou t  expliCitly including the  core.  In  pract ice  one  usually t ransforms the  valence t ype  basis func t ions  to  a 
smoo th ,  nodeless  (general ly no t  core-or thogonal )  basis set  which  can la ter  (af ter  pe r fo rming  the p seudopo t en t i a l  
HF calcula t ion)  be t r ans fo rmed  b a c k  to  a core-or thogona l  set. This in t roduc t ion  o f  pseudopo ten t i a l s  requires  two  
approx imat ions :  the core func t ions  are f rozen,  and  the non-local  exchange  ope ra to r  act ing on the valence func t ions  
is replaced b y  a local opera tor .  

The  local  densi ty  (LD)  app roach  to  e lec t ronic  s t ruc ture  calculat ions [7,8] is similar to the HF scheme,  e x c e p t  
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that one replaces the non-local exchange operator of the HF scheme by a local operator which is a functional only 
of the diagonal density matrix p(r, r) and which, in prinicpIe, includes alI exchange and correlation contributions. 
One then performs a self-consistent field (SCF) calculation using this local operator. Given this similarity in the 
HF and LD schemes, it seems likely that the pseudopotential approximation should be helpful in an LD approach. 
We will show that this in fact proves to be the case. In particular, since the usual HF pseudopotential requires that 
at one stage in its development we approximate the non-local exchange operators of the core by local operators, 
and since, in the LD approach, these operators are local to begin with, this part of the approximation (localization 
of a non-local operator) does not enter. This leaves onIy the frozen core approximation. One would then expect the 
pseudopotential approach to be better suited (less of an approximation) to the LD scheme than to HF. 

We have presented elsewhere [9] a more detailed development based on the general Kahn-Sham local density 
forrnalisr+~. it is the aim of the present note to give an intuitively appealing LD pseudopotential development, and 
to demonstrate its accuracy for first-row atoms. 

2. Development 

The LD exchange eigenvalue equation for an atomic orbital with quantum numbers nl is given by 

H&l@) = {iv2 + VT [o(r)] )&7(r) = en&&) , 

where the total LD potential is: 

(1) 

VT [p @)I = -z/r + &ouJ [P @)I + vxc [p(r)] . 

Here His the hamiltonian, @,1(r) is the orbital wavefunction, -iv2 is the kinetic energy operator, 2 is the atomic 
number, V ro,,J [p(r)] is the total electronic Couiomb potential, e,rf is the orbital energy for I&&) and Vx, [p(r)] 
is given in terms of the charge density p(r) as: 

&bWI = v, CPWI + Kx,rml > v, [p(r)] = -3o(3/4n)1’3 [p(r)] U3 (2) 

and V,,, [p(r)] is th e oc 1 al correlation operator given by Singwi et al. [lo] _ The parameter 01 is taken equal to 2/3. 
For heuristic purposes, we can for a given valence orbital (unless otherwise indicated, n is assumed to specify the 
valence shell) divide (1) by 3/,7(r) and rewrite it as 

where c and v refer to core and valence respectively. We now defme a pseudohamiltonian such that 

(3) 

(4) 

Eq. (4) has the form one would expect if only the valence orbitals (or more correctly the pseudoorbitals) were 
treated explicitly_ If we assume some suitably defined pseudoorbital (see section 3), (4) defmes our pseudopotzn- 

tial VIPs(f) in terms of this pseudoorbital $#(f) and e:; for the given nl state. Since we wish our pseudohamiltonian 
to have the same energy spectrum as the original hamiltonian, we set c$$ E enl_ We then have 

Q=(r) = e,7 + $ [v2~~;:f(~)l h@@) + vo b,p”C41 7 (54 
where the Z-independent part is: 

5J [Pvp”@)l = zv/r - VE”J [Pvp”(r)I - q;[Prwl - @b) 
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Note that since the exchange-correlation term is local to begin with, no localization of this operator is involved in 
forming this pseudopotential as there would be in the HF pseudopotential scheme. By having set e# = enl, (4) 
implies that I/$@) is an eigenfunction of .!Ilps. In other words H,pr” and H,,, do not commute. It should be empha- 
sized that in (4) one uses the pseudoorbitals to form the Coulomb and exchange operators. To see this more clearly, 
as well as the role of the pseudopotential, we subtract (4) from (3) and rearrange to get 

Several terms in this equation can be simplified: the third term is zero by definition of our eps_ The fourth and 
fifth terms are zero for the (nodeless) wavefunctions whose I is greater than any I present in the core. The last term 
is never V.&,_(r)] due to the nonlinearity of the p1j3term in V,,. 

Eq. (5) or (6) serves to define the pseudopotential. For the state used to define the pseudopotential, the treat- 
ment is exact. For other states the only approximation (if one orthogonalizes the final pseudoorbitals to the orig- 
inal core orbitals after performing the SCF calculation) [9] is that of *a frozen core. 

Our pseudoorbital is defined by a linear transformation on the all-electron (exact) orbitals as: 

tiEj(r) = FciGi/fr) * (7) 

Eq. (7) guarantees that one can regain the original valence orbital by orthogonalizing the pseudoorbital to the core 
(for the state used to define the pseudoorbital). By choosing the coefficients properly one can eliminate nodes and 
oscillations in the pseudoorbital; this is required if one is to avoid singularities in the pseudopotential [2,6,9] _ In 
addition such smooth orbitals generally require fewer basis functions to describe them, which results in considerable 
computational economies. Since (7) mixes an arbitrary amount of core into $g;(r) and since one can remove it 
again (reorthogonalize) after the SCF calculation, this choice is not critical. (For the present work on first row atoms 
I@,@) must be identical to 3/2,(r). For r&!(r) we mix in the minimum amount of r/j *s(f) required to eliminate the ra- 
dial node. This is equivalent to the constraint of existing HF algorithms which require [2,6] the coefficients in (7) be 
chosen such that I,!I~’ nl go to zero at the origin For the first row, this condition (along with that of normalization 
of $9) uniquely determines $$.) We can now simplify(S) by recognizing that the orbitals Gil(r) in (7) are exact 
eigenfunctions to the all-electron hamiltonian (-$I@ + VT [p (r)] ) in (1). This would yield: 

In the particular case of a first row atom this reduces to: 

P(rj = c7 s _S- i=~~~cilLi(f)Eili_~~sci~i(r) + vT [PCr)l + VOIP$s(r)l Y , - , 
(94 

vpr) = v, b(r)1 - v, IP,p”(r)l , @b) 

q”(r) = q”(f) = . . . = Vpps(r) . (9c) 

We now briefly discuss the implications of these equations on the properties of the pseudopotential of the first row 
atoms. If one were to use the true 2s orbital in (Sa), it would have the same form as (9b) (note that V. (r) would 
differ numerically) and thus ail the 2 components of the pseudopotential would be the same. It is the process of 
forming a pseudoorbital for the I = 0 wavefunction which causes the I = 0 potential to differ from the others. Physi- 
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ca~ly, this effect is a consequence of the PauIi principle feIt by electrons whose angular momentum species is pres- 
ent in the core, but not by electrons whose angular momentum species (p, d, f for fust row atoms) is absent in the- 
core. 

In (9b), the dependence of the p potential on the p orbital enters explicitly through the VO (r) term where the 
occupied p orbitals have been used to compute the charge density. Thus if one were to compute, say, the d poten- 

_ tial in the Same way, using the same original charge density, one would get exactly the same potential for Vd (r) as 
for VP(r) (and similarly for all higher angular momenta). Eq. (9c) is thus exact and is a result of the fact that the 
exchange operator [last term in V,(r) in (S)] _ 1 IS ocal in the LD formalism. This is in contrast to the HF based 
pseudopotentials [2--61 where eq. (9c) is only an approximation which is usually made, on the assumption that the 
non-iocai HF exchacge operators for valence orbitals of differing I are similar, provided neither Z-value is present in 
the core. In general one can set up equations similar to (9) and generate potentials for ! going from zero to one high- 
er than the highest symmetry found in the core (=I,,, + 1) and set all higher V!(r) ‘rerms to vlmre+l (r). 

4. Results 

In table 1 we present the results of tests performed with and without the LD pseudopotentials for atoms of the 
fust row. The results for C were given in ref. [9] and are presented here for completeness. It is seen that the errors 

Table 1 
Comparison of all-electron and pseudopotential calculations (energies in hartrees)a) 

Atom Configuration Excitation 
enernvb) 

Orbital energiesc) 

Li 

Li 

Li”2L 

Be 

Be 

Be'+ 

B 

B 

B 1+ 

C 

C 

Cl* 
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2s’2p0 

2P2p’ 

2s”2’, -PO 

2s22p" 

2s’2p’ 

2S’2P0 

2s22p’ 

2s'2p0 

2s22p0 

2s22p2 

25'2p3 . 

2s22p' 

(-7.174881) 
(-0.165554) 

0.060637 
0.060806 

-0.0790 
-0.0790 

0.061390 
0.061512 

-0.0995 

-0.1004 

-0.1679 
-0.1683 

(-14.223291) -0.1700 
(0.933249) -0.1700 

0.125781 -0.1931 
0.126108 -0.1950 

0.311895 
0.313607 

(-24.050406) 
(-2.479522) 

0.206252 
0.206411 

0.264436 
0.263413 

(-37.053604) 
(-5.20378 1) 

0.300253 
0.300234 

-0.4626 
-0.4663 

-0.3054 
-0.3054 

-0.3239 
-0.3259 

-0.6670 
-0.6681 

-0.4574 
-0.4574 

-0.4745 
-0.4765 

0.358022 -0.8900 
0.357367 -0.8924 

-0.0199 
-0.0199 

-0.0376 
-0.0382 

-0.0989 
-0.0985 

-0.0457 
-0.0457 

-0.0660 
-0.0673 

-0.3234 
-0.3237 

-0.1000 
-0.1000 

-0.1168 
-0.1185 

-0.4495 
-0.4466 

-0.1580 
-0.1580 

-0.1734 
-0.1756 

-0.5799 
-0.5782 
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lie 1 (continued) 

Atom Configuration Excitation 

energy b, 

Orbital energiesc) 

N 

N 

N 1+ 

0 

0 

0 1+ 

F 

F 

F*+ 

Ne 

Nl2l+ 

C 

2s= 2p3 

2s’ 2p4 

2s= 2p= 

2s2 2p4 

2s’ 2p5 

2s2 2p3 

2s= 2p= 

2s12p6 

2s2 2p4 

2s2 2p6 

2s= 2ps 

2s2 2po 3s2 

(-53.567901) 
(-9.441430) 

0.408183 

0.408594 

0.455262 

0.454785 

(-73.925421) 

(-15.524905) 

0.532263 
0.531905 

-0.6288 
-0.6288 

-0.2210 
-0.2210 

-0.6458 -0.2360 
-0.6478 -0.2385 

-1.1301 -0.7122 
-1.1333 -0.7 109 

-0.8206 -0.2895 
-0.8206 -0.2895 

-0.8371 -0.3045 
-0.8400 -0.3073 

0.556919 
0.556546 

(-98.456600) 
(-23.784894) 

0.670893 
0.670368 

-1.3887 
-1.3925 

-1.0330 
-1.0330 

-1.0511 
-1.0531 

0.663331 -1.6667 

0.663030 -1.6709 

(-127.490729) -1.2661 
(-34.550852) -1.2661 

0.774660 -1.9643 
0.774412 -1.9689 

-0.8477 
-0.8467 

-0.3635 
-0.3635 

-0.3787 
-0.3818 

-0.987 1 
-0.9864 

-0.443 1 
-0.443 1 

-1.1308 
--1.1307- 

0.682987 -0.09435 -0.00935 
0.682886 -0.09422 -0.00934 

For each pair of energies the upper value gives the all-electron results. 
For the ground state, the total energies are given in parentheses. 
The all-electron versus pseudopotential results agree exactly for the state from which the potential was made (the ground states 

for all results given here). 

the orbital energies and excitation energies are less than 10B3 au. This is true for excitation energies up to 19 eV, 
1 reflects the error in the frozen core approximation inherent in the pseudopotential scheme; frozen-core LD 
culations yield precisely the same results as the LD pseudopotential. These calculations all employ numerical 
Bitals, so that no basis function inadequacy ever appears. Most of these calculations are for valence-excited states, 
hough for carbon we present results for highly excited states; these represent a rather stringent test of the neutral 
bund state atom pseudopotential, but even here the results are quite satisfactory. The wavefunctions for N+ are 
‘sented in fig. 1; we show both the nodeless pseudoorbital and the orbital resulting when the pseudoorbital is re- 
hogonalized [I l] to the frozen core. Again, the results seem quite good. 
These results promise that the LD pseudopotential approach presented here will prove both accurate and useful 
providing a method for performing valence-electrons-only LD computations for atoms, molecules and solids. Al- 
~gh the present derivation is heuristic, a more rigorous treatment of the same results can be given [9] ; the im- 
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(a) 

OISTRNCE IN BOHR 

(b) 

.mo 1.6uo 2.YOO 3.200 Y.ma 

DISTRNCE IN Bl3HR 

Fig. 1. (a) The actual and pseudo LD 2s orbit& for N”. X 3 real 2s. o = pseudo 2s. (b) The actual and core-orthogonalized pseudo 
2s orbitals for NY X = reaJ 2s. 0 = pseudo 2s, orthogonalized to frozen (N) core. 

portant point is that our LD pseudopotential scheme is exactly equivalent to a frozen-core calculation, and seems 
highly accurate for the first row results obtained so far*. 
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