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The band structure, charge density, x-ray scattering factor (and their behavior under pressure),

equilibrium lattice constant, and cohesive energy of the prototype ionic solid LiF were determined using our

recently developed self-consistent numerical basis set (non-muffin-tin) linear-combination-of-atomic-orbitals

method, within the local-density formalism (LDF). The details of the bonding and the effects of exchange and

correlation on the electronic structure are discussed with reference to the conventional picture of ionic

bonding. Remarkably good agreement is found with the observed data for the ground-state properties of the

system. Contrary to the results of previous band studies, the conventional band-structure approach to

excitation energies (i.e., identifying them with the band eigenvalue differences) is found to fail completely in

accounting for the observed data in the entire x-ray and optical spectral region when fully self-consistent

solutions of the LDF one-particle equation with no further approximation to the crystal potential are

obtained. It is found that in the presence of some spatial localization of the initial or final crystal states, the

spurious self-interaction terms, as well as the polarization and orbital relaxation self-energy effects are of a

similar order of magnitude as the Koopmans'-like interband terms. In order to treat these effects within the

LDF self-consistently, we describe the excitation processes as transitions involving point-defect-like states in

the solid calculated by a supercell method in which the excitation energies are determined as total-energy

differences between (separately calculated) excited- and ground-state configurations. The excited state is

represented as a superlattice of locally excited sites using large (8- and 16-atom) unit cells, each

containing a single excited site. We find, in the self-consistency limit, that a small but finite degree of

spatial localization of the excited states exists even for valence excitations, inducing thereby self-interaction

as well as self-energy relaxation and polarization effects. The LDF model is found to account very well for

both interband and exciton transitions over the entire spectral region (12—695 eV) and to yield definite

predictions regarding the exciton bandwidths and series limits.

I. INTRODUCTION

The study of the ground-state electronic prop-
erties of molecules and solids in the local-density
formalism (LDF)' ' has recently attra. cted con-
siderable attention. Investigations of the cohesive
properties of small molecules, ' ' metals, "and
rare-gas solids' have elucidated the possibilities
of obtaining a reasonably accurate description of
binding energies and equilibrium geometries by
incorporating exchange and correlation effects di-
rectly into a one-body potential. Similar studies
on compounds, ionic insulators, and covalent
semiconductors are beset with the difficulties of
having to consider the full (non-muffin-tin} crystal
potential and to explicitly account for charge redis-
tribution and hybridization processes by means of
a fully self-consistent treatment. We have recently
developed" " the fully self-consistent numerical-
basis-set linear combination of atomic orbitals
(LCAO) discrete variational method. This scheme
permits the treatment of general (analytic or nu-
merical} basis functions and crystal potentials and

the determination of fully self-consistent solutions
of the LDF one-particle equation without restrict-
ing the iterative path to muffin-tin charge densi-
ties' ' or to superposition models. ' Applications
of this approach include the study of the ground-
state properties of diamond, '-' boron nitride, "
titanium disulf ide, "cadmium sulphid, and LiAl.

The present study extends our treatment to ionic
solids, for which LiF has been chosen as a proto-
type. We first consider the description of ground-
state properties of the system, such as the band
structure, charge density, x-ray scattering fac-
tors, cohesive energy, equilibrium lattice con-
stant, and behavior under pressure, and compare
the predictions of the LDF model with both experi-
mental data and with available restricted Hartree-
Fock (HF) results. " We then consider the excited-
state properties of the system by first using the
standard band approach to excitation energies
(i.e. , viewing them as differences in the band
eigenvalues between unoccupied and occupied
bands). Contrary to what has been previously
suggested, ""we find that, whereas this approach
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has proved to yield remarkably accurate excitation
spectra for many insulators, it fails completely
in the case of a heteropolar wide gap material such
as LiF due to the localized nature of many of the
electron-hole states in the system. Thus we are
led to a generalized band model in which both the
initial and the final crystal states are allowed to
become localized to some extent and hence to ex-
hibit relaxation, polarization, and electron-hole
interaction effects. For this purpose, we use a
defect superlattice representation" " in which a
locally excited species in the solid is viewed as a
point-defect placed at the center of a large unit
cell and the excitation energy is determined as the
difference of total energies between independent
self-consistent calculations (ASCF) of the corre-
sponding excited- and ground-state systems. The
effects introduced by final-state orbital relaxation
and valence-band polarization by the hole state are
found to be very large and to account for most of
the discrepancies between the unperturbed band
model predictions and the observed data. In ad-
dition, the model is used to calculate core and
valence exciton states in the system by a direct
diagonalization of the locally perturbed crystal
Harniltonian rather than by conventional effective-
mass-' or perturbational Frenkel models. " Good
agreement is found with the experimentally ob-
served exciton energies and binding over a large
spectral region. E lectron-hole interaction energies
are found to be very large (2—9 eV) and to vary
considerably as one moves from a deep core to a
valence-state exciton. The exciton bandwidth is
calculated directly from the self-consistent per-
turbed crystal wave functions using standard tech-
niques and is found to be rather large (0.3 eV) for
valence exc itons.

II. METHOD OF CALCULATION

Since a detailed description of the method has
been given'" "previously, we outline here only
those aspects pertinent to the present study. Our
purpose is to solve the local-density one-particle
eigenvalue equation for a periodic solid,

I--,' 2-'+ V(p(r))) gj(k, r) =q,.(k)g,.(k, r)
for band index j and Brillouin-zone (BZ) wave vec-
tor k. Here V(p(r)) is the crystal one-body po-
tential given as a functional of the self-consistent
crystal charge density p( r ) and includes an elec-
tron-nuclear and electron-electron Coulomb term
Vc,„,(p( r )) (which includes the electron self-in-
teraction) and a local exchange- 'V„(p(r)) and cor-
relation'-' term V„„„(p(r }).

We first assume a population-dependent super-
position model for p( r } made up of the free-ion

(or free atom) densities p ( r, ff„', Q')) (obtained
from a self-consistent numerical solution of the
single-site LDF equation with the assumed ionic
central field occupation numbers I f„,) and net
charge Q ) and lattice summed to yield

p,„,(r, (f„„Q)). This initial density is used to
obtain an initial guess for the crystal potential
V,„,(p,„,(r)) in terms of Vc,„,(p,„,(r})and

V,(p,„,( r ))+ V„„,(p,„,( r }). The long-range part
of the screened Coulomb potential is calculated by
the Ewald technique. " The crystal wave functions

g,.(k, r ) are then expanded in an LCAO form in
terms of the Bloch functions 4„(k,r) defined by
(the pth orbital) basis functions y ( r) (on lattice
site n) which are accurate numerical solutions of
the single-site LDF one-particle equations for the
assumed occupations and charges (f„' „Q'). For
LiF we use the Li 1s, 2s, and 2p orbitals and the
F 1s, 2s, 3s, 3p, and 3d orbitals.

The matrix elements of V,„,(p,„,( r )) in the Bloch
basis 4, (k, r) are evaluated by direct three-di-
mensional Diophantine numerical integration" with-
out any shape approximation to the potential and
include all the overlap and multicenter integrals
between orbitals on lattice sites separated by less
than 23 a.u. The secular equations are diagonal-
ized for a set of 10 special k points in the irredu-
cible BZ" and the linear LCAO expansion coeffi-
cients C,.(k} are used to construct the output
crystal density p,„„(r). Convergence tests for the
radius of real-space lattice sums, the BZ sums,
and the basis-set expansion have assured an over-
all stability of the eigenvalues to within 0.05 eV
over the entire band-structure range studied.

We then start a two-stage iterative self-con-
sistent (SC}procedure: in the first stage iLf„' „g )
are varied iteratively to minimize the difference
Lp( r ) = p„„(r ) —p, „,( r, ff„„Q'))in the least-
squares sense over the unit cell space where the
basis set y, (r) and the potential V,„,(p,„,(r)) are
optimized accordingly at each iteration (4 itera-
tions are needed). After hp( r ) has been minimized
by selecting the optimum superposition model in
terms of (f„' „Q ), we project, in the second stage
of SC, the residual hp( r ) onto a set of symme-
trized plane waves and solve the associate Poisson
equation analytically in terms of the projected co-
efficients sp(K, ) for a list of reciprocal lattice
vectors K,. This reciprocal space expansion con-
verges rapidly (about 10 stars of K, are needed)
because the residual ap(r) is spatially smooth.
The correction to the Coulomb interelectronic
potential a V( r ) is then added to the V,„,(p,„,( r ))
obtained in the final iteration of stage 1 and this
new Hamiltonian is diagonalized. The iterations
in stage 2 are carried out so as to diminish the
residual hp(K, ) to a prescribed tolerance of 10 'e
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FIG. 1. Self-consistent local-density potential in LiF
along the [100j bond direction. The position of the edge
of the valence band I

&5 „ is indicated.

(5 iterations are needed).
The various components of the final SC crystal

potential (along the bond [100] direction) are de-
picted in Fig. 1, namely, the long-range Madelung-
type Coulomb part V~„c( r), the exchange-correla-
tion part V„(r)= V„(r) + V„„„(r)and the short-range
Coulomb potential V~ac( r ) (due to direct wave-
function overlap}. The potential is seen to be very
shal. low in the interionic region and contrary to the
situation which occurs in covalent systems like
diamond" or boron nitride, "the exchange-corre-
lation part dominates the Coulomb contributions
in this region. The Coulomb potential was found to
be highly nonisotropic around the ionic sites (both
due to the substantial penetration of the long-range
Li 2s and 2P orbitals into the fluorine core and to
the asymmetry of the cry tal-field Madelung po-
tential} and hence muffin-tin models" "as well as
truncation approximations to the exchange part" "
would seem inappropriate. The final crystal den-
sity p, „„(r ) is used to calculate the total energy
per unit cell by the procedure previously de-
scribed. ' " Again three-dimensional Diophantine
integrations are needed to obtain quantities such as
f p, „„(r)V(p(r})dr which converge much slower
than those necessary in the band-structure study
(although the convergence rate is better than in

III. RESULTS FOR THE GROUND STATE

A. Band structure

The self-consistent band structure of LiF ob-
tained in the exchange model with a =-, and 1 is
shown in Fig. 2. The positions of the free-ion and
free-atom eigenvalues corresponding to these two
models are indicated by the horizontal lines on the
right-hand side with the former shifted by the
Madelung potential ( 12.45 and+12. 45 eV for F
and Li', respectively). The main difference be-
tween them is a downward shift of the valence bands
by about 3 eP in the n =1 case accompanied by a
smaller shift in the conduction bands; this results
in a smaller band gap in the o = —, case (9.8 eV)
relative to the o =1 result (10.5 eV). While the
occupied fluorine 2s band (containing some ad-
mixture with Li 2s) and the valence 2p-like band
appear very close in position to both the 2s, 2p
point-ion corrected free-ion and free-atom eigen-
values, the conduction band is very wide and does
not show any close correspondence to the position
of the virtual free-ion Li 2s and 2p orbital ener-
gies. At lower energies (not shown in Fig. 2) are
the Li 1s core band (- 58.4 eV, o = 1) and the fluo-
rine 1s core band (- 680.9 eV, a = 1), both essen-
tially unshifted relative to the corresponding point-
ion corrected ionic eigenvalues.

Since several"""'" of the many published local
density band structures' "of LiF were carried to
full self-consistency using the complete potential,
a meaningful comparison with our results can be
made. Drost and Fry" and Brener'0 used an atomic
Gaussian set (i.e. , 10 Bloch basis functions) and a
muffin-tin-like treatment of the iterated exchange
potential; Chancy et al."and Menzel et al."em-
ployed an extended Gaussian set (54 basis func-
tions) and a real-space-fitting procedure to evalu-
ate the multicenter Coulomb and exchange inte-
grals. All four calculations"""'" were done in
the a = 1 exchange model and used as a starting
guess to the crystal density a superposition of
Ha~tree-Fock atomic densities with fixed Gaussian
exponents taken over largely from atomic Hartree-
Fock calculations. " By contrast, we employ di-
rectly nonlinearly optimized local density (numeri-
cal) ionic basis functions as our initial guess for
constructing the crystal density. "" Although
differences between these choices might be im-
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FIG. 2. Self-consistent band structure of LiF in the e= 3 exchange model (left) and in the o. = 1 exchange model (right).
The horizontal bars on the right-hand side of each figure indicate the corresponding point-ion corrected free-ion eigen-
values of F and Li and the free-atom eigenvalues of F and Li .

material from the variational point of view (pro-
vided reasonable basis-set convergence and self-
consistency is maintained), from the practical
point of view, our choice seems to offer higher
efficiency due to its closer consistency with the
local density crystal Hamiltonian representation
considered. " On the other hand, muffin-tin-like
approximations to the iterated exchange" "might
be more of a problem due to the large amplitude
of the exchange potential in the interionic region
in this material relative to the electrostatic con-
tributions (Fig. 1).

Table I compares our band eigenvalues at some
high-symmetry points in the BZ using both a mini-
mal and an extended local density (ionic) numerical
basis set with those of Menzel et al,"the correct-
ed" results of Drost and Fry." (The virtual nu-
rnerical orbitals for F were computed from an
F ion placed in a localizing potential well with a

13-a.u. radius. This serves both to produce the
required bound states and to localize the otherwise
diffuse 3s to 3d orbitals. ) All calculations pre-
sented in the table were done with n =1 and a lat-
tice constant of 4.017 A. The agreement between
the 54 Gaussian calculation" and our minimal nu-
merical basis set (10 functions} is good over a re-
gion of about 25 eV (to about 0.1 eV in the valence
bands and 0.3 eV in the conduction bands, except
for the highest I"„,point). A substantial increase
in our basis set (column 4 in Table I}produces
only negligible changes in the valence bands rela-
tive to the minimal numerical set; however, the
high d-like conduction bands are now more severely
affected (e.g. , a 0.fi-eV shift in 1'»,}. Hence we con-
clude that a minimal local density ionic basis set
is sufficient to produce an accuracy of about 0.15
eV for eigenvalues in the range of 1-1-,' Ry above
the valence band. Similar conclusions were
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TABLE I. Self-consistent band structure of LiF in the &=1 exchange model. Results for
the eigenvalues are given in atomic units; the band gap (E~) and valence-band width (VBW)
are given in eV.

Level
54

Gaussians '
LCAO

Minimal
numerical

LCAO
Extended

set'

LCAO
Gauss d

(10 G)

~i5, u

X4,,
L2,v

X5
L3,v
r, ',
Lf,c
X)

X(
L3,c
X5
r, '„
E~ (eV)
UBW (eV)

0.0
—0.090
—0.077
-0.030
—0.007

0.389
0.466
0.587
0.658
0.701
0.812
0.833
0.929

10.58
2.45

0.0
-0.086
-0.075
-0.028
—0.007

0.393
0.473
0.599
0.668
0.713
0.808
0.824
0.974

10.70
2.34

0.0
-0.085
-0.075
-0.029
—0.007

0.386
0.470
0.592
0.666
0.710
0.801
0.812
0.953

10.50
2.31

0.0
—0.046
-0.044
—0.015
-0.003

0.578
0.699
0.732
0.822
1.020
0.911
0.898
1.016

15.71
1.25

' Reference 16.
Present results with a numerical set consisting of F 1s, 2s, 2p and Li 1s, 2s, 2p local-

density orbitals (10 basis function).' Present results with addition of F 3s, 3p (23 basis functions).
References 29 and 37.

drawn in our previous studies of diamond" and
boron nitride. "

'The results of Drost and Fry" (column 5 in Ta-
ble I) are in very poor agreement with those of
the present study and with those of Menzel et al."
The order of the L, , and X, , levels is reversed,
the X, , level is completely misplaced, and quanti-
tative differences occur (as much as 1.1 eV in the
valence bands and 7 eV in the lower conduction
bands). We do not think these differences are due
solely to the small size of their basis set (similarly
small basis sets have been shown" to produce small-
er differences) but rather to their treatment of the
exchange potential. " We find similar differences
between our results and the muffin-tin calcula-
tions. ""Further, non- self- consistent calcula-
tions" " show large(2-3 eV) deviations even in the
low edge of the conduction band (including a false
minimum at L, ,)".

To investigate the separate effects of the ex-
change and the correlation potentials on the band
structure we have performed two independent
cv 3 self —consistent calculations, one with the
correlation functional" included in the crystal
potential (exchange and correlation model} and
one without it (exchange model). The results for
the valence bands of LiF are shown in Fig. 3. The
main effect of the correlation functional is to shift
the bands downward almost rigidly by about 0.8eV,

but with a nonrigid (k-dependent} effect of about
0.1 eV. The band gap is increased by about 0.1
eV and the valence band width is broadened by a
similar amount. While these changes are hardly
material as far as the joint density of states is
concerned, they are important for both the total
energy (and binding energy) calculations as well
as for the determination of the ionization thresh-
old in the solid.

Painter" demonstrated that scaling the exchange
parameter n between 3 and 1 had a significant ef-
fect on the band structure at the non-SC limit (e.g. ,
the band gap increases from 10.3 to about 16 eV).
This was explained in terms of the lower sensiti-
vity of the Li(2s)-like bottom of the conduction
band (I', ,) to exchange scaling relative to the
F(2P)-like top of the valence band (I'» „) which
shows substantial charge localization on the fluo-
rine sublattice. Our results (cf. , Fig. 2) show that
in the SC limit, the differences between the n = 3

and ex=1 are much smaller (e.g. , an energy gap
of 9.8 eV versus 10.5 eV for n =-', and 1, respec-
tively). This diminished difference is brought
about by the removal of electronic density from the
interstitial region to the ionic sites during the SC
iterations, thereby increasing the charge locali-
zation on the Li ions and hence tending to equalize
the sensitivity of the I, , and I „„states to ex-
change scaling. In addition, the Li 2s and 2p basis
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FIG. 3. Structure of the valence bands of LiF in the
exchange model and in the exchange and correlation mo-
del. Both calculations employ an exchange coeffic ient of
a and an optimized minimal numerical basis set (see
text).

orbitals become spatially more contracted during
SC iterations due to the nonlinear orbital optimiza-
tion procedure used, allowing these formerly vir-
tual orbitals to become fractionally occupied. Both
these linear and nonlinear mechanisms act to
equalize the exchange scaling sensitivity of the
band edges and show up only in a fully self-con-
sistent treatment.

B. Charge analysis of the ground-state bands

A charge analysi. s"'" of the crystal wave func-
tions was performed in order to obtain the orbital
character of the occupied valence bands in LiF.
A simple identification of the square of the linear
variation coefficient

~
C„,.(k) ~-'with contribution

of the p, th ionic orbital on sublattice cy tothe charge
a,ssociated with the band state ~k, j) would be highly
unrealistic due to the pronounced nonorthogonality
of the Bloch basis 4„(k,r) (in particular, the
Li 2s and 2P orbitals are quite diffuse with sizable
amplitudes on the F sites). Instead, we adopt the
Lowdin charge analysis" used in molecular struc-
ture calculations, orthogonalize the Bloch basis
set using a symmetric transformation, "and then
associate the square of the coefficient

~ C„,.(k) ~'

in the orthogonal representation with the p, z orbi-
tal charge due to state ~k, j). Summing these par-
tial charges over all the occupied bands j, we ob-
tain the contribution q„(k) of orbital Ii on site n

FIG. 4. BZ dispersion of the orbital charges q „(k) in
the ground state of LiF. The orbital charges correspon-
ding to the free Li' and F ions are shown by the horizon-
tal lines at the right-hand side.

to the charge at point k in BZ. The BZ dispersion
of q (k) is displayed in Fig. 4; integration of
q, (k) over the BZ yields the total ground-state
charge due to orbital I(j. on site n.

Figure 4 shows that, except for the F 1s
and Li' 1s core charges, all other orbital
charges exhibit pronounced variations across
the BZ; the crystal electronic configuration
at r is Li" -[ls""2s"'"'2p'"']
and F '"[1s""2p"-2p'"]in terms of the ionic
numerical orbitals while higher charge polarization
occurs at the X point, characterized by the con-
figuration Li"""[ls'"2s""'2p"-'] and
F "'"[1s-'"'2s""2p'"]. Appreciable mixing of
Li 2s cha.racter occurs near I while along the
6-X-W-A' and L-W directions there is a non-neg-
ligible Li 2P character with only minor Li 2s
mixing. The fluorine 2s and 2p charges have lower
values than in the idealized free-ion configuration
(2 and 6 electrons, respectively) and likewise show
considerable BZ dispersion. Hence, although solid
LiF is a closed-shell system in its ground state,
its common description in terms of closed-shell
ions" is inappropriate in the context of a realistic
LCAP model which includes all the nonorthogonality
terms. Similarly, it appears that the common de-
scription of a strongly ionic material such as LiF
in terms of tightly bound short-range cation and
anion orbitals"'" is oversimplified; as a matter
of fact, the non-negligable charge density in the
interionic regions in the crystal is largely donated
by the rather diffuse (formerly virtual) cation or-
bitals which are unoccupied in the free ions and
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which act to stabilize the crystal electrostatically
by penetrating the attractive core regions near the
anions. Previous cohesive energy studies of al-
kali halides4' -"have largely used Lowdin ortho-
gonalized free ion orbitals to approximate the sin-
gle-site Wannier functions in the solid. Our re-
sults for LiF indicate that a better choice is to
use similarly orthogonalized single-site orbitals
but with fractional occupations corresponding to
the variationally determined crystal orbitals which
are distinctly different from the closed-shell ionic
orbitals (Fig. 4).

The population analysis of the kind shown in Fig.
4 can be used to improve the variational quality of
a minimal basis set in crystalline LCAO calcula-
tions; by performing a BZ average over each of the
orbital charges q, (k), one obtains the effective
electronic configuration of each ion in the solid in its
ground state. These can be used to solve the free- ion
local density equations to obtain improved basis
functions for the solid. In this manner, nonlinear
optimization of the basis set is obtained. The re-
sults of such a calculation showed that a minimal
basis set corresponding to the exact local
density free-ion wave functions of the
Li" "[1s'"2s'"2p'"] and F '"[1s"2s"'-2p""]
ions produced a band structure that agrees to about
0.05 eV with that obtained by the unoptimized ex-
tended basis set (Table I) for energies lower than
-1.3 Ry above the valence band edge. This choice
of basis set, when used for generating a super-
position crystal density and the resulting band
structure, also minimizes the difference between
the output crystal density and the superposition
density and hence serves as an optimum minimal
set. The major change in the wave functions of the
optimized configuration is a contraction of the
fluorine 2p shell. This basis set is very economi-
cal to use and was employed in further calcula-
tions, except for the total energy calculation which
required a larger set.

C. Charge density and x-ray scattering factors

The orbital population analysis tells us only about
the overall mixing of each orbital species in the
occupied manifold, but does not indicate the degree
to which such orbitals contribute to bonding (i.e. ,
their spatial behavior in the core and interionic re-
gion). The orbital density p,.(k, r ) = p,*(k, r )P,. (k, r )
for several of the occupied high-symmetry points
is shown in Fig. 5. The bottom of the F (2s)-de-
rived valence band, at I", „, is shown to have some
hybridization with the Li 2s wave function (cf. ,
Fig. 4). The appreciable long tail of the Li 2s or-
bital causes its admixture into the occupied bands
to create a nonvanishing density in the bond region
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FIG. 5. Orbital charge density, p, (k, r) =II[', (k, r)
& $, (k, r), for several high-symmetry points in the BZ of
LiF plotted along the [100] bond direction.

and to enhance the charge buildup at the F site.
Somewhat higher in energy in the F (2s)-derived
band, we find the L, „ level which is made up of
F 2s orbitals hybridized with some Li 2p orbitals
(viz. , the nodal character at the Li site). Higher
in energy we find at the X, „point in the F (2p)-de-
rived valence band an F(2p)-Li(2p) hybrid (cf. , Fig.
4); as one moves to the zone center (I'„„),a pre-
dominantly F 2p state is formed.

Figure 6 shows the total ground-state charge
density calculated in the exchange model (1) and
in the exchange and correlation model (2), along
the [100] direction in the unit cell. The position
of their minima is given in Table II, and compared
with the relevant experimental determination. ""
These quantities are given here as a percentage of
the lattice constant (i.e. , twice the nearest-neigh-
bor distance), as is commonly done in the litera-
ture. Unlike the older measurements of Krug
et al."(in which dispersion corrections were not
applied and rather high fluorine Debye-Wailer fac-
tors used) which show a substantially larger Li
radius, more recent structure factor measure-
ments" "seem to agree better with the data of
Merisalo and Inkinen4' which exhibit systemati-
cally shorter metal radii. Our results agree bet-
ter with the latter data and indicate that the effect
of correlation is to expand the electropositive Li
site at the expense of contracting the electronega-
tive F. In this context it is interesting to note that
Pauling's ionic radii (0.6 A for Li' and 1.36 A for
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FIG. 6. Total ground-state charge density calculated
in (1) the exchange and correlation model, and (2) the
exchange model along the [100] direction in the unit
cells. The arrows point to the positions of minimum
density in the corresponding models.

F ) predict amuchlarger disproportion between the
size of the lattice iona (15.3% and 34.7% for Li'
and F, respectively) than do both the observed
and the calculated values in the crystal.

The precise value of the minimum charge density
in the unit cell is difficult to evaluate accurately
from the experimental data since small changes in
the temperature parameters and structure factors
introduce significant changes into this small quan-
tity. The measurements of Krug et al."indicate
a minimum density of 0.19 e/A'- (0.028 e/a. u. ')
while that of Merisalo and Inkinen" show a mini-
mum of approximately 0.15 e/A' (0.022 e/a. u. ').
While our calculation shows a minimal density of
0.155 e/A' (0.023 e/a. u. ') in good agreement with
both measurements, the large uncertainties in the

TABLE III. Calculated (exchange and correlation mod-
el) and observed number of electrons g(R) in spheres of
radius R around the Li and F sites.

Calculated
g(R) (e)

Measured (Ref. 47)
g(R) (e)

observed values may make this agreement fortui-
tous. It is interesting to note that Hartree-Fock
molecular calculations" predict a much higher
minima, along the Li-F bond, namely, 0.675 e/A'
(0.1 e/a. u. ').

Table III shows the total (numerically integrated)
electronic charge enclosed in spheres of varying
sizes around the Li and F sites whose radii are
chosen to form touching spheres. The results are
in remarkably good agreement with the measured
data of Merisalo and Inkinen. 4' We find in our
exchange and correlation model that the radius
at which the Li sphere enclosed exactly 2.0 elec-
trons is 0.69 A (17.1% of the lattice parameter),
which is only slightly smaller than the position of
the minimum in the charge density (17.5% given in
Table II), at which the Li sphere contains 2.05
electrons.

Table IV compares our calculated x-ray struc-
ture factors with those calculated in the Hartree-
Fock model" "and with the observed data"' with
the temperature factors removed. " The x-ray
structure factors are calculated in two different
approximations: (i) In a sPherical atomic model
which assumes that the crystal charge density can
be represented as a lattice sum of (overlapping)
spherical ion densities, one finds that the crystal
structure factors are given simply by F» 7

=4[ frA. .+ fAN
A I] for the even (h, k, I) reflections

and by F» =4( f~» I
—f~», ] for the odd reflec-

tions, where fQ Q 7
and f„"„,stand for the spheri-

cal anion and cation scattering factors, respec-
tively. The crystal F», values calculated in this
way using free-ion Hartree-Fock and local ex-
change wave functions are given in columns 2-4
in Table IV. (ii) In a crystal model, the scattering
factors are computed directly from a three-dimen-

Exchange and Exchange
correlation model model Exp ~ Exp

RL;
RF

19.2
30.8

17.5
32.5

19.4 22.9
30.6 27.1

' Reference 47.
Reference 46.

TABI E II. The distances from Li and F sites, at
which the charge density reaches a minimum, expressed
as a percentage of the lattice constant a=4.018 52 ~.

R„; (A):
0.93
0.83
0.78
0.73
0.63

RF (A) ~

1.08
1.18
1.23
1.28
1.38

2.25
2.16
2.11
2.05
1.94

9.01
9.30
9.47
9.61
9.68

2.22
2.12
2.07
2.03
1.91

9.06
9.35
9.48
9.60
9.72
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TABLE IV. Calculated and observed x-rays scattering factors for LiF.

hkl

200
220
222
400
420
422
440
600
442
111
311
331
333
511

Atomic
(spherical)

HF

7.62
5.71
4.61
3.90
3.41
3.05
2.58
2.41
2.41
4.89
2.36
1.65
1.38
1.38

Atomic
t spherical)
LDF;n 2

7.49
5.65
4.58
3.88
3.40
3.05
2.57
2.40
2.40
4.77
2.38
1.69
1.42
1.42

Atomic
(spherical)
LDF; o.'=1

7.72
5.95
4.86
4 ~ 12
3.60
3.22
2.63
2.45
2.45
4.90
2.55
1.76
1.44
1.44

Atomic
nonspherical

HF

7.72
5.78
4.66
3.94
3.44
3.08
2.60
2.43
2.43
4.96
2.38
1.65
1.37
1.37

Crystal
HFb

7.70
5.72
4.60
3.90
3.40
3.04
2.57
2.41
2.41
4.98
2.36
1.63
1.36
1.37

Crystal
LDF

2A=—
3

7.79
5.69
4.66
4.03
3.48
3.11
2.57
2.40
2.40
4.88
2.39
1 ~ 71
1.43
1.42

Exp

7.72
5.70
4.60
3.99
3.45
3.07
2.57

2.40
4.84
2.36
1.65
1.37
1.37

' Reference 52.
Reference 15.

c Reference 47.

sional Fourier transform of the BZ averaged
crystal density, without assuming the separability
of the latter to a lattice sum of free-ion-like den-
sities. Columns 6 and 7 in Table IV compare the
crystalline Hartree-Fock results of Euwema
et al."with those of the present LDF study.
Column 5 gives the structure factors calculated
by Aikala and Mansikka" from free-ion Hartree-
pock wave functions but with inclusion of nonortho-
gonality corrections due to u~ave fz&nctio&c-overlap
up to first- and second-nearest-neighbor for the
Li' and the F sublattices, respectively. (A direct
incorporation of such an interionic overlap gene-
rates nonspherical components of the charge den-
sity around each site and forms a better approxi-
mation to the crystal scattering factor. )

Several conclusions can be drawn from this
comparison: (i) The spherical free-ion HF model
yields lower F», values than the ot =1 LDF model,
but higher values than those obtained with the
n =

& LDF model. The HF charge density is hence
more spatially diffuse than that yielded by the n =1
results but slightly more contracted than that pre-
dicted by the n =

& calculation. The exchange and
correlation model with n = —' produced values that
are slightly larger than those produced by the + = 3

exchange-only model. (ii) Nonspherical correc-
tions" to the free-ion HF model produce a more
localized charge density (i.e. , have the effect of
approaching the LDF spherical results with n
greater than —,). (iii) The crystalline HF and LDF
results show a general increase in the structure
factors relative to the corresponding spherical
free-ion results which is much larger in the LDF

model than in the HF model. The increase in the
HF crystalline structure factors relative to the
spherical free-ion limit seems insufficient to ac-
count for the experimental crystal data and is sig-
nificantly lower than that yielded by the nonspheri
cal free-ion HF model. This might reflect both
numerical inaccuracies in the crystal HF model,
which is significantly more complex than the non-
spherical free- ion model, and the superiority of
the Slater basis set representation"-" used in the
latter as compared with a Gaussian set used in the
crystalline HF model. The overall agreement of
both the HF and the LDF crysta. l results with ex-
periment is good, with the HF systematically lower
and the LDF systematically higher than the ob-
served results.

D. Behavior under pressure

Figure 7 shows the variation with lattice constant
of some high-symmetry energy levels in the con-
duction bands (labeled A), F (2p)-derived valence
bands (labeled 8), and the F (2s)-derived bands
(labeled C}. Also shown are the free-ion eigen-
values (denoted q'„) shifted by the Madelung poten-
tial at the ionic site (V„}for each of the 8 unit cell
parameters at which calculations were done be-
tween 3.90 and 4.17 A. The first striking feature
of these results is the linearity of the curves. It
is seen that the variation of the valence band (8
and C) energies with lattice constant follows essen-
tia, lly that of the point-ion potential at the fluorine
site (dashed lines in regions 8 and C). This be-
havior is expected when only small admixtures of
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in energy with decreasing lattice parameter more
rapidly than does the positive ion Madelung poten-
tial due to their antibonding character [i.e. , their
energy is proportional to (1 —2$ 8) ', where S
is the lattice--parameter-dependent overlap inte-

na ~ n8

gral between nearest-neighbor lithium sites and
hence smail changes in the lattice parameter pro-
duce large changes in the eigenvalues]. The band

gap E at 1 and the valence band width increase
monotonically with decreasing lattice constant,
the former being affected much more markedly
(about 1.5 eV over the range studied} than the lat-
ter for the reasons discussed above. Thus it would
seem that the pressure dependence of the optical
transition energies in this material would follow
a rather complex behavior due to the interplay be-
tween electrostatic and initial- and final-state hy-
bridization effefects. We are unaware at present of
any relevant experimental data with which to test
these predictions.

O

+F, Zp E. Cohesive energy and equilibrium lattice constant
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FIG. 7. Lattice-constant dependence of some high-
symmetry points in the band structure of LiF. Bandsy, i p)-belonging to conduction states are denoted b A F ~2

derived bands are labeled by B and F I', 2s)-derived bands
are denoted by C; dashed lines indicate the variation of
the Madelun corg rected I', ~V~) free-ion eigenvalues
t&~& for o.'= F, Li' and p =2s, 2p) in the local-density
model. E~ denotes the band gap.

3.90

the positive-site wave functions are permitted and
the repulsive non-Madelung forces (i.e. , short-
range Coulomb and exchange) are relatively weak.
On the other hand, the conduction bands (A) show
a more complex behavior with lattice constant
variation: the bottom of these bands (I', ,), being
almost of pure Li character, follows essentially
the q'. + V~ curve; the next higher states (e.g. ,
W X &contain some fluorine character and
henence show only weak lattice constant dependence
due to extensive cancellation between the positive
site and negative site point-ion contributions. The
high-energy conduction states (Ã I',)5, c 15 c) increase

To further study the performance of the local
density formalism on ground-state properties of
ionic solids, we have calculated th b de in ing energy
and equilibrium lattice constant of LiF. The total
crystal energy of LiF has been calculated by the
method previously described 'O'" Th he c arge den-
sity and eigenvalues were sampled at 10 wave vec-
tors in the irreducible section of the BZ. This
sampling mesh is more than adequate in view of
the narrow valence bands of LiF Fi . 2ig. and the
relatively low dispersion of the crystal orbital
density p(k, r). About 5000—6000 Diophantine in-
tegration points were sufficient to obtain a con-
vergence of 0.03/q —0.016% in the total energy (the
cohesive energy is about 0.4/~ of the total energy

be
per cell . Although higher numerical accuracccuracy can

e obtained by inc reasin~ the numbe f tr o in egration
points, it was felt not to be warranted at this stage
because of the large combined effect of all the oth-
er approximations [truncation of higher-order
terms in the expression for the expansion of the
total exchange and correlation energy ' ' basis-
set effects, and repla. cement of th i te in egral over
the BZ by a discrete sum for calculating p (r)].
The total

lng p r

b
energies of the free ions were calculat de

y standard procedures" (accurate to within
0.001' The total energy of the crystal was cal-
culated at 8 values of the 'lattice parameter and a
smooth curve was fitted to find its minimum. The
cohesive energy is defined here relative to the
energy of the ionic dissociation products.

We have used two basis sets for the calculation:
the optimized minimal numerical set (denoted I,
see Sec. III 8}, and the extended basis set (denoted
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ll) and includmg F 1s, 2s, 2p, 3s, 3p, and 3d and
Li' 1s, 2s, and 2p numerical orbitals. Set I yields
a binding energy Es of 9.3+ 0.5 eV/pair at the ob-

0
served'4 lattice constant a=4.018 A and is close
to the value of 9.5+0.5 eV/pair obtained by the
larger set II. This small difference is perhaps not
entirely surprising since the major contribution
to the cohesive energy arises from the basis-set-
independent long-range electrostatic field (12.4
eV} while the repulsive (basis-set-dependent) con-
tribution forms only about 20% of the cohesive
energy. The observed' E~ of LiF, corrected for
the zero-point energy (using a Debye formula) is
10.6 eV/pair.

The situation is quite different regarding the
calculated equilibrium lattice constant a„: while
basis set I predicts aeq 4 18+0 03 A which is sub-
stantially larger than the observed value of 4.018
+ 0.03 A, '4 the extended set II predicts an improved
value of 4.09+0.03 A with a cohesive energy of
9.8+0.5 eV/pair at this equilibrium value. (The
error bars given to the computed lattice constants
refer to the fitting and interpolation of the calcu-
lated total energies at the different lattice con-
stants. } Hence, while even a. medium quality basis
set is capable of predicting reasonable values of
the cohesive energy of the of the system, a much
improved set is needed to reproduce accurately
the equilibrium lattice constant in the system.
The local density model predicts an a that is
1.8% too large and an E~ that is 7.5% too small
(similar trends were observed in our local density
calculations for diamond'" and boron nitride").
It is expected that inclusion of second-order dis-
persion forces not present in our model (i.e. , that
part of the interaction that exists even at zero
overlap between the subsystems and is contributed
by intermediate virtual states) would act to reduce
a somewhat and increase E~ and so yield closer
agreement with experiment.

Qur determination of the cohesive energy and
zero-pressure lattice constant of LiF can be com-
pared with several nonempirical studies based on
the Hartree-Fock model. We note two basic ap-
proaches to the problem:

(i) The model of Lowdin, 44 which is an elabora-
tion of the pioneering work of IIylleraas'" and
Landshoff, "treats the problem by replacing the
canonical crystal density with a lattice sum of
single-site densities and evaluates directly the
(nonlocal) exchange and Coulomb contribution of
each site to the binding energy. Although such a
partitioning of the density can (in principle) be
determined variationally from the crystal Hamil-
tonian (e.g. , by solving the problem in the Wannier
representation), in practice, an orthogonalized
noninteracting free ion (Hartree or H-artree-Fock)

basis set was used to simulate such a single-site
density. This choice is not unique and its adequacy
depends entirely on the degree to which the chosen
ground-state orthogonalized free-ion orbitals re-
semble the crystal wave functions (cf. Fig. 4).
This method, when applied within the nearest-
neighbor approximation and with HF orbitals,
yields" a„=4.1 A and Es=10.4 eV/pair. Later
experience has shown -""that the agreement with
experiment becomes considerably poorer when
second-neighbor interactions are included. Sub-
sequent modifications of the method have attempted
to introduce some radial scaling of the free-ion
orbitals so as to better mimic the somewhat con-
tracted anionic crystal orbitals4' -(yielding a„=4.03
A and Es =10.5 eV/pair) or to introduce more vari-
ational parameters in an analytic model for the
anion p orbital (yielding a„=4.0 A and Es = 10.4
eV/pair) ."

(ii) The approach adopted by Euwema el al. "' in-
volves a. direct linear variational solution of the
crystalline HF Hamiltonian and the determination
of the total energy from the BZ integrated charge
density. Using a Gaussian s and p basis set, this
yields a„=3.972 A and Es = 11.2 eV/pair. Although
in good agreement with experiment, it is some-
what surprising that this approach leads to shorter
bonds and higher binding than both the experimental
data and the HF calculations inthe modified Lowdin
model. "- "" Table IV suggests that further local-
ization in the HF crystal orbital is needed to im-
prove agreement with the observed x-ray scatter-
ing factors; this, together with the inclusion of
dispersion forces (not included in the HF model),
will tend to further shorten the bond length and to
increase the binding energy. A similar trend can
be observed in the HF calculations on diamond.

IV. EXCITED STATES OF LiF

A. Experimental data and band-mode) results

Since a ground-state one-electron band model
(cf. , Fig. 2) can at best account for Bloch-type
interband transitions but not for exciton states that
are stabilized by a localized-type electron-hole
interaction, we first review the experimental data
on the LiF electronic spectra in order to identify
those excitations that are in principle describable
by a band model. The excitation spectra of LiF
can be divided into four broad spectral regions
(with possible overlap between them): the F ls
region (-690—720 eV), the Li' ls region (-55-75
eV), the F 2s region (-30-60 eV), and the funda-
mental valence to conduction region (10—25 eV).

(i) The measured F ls ionization energy in the
solid is 693.2 eV." The position of this band rela-
tive to the bottom of the conduction band is proba-
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bly very close to this value due to the low electron
affinity of the system. "" No exciton series has
so far been identified for this transition. Similarly,
the excitations of this level into the conduction
states [expected to start at about 708 eV since the
lowest fluorinelike unoccupied virtual states (e.g. ,

F 3s, 3d) appear (Fig. 2) at about 13-15 eV above
the bottom of the conduction band] have not been
measured. (ii) The Li' Is absorption spectra have
been measured by several authors. "" To deter-
mine which of the observed features are excitonic
and which are interband transition, one first con-
siders the Li' 1s ionization limit and its position
relative to the conduction band edge. Electron
spectroscopy for chemical analysis (ESCA) mea-
surements" reveal an ionization energy of about
64 eV while the Li' 1s to conduction separation
can be deduced from the x-ray photoemission
(XPS)" and yield spectroscopy" determination of
the Li' ls to valence edge (F» „) separation (50.77
eV,"and 50.2 eV) and the optical determination of
the valence to conduction (I „, „-I', ,) gap (14.2 +0.2
eV)."'" This yields a value of 64.4+ 0.8 eV for the
Li' 1s to conduction edge spacing (and a small
electron affinity) and hence the optical transitions
below this energy are due to bound excitons below
the conduction threshold. In this region the optical
spectra reveal a weak shoulder A' at 60.8-60.1
eV ' '"~ with a strong peak A at 61.9 eV, ' ' fol-
lowed by a pronounced minimum at about 63.8
eV" ""corresponding to the convergence limit of
the exciton series. Above this threshold one ob-
serves the shoulders 8 and C at 65.1 and 68.4 eV,
respectively, and a broad structure D at 70.1
eV.""' Brown et at."have suggested, on the
basis of a restricted HF band calculation, that
peak A can be explained as an interband transition
subject to long-range correlation corrections.
Similarly, a local density band model of Mentzel
et al." (with o. = 1) showed a pronounced peak in
the joint density of states at about 62 eV. This
was used to interpret peak A as being due to inter-
band transitions and not to an exeiton. From the
above analysis of the experimental data. ,

""it is
clear that both suggestions are incorrect in that
unperturbed band models cannot account for exciton
states.

The electron-energy loss spectra in the Li 1s
region"" shows the excitons A' and A to be blue
shifted at -62 and 63 eV, respectively, in agree-
ment with the longitudinal exciton energy loss shift
model of Miyakawa. " Emission studies of Maiste
et al."and Gudat et al."have revealed an emis-
sion band centered at 60.6 eV originating from a
radiative decay of the A' and A excitons. They
have tentatively identified peak A' as being due to
a forbidden Li' Is-2s exciton [free-ion excitation

energy, 60.9 eV (Ref. 81)] and peak A a.s a Li'
ls-2p allowed exciton (free-ion excitation energy
62.2 eV"). Similar studies on small-radius exci-
tons in rare-gas solids" have likewise indicated a
small (0.1-0.2 eV} shift of the free-atom transi-
tion energy in the solid. The emission study of
Arakawa et al."has confirmed that only one emis-
sion peak (at 61 eV} exists between the top of the
valence band (50.5+ 0.3 eV) and the bottom of the
conduction band (50.5+ 14.2 = 64.7 eV) suggesting
that both excitons A' and A emit from a common
source. Thus it seems clear from the foregoing
analysis that a band model which omits localized
electron-hole interactions, ean at best attempt
to explain the interband peaks 8, C, and D.

The interpretation of the optical transitions at
50-60 eV is a subject of substantial controversy:
Milgram and Givens" did not observe any absorp-
tion structure inthisregion, while Sonntag'" found
a weak absorption peak at about 53 eV. The photo-
electric yield studies of Gudat et at."showed a
weak structure in the 54-60 eV region with a
small peak at 58.3 eV. Several theoretical stud-
ies' "' "have suggested that the Li' 1s-2s
forbidden exciton may lie at energies as low as
52 eV. It is, however, unclear whether the weak
structure observed in this region is due, instead,
to the tails of the F 2s spectra. "'" Recent in-
elastic electron scattering experiments of Fields
el al."have convincingly demonstrated (by varying
the transferred momentum q) that no forbidden
transitions occur in the 52-60 eV region while the
61-eV peak (A') showed pronounced q dependence
and was hence identified as a forbidden exciton.
The assignment of - 52-eV structure as a Li' 1s-2s
transition would imply a -9 eV solid-state shift
relative to the free ion Li' 1s-2s transition which
is much larger than that found' " for the Li' 1s-2p
exciton (-0.3 eV). Clearly, a detailed theoretical
study is needed to identify the origin of the obser-
ved transitions in this spectral range.

(iii) Experimental data on the F 2s excitations
are very limited; ESCA studies" place the F 2s
ionization potential (denoted as line X) at about
37.6 eV (using a work function of 7.07 eV) This
is not too far from the free-ion I 2s ionization energy
shifted by the Madelung potential at the F site,
36.8 eV. The separation between the F 2s level
and the valence band edge has been measured by
ESCA" (23.2 eV), XPS [24.9 eV (Ref. 69)], and
photoelectric yield (23.7 eV)." Using the value
for the optical band gap (14.2 + 0.2 eV)"'-' the F
2s band is placed at about 38.2+0.8 eV below the
conduction band threshold. We would expect the
F 2s excitons to lie below this energy and the in-
terband F 2s-to-conduction transitions to lie ap-
preciably higher in energy, i.e. , somewhat above
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50 eV. The absorption spectra in the 35-50 eV
region" show no structure. The energy-loss
spectra calculated" from these data show only

plasmon peaks at 45 and 50 eV, while the measured
energy-loss spectra"" show also two pronounced
structures at 33.5 and 42 eV and an additional fea-
ture at 51 eV. Absorption in the 50-60 eV region
shows a flat structure which was tentatively as-
signed to a Li 1s transition. Due to the possible
overlap of the high-energy part of the valence to
conduction bands with the low-energy part of the
Li 1s transitions, it is difficult to resolve the spec-
tra in the 35-50 eV region. The inelastic electron
scattering data of Fields et at."reveal a forbidden
F 2s exciton at 35 eV (i.e. , 2.6-eV binding energy)
which is probably due to a F (2s)-Li'(2s) pair below
the conduction band threshold.

(iv) The fundamental valence-conduction region.
Roessler and Walker" measured the reflectance of
LiF in the 10-20 eV region and analyzed the data
in terms of a. F (2P) —I", , exciton at 12.6 eV and

a gap of 13.6 eV. Piacentini'-' has analyzed the ab-
sorption peak around 12.6 eV in terms of a single
asymmetric Lorentzian, suggesting that a single
excitation is responsible for this exciton. Using an
effective-mass model, the exciton series was found
to converge to E,= 14.2 eV and to show pronounced
central-cell corrections for the short-range n=1
exciton at 12.6 eV. A similar treatment by Pia-
centini et at."of their thermoreflectance data

yielded virtually the same results, indicating a
binding energy of about 2.1 eV for the n = 1 exciton
and an effective exciton radius of 1.9 A. Metzger"
observed the photoelectric yield in LiF and found

the exciton photoemission to start at 12.3 eV and a
photoemission minimum at about 14 eV to mark the
onset of the conduction band. Similar studies by
Pond and Inouye" indicated a photoelectric thresh-
old at 12.6 ~ 0.3 eV for incident photon energies in
the exciton range and a lower edge of 11.8+0.3 eV
for higher (ha) 15 eV) photon energies, the latter
most probably being due to an F 2P surface state
lying above the intrinsic valence band edge. This
study also established the base width of the F 2p
valence band to be 4.6~0.3 eV which is somewhat
smaller (-6 eV) than that determined previously
by XPS""

Having tentatively identified the main interband-
type features in the LiF spectra, we may now com-
pare the predictions of the band model with the ob-
served data. Table V shows some of the main
structures observed together with the values ob-
tained using the difference between eigenvalues
calculated from our band structures both for the
exchange and correlation model (a =-', ) and the ex-
change model with a scaled exchange parameter
(a =1) (columns 3 and 4). The upper three entries
in Fig. 8 show graphically the calculated positions
of the Li' 1s and F 2s excitations as compared
with the observed data.

TABLE V. Calculated transition energies (in eV) in LiF using the band model with: (i)
exchange (0.'=-) and correlation and (ii) exchange (~=1) only, compared with the crystalline
b SCF exchange (+= &2) correlation model and the observed data. The experimental uncertain-
ties and assignments are discussed in Sec. IV A. V indicates vacuum. The letters in the
last column refer to the assignment discussed in the text and in Fig. 8.

Transition Type

Band models
Q=—

3
+=1

Crystal
ASCF Expt

r ~s,.—r ~,.
r„„-v
F (2s) r 1 c

F (2s)-V
Li (1s) rg

Li+ (1s) V

Li+(1s) Li c

Li+ (1s) L2 c

Li (1s) Ls c

F (1s)—V

In terband
P exciton

Ionization

Interb and
s exciton

Ionization

In terband
s exciton

Ioniza tion

Interb and

In terband

In terband
P exciton

Ioniza tion

9.8

10.2

27.9

30.1

47.2

47.6

49.6

55.1

58.1

655.2

10 ~ 5

11.7

31.3

32.5

57.2

58.4

59.5

64.9

68 ~ 5

680.9

13.9
11.7
14.3

37.0
34.1

37.2

63.3
61.3

63.5

6 5.2

67.9

71.4
62.2

694.5

14.2 20.2
12.6 + 0.2

13—14

37.9
35.0

(X) 37.6

64.4 + 0.8
(A) 60.8

64 +0.2

(B) 64.9

(C) 67.4

(D) 69.6
(A) 61.9

693.2
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FIG. 8. Fluorine 2s and Li ls excitation spectra. Here
—- —denotes interband transitions, denotes excitons,
and — —the vacuum level. The notation A', A, B, &, X,
and D refer to spectral lines discussed in the text. The
top two entries denoted && refer to band model calcula-
tions.

—z

+ q„,(p r )+ A.,(p(r )) (2)
dp r

where p,.(r) = iI,*. (r)g&( r) is the jth orbital density
(here j denotes both the band and the wave-vector
index) and the total density is given by
p(r) =Z, , n,.p,.( r} and n, is t. he occupation number.
We note that the direct electronic Coulomb term
[second term in Eq. (2)] includes the self-interac
tion energy for the electron in the jth orbital and
that unlike the case of the Hartree-Fock model,
the exchange-correlation terms [third term in Eq.
(2)] do not cancel exactly this self-interaction. The
use of this potential in a local density variational
treatment leads to an Ã-electron total energy of
the form '

Our results for o = 1 agree very well with those
previously published by Menzel et al."and Chancy
et al. ,

"as indicated above. Note that in these
calculations the position of the vacuum level is
rather accurately determined from the solution of
the one-particle equation and there is no justifica-
tion in shifting the calculated eigenvalue difference
arbitrarily so as to match some experimental
lines. Both the present LDF and Menzel's et al.
calculation are highly converged with respect to
basis-set expansion, are fully self-consistent, and
employ the full crystalline potential with no shape
approximations. Thus they are believed to provide
solutions to the one-particle equations with ac-
curacy of 0.1 eV or better. The agreement of the
calculated band-structure predictions and the ex-
perimental data is seen to be very poor over the
entire spectral region: the band model underesti-
mates the observed transition energies by as much
as 4 eV in the valence region and up to 38 eV in the
deep core region. An artificially increased ex-
change coefficient of n = 1 seems to produce some-
what better agreement with experiment but still
leaves very large discrepancies. "

B. Crystal DSCF model

ln order to examine the reasons for the break-
down of the simple eigenvalue difference ap-proach
to the excitation energies in the LDF model, we
consider a more exact approach, namely, the &SCF
method in which the transition energy is calculated
as the di ffe~ence in total energy for two indepen-
dent SC calculations for the ground and excited
state. We recall that when the electron-gas model
is used to approximate the total exchange and
correlation energy functional E„,( p(r}) the crystal
potential for the N-electron system is given by'

+

+ P n, p, (r)q„(.p(r))dr,

where the one- and two-electron integrals I,. and

F,,, respectively, are given by

I,. = J(p,. t )(——,
'V'-—E —' d, (4)

Rm d~ I

p,.(r)p,.(r')
d d,

CJ Ir —r'I

The lth eigenvalue of the LDF-one-particle equation
[Eq. (l)] is given as the average of ——,'~'+ V~~c'„( r )
over the 1th orbital density:

=I,+ n.F.,

+ orr

(-}d&„(p(r))
dp(r)

Again, the Coulomb self-interaction term F« is
not exactly canceled by the self-exchange term.
An extreme case occurs in the LDF treatment of
the hydrogen atom in which the F„„term is not
canceled exactly by the last term in (6) (due to the
lack of other particle exchange terms). Instead,
only a partial compensation is exhibited. 4

We consider now the ionization energy of the
electron from the lth band in the crystal as a total
energy difference. In the lowest level of approxi-
mation, one assumes that all the eigenfunctions of
the system are unchanged (relative to the ground
state) by the removal of a single electron from the
system (unrelaxed or "frozen orbital" limit).
Hence, one expands the total energy difference
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E("" ' —E'"'0 (where the zero superscript de-
notes ground-state eigenvectors) in a, Taylor ser-
ies with respect to the population numbers in a
standard way and finds to second order:

(7)

II0 Fo + po r xc ~
a „,[p'(r}]

l

, , -. ~'~„[p'(r)]0

E(N"1),0 E(N), o + II0&r

where the unrelaxed first-derivative &E((N)'0/Bn(

equals the negative of the eigenvalue p, and the non-

diagonal second-order term (unrelaxed self-inter-
action) is given by

g(N 1), + g(N) 0 + gO + y0)(
l ll (10)

can be generalized to excitation energies between
states l and A. in the limit of zero electron-hole
interaction as

E(N), + E(N), 0
A, l A,

magnitude than II'» (e.g. , —2 eV for Li' 1s). 8imi
lar results for relaxation-polarization self-ener-
gies for atoms are obtained in the HF model"" "
and in linearized LDF models. Note that Z*, in Eq.
(9) is not explicitly dependent on the wave vector.

The final expression for the ASCF ionization
energy,

, ( )
a&,.IP'( )))~-

~PL l
(8)

with higher-order corrections which are propor-
tional to BNE(N) 0/Bn(0 for p & 3. Hence, one ob-
serves that, contrary to the situation prevailing
in the HF model, the unrelaxed total energy dif-
ference does not equal the negative of the corre-
sponding eigenvalue alone and that an addition term
appears. (This term measures the change in the
energy of the tth eigenvalue upon removal of an
electron from the system due to the diminished
screening by the remaining electrons and removal
of its self-interaction. ) Numerical estimates for
the screened self- interaction term II'„ in atoms
[obtained by calculating the left-hand part of Eq.
(7) with ground-state orbitals] indicate that it is
positive (i.e. , —q (+ II'» yields a higher ionization
potential than Koopmans value —0)) and decreases
in absolute magnitude in going from deep shell or-
bitals to the outer valence orbitals. "" For the
ionization of the 1s electron in the Li 1s' case,
this term amounts to about 19 eV (E'""—E,',""'
= 77.4 eV; —e„=58.4 eV).

In a higher level of approximation, one allows
the orbitals in the excited state to relax variation-
ally, thereby lowering the excitation energy. One
defines the relaxation-polarization self-energy Z,
simply as the difference between the relaxed and
unrelaxed &SCF excitation energies:

(E(N 1), 4 E(N), 0") (E(N 1),0 E(N), 0)l l

—E(N-1), + F(N-1), 0 (9)l

where the superscript asterisk denotes the use of
self-consistently determined wave functions in the
variationally calculated excited-state total energy.
Note that this definition is slightly different from
other definitions" in that relaxation in II« is in-
corporated here in Z*, . Numerical estimates of
Z*, for occupied orbitals in atoms indicate that it
is negative and usually much smaller in absolute

We note that both the self-interaction and the re-
laxation-polarization self-energy terms depend on
all the electrons in the system and not only on the
particular pair occupying the &., t states. In this
limit, the "rigid" band-structure model which
treats the t to X excitation energy as sq» no longer
holds and a separate treatment is needed for each
individual transition. Equation (11) for the excita-
tion energy is pertinent to the situations where
the excited electron and hole are allowed to pola-
rize the remaining electrons and to relax their
own electronic states but have a zero Coulomb and
exchange- correlation interaction between them-
selves (i.e. , they both occupy delocalized Bloch
states). In the limit where these particles maintain
any degree of localization and hence, interact
directly (as in an exciton state) the excitation en-
ergy is given by

&E1(=Ag„(+ (H1„—II', 1)+ (&1 —&() —K;,", (12)

where K„'," is the interaction between the electron
at )( and the hole at I. Equation (10) is thus perti-
nent to the description of photoionization while
Eqs. (11) and (12) are pertinent to the description
of itinerant interband transitions and exciton states,
respectively. One notes that the application of the
standard band model for excitation energies (i.e. ,
joint density of states) relies on the assumption
that, for an excitation of a single electron in the
solid, the self-interaction, relaxation polarization
self-energy, and electron-hole interactions are
small (of the order of 1!N, where N is the total
number of particles in the system}. One notes,
however, that although the self-intera, ction and
self-energy effects are generally expected to de-
crease in importance as we go from atoms to
molecular clusters and finally to solids, this de-
crease is by no means monotonic with the system's
size and excitations which give rise to localized
states can certainly exist in extended systems.

Several approaches have been previously at-
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tempted to calculate the relaxation-polarization
self-energy and the electron-hole interactions in
solids. Those involve either atomic models" "
(in which the corresponding effects are calculated
in atoms and then added as a constant to the band-
structure estimate of Aq») or more extensive
solid-state approaches" (that involve a model
treatment of the exchange screening and electron-
hole interaction). One notes that in the former
approach one assumes that the relaxation effects
in the crystal are unscreened relative to the free-
ions and that the unperturbed extended crystal
states experience the same relaxation, correla-
tion, and electron-hole effects as the localized
electron-hole pair (i.e. , the calculated Ae in an
entire spectral region is shifted by X*+K,, cor-
responding to a single selected transition i —j).
Free-ion models, '" on the other hand, neglect the
detailed band-structure effects on the transition
energies (i.e. , the proper solid-state short-range
Coulomb and exchange correlation potentials and
wave-function overlap). Further, the self-energy
terms are directly transferred from the observed
free-ion excitation energies, and thus neglect the
effects of solid-state screening and valence band
polarization. Effective-mass" and Frenkel-type"
models for localized excitations in solids neglect,
in low order, relaxation effects and assume the
range of localization of the state in question (as
long-range and short-range, respectively).

Our objective is to use a ASCF model [i.e. , Eqs.
(10)-(12)]directly for the solid. Since we are
unable to start from a Bloch Hamiltonian and ob-
tain localized-like solutions as a particular
case,"'"'our basic approach is to assu~ne sym-
metry breaking by making a localized excitation
at a given site in the crystal and to observe wheth-
er the screening accompaniedby the self-consistent
charge redistribution would be sufficient to keep the
energy of this state within the continuum of the un-
perturbed states (in which case the state would mix
with the nearby states of the same symmetry to form
an itinerant manifold that would be describable by the
conventional band- structure approach) or if the lo-
calized description (i.e. , a split-off energy level
with exponentially decaying wave-function ampli-
tudes) would persist. When an electron having an
average Coulomb parameter U (Ref. (101)is excited
from a band of width W, such that U/W» 1, we might
expect that a localized state would indeed finally
form, and that in the &SCF picture it would be
stabilized by the removal of its self-interaction
term and be appreciably affected by relaxation and
polarization effects. The &SCF model is hence
complementary to the one-electron band model
in that such localized states become possible.
Thus we treat the locally excited species as a

point-defect interacting with the bulk crystalline
states and seek a self-consistent solution for the
total energy of that system in the LDF model; its
difference from the total ground-state energy com-
prises our bSCF estimate of the corresponding
excitation energy, with the effects discussed in

Eqs. (10)-(12) included.
Several well-known techniques are available for

treating point defects in solids: The Slater-Kos-
ter'" and molecular-cluster models'" are perhaps
too crude in that the former severely restricts the
range of the perturbative potential and does not
lend itself in an obvious way to self-consistency,
while the latter introduces unphysical surface
states and does not contain a realistic description
of the bulk band states (e.g. , band edges, etc).

Qne of us has previously suggested a different
model for treating such point-defect problems,
namely, the small-periodic-cluster (SPC) mod-
el"" in which one constructs a large crystallo-
graphic unit cell with a defect placed at its center
and solves the associated Bloch Hamiltonian prob-
lem (with periodicity imposed with this large
supercell) using band-structure techniques. To the
extent that the defect-defect interaction present in
this superlattice model (monitored by the dispersion
of the defects one-electron band) can be kept small
by choosing a sufficiently large SPC, the solution
would form a good approximation to that of a single
point defect in the lattice. In the case of LiF, we
use a basic unit cell containing 8 (fcc structure)
or 16 (simple cubic structure) atoms, with one of
them being locally excited (and the defect-defect
distance is a and & 2 a, respectively, where a is the
lattice constant). One obtains the ASCF estimate
for the excitation energies simply by substracting
the ground-state energy from that of the defect-
containing crystal model.

The main physical contents of our periodic clus-
ter ASCF model include: (i) Contrary to free-ion
models, '" "band structure" effects such as the de-
tailed influence of the crystal potential and the
variationally determined crystalline wave functions
on the one-electron spectra 4&„, are directly in-
corporated. (ii) Spurious self-interaction effects
present in the LDF band model are largely elimi-
nated by treating directly total energy rather than
eigenvalue differences. (iii) Excited-state orbitals
are allowed to self-consistently relax in response
to the perturbed crystal potential and similarly the
band states are properly polarized by the existing
hole state. This may be compared with atomic-
like self-energy models"" which do not incor-
porate solid-state effects for these quantities. (iv)
Electron-hole interaction is directly affected via
both the Coulomb and the exchange-correlation in-
teraction present in the basic LDF Hamiltonian.
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The local-field screening of this interaction is de-
termined naturally in the SC cycle without invoking
an extraneous semiclassical electron-hole interac-
tion law. "" (v) A large number of crystal states
and ionic sites are allowed to interact nonpertur-
bationally in forming the final defect state. The
range of localization of these states is not assumed
(except as an initial inPut io the SC cycle) but
comes out rather naturally from the model. This
may be compared with simplified Slater-Koster
one-site one-band models'"" "' and with the
molecular-cluster approach"' which involve a
limited basis for the interacting system. (vi) The
"point-defect" wave functions are naturally matched
with the appropriate unperturbed Bloch states
through the use of a basis set which is a super-
lattice of crystal functions with Bloch periodicity.
The solutions obtained for a given hole state are
orthogonal to all other Bloch-like solutions. This
seems to offer a distinct advantage over methods
that treat differently (and separately) resonating
versus localized defect states. "'

The main disadvantages and limitations of the
superlattice ASCF model are:

(a) Only excitations giving rise to reasonably
localized defect wave functions (localization range
of 1-2 lattice constants) can be efficiently treated.
Large radius (Wannier-type)excitons or discrete
excitations resonating in the conduction band con-
tinuum are characterized by slowly decaying tails
and produce non-negligible defect-defect interac-
tions. These are better described by effective-
mass models, "perturbative approaches, " or in-
tegral equation methods"' that use the perfect crys-
tal Bloch states as a zero-order basis. On the
other hand, all core excitations and the rapidly
screened valence hole states in metals and insul-
ators should be amenable to a realistic descrip-
tion by this model.

(b) A ground-state LDF calculation of the total
energy in the presence of a hole does not guaran-
tee, in principle, a variational upper bound even
with the correct exchange and correlation func-
tional. Since we are unable to find a physically
reasonable localized excited mode from an un-
restricted solution to the (At —1)-particle LDF
equations, we are forced to consider a fictitious
external potential2 that would keep the hole in a
given subband. Although this seems to be a reason-
able model, the hSCF excitation energies probably
form upper bounds to the correct result because
of the absence of a truly variational description of
the excited state.

(c) Certain dynamical contributions to the self-
energy associated with higher-order perturbative
terms"'" (not appearing in the ground-state LDF
equations) are ignored (e.g. , a configurational in-

teraction between quasidegenerate excitations of the
same symmetry). These are usually smaller than
the direct self-energy and relaxation-polarization
terms for the system in question and should be
viewed as refined corrections to our results.
Since their relative contribution seems to increase
for outer-shell excitations, one expects the super-
lattice ~SCF model to work better for inner shells.

(d) Our spin-restricted model neglects multiplet
splittings in the calculated spectra. These are
unresolved experimentally in LiF but are apparent
in other members of the alkali-halide series.

(e) The n,SCF model does not guarantee the or-
thogonality of the all-electron excited hole state to
all other hole states produced by different excita-
tions since they are constructed from different LDF
Hamiltonians. In practice, however, orthogonality
is maintained to within reasonable accuracy (e.g. ,
the overlap integral between fluorine 2s and 1s hole
wave functions in LiF crystal is 2 x 10 ') due to the
occurrence of the hole in a distinctly different
subshell in each case. The orthogonality of a given
hole state to all other one-particle bandlike states
is guaranteed in the ~SCF model since the same
Hamiltonian generates all these states.

V. RESULTS FOR THE DSCF EXCITATION ENERGIES

The local perturbations assumed in this study
are classified into three groups, depending on the
nature of the excitation being investigated:

(i} Local lo ilinero-nt ir-ansitions. . We consider
three particular examples: the two core-to-con-
duction transitions Li'(1s) —I', , and Li'(ls) —L, ,
and the valence-to-conduction transition F (2p~)

In the first two, the 1s subshell of a given
Li site is excited into either the bottom of the con-
duction band I', , (having 97% Li 2s cha.racter, as
judged from the population analysis of the com-
puted band eigenfunction} or to the L, , state, lying
some 10 eV above the bottom of the conduction band
(and having 93/~ Li 2p character}. In the third
example, we excited a 2p subshell of a given F
site into the bottom of the conduction band at I

t

For these excitations, we view the final state as
an itinerant Bloch state while the initial state con-
tains a locally excited site. We prepare an initial
crystal potential for these states in the following
way: for the two core excitations we generate a
superposition density (and a corresponding poten-
tial) by creating a hole in the ls shell of a particu-
lar Li site (i.e. , Li" Is'2s'2p') and place the ex
cited electron either in the Li 2s orbitals of all
other Li sites in the unit cell (i.e. , Li"'
1s'2s' "2P', X being the number of Li sites in the
cell) or in all of the Li 2P orbitals (i.e. , Li"' "'
Is'2s'2p'~") for the transitions to the I', , and L, ,
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„(z,r) =Q e'"'"y, (r- „r—d, ), (13)

where y denotes a wave vector in the (small) BZ
constructed from the large direct-space supercell
(in the case of an unperturbed SPC, each of these
g's is reducible to N values of I(. in the primitive
zone, e.g. , for 4 molecules per cell, K =0 corre-
sponds to 'i + 3X in the small BZ representation)
and T„denotes a direct lattice vector for the super-
cell. To allow for greater flexibility of our basis,
we compute the set y, (r - d ) self-consistently
(and numerically) for the free-ion species assumed
in our initial potential construction (e.g. , for the
local ionization of a Li' 1s electron from the solid
our basis set contains orbitals computed self-

final states, respectively. Using these initial
crystal potentials we perform a fully self-con-
sistent band-structure calculation subject to the
constraint that the (lowest) Li Is band contains,
on the average, one hole (i.e. , 2' —1 electrons,
for both spins). Hence, the initially localized hole

state is allowed to relax its own orbitals, to pola-
rize the rest of the states, and to delocalize spa-
tially under the influence of the self-consistent
crystal potential subject to the restriction that it
remains in the 1s band. For the F (2p') - I, , tran-
sition, we prepare a crystal potential correspond-
ing to a 2p hole in a particular F site (i.e. , F'
Is'2s'2p') and a spread-out electron in the Li 2s
shell (i.e. , I,i"' "' ls'2s' "2p').

(ii) Localized to localized transitions: Here we
consider the possibility of the formation of
Li'(ls -2s), Li'(1s-2P), and F (2p) - Li'(2s) ex-
citons. For the first two we prepare a crystal
potential corresponding to SPC's with one Li atom
in the Li' 1s'2s'2p' or the I.i' 1s'2s'2p' configu-
rations {for the exciton states of s and p symme-
tries, respectively) while the rest of the unit cell
atoms are in their "normal" Li' 1s2s'2p' and F
1s'2s'2p' states. These locally excited species
correspond to the one-site Li core excitons. For
the two-site F (2p)-Li'(2s) optical exciton, we con-
struct a crystal potential for an SPC with one F
site in the F' 1s'2s'2p' configuration and a nearest-
neighbor Li site in the Li' 1s'2s'2p' configuration,
with the rest of the atoms in their "normal" state.
With these starting potentials, we perform self-
consistent band- structure calculations restricting
the Li 1s and F 2p bands to have 2X —1 electrons.

(iii) ionization. In considering an ionization pro-
cess we form a, hole in a given ion site (e.g. , F'
1s'2s'2p' or Li" ls'2s'2p' for F 1s and Li'1s ion-
izations, respectively) and perform a (non-neutral)
calculation using this crystal potential.

For each of the initial crystal potentials we pre-
pare an independent set of trial Bloch functions

consistently for the Li" 1s'2s'2p' ion, together
with those computed for the regular Li' 1s'2s'2p'
and F Is'2s'2P' ions). Thus a large part of the
orbital radial Distortions accompanying the charge
redistribution in the solid upon ionization is already
affected by these nonlinearly optimized orbitals.
The relaxation introduced by other sites is al-
lowed for through the solution of the linear varia-
tion problem. In subsequent iterations, where the
population analysis of the crystal eigenfunctions
indicates a population change in any of the basis
functions by more than about ~0.2~e, these basis
functions are recomputed from the free-ion one-
site LDF equations using the updated orbital popu-
lation of the corresponding ion. This technique
offers an important advantage over standard LCAO
methods employing a fixed set of oroitals through-
out the calculation and improves substantially the
convergence rate of the SC cycle [2-4 iterations
for core excitations and 4-6 iterations for valence
excitations are required to obtain an agreement of
6~ 10 'e between the input and output unit-cell
charge-density averages: b = f„c ~ p,„,(r)
—p„(r) ~dr]. The excitation energies obtained in
this manner are depicted in Table 7 together with
the experimental data. Figure 8 presents schemat-
ically the positions of the Li 1s and F 2s excita-
tions and their relation to the one-electron band-
structure results.

A. Li 1s excitations

The calculated Li 2s spectra start with two
exciton states: the forbidden Li 1s-2s at 61.3 eV
and the allowed Li 1s-2p at 62.2 eV, and is followed
by the onset of the interband transitions and the
ionization limit at 63.3 and 63.5 eV, respectively.
'The s and p exciton binding energies are 2.0 and
9.2 eV, respectively (measured relative to the cor-
responding s and P band states I', , and L, ,). Past
the series limit we find the interband region (for
which we have computed those transitions giving
rise to peaks in the density of states" such as to
the I., „L,„and L, , states) extending to about
71 eV.

The calculated Li s and P exciton energies agree
very well with the inelastic electron scattering"
and the opticaldata, ""'"but are in conflict with
the suggestion of Kunz e! al."'"that the s exciton
lies "t 54 e7. Our 'calculation indicates that sim-
ilar to the situation prevailing in the exciton spec-
tra of the rare-gas solids, " the position of the Li
1s core exciton is only slightly shifted (0.2-0.3 eV)
with respect to the corresponding free-ion transi-
tion. On the other hand, the calculations of Kunz
et al."'"and Collins et al." suggest that the Li s
exciton lies some 7 eV lower than the correspond-
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ing transition in the ion, while the energy of the

Li p exciton almost coincides with the position of

the free-ion transition. Since the orbital relaxa-
tion accompanying the cation core excitations is
almost entirely localized at the excited site (this
being a single-site exciton) and crystal screening
is expected to be minor due to the small valence
charge on the Li sub1.attice, only solid-state cor-
relation effects are expected to give rise to the
difference between the crystal and free-ion local-
ized excitation energy. Various model calcula-
tions"' indicate that these correlation correc-
tions are far smaller than the difference in solid-
state versus free-ion core excitations energies as
found by Kunz et al.""We further note that in
their treatment of Li core correlation effects,
the semiclassical Mott-Littleton correction (3.0
eV) is included on top of the similar long-range
polaron contribution (3.5 eV) and yields a highly
improbable value for the Li 1s ionization energy
(57 eV compared with the measured value of 64
+0.2 eV)."

Similarly, our results are in direct contradic-
tion with those of Menzel eI, al."which suggest
that the band struetuxe derived eigenvalue differ-
ence, E~, , —EL, „,would be identified with the
experimental absorption threshold (peaks A' and

A) and thus dismiss the occurrence of core exci-

tons in the spectra. Our results (Table V) show

that not only is the intexband transition energy
changed by as much as 13 eV upon the removal of

the self-interaction terms and the introduction
of relaxation-polarization effects, but that in ad-
dition a stable exciton state appears some 9 eV
below this threshold when a locally screened
self-consistent electron-hole interaction is al-
lowed.

In order to study the evolution of a localized
state in the solid and its relation to similar states
in the free ion, we have calculated the changes in

charge density brought about by localized excita-
tions in both systems. Figure 9 shows the differ-
ence in radial orbital density 6p(r) between a lith-
ium ion with a hole in its 1s shell and a ground-
state lithium ion, as calculated from the two cor-
responding SC solutions. The area under each of
these curves is zero since &p(r) is taken as the
difference between two normalized orbital densit-
ies. It is seen that upon forming a core hole,
substantial 1s density is concentrated in a region
close to the nucleus (R~ 0.6 a..u. ) while an equal
amount of charge is deleted from the outer part
(0.6~R~2.5 a, .u.); note that the total perturbation
decays to zero at a distance shorter than the near-
est-neighbor ion in the solid. {3n the other hand,
the 2s and 2p orbitals undergo much stronger re-
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laxation effects and become substantially more
localized than in the unperturbed ion. Vfhereas
the orbital relaxation effects shown in Fig. 9 are
totally neglected in the band-structure approach"
to excitation energies, free-ion models" "at the
other extreme, assume that this free-ion &p(r)
persists in the solid in an unscreened fashion.

Figure 10 shows the calculated difference in the
crystal 1s radial charge density along the [100]
direction, obtained from two independent [non-SC
and SC) supercell calculations (curves labeled
n, porc(r) and dLp,'P(r), respectively]. To facilitate
comparison with the free-ion case, only the charge
density difference contributed by the central Li
site is shown. The curve labeled p'"(r) shows the
perturbation p„(Li")—2p„(Li') calculated from the
free-ion densities. [The area under these curves
is -1 since p(r) is defined here a.s total 1s charge
density differences. ] Comparing the p„~rc(r) and
p'"(r) curves, it is seen that the hole density in
the free-ion case is only slightly modified when
put in the crystal environment (this is not surpris-
ing since the basis functions used to describe the
hole state in the crystal are generated from exact
hole-state functions in the ion). When self-con-
sistency is achieved, the shape of the hole density
changes is flattened slightly (mainly due to screen-
ing by the small admixture of Li 2s and 2P states
into the valence band) but remains largely localized
on the perturbed site and shows negligible overlap
with the nearest-neighbor sites. Thus this 1s core
hole is more logically describable in terms of free-
ion models; crystal effects introduce only a small
shift due to the diminished relaxation. Since
almost all of the valence charge in LiF is localized
on the fluorine sublattice, the screening of the Li
1s hole in the solid is ineffective and the free-ion

hole persists. Due to the short range of the per-
turbation introduced by the core hole (Fig. 10),
our superlattice representation does not reveal
any unwarranted defect-defect interaction and the
results obtained with an 8-atom and 16-atom SPC
are identical to within numerical accuracy. The
main difference between the free io-n and crystal
Li core hole density is brought about by the ad-
mixture of some 2s and 2p orbitals into the oc-
cupied manifold of the latter; while the large
changes in these radial densities upon hole forma-
tion (Fig. 9) does not affect the shape of the free
ion hole, they give rise to some structure in the
total hole density (i.e. , 1s, 2s, and 2P) in the solid.
From these results, it is apparent that the drama-
tic breaking of the lattice symmetry by the forma-
tion of a localized hole (Fig. 10) casts serious
doubt on the (unperturbed} band-structure approach
to core excitation energies. Similarly, the solid-
state hybridization effects on the hole density may
introduce (probably smaller) errors into the free-
ion models.

The transition between the Li core state and the
(high density of states) conduction-band levels
Ly Lp and L3 calculated to appear at 65 .2,
67.9, and 71.4 eV, respectively, agree well with
the experimental peaks B, C, and D observed'4
at 64.9, 67.4, and 69.6 eV, respectively (cf., Fig.
8}. These excitations into P-like conduction states
are subjected to strong perturbations by the pres-
ence of the Li hole state. Thus the 4SCF model
for these transitions not only shifts their positions
relative to the band-structure prediction (cf.,
Fig. 8} but their relative locations also change
(e.g. , the transitions to I',

~t, and I, , have a sepa. -
ration of 10.9 eV in the band-structure model while
the &SCF model shows a splitting of only 8.1 eV
between these transitions). Thus we conclude that
the relaxation-polarization and electron-hole in-
teraction effects cannot be applied to a band struc-
ture as a rigid shift, in disagreement with the sug-
gestion of Kunz et al."'"

B. F(1s) and F(2s) excitations

The calculated fluorine 2s spectra start with a
forbidden two-site F (2s) —Li'(2s) exciton at 34.1
eV and are followed by the interband threshold and
the ionization limit at 37.0 and 37.2 eV, respec-
tively. Past this threshold we expect interband ab-
sorption bands which have appreciable intensity
only at energies where fluorine final states exist.
Our calculations indicate that such transitions
would start at about 50 eV (i.e. , about a Rydberg
above the conduction threshold) where the I'», and
1"», states become accessible. Indeed, the ab-
sorption spectra in this region"' does show a wide
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window between the conduction threshold at 38 eV
and about 50 eV where a weak structure occurs. ~ "
Although previously attributed to the Li 1s sp~.c-
tra, '"'""""our present study suggests that this
might be a F 2~ -to-conduction interband transition.
The correlated HF calculations of Kunz" predict an
F (2s) exciton at 37.6 eV (i.e. , only 0.3-eV binding

energy relative to the conduction thr shold, in poor
agreement with both our calculation and with ex-
periment). It is interesting to note that even a sim-
ple free-ion model using the observed F (2s) ion-
ization potential (24 eV)"" and the point-ion field
at the F site (12.45 eV) yields a reasonable result
for the F (2s) ionization limit in the solid (36.4 eV
compared with the &SC F result 37.2 eV and the ob-
served value 37.6 eV).

The F (ls) ionization limit is calculated to be at
694.2 eV (observed:693. 2 eV) and the interband spec-
tra for this state are expected to start at about 708 eV.
As seen from Table V, the band- structure and DISCI"

results for these transition energies differ by about
37 eV. Interestingly, while the n =1 exchange band
model shows a somewhat better agreement with the
observed transition energies than does the a = -', ex-
change and correlation band model, it leads to
much poorer agreement in the final MCF limit
[i.e. , 720. 1 eV compared with 694.5 eV for the
F (ls) ionization energy and 74.7 eV compared with
63.5 eV for the Li'(ls) ionization energy for o. = 1
and —', , respectively]. The fact that the choice of
n =1 yields larger eigenvalue separations in the
band limit (and hence better agreement with ex-
periment), has led many workers to favor this

value. "~" It is gratifying that when a proper MCI'
treatment is done, the results of the more correct
choice of e = —', are in much better agreement with

experiment than those obtained with the artificial
choice of n =1.

C. F (2p) excitations

Our exciton model calculations for the optical re-
gion yield a F (2P)-Li'(2s) exciton at 11.7 eV with
a series limit at 13.9 eV. These compare reason-
ably well with the observed n = 1 exciton at 12.6
+0.2 eVandthebandgapat14. 2 +0.2 eV. To study the
charge redistribution effects introduced by a val-
ence hole, we again calculate the difference be-
tween excited and ground-state charge densities.
Figure 11 shows the change in orbital density upon
forming a 2P hole in the F free ion. The main ef-
fect is again a substantial contraction of the 2P

shell, with smaller effects on the 2s density (the
change in the 1s density upon forming a 2P hole was
found to be negligible). The curve marked np'an(r)
in Fig. 12 shows the total charge density change in
a free ion due to formation of a p hole in a single
F site(i. e. , [5p(F0, 2P') —6p(F, 2P')]+ 2[p(FO, 2s)
—p(F, 2s)]). It is seen that this hole density has
a considerable range and a nonvanishing magnitude
even at the position of the nearest-neighbor F .
When the perturbed F' atom is placed in the solid,
the resulting hole density [~ps~sc(r) in Fig. 12] is
slightly flattened but remains essentially similar
to the free-ion hole density. However, upon iter-
ating the solution to self-consistency, one obtains
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a charge density difference [np~~~(r) in Fig. 12, in
which we include only the density originating from
the perturbed F site] that is dramatically shallower
than the initial hole density. This final hole density
is found to have a rather long tail and a nonexpon-
ential decay rate at distances larger than 4 a.u.
from the perturbed site. It is hence clear that a
valence hole in LiF is partially screened by the
crystal electrons and differs considerably from a
2P hole in the free ion. Nevertheless, the localized
hole density (up to a distance of 3 a.u. from the F'
site) is sufficient to shift the valence band edge to
14.3 eV below the vacuum limit (compared with 10.2
and 11.7 eV obtained from the band structure with
o. = —, and 1, respectively) and to give rise to a
bound exciton at 11.7 eV above the valence edge
with a binding energy of 2.2 eV. The valence hole
state in LiF is hence an intermediate case in that
it cannot be described by either a free-ion model
or a pure band approach. '"

Although our calculation was confined to a single
F (2P)-Li"(2s) exciton state, the result obtained for
the F (2p) ionization limit in the crystal (14.3 eV
relative to the point-ion corrected free-ion value of

15.9 eV) indicates that the exciton series would

converge to the bottom of the conduction band (cal-
culated value 13.9 eV), in agreement with the ob-
servation of Piacentini et al."but in conflict with
the calculation of Kunz et al."suggesting a series
limit at the f. gap (1 t eV). Our calculated exciton
binding energy of 2.2 eV agrees with the results of
Piacentini" (2.09 eV, obtained by fitting the ob-
served data to a Rydberg series including central
cell corrections) and with the calculated value of
Collins et al. 85 (1.8 eV) obtained from a Slater-
Koster one-band one-site impurity model. We
note, however, that our result for the F (2P) ex-
citon contains some uncertainties due to a finite
exciton-exciton interaction present in our super-
lattice model. The exciton transition energy ob-
tained with the 8-atom unit cell (exciton-exciton
distance of one nearest-neighbor) was 11.98 eV
compared with 11.71 eV obtained with the 16-atom
unit cell (exciton-exciton distance of v 2 a). To es-
timate the residual exciton-exciton interaction in
the 16-atom unit cell calculation we have calculated
the dispersion of the corresponding exciton band:
the results for the exciton position at tt = (0, 0, 0)
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and v =(1,0, 0) differ by 0.13 eV, indicating that re-
sidual interaction is still present in our superlat-
tit."e model. This is undoubtedly caused by the ex-
tended tail of the valence hole density (compare
Fig. 12) and can be treated by significantly enlar-
ging the supercell's size. This demonstrates the
inherent difficulty in describing such a perturbed
crystal state (intermediate between a core exciton
and a Bloch band) which has a pronounced charge
localization near the perturbed site but a nonvan-
ishing tail in its exterior part. A single-site lo-
calized impurity model" would hence seem inad-
equate for its treatment due to the slow decay of
the perturbed density, while an effective-mass
model would simi'. arly mistreat the short-range
localization effects.

It has been customary to assume" "that only the
Coulomb electron-hole interaction is responsible
for the exciton binding energy. To test this as-
sumption we have estimated the contribution of the
exchange and correlation energy to the exciton
binding by calculating this energy directly from the
self-consistent charge density difference (in the
presence and absence of the exciton). The result
showed that 0.51 eV (about 20% of the binding) is
contributed by exchange-correlation interactions.
This is a direct result of the substantial charge re-
distribution effects introduced by the exciton state
which acts to localize the charge near the per-
turbed sites and hence to enhance the exchange-
correlation stabilization over that produced by a
delocalized Bloch state.

Finally, we comment on the exciton band in the
solid. Clearly, our treatment has not considered
the translational degeneracy of excitons localized
in different unit cells. When suitable exciton Bloch
functions are formed from the single-site excitation

functions'" and the crystal Hamiltonian is dia-
gonalized in this representation, an exciton band
results. In standard treatments of this effect one
used either a. Wannier model'" appropriate for
large radius excitons or a tight-binding Frenkel
model'" with the excited orbitals of the nonintex-
acting subsystems used as zero-order trial wave
functions. From our results, it seems obvious
that the low members of the exciton series orig-
inating from a valence hole in LiF are not amenable
to description by either of these limiting forms.
We hence suggest that the SC relaxed crave func-
tions obtained in our crystalline &SCF model be
used as trial vectors for a more complete de-
scription of the exciton bands in these materials.
Although a complete calculation of such an ex-
citon band is outside the scope of the present
study, we can compare relatively easily the width
of such a band using our crystalline Bloch functions
obtained from the self-consistent &SCF model.
Such a calculation shows a width of 0.3 eV for the
F (2P) exciton band in LiF [compared with a width
of 0.01 eV similarly obtained for the Li'(ls) s-type
exciton band]. Clearly, the valence excitons in
LiF exhibit sizable interactions (cf. , the range of
the corresponding hole states in Fig. 12) that should
be amenable to experimental observation.
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