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We present an approach to the calculation of absolute deformation potentials (ADP's) based on ab ini-
tio all-electron methods. The ADP of a given single-particle state is obtained from the variation of its
energy between a compressed and an expanded region of the same material. Core levels are used to cal-
culate the band onset at the compressed-expanded homojunction. W'e present results for a simple metal
(Al), a semiconductor (Si), and an insulator (NaC1) under uniaxial strain. We find that (i) the ADP of the
valence-band maximum is positive in Si, as predicted by a simple tight-binding model, but it is negative
in NaC1, in convict with tight binding; (ii) while most conduction-band states have negative ADP's, in
agreement with the tight-binding picture, some conduction states have positive ADP s; (iii) core levels
have nonvanishing ADP's, so they cannot be used as "absolute" reference energies in the presence of
strain.

I. MrRODUCnON

The concept of deformation potential was introduced
in 1950 by Bardeen and Shockley' to describe the interac-
tion between electrons and acoustic phonons. They as-
sumed that the matrix elements of the electron-phonon
interaction are related to the derivatives of the electronic
energy levels with respect to macroscopic strain (defor-
mation potentials). This conjecture, known as deforma-
tion potential theorem, has been recently proved by Res-
ta in the framework of density-functional theory.

While the relatiue deformation potential between two
energy levels of the same system (i.e., the derivative with
respect to strain of the energy difference between the two
levels) is a well-defined quantity that can be measured
and calculated in a straightforward manner, ' the con-
cept of absolute deformation potential (ADP) is much
more subtle. Due to the long-range nature of Coulomb
interactions, in fact, the absolute position of an energy
level in an infinite solid is ill-defined, and only energy
difFerences are accessible to either calculations or experi-
ments. Thus, the deformation potentials of an infinite
solid are defined only within an additive constant that
represents the derivative of the reference energy with
respect to strain. While it has often been assumed that a
given reference energy is strain independent, this assump-
tion is arbitrary and cannot be rigorously proved. In
fact, if one defines "absolute" to imply "without refer-
ence, " then it is impossible to define an "absolute*' defor-
mation potential in an infinite solid. As Van de Walle
and Martin have recently pointed out, however, the de-

formation potentials which are relevant for the electron-
phonon problem can be expressed in terms of the lineup
of the energy levels between two regions of the same sys-
tern subject to different strain conditions. Since these
quantities can be calculated without any assumption
about the existence of a strain-independent reference en-
ergy, they can be properly referred to as absolute defor-
mation potentials. Resta, Colombo, and Baroni6 have
shown that for nonpolar materials and uniaxial strains
these ADP's are well-defined bulk properties. We will
use here the concept of "absolute deformation potential"
within this definition.

Most of the experimental results in this area have been
obtained indirectly by fitting the deformation potentials
to mobility or absorption data. This procedure is rather
uncertain, due to the difBculty of modeling the many,
complex scattering mechanisms involved. Consequently,
the results are spread over a wide range of values. For
example, values ranging between —21 and —3.4 eV (Ref.
7) have been reported for the deformation potential of the
conduction-band minimum (CBM) of InP. Recently, a
direct approach was suggested by Nolte, Walukiewicz,
and Hailer. Assuming strain independence of the ener-

gy levels associated with transition-metal impurities
across a strained-unstrained homojunction, and measur-
ing conduction-band to impurity-level transition energies
on both sides of the homojunction, these authors derive
the conduction-band deformation potentials of several
materials. A different approach has been proposed by
Cargill, Angilello, and Cavanagh. The strain induced in
Si by As doping is related to the CBM deformation poten-
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tial by singling out the effect of atomic size differences,
these authors obtain the deformation potential of the
CBM of Si for (001) strain.

A number of theoretical approaches have been applied
to the deformation potential problem. The simple tight-
binding model of Harrison, " assuming arbitrarily that
the diagonal matrix elements of the Hamiltonian
(atomic-orbital energies) are volume independent, would
predict positive deformation potentials for bonding states
and negative deformation potentials for antibonding
states. On the other hand, the free-electron model (in
which energies scale as 0, where 0 is the unit-cell
volume) would predict negative deformation potentials
for every state. Most of the previously published calcula-
tions ' ' ' are based on the assumption that a given
reference energy can be considered as "absolute, " i.e.,
strain independent. This is the case, for example, of the
pseudopotential calculations of Blacha, Presting, and
Cardona, of the self-consistent tight-binding method of
Priester and co-workers, ' of the linear mufFin-tin orbital
calculations pf Verges et al. '" and Cardona and Christen-
sen, ' and of the "model-solid theory" of Van de Walle
and Martin. Not surprisingly, these calculations have
lead to rather diverging conclusions. For example, for the
deformation potential of the valence-band maximum
(VBM) of Si, Blacha, Presting, and Cardona obtain
—10.2, Verges et al. ' obtain —7.9, Cardona and
Christensen' obtain —1.6 (screened deformation poten-
tial), and Van de Walle and Martin obtain +2.5 eV. The
reason for this uncertainty can be traced back to the
difhculty of de6ning a reference energy which does not
depend on macroscopic strain. Recently, promising ab
initio calculations based on the pseudopotential method
have been proposed ' which do not rely on the existence
of any strain-independent reference energy.

In this work we present an approach to the calculation
of ADP's based on ab initio all-electron methods. No as-
sumption is made about the existence of a strain-
independent reference energy. The ADP of a given state
is obtained from the band offset at the interface between a
compressed and an expanded region of the same material;
the core levels are used to calculate the band offset of the
compressed-expanded homojunction, but not as "abso-
lute" reference levels. %e present results for the ADP's
of a simple metal (Al), a semiconductor (Si}, and an insu-
lator (NaC1) under uniaxial strain. We find that (i) the
ADP of the valence-band maximum is positive in Si, as
predicted by the simple tight-binding model, but it is neg-
ative in NaC1, in conflict with tight binding; (ii) most
conduction-band states have negative ADP's, in agree-
ment with the tight-binding picture, but some states have
positive ADP's; (iii) the ADP's of core levels are small
but not negligible, so that core levels cannot be used as
"absolute" energy levels in the presence of strain.

II. METHOD

The ADP of the band n at wave vector k of a periodic
solid is de6ned as

~En va~P ll,

BE~ p

where E„zis the energy of the (n, k) single-particle state
and E

&
is the (u, P) component of the strain tensor e. We

will assume that the k points in the Brillouin zone move
with strain according to the formula k~(1+E) k. In
this way, high-symmetry k points on the surface of the
Brillouin zone remain on the Brillouin-zone edge when
strain is applied. In the following, we will restrict our-
selves to uniaxial strain: for a given normalized direction
n, the strain tensor r will then depend on a single param-
eter c., i.e., c. &=@.O' 8'&. Note that uniaxial strain is ac-
companied by a volume change AQ, such that
b,Q jQ= Tr a=E. The ADP of the state (n, k) can be ex-
pressed ' in terms of the band offset hE„'+„'at the in-
terface between two regions of the same material, subject
to different strain conditions: one with compressive
(E (0) uniaxial strain and the other with tensile (c &0)
uniaxial strain. For a suSciently small strain difference
bc we have

r
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FIG. l. A schematic diagram of the energy levels involved in

the calculation of absolute deformation potentials (see text for
the explanation of symbols).

If the value of !s! is the same on both sides of the inter-
face, Eq. (2) is correct to second order in b s. The homo-
junction band offset AE„'

&
' can be calculated in a way

which parallels the calculation of the band offset at
heterojunction interfaces. ' Our basic assumption is that
the energy difFerence E„i,E, betwe—en the state (n, k}
and the core level c is the same in the compressed pure
material and in the compressed region of the homojunc-
tion (see Fig. 1). A similar relation is assumed for the ex-
panded material. Denoting by E, (E,+ ) the energy of the
core level c in the compressed (expanded) material, we
can write (see Fig. 1)

bE„'„''=(E„„E,)
—(E„„—E, )+bE,—+

The first two terms in parentheses in Eq. (3) give the ener-

gy difference E„z—E, in the expanded and compressed
material, respectively. They are calculated here self-
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used the value /=0. 53 obtained by Nielsen and Martin. '

The crystal-field averaged ADP of the valence-band max-
imum (sometimes denoted by a„)is compared in Table I
with the previous ab initio calculations of Van de %alle
and Martin and of Resta, Colornbo and Baroni, and
with the experimental results of Cargill, Angilello, and
Kavanagh. As we can see, the agreement is quite good
for the (001) and (111)directions. In the case of the (110)
direction, our result is probably affected by the slow con-
vergence of the ADP with respect to the dimension of the
supercell. '

The ADP's of a simple metal (Al), a semiconductor
(Si), and an insulator (NaC1) are shown in Fig. 2 for (001)
uniaxial strain. Note that the (001} interface of the
compressed-expanded homojunction of NaCl is nonpolar;
therefore, the displacement of the interfacial atomic
planes in the direction of the strain does not change the
ADP A.lthough the energy gaps shown in Fig 2a.re not
to scale, the slopes of the lines (absolute deformation po-
tentials) are plotted to scale, so that the ADP's of
different states and different materials can be directly
compared. The following conclusions can be drawn from
Flg. 2.

(i} The ADP's of core levels are small, but not negligi-
ble. Therefore, core levels cannot by considered as "ab-
solute" reference energies when strain is present. Howev-
er, core levels can be used as approximate reference ener-
gies when the magnitude of the strain is suSciently small,
so that the core-level deformation effect is negligible. '

The latter approach has been used, for example, by Shih
and Spicer to study the valence-band offse of HgTe-
CdTe alloys.

(ii) Different core levels have different ADP s. This im-
plies that the relative deformation potentials between
core levels do not vanish. For example, the relative defor-
mation potential between Si 1s and Si 2s is —1 eV. This
seems to be in contrast with the measurements of Grant
et al. , who find that the core-level energy difference be-
tween Ge 3s and Ge 3d in pure Ge and between As 31
and Ga 3d in GaAs is independent of strain. We note,
however, that core levels having the same principal quan-
tum number in the same atom [e.g. , Al 2s, Al 2p, /z, and
Al 2@3/g in Fig. 2(a), Si 2s, Si 2p, /z, and Si 2@3/2 ln Fig.
2(b)] have similar ADP s, so their relative deformation
potentials almost vanish. This could explain the results of
Grant et a/. for intra-atomic core-level deformation po-
tentials.

(iii) While the ADP of the valence-band minimum
(I „)is large and positive, the ADP of higher valence-
band states is smaHer, and can even become negative.
For example, the ADP of the VBM of Si (I z5,, ) is slight-
ly positiue, but the ADP of the VBM of NaC1 (I »„)is
negative. This different behavior can be explained quali-
tatively in terms of the interplay between the bonding-
energy contribution and the bandwidth contribution to
the ADP (see Fig. 3). The bonding energy (i.e., the energy
of the bonding state between two atoms, corresponding
roughly to the center of the occupied bands) becomes less
negative when the volume increases, because the
bonding-antibonding splitting decreases when the atoms
move apart. Thus, the bonding-energy contribution to

Valence-band maximum

Volume

FIG. 3. Behavior of the valence-band edges as a function of
volume. Note that while the valence-band width decreases with

volume, the bond energy increases with volume. As a result, the

valence-band maximum has a smaller ADP than the valence-

band minimum.

the ADP of the valence-band states has a positive sign.
On the other hand, the valence-band width ahvays de-
creases with volume, because the overlap between atomic
orbitals, and therefore the band dispersion around the
bonding energy, are reduced when the atoms move apart.
In the case of the valence-band minimum, these two
effects add up to produce a large, positive ADP. In the
case of higher valence-band states (e.g., the valence-band
maximum), the two contributions have opposite sign and
lead to a partial cancellation. While in covalent systems
(e.g., Si) the bonding contribution is predominant and the
ADP of the VBM is positive, in ionic compounds (e.g. ,
NaC1) the bonding effect is smaller, and the ADP of the
VBM becomes negative.

(iv) Most conduction-band states have negative ADP's,
in agreement with a simple tight-binding model. Howev-
er, some conduction states, such as X3, in Al, h&„X„,
and I &~, in Si, and X„in NaC1, have positive ADP's.
This implies that the (indirect) band gap of Si increases
when volume increases while the (direct) band gap of
NaC1 decreases when volume increases.

In conclusion, we have presented a method for calcu-
lating absolute deformation potentials using ab initio all-
electron methods. The results for Si compare well with
previous calculations and experimental measurements.
%'e have discussed some results for the ADP's of Al, Si,
and NaC1 under uniaxial strain. We have shown that (i)
the ADP of the VBM is positive in covalent materials but
can become negative in ionic materials, in convict with
the simple tight-binding model; (ii) while most conduc-
tion states have negative ADP, in agreement with the
tight-binding picture, some have positive ADP; (iii) the
ADP of core levels is small but not negligible.

This work was supported by the U.S. Department of
Energy, OER-BES, Grant No. DE-AC02-83-CH10093.
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