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The use of a pseudopotential to replace the care electron density within electronic structure calculations of Kohn—Sham
type is proposed. An heuristic derivation of such a potential is given. Within the local exchange-correlation scheme, the
pseudopatential eniployed is precisely equivalent to solving a frozen-core problem; this is quite ditferent from the situation
encountered in using pseudopotentials in Hartree—Fock calculations, where additional approximations are involved. Numer-
ical results for several excited and ionic states of first row atoms are given: the errors due to the frozen core are less than 10~3
hartree.

1. Introduction

The Hartree—Fock (HF) scheme is a widely used and well accepted method for performing electronic structure
calculations. Numerous programs exist for performing HF calculations for atoms, molecules and solids. Chemical
intuition, along with a vast literature of electronic structure calculations, indicates that most changes in electronic
structure occur in what is considered the valence region. Since the time to perform such calculations goes up rapidly
as the number of orbitals is increased, one would like to eliminate the core orbitals, thereby reducing the computa-
tional time and effort, and stressing the behavior of the valence electrons. Unfortunately, quantum theory tells us
that we cannot simply ignore the core orbitals. To remedy this situation, the pseudopotential scheme is often in-
troduced into HF calculations {1—6]. This allows one to replace the core orbitals by an effective potential (pseudo-
potential). This pseudopotential is designed to have the same effect on the valence electrons as do the core orbitals
without explicitly including the core. In practice one usually transforms the valence type basis functions to a
smooth, nodeless (generally not core-orthogonal) basis set which can later (after performing the pseudopotential
HF calculation) be transformed back to a core-orthogonal set. This introduction of pseudopotentials requires two
approximations: the core functions are frozen, and the non-local exchange operator acting on the valence functions
is replaced by a local operator.

The local density (LD) approach to electronic structure calculatlons [7.,8] is similar to the HF scheme, except
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that one replaces the non-local exchange operator of the HF scheme by a local operator which is a functional only
of the diagonal density matrix p(r, r) and which, in prinicple, includes all exchange and correlation contributions.
One then performs a self-consistent field (SCF) calculation using this local operator. Given this similarity in the
HF and LD schemes, it seems likely that the pseudopotential approximation should be helpful in an LD approach.
We will show that this in fact proves to be the case. In particular, since the usual HF pseudopotential requires that
at one stage in its development we approximate the non-local exchange operators of the core by local operators,
and since, in the LD approach, these operators are local to begin with, this part of the approximation (localization
of a non-local operator) does not enter. This leaves only the frozen core approximation. One would then expect the
pseudopotential approach to be better suited (less of an approximation) to the LD scheme than to HF.

We have presented elsewhere [9] a more detailed development based on the general Kohn—Sham local density
formalisr.. It is the aim of the present note to give an intuitively appealing LD pseudopotential development, and
to demonsirate its accuracy for first-row atoms.

2. Development

The LD exchange eigenvalue equation for an atomic orbital with quantum numbers n/ is given by
HYpy@= GV + Ve lo@I @ = 6@, (1)
where the total LD potential is:
Vele@] =—=Z[r+ Voule 0] + Vi [p(®].
Here H is the hamiltonian, ¥,,(r) is the orbital wavefunction, —%Vz is the kinetic energy operator, Z is the atomic

number, ¥, [p(r)] is the total electronic Couiomb potential, €, is the orbital energy for ,,;(r) and V, [p ()]
is given in terms of the charge density p(r) as:

Ve [0®] =V, [0()] + Voo [0®], Vi [p@®] = —3c(3/4m)3 [p ()13 @)

and ¥, [p(r)] is the local correlation operator given by Singwi et al. [10]. The parameter « is taken equal to 2/3.
For heuristic purposes, we can for a given valence orbital (unless otherwise indicated, » is assumed to specify the

valence shell) divide (1) by ¥,,;(r) and rewrite it as
_ H"!’nl(')__ 1 Vz‘pnl(') Z, 2.
WY@ 2 ) T 1

+ VoulocM1 + Viulo, M1 + Vi [p ) + 0,001 , 3)

where ¢ and v refer to core and valence respectively. We now define a pseudohamiltonian such that

H PSP V2yRir) Z
=L L T T pEs (0B + VES [oBS(R)] + VPSD). )
WE(r) 2 Y T
n n

Eq. (4) has the form one would expect if only the valence orbitals (or more correctly the pseudoorbitals) were
treated explicitly. If we assume some suitably defined pseudoorbital (see section 3), (4) defines our pseudopoten-
tial ¥;P*(r) in terms of this pseudoorbital Y5j(r) and €57 for the given nl state. Since we wish our pseudohamiltonian
to have the same energy spectrum as the original hamiltonian, we set €ff = ¢,;. We then have

ViPS ()= €y + 5 [V UEOWEE) + Vo [o8 (] (52)
where the /-independent part is:
VoleP* 0] = 2,/r— VEgu [ @) — VL] - (5b)
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Note that since the exchange-correlation term is local to begin with, no localization of this operator is involved in
forming this pseudopotential as there would be in the HF pseudopotential scheme. By having set eb = ¢,,;, (4)
implies that $27(r) is an eigenfunction of H;"°. In other words Hj; and H,;; do not commute. It should be empha-
sized that in (4) one uses the pseudoorbitals to form the Coulomb and exchange operators. To see this more clearly,
as well as the role of the pseudopotential, we subtract (4) from (3) and rearrange to get

[v U@ VUR (r)]
- 5 U () vE ()

ViR = ZJr + VEu10P)] — (6 —

+ {Voulo, @) — VELoE M} Vil () +p,(0) ~ VELoI(M]}. 6)

Several terms in this equation can be simplified: the third term is zero by definition of our €PS. The fourth and
fifth terms are zero for the (nodeless) wavefunctions whose [ is greater than any / present in the core. The last term
is never V,.[p.(r)] due to the nonlinearity of the p Y3term in Ve

Eq. (5) or (6) serves to define the pseudopotential. For the state used to define the pseudopotential, the treat-
ment is exact. For other states the only approximation (if one orthogonalizes the final pseudoorbitals to the orig-
inal core orbitals after performing the SCF calculation) [9] is that of a frozen core.

Our pseudoorbital is defined by a linear transformation on the all-electron (exact) orbitals as:

B0 = 2ieua®). ™

Eq. (7) guarantees that one can regain the original valence orbital by orthogonalizing the pseudoorbital to the core
(for the state used to define the pseudoorbital). By choosing the coefficients properly one can eliminate nodes and
oscillations in the pseudoorbital; this is required if one is to avoid singularities in the pseudopotential {2,6,9]. In
addition such smooth orbitals generally require fewer basis functions to describe them, which results in considerable
computational economies. Since (7) mixes an arbitrary amount of core into dzgﬁ(r) and since one can remove it
agam (reorthogonalize) after the SCF calculation, this choice is not critical. (For the present work on first row atoms

(r) must be identical to ,,(r). For W5 (r) we mix in the minimum amount of ¥ 1s(r) required to eliminate the ra-
dxal node. This is equu. alent to the constraint of existing HF algorithms which require [2,6] the coefficientsin (7) be
chosen such that t,bn, go to zero at the origin. For the first row, this condition (along with that of normalization
of Y l) uniquely determines z,b’z’s ) We can now 81m_p11fy(5) by recognizing that the orbitals ¥, (r) in (7) are exact
eigenfunctions to the all-electron hamiltonian (—3 V2 + Vilo(®)])in (1). This would yield:

VIR0 = et~ 23 i@ el 23 @ + Ve lo@)] + Vo [oF @1 - ®)
In the particular case of a first row atom this reduces to:

VEE) = e~ 20 cli)el 20 ¢4 0)+ Vlp@] + VoloB o , ©2)

VEE@) =Vyle®M] — Volef* ™1 , (9b)

V@ =vPE@=..= V(). (9¢)

We now briefly discuss the implications of these equations on the properties of the pseudopotential of the first row
atoms. If one were to use the true 2s orbital in (9a), it would have the same form as (9b) (note that V|, (r) would
differ numerically) and thus all the / components of the pseudopotential would be the same. It is the process of
forming a pseudoorbital for the / = 0 wavefunction which causes the I = C potential to differ from the others. Physi-
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cally, this effect is a consequence of the Pauli principle felt by electrons whose angular momentum species is pres-
ent in the core, but not by electrons whose angular momentum species (p, d, f for first row atoms) is absent in the "
core. )

In (9b), the dependence of the p potential on the p orbital enters explicitly through the ¥ (r) term where the
occupied p orbitals have been used to compute the charge density. Thus if one were to compute, say, the d poten-
tial in the same way, using the same original charge density, one would get exactly the same potential for V4 (r) as
for V, (r) (and similarly for all higher angular momenta). Eq. (9¢) is thus exact and is a result of the fact that the
exchange operator {last term in Vj(r) in (5)] is local in the LD formalism. This is in contrast to the HF based
pseudopotentials [2—6] where eq. (9¢) is only an approximation which is usually made, on the assumption that the
non-locai HF exchange operators for valence orbitals of differing / are similar, provided neither l-value is present in
the core. In general one can set up equaticns similar to (9) and generate potentials for / going from zero to one high-
er than the highest symmetry found in the core (Sl + 1) and set all higher V;(r) ‘erms to V,wre_,.l r).

4. Results

In table 1 we present the results of tests performed with and without the LD pseudopotentials for atoms of the
first row. The results for C were given in ref. [9] and are presented here for completeness. It is seen that the errcrs

Table 1 .
Comparison of all-electron and pseudopotential calculations (energies in hartrees) a)
Atom Configuration Excitation Orbital energies®)
encrgy b)

Li 2s'2p° {(—7.174881) -0.0790 —0.0199
(—0.165554) —0.0790 —0.0199
Li 2502p! 0.060637 -0.0995 —0.0376
0.060806 —0.1004 —0.0382
Li¥?* 251220 0.061390 —0.1679 —0.0989
0.061512 —0.1683 —0.0985
Be 2s22p° (—14.223291) —0.1700 —0.0457
(0.933249) —0.1700 —~0.0457
Be 2s'2p! 0.125781 —0.1931 —0.0660
0.126108 —0.1950 —0.0673
Bel* 2s12p° 0.311895 —0.4626 —0.3234
0.313607 —0.4663 —0.3237
B 2s%2p! (—24.050406) —0.3054 —0.1000
(—2.479522) —0.3054 —0.1000
B 2s'2p° 0.206252 —0.3239 —0.1168
0.206411 —0.3259 —0.1185
B 2s22p° 0.264436 —0.6670 —0.4495
0.263413 —0.6681 —0.4466
C 2s22p? (—37.053604) —0.4574 —0.1580
(~5.203781) —0.4574 —0.1580
c 2slap3 - 0.300253 ~0.4745 ~0.1734
0.300234 —0.4765 —0.1756
ct* 2s22pt 0.358022 —~0.8900 —0.5799
0.357367 —-0.8924 —-0.5782
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le 1 (continued)

Atom Configuration Excitation Orbital energies©)
energyb)
N 2s%2p3 (—53.567901) —-0.6288 —-0.2210
(—9.441430) —0.6288 ~0.2210
N 2st2p* 0.408783 —0.6458 —0.2360
0.408594 —0.6478 -0.2385
N 2s%2p? 0.455262 -1.1301 -0.7122
0.454785 —1.1333 —~0.7109
o 2s22p? (—73.925421) —0.8206 —0.2895
(~15.524905) —0.8206 -0.2895
o} 2s!2p® 0.532263 —0.8371 —0.3045
0.53190S —0.8400 —-0.3073
o'* 25%2p° 0.556919 —1.3887 —0.8477
0.556546 ~1.3925 —0.8467
F 2s22p° (—98.456600) —~1.0330 —0.3635
(—23.784894) —1.0330 -0.3635
F 25! 2p® 0.670893 —~1.0511 —0.3787
0.670368 —~1.0531 -0.3818
F* 2s%2p% 0.663331 ~1.6667 —~0.9871
0.663030 ~1.6709 --0.9864
Ne 252 2p® (—127.490729) —~1.2661 —0.4431
(—34.550852) ~1.2661 —0.4431
Ne'™* 2s22p° 0.774660 ~1.9643 —~1.1308
0.774412 —~1.9689 —1.1302
C 25%2p°3s? 0.682987 ~0.09435 —~0.00935
0.682886 ~0.09422 —0.00934

For each pair of energies the upper value gives the all-electron results.
For the ground state, the total energies are given in parentheses.
The all-electron versus pseudopotential results agree exactly for the state from which the potential was made (the ground states

for all results given here).

the orbital energies and excitation energies are less than 10—3 au. This is true for excitation energies up to 19 eV,
1 reflects the error in the frozen core approximation inherent in the pseudopotential scheme; frozen-core LD
culations yield precisely the same results as the LD pseudopotential. These calculations all employ numerical
vitals, so that no basis function inadequacy ever appears. Most of these calculations are for valence-excited states,
hough for carbon we present results for highly excited states; these represent a rather stringent test of the neutral
wund state atom pseudopotential, but even here the results are quite satisfactory. The wavefunctions for N* are
sented in fig. 1; we show both the nodeless pseudoorbital and the orbital resulting when the pseudoorbital is re-
hogonalized [11] to the frozen core. Again, the results seem quite good.

These results promise that the LD pseudopotential approach presented here will prove both accurate and useful
sroviding a method for performing valence-electrons-only LD computations for atoms, molecules and solids. Al-
ugh the present derivation is heuristic, a more rigorous treatment of the same results can be given [9] ; the im-
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Fig. 1. () The actual and pseudo LD 2s orbitals for N". X =real 2s, ¢ = pseudo 2s. (b) The actual and core-orthogonalized pseudo
2s orbitals for N*. X = real 2s, ¢ = pseudo 2s, orthogonalized to frozen (N) core.

portant point is that our LD pseudopotential scheme is exactly equivalent to a frozen-core calculation, and seems
highly accurate for the first row results obtained so far*.
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* Snijders and Baerends {12] have very recently proposed a generalized Phillips—Kleinman pseudo potential scheme within the local
density formalism. Their method has one distinct advantage over ours with respect to applicability: no projection operators
onto angular momentum states need be included, It also has several disadvantages (need to include core density explicitly, non-
recovery of frozen-core results).
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