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The formation energies of substitutional transition-metal alloys are examined by several means.
First, two types of direct total-energy calculations are considered, namely, (i) the local-density ap-
proximation (LDA), aud (ii) a tight-binding (TB) approximation thereof. Second, these directly
calculated total energies are used to construct two Ising-like cluster expansions that, if sufBciently
accurate, could be used to construct the full statistical mechanics of transition-metal alloys. These
are (a) the Connolly-Williams (CW) method, and (b) direct configurational averaging (DCA). Fi-
nally, the ability of these two cluster expansions [(a) and (b)] to fit and predict a large number of
the underlying directly calculated [(i) aud (ii)] total energies is tested, by the average prediction
error y. These tests are performed for a large number of Pd-V alloys, and also to a more limited
extent, for the Pd-Rh, Pd-Ti, and Pt-V systems. We find for Pd-V that (i) direct TB calculations
show significan overbindiug (too-negative formation energies) relative to the LDA, with average
error of X=112 meV/atom (a typical formation energy of Pdp. goVp go is —250 meV/atom); (ii)
the CW cluster expansion mimics quite well the results of the respective direct calculations, whether
LDA (g=19 meV/atom) or TB (y=19 meV/atom); (iii) the DCA cluster expansions provides a less
accurate depiction of the TB energies on which it is based (y=65 meV/atom); (iv) the prediction
errors for the equimolar random alloys are significantly larger using the DCA than using the CW
method. In light of (i) above, it appears that the tight-binding model needs to be refined before it
can be used systematically for (either DCA or CW) cluster expansions.

I. INTRODUCTION: CLUSTER EXPANSIONS
OF TOTAL ENERGIES

Many problems in condensed matter physics require
calculations of the total energies of a large number of
substitutional structures. Examples include the search
for the lowest energy T = 0 structures among the 2

configurations that can be made by occupying each of
the N lattice sites by either an A or a B atom,
the calculation of the T P 0 composition-temperature
phase diagrams of alloys, 5 i the comparison of the rela-
tive stabilities of structural polytypes, is is or differently
oriented superlattices, i and the calculation of forma-
tion energies of random alloys, ' s substitu-

tional impurities, 2' 2s or antiphase boundaries. 24 2~ Di
rect, first-principles quantum-mechanical calculations,

are usually limited to a small number of con6gurations
o", the current N scaling of the computational effort

involved in such approaches2 also limits the search to
relatively simple, periodic structures with 100 atoms
per computational unit cell. To overcome these limita-

tions, one possible strategy is to retain the rigor of Brst-
principles calculations but 6nd computational schemes
that reduce the scaling of the e8ort &om N to N2

or even to N . These highly promising approaches
are still in their formative stages. A popular alternative
is to replace Grst-principles strategies by computation-
ally much faster higher- (i.e., second-, third-) principles

EcE(o) = Jo+ ) J;S;(o.) + ) J;,S;(o)S,(0)

) J~iS;(o)S,. (o)Si, (o) +. . .
, (2)

where the J's are the interaction energies ("effective clus-

ter interactions") and the first summation is over all sites
in the lattice, the second over all pairs of sites, the third
over all triplets, and so on. The interaction energies

possess the symmetry properties of the parent lattice,
and thus, all terms with equal coefficients in (2) may be

schemes, e.g. , semiempirical or empirical approaches.
Whether one uses first-principles or other methods,

however, explicit calculations of all relevant Eairect(tr)
would be wasteful if there were some inherent linear de-

pendences among different configurational energies. A

systematic method of identifying such possible depen-

dences is the "cluster expansion" (CE) of (Es;„,t(o))
in terms of "lattice figures". ss s4 In the cluster expan-

sion, one selects a single, underlying parent lattice (e.g. ,
fcc, bcc, hcp) and defines a configuration o by specifying
the occupations of each of the N lattice sites by an A

atom or a B atom. (If necessary, the process may be re-

peated for other parent lattices, e.g. , fcc, bcc, hcp. ) For
each configuration, one assigns a set of spin variables,

S; (i = 1, 2, ..., N) to each of the N sites with S, = —1 or

+1 if site i is occupied by an A or B atom, respectively.
The problem of finding the energy of the 2~ possible

configurations 0 can be exactly s7 mapped onto a gen-

eralized Ising Hamiltonian
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N

llf(~) =
N ):IIBf(~)

L
R

(4)

where the sumxnation is over the Nl, space group opera-
tions (R) of the lattice. The completeness and orthonor-
mality of the set (Ilf (o)) of spin productsm in the space
of all configurations assures that expansions (2) and (3)
are exact if all 2~ figures are used to describe all 2N con-
figurational energies. The exact, rigorous nature of the
expansions is true whether or not atoms relax off their
nominal lattice sites, since the relaxed energy is a xxnique

function of the xxrtrelaxed configuration.
While mathematical completeness requires that all 2+

terms be included in Eqs. (2) and (3), physical intuition
suggests that some interactions are less important than
others, and thus could be neglected. Ifone can determine
that N~ && 2+ interactions are important, one could
calculate directly (i.e., independently of the CE) the total
energies of N structures and obtain the set of (Jf) by
singular value decompositionii i4

N NF

) ) Df Jf ~f ((T) Edirect(+)
cr f

= min. (5)

When N = N~, one could use matrix inversion

Jcwf
] N

[11 ]tr,f Edirect((r)
f

(6)

as suggested by Connolly and Williams (CW). In Eq.

(6), II represents the (square) N x N~ matrix with ele-

ments IIf(o), and [II ] f is the (a, f) element of its in-
verse. In this manner, the set of (Jf) is obtained simulta-
neously from the set of calculated energies, (Ed;„,t(o')),
and thus, the interaction energies for two distinct figures
are not independent of one another.

Alternatively, due to the orthonormality of the set of
spin products of Eq. (3), one can "integrate out" the
Jf one-by-one (i.e., completely independently of one an-
other) in a manner analogous to obtaining the coefficient
of a Fourier expansion &om the real-space function

N

) IIf (+)Edirect ((T)
0'

(7)

Equation (7) is used in the method of direct configura-
tional averaging (DCA).as In the DCA, the configura-

grouped together. Consequently, Eq. (2) can be written
more compactly as

EcE(&) =).Df Jf llf(&)
f

where f is a syxxunetry-distinct figure comprised of sev-
eral lattice sites (pairs, triplets, etc.), Df is the number
of figures per lattice site, Jf is the Ising-like interaction
for the figure 1', and the "lattice-averaged product" IIf

P

is defined as a product of the variables S;, over all sites
of the figure f with the overbar denoting an average over
all syxxUnetry equivalent figures of lattice sites

where (EAB) represents the average energy of all config-
urations chosen completely at random, with one caveat:
An A B-pair of atoms is located at sites i and j. Sim-
ilar definitions apply for (EAA), (EBB), and (EBA). It
should be noted that Eq. (6) is exact if N = N~ = 2~,
whereas Eq. (7) is exact when N = 2+, independent of
f In .what follows, we will examine the ability of the
cw method [Eq. (6)[ and the DDA method [Eq. (rl
to predict configurational energies when (N, N~) && 2
terms are used.

If a hierarchy of interactions exists such that NJ; « 2+
interactions can describe EcE(o') [Eq. (3)) with useful
precision (i.e., that underlying the calculation of Ed;„,t),
then the energy of any of the 2+ configurations can be
calculated almost ixxnnediately by calculating the spin
products and summing Eq. (3). Thus, after an initial
investment of calculating N total energies (Ed;„,t((T)),
one could predict the energy E((r') of any of the re-
maining 2+ —N 2~ configurations including struc-
tures with thousands of transition-metal atoms per unit
ce114' 4' from

EcE(xr') = ) A(o, o')Ed;,.„(o),
where

NF ——1~' ( ') =):Ilf( ') [ll ]-.f
f

(1Q)

if Eq. (6) is used, or
NF

AD'"(~, ~') = ) Ilf(~')ll f(o') (ll)
f

if Eq. (7) is used. 4s The validity of the series trunca-
tion can then be examined by contrasting the recalcu-
lated energy EcE(o') (for configurations o' not used in
determining (Jf)) with the directly calculated energies
Ed;„,t(o'). The predictive error of the CE,

bE = ~Ed ..t((r ) —EcE((r ) ~
(12)

can be minimized by adding more interactions and di-
rectly calculated structures to the CE of Eq. (3). Equa
tion (9) then establishes the existence of approximate
(i.e., within a toleronce, bE) linear dependences among
the energies of diferent configurations. A converged clus-
ter expansion within a prescribed tolerance hE can then
be used to obtain the energy of any of the 2 possible
configurations, at virtually no computational cost what-
soever (i.e., the calculation does not scale with any power
of N, and has an enormously small prefactor). Thus,
with such a CE, it is possible to determine ground state
stability, composition-temperature phase diagrams, rela-
tive stabilities of structural polytypes and dHFerently ori-
ented superlattices, as well as formation energies of ran-

tions used are determined by randomly distributing A
and B atoms over the N lattice sites, with N typically
being + 1QQQ. When f represents a pair of lattice sites,
i and j, Eq. (7) reduces to the familiar form

Jij —
4 [(EAA) + (EBB) (EAB) (EBA)]
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dom alloys, impurities, and antiphase boundaries. When
using a CE, it is, therefore, imperative to examine its
ability to produce reasonable predictive errors [Eq. (12)].

LDA Tight-Binding

II. ACCURACY ISSUES IN THE DCA AND CW
METHODS

Direct
LDA
direct

(b)

', (d)

The efficacy of the aforementioned approaches depends
on several factors, which may be grouped into two broad
categories:

(1) The accuracy with ivhich the input E«„,q(o') is
computed. In the DCA method, the configurations used
to determine Jt [Eq. (7)] have random occupations of the
N sites and as many as 1500 sites per configuration. This
large number of atoms currently precludes the use of ac-
curate first-principles techniques to calculate E«,«&(o).
On the other hand, in the CW method one assumes at the
outset that only Nz figures are retained, so practically
any 4 N & Nz configurations will do for the purpose
of calculating Jt [Eq. (6)]. One thus selects the most
convenient ones: configurations that correspond to var-
ious periodic, ordered structures Thus. , first-principles
local-density approximation (LDA) methods are readily
applicable.

(2) The accuracy of the recalculated configurational en
ergies ECE(o') [Eq. (9)] with respect to E««,q(o'). This
ultimate test examines all convergence issues simultane-
ously: the truncation to Ng figures as the first step in
the CW method, the choice of configurations o in both
methods, etc.

In what follows, we will examine these two issues in
detail using a large number of fcc superstructures of the
Pd-V system. Two methods will be used for direct calcu-
lations: The first-principles LDA approach and a tight-
binding (TB) model thereof. Cluster expansions will then
be performed using the CW and the DCA methods. In
all cases, the energies will be given as excess, or formation
quantities,

AE(o) = E(o) —[(1 —z)E(A) + zE(B)], (13)

where 2: is the concentration of I3 atoms in the alloy.
Thus, the formation energy gives an indication of the en-

ergy of ~T relative to the phase separated pure elemental
solids. The basic structure of our comparative tests is
described in Fig. 1. We will assume that a computation-
ally converged first-principles LDA calculation E&,„A~(o)
[Eq. (1)] is "exact" for the present purpose, 45 and exam-
ine the extent to which various approaches mimic these
quantities. LDA calculations will be executed within the
method of linear muKn-tin orbitals within the atomic
sphere approximation (LMTO-ASA), and tested for a
number of cases with respect to the more accurate full-
potential linearized augmented plane wave47 (LAPW)
calculations. After a brief discussion of the extent to
which LMTO-ASA loimics the more accurate LAP%
method, we will compare the following (see Fig. 1):

(a) AE&,++~(o.) vs b EP@+&w(o ): ability of LDA-based
Connolly-Williams cluster expansions [Eq. (5)] to predict
[Eqs. (9), (10)] directly calculated LDA formation ener-
gies.

Cluster
Expansion

LDA
~ECE-CW " TB

CE-CW
TB
CE-DCA

FIG. 1. Structure of the comparative tests of various di-

rect calculations, and coxnparisons between direct and cluster
expansion energies.

(b) b E&,.„„(o) vs AE&~DA~(o): accuracy of direct
tight-binding calculations with respect to direct LDA cal-
culations of formation energies.

(c) EECTE cw(o) vs AE&+„,~(o): ability of TB-based
Connolly-Williams cluster expansions [Eq. (5)] to pre-
dict [Eqs. (9), (10)] directly calculated TB formation
energies.

(d) EEcTEn Dc&(o) vs AEsTB„~(o): ability of TB-based
DCA cluster expansions [Eq. (7)] to predict [Eqs. (9),
(ll)] directly calculated TB formation energies.

III. DETAILS OF CALCULATIONS

A. Direct LDA calculations: &Sz,,

Due to the relative ease and speed of the calculations,
we have used here the LMTO-ASA method to calculate
the total energy of a large number of Pd-V configura-
tions. All structures considered are superstructures of
the fcc lattice (i.e., the atoms of all unrelaxed config-
urations sit on the sites of an ideal fcc lattice). Most
of the configurations Pd„V may be grouped as "short-
period" superlattices with periods (n, m) & 5 along sev-
eral directions in direct space [(001), (111), (011), (201),
(401), (311)]. Also included are several structures that
are not superlattices, the most commonly occurring of
these being the L12 (CusAu) structure. There are sev-
eral reasons why we select the Pd-V system for this study.

(i) We have selected a "reactive system" for this study
(AE —250 meV/atom at z=l/2) so that LDA and
other errors will be relatively small. Atom pairs that are
only slightly reactive (e.g. , Cu-Pd, Cu-Au, Ni-Pt, with

~AE~ & 100 meV/atom) are more difficult to treat pre-
cisely. (ii) The elemental solids, Pd and V, have a rel-

atively small volume mismatch (AV/V = 5.6%%uo). Thus,
our TB model, which completely neglects elastic energies,
is applicable in principle. (iii) A cluster expansion with
only pair terms mill necessarily lead to formation energies
that are completely symmetric about z=l/2. As shown
below (and also elsewhere, see Ref. 4) the Pd-V system
exhibits formation energies that are strongly asynnnetric
about z=l/2, thus implying that the cluster expansion
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must contain significant multibody terms (terms corre-
sponding to figures with three or more points). Thus,
the Pd-V system provides a stringent test of the conver-
gence of the cluster expansions.

The LMTO-AHA calculations were performed semirel-
ativistically (including scalar relativistic corrections and
excluding spin-orbit terms) with equal sphere radii for
Pd and V. All structures were allowed to deform hydro-
statically to their equilibrium volume, but cell-internal
and cell-external relaxations were not considered. Two
sets of LMTO-ASA calculations are discussed here. The
structural energies of twenty compounds were com-
puted by the present authors, for which the exchange-
correlation potential of von Barth and Hedin used, 4s

"combined corrections" (CC) terms to the ASA were
included, and k point integration was performed with
4913 points in the full Brillouin zone, with the number
of irreducible k points varying according to the sym-
metry of the structure considered. Additionally, the
energies of twenty-three compounds are reported from

TABLE I. Comparison of literature values of full-potentia
formation energies of "problematic structures" showing large a
Values in parentheses designate fully relaxed energies.

Miltalopas, for which the Hedin-Lundqvist exchange-
correlation potential was used, 245 irreducible k points
were used and the CC terms were omitted.

Previous studies ' ' have shown that in some
specific cases, the LMTO-ASA method badly misrepre-
sents the formation energies calculated within a full po-
tential (e.g. , LAPW) method. Some of these cases are
collected in Table I. These large errors would render a
CE based on these energies useless. Thus, to test our
LMTO results for Pd-V, we compared them in a few
cases to LAP% results. The LAPW calculations were
performed with the Wigner exchange correlation5~ us-
ing muffin-tin radii of 2.4 a.u. for both Pd and V, and
k-point integrations were carried out using 20—60 spe-
cial points. The core (valence) electrons were treated
fully (semi-) relativistically. The LAPW energies were
minimized with respect to overall volume deformations
as well as cell-internal and cell-external degrees of f'ree-

dom. LMTO without CC gives formation energies4s
(with respect to fcc Pd and fcc V) of —292.4, —340.3,

l vs atomic sphere approximation (ASA) or muEn-tin (MT)
pparent ASA or MT errors. All energies are given in meV/atom.

Compound
NiV3
NiV
Ni3V
NiPt
NiPt
NiPt
AuPt
Au3Pt
PtTi
AuCs

Structure
Z3
Z2
Zl
L10
Z2
Llg
B2
Ll,
B2
B2

Equivalent
superlattice
Ag Bs(001)
ABB2(001)
As Bg (001)
Ag By (001)
AsB2(001)
Ag Bg (111)
AgBg (001)

AgBg (001)
Ag Bg (001)

AE
Full

potential
-164.6(-164.6)
-272.1(-292.1)
-214.7(-219.9)

-77.7(-95.7)'
(+3.2)'
(-29.5)'

(+132.1)'
(+41.5)'

(-77o)'
(- —1oo)"

ASA/MT
110.4b

-90.1
-129.1

-28.6 )-110.2', (-116.3)
-5.4(-53.0)

-77.5 (-80.2)r

(-43)s, (+66.7)"
(-22)', (+36.4)"

(-92o)i

( +400)'

Reference 42: LAPW with Wigner exchange correlation, lattice parameter from Vegard's law of calculated pure elements, and
scalar-relativistic terms included.

Reference 49: LMTO-ASA with Hedin-Lundqvist exchange correlation, calculated lattice constant, scalar-relativistic terms,
equivolume atomic spheres, 245 k points, and "combined correction" terms omitted.
'Reference 51: LAPW with Wigner exchange correlation, lattice parameter from Vegard's law of calculated pure elements,
scalar-relativistic terms included, and 60 special k points.

Reference 52: LMTO-ASA with von Barth and Hedin exchange correlation, calculated lattice parameter, scalar-relativistic
terms included, equivolume atomic spheres, 120 irreducible k points, and "combined corrections" included.
'Reference 52: LMTO-ASA with von Barth and Hedin exchange correlation, calculated lattice parameter, scalar-relativistic
terms included, unequal sphere radii obtained from charge neutrality, 120 irreducible k points, and "combined corrections"
included.
Reference 53: LMTO-ASA with von Barth and Hedin exchange correlation, calculated lattice parameter, scalar-relativistic

terms included, unequal sphere radii obtained by energy minimization, 120 k points, and "combined correction" terms included.
sReference 54: Linearized atomic Slater-type orbital method (LASTO) (muKn-tin potential) with experimental lattice constant
and scalar relativistic terms included.

Present work: LMTO-ASA with von Barth and Hedin exchange correlation, calculated lattice parameter, scalar-relativistic
terms included, equivolume atomic spheres, 165 irreducible k points, and "combined correction" terms included.
'Reference 55: LASTO (full potential) with experimental lattice constant of the low-temperature (B19)phase, and calculation
performed fully relativistically.
"Reference 55: LASTO (muKn-tin potential) with experimental lattice constant of the low-temperature (B19) phase, and
scalar-relativistic terms included.
Reference 56: LASTO (full potential) with experimental lattice constant, 84 k points, and calculation performed fully rela-

tivistically.
Reference 56: LASTO (muFin-tin potential) with experimental lattice constant, 84 k points, and calculation performed fully

relativistically.
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TABLE II. Pd-V structural energies for fcc superstructures. Direct LDA energies are from LMTO-ASA calculations described
in the text. All energies in meV/atom. Designations in quotation marks indicate an alternate labeling scheme for structures
for which no standard Strukturbericht exists.

Superlattice
A (Pd)
B (V)

(001) Struct:
AgBg
A2Bg
A3Bg
Ag B3
AgBg
Ag B2

Structure
Designation

fcc
fcc

Llp
CC Z2))
ccz]"
C4 Z3)l
44@1))

c4p 2)'l

LDA
direct

0.0
0.0

-366.6(-353.8 )
-314.8(-292.4 )

-225.9
-229.5

Direct
TB
direct

0.0
0.0

-539
-355

-2ss(-2vs )
-310(-371 )

-354
"437

TB
CE-DCA
0.0
0.0

-517
-276
-274
-260
-366
-346

Cluster expansion
TB
CE-CWM
0.0~
0.0

-521
-362
-284
-339

-378
-453

LDA
CE-CWM
0.0
0.0

-358.1
-307.1
-235.1
-238.7
-317.6
-322.4

(111) Struct:
AgBg
Ag Bg
A3Bg
Ag Bs
AgBg
AgBg

Lli
«V2
ccV 1)l
44 V 3)l
cc 1)l
cc 2)l

-241.3 -394
-287

-213(-209 )
-260(-262 )

-265
-336

-289
-185
-168
-162
-224
-216

-404
-263
-204
-262
-271

-350

-246.0
-184.8
-154.6
-144.0
-209.1
-195.1

(011) Struct:
AgBg
ASBg
Ag B3
AgBg
AgBg
ASBg
Ag B5
A4Bg
AgB4
A3B3

Al BgAgB3
AgBg A3Bg
Ag Bg Ag Bg

cc

44Y] ))

ccY3))

MoPtq type
MoPtq type

ccY5))

ccY5 l)
d

ccY4)')

"Y4d"
ccY6))
4cY7)')

ccY7 )l
d

ccY8)')

-393.5(-368.0 )
-181.1(-182.8 )

-191.5
-123.1
-185.6
-174.4
-218.3
-240.8
-293.0
-270.4

-430
-393(-322')
-356(-349' )

-471
-377

-338
-343
-253
-469
-287
-234
-167
-235
-244
-251
-399
-346
-389

-414
-335
-340
-466
-373
-225
-229
-272
-324
-316
-400
-402
-437

-265.9
-253.9
-178.8
-359.5
-174.9
-177.0
-116.6
-189.9
-201.2
-208.8
-286.0
-246.3
-284.5

(201) Struct:
Ag B2
A3Bj

ARABS

A4Bg
Ag B4

(401) Struct:
ASBgAgBj.
Ag B5Ag Bg

CH, or "40"
D02g
Doing

D 1 (Ni4Mo)
Dl (Ni4Mo)

D02s
Dog3

-243.V(-24S.Vb)

-348.4(-340.3 )
-2o2.v(-2os. 3b)

-269.6
-160.0

-524
-3ss(-3vv )
-311(-312 )

309
-237

-357
-345

-473
-439
-273
-352
-196

-431
-307

-519
-366
-320
-316
-261

-343
-344

-260.1
-342.5
-188.6
-302.4
-168.7

-313.4
-205.6

(311) Struct:
Ag Bg
A3Bg
Ag B3

CcW 2))
ccW ] ))

ccW3))

-493
-358(-316')
-322 (-304')

-409
-320
-225

-472
-356
-318

-318.1
-257.4
-203.4

Other Struct:
A3Bg
Ag B3
AsBg
Ag Bs
ASBg
Ag B5
A5 B3
A3 B5

L12
Llg

Nis Nb type
Nis Nb type

'W8'
'Ws'
'Wl'
'Wl'

-281.6(-281.7 )
-204.6(-208.2 )

-195.6
-101.1
-240.7
-149.9

-341.8(-334,8 )
-302.8(-302.3 )

-319
-367

-157(-157 )
-160
-236
-241
-420
-407

-422
-341
-195
-124
-292
-205
-478
-412

-320
-368
-170
-173
-239
-256
-438
-452

-284.3
-222.5
-169.6
-116.6
-228.6
-158.0
-349.8
-296.8

Random:
&p.5Bp.s

Ap. 75 Bp.25

-432
-272

-352
-293

-417
-308

-265.8
-232.3

A3Bg
AgBg

Deviation (y)

AE(L12 - Dog2)
AE(Llp - "40")

+66.8(+58.6 )
-122.9(-108.1 )

+36(+ss }
-15

111.8

+17
-43

64.8

+46
-2

18.9

+58.2
-98.0

18.8

Structure used in fit.
LMTO-ASA without "combined corrections" (Ref. 49).

'TB model with "symmetry-distinct" charge neutrality (present work).
Standard deviation with respect to LMTQ.
Standard deviation with respect to TB model.
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and —281.7 meV/atom for the Z2, D022 (PdsV), and
L12 (PdsV) structures, respectively. We find these three
"LMTO with CC" [LAPW (Ref. 58)] energies to be
—314.8 (—322.5), —348.4 (—350.2), and —281.6 (—278.6)
meV/atom. The comparison between LAPW and LMTO
is quite favorable in the case of Pd-V structures, espe-
cially when the CC are included. The results of our
LMTO calculations, AE&...t for 30 structures consid-
ered here are shown in the third column of Table II.

E~(~)
AEaga(~) = f E n(0", E)dE

E n(A E)dE

E n(B; E)dE

1——) N6t %7 (14)

neglecting explicit interelectronic Coulomb, exchange,
and correlation corrections. Here Ey(o) is the Fermi
level of cr, ¹ is the locally neutral number of valence
electrons on the atom at site i, b; is the potential shift of
atom i (to be described below), and n(0; E) is the total
density of states for o, defined in terms of the eigenvalues
of the alloy Hamiltonian:

jgk
H „„=) (i, A)e,"(i,A(+ ) )j,p)P,".„"(k,v). (15)

i,A lcip)v

The Latin indices designate lattice sites and the Greek in-
dices label the orbitals. A nine orbital/atom (a+3p+5d)
basis is used. The symbols e,". and P"& denote the on-site
energies and hopping integrals, respectively. Calculation
of LE&,-„,t then requires as input the on-site energies
for both A and B atoms, as well as hopping integrals
(up to some small number of neighboring shells) between
A-A, A-B, and B-B pairs of atoms. The Slater-Koster
hopping integrals P+& for first-nearest and second-nearest
neighbor shells between like pairs A-A and B-Bof atoms
are given by TB-LMTO (Ref. 65) of the pertinent pure
elements. The hopping between A-B pairs in the alloy is
approximated by the geometric mean of the A-A and B-B
integrals of the pure solids. The on-site energies e,"- are
those of the pure elements, with the A- and B-atom val-
ues shifted relative to one another by orbital-independent

B. Direct TB calculations: LS&,,
There is a rich history of tight-binding calculations

of properties of transition metals and their alloys: The
strong bonding of the valence d electrons has been in-
voked to explain the cohesive as well as structural
properties of the transition metals. These localized d
electrons may be well described by the TB approxima-
tion, and therefore, many early calculations of formation
energies in transition-metal alloys6 were based on TB
d-band-only models.

For the direct TB calculations of the present work,
the formation energy of configuration o is given by the
relative "band energy" terms

amounts, h;. These shifts b; along with the Fermi energy
E~(o) are determined by requiring each of the atoms of
the alloy to be locally neutral

~
~ ~

Ep-(a)
(16)

where n,.(0",E) is the partial density of states on atom i
in 0. For many structures, (e.g., I lo, I li, L12, MoPt2
type, etc.) the symmetry is such that all A atoms are
symmetrically equivalent to all other A atoms, and simi-
larly for B. For these types of structures, the assumption
of local neutrality may be exactly satisfied by shifting
only the on-site energies of all B atoms relative to their
pure-element values by a single b. However, many of the
structures considered here (e.g., D02s, NisNb type, alt
A3Bi superlattices, etc.) have symmetrically distinct,
chemically identical atoms. In these cases, the shifts b;
depend on the syirirnetry type of the atoms. This ap-
proach is called here the "symmetry-distinct neutrality
condition". In contrast, there is an "average neutrality
condition" whereby all chemically similar atoms have the
same on-site potentials, and local neutrality is satisfied
only in an average way. Note that the imposition of either
neutrality condition introduces a dependence of both e,".

and P"&" on the topology of the local environment, thus
on the configuration o'.

All direct TB calculations were performed in both the
"symmetry-distinct" and "average" charge neutrality ap-
proaches by decorating a 1000-atom cluster with the
appropriate (ordered or disordered) configuration, and
then performing recursion6 to obtain the densities of
states, n(0", E), and hence the band energies of Eq. (14).
Ten levels of recursion were used along with a quadratic
terminator for the continued &action.

It should be noted that the TB-LMTO calculations
were performed at a single volume V given by the arith-
metic average between calculated (as per LMTO) Pd and
V pure element volumes. Thus, all terms of Eq. (14) are
evaluated at V so these calculations do not take into ac-
count any form of atomic relaxation, and also do not
account for energy lowerings from hydrostatic volume
changes. The TB formation energies of Eq. (14) are
thus with respect to the pure element energies at the al-
loy volume, rather than the equilibrium volume of the
elemental solids, and will consequently lead to formation
energies that are too negative. The correction between
Eq. (14) [each term evaluated at constant V] and Eq.
(13) [each term evaluated at the equilibrium volume] is

n;(0-, E) dE = N; Vi,

b,E(o) = DEva(V) + {(1—x) [Ex(V) —Ex(V~)]
+*[Ea(V) Ea(Va)]). — (»)

The correction terms ("volume deformation") in curly
brackets represent the energy change of the pure elements
in deforming them hydrostatically &om the alloy volume
V to their respective eq»i&librium volumes, V~ and V~.
We have calculated this correction term via the LMTO-
ASA, and we find that it assumes a maximum value of
+19.6 meV/atom at x = 1/2. In comparing the TB en-
ergies with those of the LDA (for which all configura-
tions are considered at their equilibrium volumes), we
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C. Cluster expansion —AEcE &~ and ALECK z~

The methodology of the CW method relies on (a) the
choice of figures and (b) the choice of configurations.

(a) Figures: We will use the same extended set of fig-
ures in the CW and DCA approaches. These are the
"empty" figure [corresponding to a constant term in the
cluster expansion of Eq. (3)j, the "point" figure, the first-
through fourth-nearest-neighbor pairs, four triplet fig-
ures, and four quadruplet figures. The vertices of these
14 figures are given in Table III as well as the degenera-
cies Dy. For the TB fit, is was found that including all

TABLE III. Vertices and degeneracies of fcc 6gures used
in the CW and DCA-based cluster expansions.

Figure

Empty
Jp

Degeneracy
Dy

Site positions
(in units of a=2)

Point
(0,0,0)

Pairs
J2
K2
I2
M2

6
3
12
6

(0,0,0),(1,1,0)
(0,0,0),(2,0,0)
(0,0,0),(2,1,1)
(0,0,0),(2,2,0)

Triplets
J3
Kp
1.3

8
12
24
6

(0 0 0) (111 0)i(1 0 1)
(0,0,0),(1,1,0),(2,0,0)
(0,0,0),(1,1,0),(2,1,1)
(0,0,0),(1,1,0),(2,2,0)

Quadruplets
J4
K4
M4
SQ

2
12
6
3

(0,0,0),(1,1,0),(1,0,1),(0,1,1)
(0,0,0),(1,1,0),(1,0,1),(2,0,0)
(0,0,0),(1,1,0),(2,2,0),(3,3,0)
(0,0,0),(1,1,0),(-1,1,0),(0,2,0)

should keep in mind that the TB values are overbound
by roughly 20 meV/atom due to volume deformation ef-
fects.

The direct TB results, Ed;„,i(0'), for o = ordered, peri-
odic configurations are shown in the fourth column of Ta-
ble II. The two charge neutrality approaches yield simi-
lar formation energies (with diKerences & 20 meV/atom),
except for the structures "Z3," "Y1," and "R'1," where
the differences are of the order of 50 meV/atom. In ad-
dition, the calculated E&T;„,i(random) for random alloys
was performed via an average charge neutrality proce-
dure by configurationally averaging over 50 randomly se-
lected configurations of the 1000-atom system. The
DCA calculations to be described below use an aver-
age charge neutrality approach (with the potential shift
as determined from the random equiatomic alloy), and
hence it is this scheme of direct TB calculations which
should be compared with the TB-cluster expansion re-
sults.

four quadruplet interactions did not significantly improve
the quality of the fit.

(b) Configurations: A large number ( 500000) of dif-
ferent sets of configurations were tried, with the final
selection being determined by the input set whose pre-
dictive error [i.e., the difFerence between predicted and
directly calculated energies, the root-mean-square of Eq.
(].2)] was a minimum. It was found that an input set of
18 configurations provided for a small fitting error, and
still left many structures to test the predictive ability of
the fit. These configurations used as input to the cluster
expansion are denoted in Table II with a superscript "a."

The calculation of AEg cw used (bE&;„,t(o')) as
computed by LMTO as input, and values with "com-

bined corrections" are preferred when two LMTO val-

ues are available. For the calculations of AE&E c~, we
used as input the (AE&+n„~(cr)) values as computed from
the average charge neutrality approach. The results of

EcE-cw and GREGE-cw ar given in column~ 6 and 7
in Table II.

Additionally, tests were performed (for the LDA ener-

gies) to assess the stability of the fit with respect to the 14
figures and 18 configurations. It was found that the pre-
dictive error was relatively insensitive to the particular
choice of configurations, as roughly 10'/ ( 50000) of the
configuration sets tried had predictive errors that were
less than 20 meV/atom. (The minimum and maximum
predictive errors found were 18.8 and 37.7 meV/atom,
respectively. ) The fits were also found to be stable with
respect to changes in one or two of the figures included.
For instance, if only 13 figures are included by eliminat-
ing the square figure (Table III), the minimum predic-
tive error is only marginally increased from 18.8 to 19.2
meV/atom, and further eliminating M4 from the fit and
using only 12 figures provides a predictive error of 19.3
meV/atom. However, if a significant interaction (a fig-
ure that gives a sizeable contribution to the expansion)
is eliminated from the fitting procedure, the fit becomes
more unstable, and the predictive error rises sharply (e.g. ,
using 13 figures, with J~ eliminated, the predictive error
increases from 18.8 to 25.2 meV/atom). Such tests de-
termine which figures are "important" and should not be
omit ted.

In B.ef. 49, Mikapolas et aL tested the convergence and
stability of the CW procedure using the energies of a large
number of ¹iVand Pd-V alloys, as calculated &om the
LMTO. The CW fits were performed for a variety of sets
of figures and configurations, however, of the figures used
in Ref. 49, only two (pair) figures extend beyond the fcc
second-nearest-neighbor distance. In contrast, the figures
used in this study (Table III) include pair, triplet, and
quadruplet figures, all of which extend to (or beyond)
the fcc fourth-nearest-neighbor distance. Also, in all of
the fits of Mikapolas et al. , the number of structures used
was equal to the number of figures kept in the expansion,
thus, the direct inversion of Eq. (6) is used, rather than
the over-determined optimization of Eq. (5) which is
used here. Mikapolas et al. failed to find a stable CE
(i.e., the fits were quite sensitive to the particular choice
of configurations and figures used), in contrast to the
stable results presented here. We, therefore, conclude
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that the sensitivity of the fits of Mikapolas et nl. were
due to (1) the small number of long-ranged figures used
in the expansion and (2) the use of a direct inversion of
Eq. (6), rather than the singular value decomposition of
Eq. (5).

D. Cluster expansion —LLE&E D&A

-100

-200

O 300+ UJ~ O
-400

-500

(a)

X= 18.8

oo

The DCA calculations for Pd-V have been described
in depth previously. 4 Here, we merely give the salient de-
tails. The interaction energies are obtained via Eq. (7),
using the recursion method, along with the formalism of
"orbital peeling" to avoid numerical instabilities asso-
ciated with taking the small differences of large numbers
inherent in Eq. (7). Averages were taken over 50 configu-
rations for the pair figures, 15—30 for triplets, and 10—20
for quadruplets. The convergence of configurational av-

erages with increasing size of the figure is discussed in
the Appendix of Ref. 4. The same specifics of the recur-
sion method used in the direct TB calculations discussed
above were also used in the DCA computations. System
sizes of & 1000 atoms were used in the DCA calculation
of the interactions, with the precise number of atoms
corresponding to five complete shells of first-nearest and
second-nearest-neighbors surrounding the two-, three-, or
four-point figure- The results of AE&E D&& are given in
column 5 of Table II.

IV. RESULTS
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The main results of this paper are given in Table II.
In this table, we compare the formation energies for Pd-
V alloys as computed from all of the methods described
above. A graphical representation of this data is also
given in Fig. 2. Our discussion (Sec. IVA—IVD) will

follow, respectively, the four steps (a)—(d) described in
Sec. II and Fig. 1. We will characterize each step by the
rms error y between the two sets of energies. In assessing
these errors g, we should bear in mind the typical median
formation energy [Fig. 2(a)] in this reactive system: —250
meV/atom.

A. ]eLEg,, ~ vs leLE~E g~
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Here we describe the ability of the LDA-based
Connolly-Williams cluster expansion of Eq. (6) to pre-
dict [Eqs. (9), (10)] directly calculated LDA energies.
The direct LDA (LMTO) calculations and the CW fit to
these values are shown in the third and seventh columns
of Table II, and are plotted in Fig. 2(a). The quality of
the fit is good and leads to a standard deviation between
calculated and fitted energies of y = 18.8 meV/atom (of
the same order as the difFerence between the two underly-
ing LMTO calculations described in Table II). Even the
predicted energies of structures not used in the fit [see,
e.g., many of the (011) superlattices] are reasonably close
to the directly calculated values. And, the structural en-

-600 I I I I I

-600 -500 -400 -200 -100-300
TB

erect

FIG. 2. Pictorial representation of Pd-V formation ener-
gies (in meV/atom) of Table II. Comparisons are shown for:
(a) E&;,~«vs EcE-cw~ (b) E~;„«vs E~;,e«~ (c) E~;««vs
Ecn cw, and (d) Eq;„„vsEcs ncA. Each ordered structureTB TB TB

is represented by an open circle, and in parts (c) and (d),
random alloys of compositions x=1/2 and +=1/4 are denoted
by filled circles. The dotted diagonal lines indicate points of
exact agreement between various sets of formation energies,
and the crosses denote the size of the standard deviation (X)
between the various sets. In parts (a) and (b), Ez;„„refers
to LMTO calculations.
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ergy difFerences between two competing configurations at
the same composition (e.g. , L12 —D022 or Llo —"40")
are adequately represented by the fit. The predictive er-
rors of the fits should be considered in light of the errors
inherent in the direct LDA calculations, which are 10
meV/atom or less.

/g vs /gdirect direct

Here we assess the ability of the TB model [Sec. III B]
to mimic the directly calculated LDA formation energies.
The comparison between direct LDA vs TB calculations
shown in the third and fourth columns of Table II and in
Fig. 2(b) shows immediately that the TB model tends to
predict a significant and systematic overbinding (forma-
tion energies that are significantly too negative), as com-
pared to the LDA. The discrepancy between the TB cal-
culations and LDA ranges all the way &om 5 meV/atom
for 'W8' (PdsV) to 280 meV/atom for the CH ("40")
structure. The average deviation between the LDA and
TB calculations is g = 111.8 meV/atom. ss In some in-

stances the discrepancies are large enough to alter the
ground state symmetry and/or structure type predicted
within a family of structures. For example: (a) within
the (201) family, LDA predicts structure D022 to have
the lowest energy within this group, while TB predicts
the "40" to be the lowest. (b) The LDA predicts PdsV to
be more stable than PdV3 in the L12 structure, and TB
gives the reverse order of stability. (c) The LDA predicts

Pd8V to be more stable than PdVS in the NisNb-type
structure and the TB predicts the reverse. The same
is true for PdsV and PdVs in the 'W8' structure. (d)
The LDA predicts a large difference between Llo (—354
meV/atom) and "40" (—246 meV/atom) formation en-
ergies, suggestive of the existence of long-range interac-
tions (as these two structures are degenerate in energy
for any nearest-neighbor-only cluster expansion), while
the TB places these structures at similar energies (—539
meV/atom and —524 meV/atom, respectively).

The overbinding of the TB seems to be a general fea-
ture of this model. In Table IV, we present partial re-
sults analogous to those of Table II for several other
transition-metal alloy systems. In the highly reactive
Pd-Ti and Pt-V systems the TB calculation of the Llp
structure yields —769 and —881 meV/atom, respectively,
much more negative than the analogous LDA calcula-
tion of —583 and —589 meV/atom, respectively. The
reason for this systematic overbinding is not understood
at this time, but it appears to correlate with the reac-
tivity of the system: In the nonreactive Pd-Rh system,
the TB [AE~;n.,t(Llo) = +93.9 meV/atom] and LDA
[EE~D.".t(Llo) = +94.2 meV/atom] I lo calculations are
virtually identical. Hopefully, tight-binding practition-
ers could improve the accuracy of this scheme relative to
direct LDA calculations.

Our preceding discussion referred to the correlation be-
tween LDA and TB formation energies of given config-
urations o. A formation energy can be written also in
terms of cohesive energies E, = E,.i;~ —E.t-„ i.e. ,

TABLE IV. Formation energies for Pd-Rh, Pd-Ti, aud Pt-V alloys. All energies are in meV/atom. Direct LDA energies
are from LMTO-ASA calculations of the present work, described in the text ("combined correction" terms included). For the
calculated Pd-Ti and Pt-V energies, the formation energies are taken with respect to the equilibrium structure of the pure
elements (i.e., bcc V and hcp Ti) so that they may be adequately compared with experiment. To this end, all cluster expansion
results (which are with respect to fcc pure elements) are supplemented by the relevant structural energy difFerences of the pure
elements, as computed from LDA. Note that this is to be distinguished from the Pd-V energies of Table II, which are with
respect to fcc pure elements.

System
Pd-Rh

Deviation

Alloy
Structure

Llp
Pdo. soRho. so

LDA
+Edirect
+94.2

Direct
TB

+Edirect
+93.9
+66.2

11.2

Cluster expansion
TB TB+ECE-DC A &EcE cw

+99.7 +94.7
+71.7 +56.8

12.1 3.9

Experiment
&Eexpt

+104

Pd- Ti

Deviation

Llp
Llg (Pd3Ti)
Pdo. so»o. so

x

-583.1
-692.].

-769
-562
-581
195

-478
-528
-308
299

-754
-553
-625
21

-550
-525'

Pt-V

Deviation

Llp
Pto. soVo.so

x

-588.8 -881
-735

-638
-324
218

-841
-637
34.5

-407

Reference 70.
Reference 71: The experimental measurement for Pdp. sp Tip. sp was on a combination of orthorhombic and cubic phases, and

should provide a lower bound for the euthalpy of formation of the metastable Llo (tetragonal) phase.
'Reference 71.

Reference 72: The experimental measurement for PtV is for the stable 819 phase, and should provide a lower bound for that
of metastable Llp.
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&Ed',,t(~) = E."(~)—[(1 —~)E,"(&)
+xE. (B)],

b,ELDA, ( ) = ELDA( ) —[(1 — )ELDA(A)

ELDA (B)]

(18a)

Eq. (21), the ratios of JP ~' are equal to the ratios of
gLDAf

Jmodel JLDA
1 1

Jmodel JLDA
2 2

Thus, errors in the total energy of the Pee atoms (e.g. ,
correlation errors) are exactly cancelled in b Ez;„,t,. The
TB errors noted in Fig. 2(b) refiect the combination of
errors in the cohesive energy of the compound 0 and those
of the elemental solids A and 8

If one is interested, however, only in T = 0 K struc
turd energies 6b,E(o, cr') rather than in formation ener-
gies and T g 0 phase diagrams, a different comparison
suggests itself, namely

bb.Eq;„„(cr,0') = E, (o) —E, (0'),
h~ELDA (~ ~s) ELDA( ) ELDA( ()

(19a)
(19b)

ZE;,;.t'(~) = Xa.E,'..."„(~&, (20)

with A a constant, independent of 0. The overbinding of
the model system would then translate through Eqs. (6)
and (7) into interaction parameters which are scaled by
A

Jmodel p JLDA
f — f (21)

Here 0 and 0' are difFerent configurations at the same
composition. In contrast to the formation energies of
Eq. (18a), the errors in the elemental cohesive ener-
gies cancel exactly. Table II shows for example that
at z = 3/4, we have hAE&,„,~(Llq, D022) = +58 (+36)
meV/atom, using the "symmetry distinct (average) neu-
trality condition" while bb.E&;„„(L12,DQ22) = +67
meV/atom. Similarly at 2: = 1/2, hAE&,.n„~(Llo, "40")
= —15 meV/atom, while hb, E&LD„~(Lle, "40") = —123
meV/atom, and hb, E&,.„,~(Llo, Lli) = —145 meV/atom,
while hb, E&;„,t(L10, Lli) = —125 meV/atom. Thus, the
average deviation for structural energies in these cases
is y = 78 meV/atom out of an average ~bAE~ of 105
meV /atom.

It is useful to distinguish alloy properties that are di-
rectly affected by errors in formation energies ("type I"
properties, i.e., phase diagrams, transition temperatures)
from alloy properties sensitive to errors in ratios of struc-
tural energies ("type II" properties). The preceding com-
parisons raise some interesting questions as to how the
systematic overbinding of the TB energies might mani-
fest itself in type I vs type II properties. Assume a model
calculation scheme (b,E&...~", ) for which the overbinding
relative to LDA is uniform, i.e.,

Thus, even in the presence of a uniform overbinding, the
T=0 K ground state structures of the model system (type
II properties) would be precisely those of the LDA. Our
present calculations for the chemically reactive Pd-V sys-
tem shows, unfortunately, that the overbinding in TB
energies, while systematic, is not uniform, so both type
I and type II alloy properties of the TB model need not
necessarily be very accurate. However, it should be noted
that the TB model used here has been shown to give an
accurate depiction of the ground state structures4 (type
II) and site substitution behaviorrs (type II) for a variety
of alloy systems, and also in the case of one nonreactive
system (Pd-Rh), an accurate composition-temperature
phase diagramis (type I).

C. LEcwcm vs LEd.

Here we assess the ability of the TB-based Connolly-
Williams cluster expansion to predict the directly calcu-
lated TB formation energies. The direct TB calculations
vs the CW fit to these numbers may be seen in Fig. 2(c)
and by contrasting columns 4 and 5 of Table II. The
standard deviation of this fit [y = 18.9 meV/atom) is al-
most equal to that of the LDA-based fit [18.8 meV/atom
in Fig. 2(a)]. For Pd-Rh, Pd-Ti, and Pt-V, the standard
deviations of the CW fits (Table IV), AE&+B„t are y =
3.9, 21.0, and 34.5 meV/atom, respectively. To assess
the scale of these discrepancies, the reader must keep
in mind that for PdRh, PdTi, and PtV, the values of
AE&;„,~(Lle) are +93.9, —769, and —881 meV/atom,
respectively. The ratio of the CW deviation and the di-
rectly calculated TB values of the Llo structure (which
gives a scale for the reactivity of the system) are roughly
equal for the four systems studied: y/[EEd;„, t(L10) [

=
0.035, 0.042, 0.027, and 0.039 for Pd-V, Pd-Rh, Pd-Ti,
and Pt-V, respectively. These values are also close to
that of the CW fit to the direct LDA energies for Pd-V:
y/[b E&. , t(Llo) [

= 0.051. Thus, the Connolly-Williams
cluster expansion is able to 6t equally well either TB or
direct LDA energies. However, while the quality of the 6t
appears to be equal, the accuracy of the energies entering
the fit is the true limiting factor here (see Sec. IV B).

Hence, in T g 0 K composition-temperature phase dia-
grams (type I alloy properties), the uniform overbinding
of Eq. (20) would propagate into transition temperatures
of the model system which are overestimated with respect
to LDA by a factor of A: T~ ' = AT, . However, for
a set of Jf, the ground state structures as a function
of alloy composition are dependent not on the absolute
magnitude of the Jf, but rather on their retio8. 2 From

CE DCA direct

Here we assess the ability of the TB-based DCA clus-
ter expansion to predict the directly calculated TB for-
mation energies. The comparison between direct TB en-
ergies and those as calculated &om the DCA is shown
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in columns 4 and 5 of Table II, and in Fig. 2(d). The
deviation between these two sets of numbers is 64.8
meV/atom, which is much larger than the CW fit to
the TB calculations. A similar trend is observed in Ta-
ble IV for Pd-Ti and Pt-V (the standard deviations of
b, E&TE Dc& vs AEdTn, i are 299 and 218 meV/atom, re-
spectively), while for Pd-Rh we find that the DCA cluster
expansion gives a relatively good 6t to the formation en-
ergies (y = 12.1 meV/atom), although the deviation is
still larger than that of the corresponding CW 6t. In-
terestingly, the DCA-cluster expansion values (using as
input energies of random configurations) for the ener-
gies of random Pdp SpVp 5p and Pdp y5Vp 25 alloys are no
closer to the direct calculations than are the CVV values
(which use as input only the energies of ordered struc-
tures). For random Pdp so Tip sp and Ptp spVp sp alloys,
the trend is the same, as the DCA. values (—308 and —324
meV/atom) do not compare as well to b,E&;„,i(random)
(
—581 and —735 meV/atom) as the CW fitted numbers

(
—625 and —637 meV/atom).
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V. CONCLUSIONS

Many of the trends of the preceding section may be
sunnnarized in a graphical fashion in Fig. 3. In this fig-

ure, we plot the energies for many of the superlattice
families given in Table II: The direct TB and LMTO
calculation are shown as open circles, connected by solid
lines, while the cluster expansion values are shown as
open or filled squares, connected to the relevant direct
calculation by dotted lines. Thus, from the slopes of the
lines in Fig. 3, the general trends emerge: The direct TB
calculations generally predict significant "overbinding"
(i.e., formation energies that are too negative compared
to the LMTO values). Thus, the TB formalism should be
refined before it can systematically be used in quantita-
tive calculations of structural stability in transition met-
als. The CW fits are generally good (the slopes of these
dotted lines are nearly zero), and the DCA values do not
compare as well to the direct TB energies. In general,
the DCA energies tend to be significantly less negative
than the direct TB computations, thus partially revers-
ing the trend of the overbinding of the TB. This reversal
must be somewhat fortuitous, though, as the DCA cal-
culations should, at best, be able to reproduce the direct
TB results.
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