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Spontaneous ordering of III-V alloys is known to cause a band-gap reduction ~AEs
~

and a splitting
AEqq of the valence-band maximum. Strain also leads to a valence-band splitting and, depending
on the sign of the strain s, to an increase (for e ( 0) or decrease (for c ) 0) in the band gap. We

present a general theory explaining how the strain produced by lattice mismatch with the substrate
interacts with ordering effects. We find for (001) strain and (111) "CuPt" ordering that (i) atomic
ordering removes the cusp in the band gap vs strain curve of random alloys; (ii) epitaxial strain al-

ways leads to an increase in the ordering-induced valence-band splitting AEi2, (iii) atomic ordering
reduces the slope of b,Eig vs strain; and (iv) while (a) strain; (b) ordering, and (c) clustering can
all lead to a band-gap reduction, we show here that the three effects can be partially distinguished
on the basis of a b,Ei2 vs ~AEs

~
plot; and (v) the wave-function type at the valence-band maximum

(VBM) (and, hence, the cause of the splitting) can be further determined by measuring the polar-
ization dependence of the intensities of the transitions between the VBM split components and the
conduction-band minimum; (vi) we predict that ordering can significantly enhance the degree of
spin polarization of photoelectrons emitted from the VBM. Ordered III-V alloys can thus be used as
a good polarized electron source. These general results open new avenues of band-gap engineering
by combining epitaxial strain with atomic ordering. Speci6c experimentally testable predictions are
presented.

I. INTRODUCTION

At threshold, the optical properties of direct-band-
gap zinc-blende semiconductors are determined by (in-
cluding the spin-orbit interactions) the I's„,','I' s,
transitions. These transitions can be split into heavy-
hole and light-hole components by applying external
fields, e.g. , strain, or by internal field, e.g. , atomic
(superlattice) ordering. s s Most theoretical works on
these threshold transitions considered the first case,
focusing on how strain splits the I'8 states at the
valence-band xnaximurn (VBM) and changes the band-

gap energy. Experiments on strain effects in cubic
zinc-blende semiconductors ' and on their cubic ran-
dom alloys [Ga Ini P Ga Ini As, 2i' ' or SiGe
(Refs. 28 and 29)] have indeed confirmed that the VBM
splits almost linearly with strain, and that the band gap
vs strain curve changes slope as the strain changes from
compressive to tensile. Here, we consider the inter-
esting case where the film is atomically ordered, so its
I'S„state is already split by the lower symmetry of the
ordering potential even without strain. Application of
strain then leads to interesting and unexpected results.

Atomic ordering corresponds to a periodic arrange-
ment of atomic planes along a given crystal axis G,d.
Examples include (i) Spontaneous CuPt ordering ob-
served in homogeneous vapor-phase growth of virtually
all III-V alloys, yielding alternate monolayer super-
lattices along G,s = [111]. This leads to significant
predicted 3 and observed ' I'4„5 -I'6„splitting at

the VBM. (ii) Artificially grown G,s = [001] superlat-
tices have been predicted ' ' to have I'6„-I'y„split-
tings at the VBM. In conventional strained layer super-
lattices the direction G,p of layer modulations coincides,
by choice, with the substrate orientation G,„b,t, t„so
the effects of atomic ordering and strain add up colin-
early. In contrast, spontaneously ordered systems often
exibit ordering along G»d g G»b, i,~i, . This leads to
the interesting case where a semiconductor is subjected
to noncolinear "chemical strain" along G,d and to "elas-
tic strain" along G,„b,t, &,. We study here the conse-
quence of such "double strain" on the optical properties
at threshold. We give easy-to-use expressions for the sep-
arate effects of G,g or G,t, ,„on the valence and con-
duction bands. We then show how the existence of "dou-
ble strain" changes the optical properties relative to the
pure epitaxial strain or pure ordering cases. Most dis-
tinctively, for atomic ordering along [111]and epitaxial
strain along [001]: (i) Atomic ordering is shown to remove
the "cusp" in the band gap vs strain curve of random
alloy. ' ' (ii) Epitaxial strain always leads to an
increase in the ordering-induced valence-band splitting
EEi2, and (iii) atomic ordering reduces the slope of b Ei2
vs strain. (iv) While (a) strain, (b) ordering, and (c) clus-
tering can all lead to a band-gap reduction, we show here
that the three effects can be distinguished on the basis
of a b,Ei2 vs ~AEs~ plot. (v) The wave-function type,
and, hence, the cause of the splitting at the VBM can be
determined by measuring the polarization-dependent in-
tensities of the transitions between the split components
of the valence band and the conduction-band minimum.
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(vi) We predict that ordering can significantly enhance
the degree of spin polarization of electrons photoemitted
kom the VBM. Ordered III-V alloys can thus be used
as a good polarized electron source. These general re-
sults open avenues of band-gap engineering by combin-
ing epitaxial strain with atomic ordering. Experimen-
tally testable predictions are made and summarized in
Sec. IV.

the combined eKects of epitaxial strain, atomic ordering,
and spin-orbit coupling on the band edge energy levels.
We will Grst discuss each individual term, and then as-
sume additivity, i.e., the total eH'ects can be described by
HS+ HO + ISO

A. Pure elastic strain

II. EFFECTS OF STRAIN AND ORDERING ON
I' POINT STATES

We will characterize the quantities of interest in terms
of the degree of long range order g and the strain e. Our
reference state is a perfectly random (il = 0), strain-
free (e = 0) system. In this case, and in the absence of
spin-orbit coupling the top of the k = 0 valence band
is the sixfold degenerate I'q5 state while the bottom of
the conduction band is the I'q, doublet. The degener-
acy at the valence-band edge can be lifted by spin-orbit
coupling, epitaxial strain, or by alloy atomic ordering.
We denote as b,~ and b, + the strain-(S-) induced and
the ordering- (0-) induced crystal field splitting, respec-
tively, and by b, s the spin-orbit (SO) splitting. In the
following we will develop a general formula to describe

The efFects of epitaxial strain on the energy levels
have been studied quite extensively by a number of
authors. A review of strain effects on electronic prop-
erties of semiconductors can be found in Ref. 4 and Ref. 8.
In Ref. 4 Pollak and Cardona derived explicitly the ex-
pressions for the strain Hamiltonian in the (J,m~) mo-
mentum representation for strain along the [001], [111],
and [110] directions. In the following we will derive an
explicit general expression of the strain Hamiltonian in
the (z, y, z) Cartesian representation. This representa-
tion is more convenient in describing the coupling be-
tween strain, atomic ordering, and spin-orbit eKects.

When a cubic lattice is deformed, a position r
(z, y, z) in the lattice is displaced to a position r'
(z', y', z'). To linear order, the displacement Ar = r' —r
is given by

b r = (zezz + yeyz + zezz & zezy + yeyy + zezy & zezz + yeyz + zezz)

where e„are the components of the strain tensor. For
an epitaxial strain along the direction G = [l, m, n], the
strain tensor is given by

ductors.
For the I'i, conduction (c) band, Eq. (3) is simplified

using the L = 0 representation of the angular momentum
operator L = 0. This gives

(l +eo tm tn
++~=b Im m +so mn2

ln mn n'+. , ) S AV= ac(&zz + &yy + &zz) = ac )C V (4)

where eo is a constant describing hydrostatic deformation
and b is a scale factor.

Based on symmetry considerations and the assumption
of linearity, the strain Hamiltonian 0 for the jth band
at k = 0 can be written as

where y' 6 + E'yy + 6' is the relative volume de-
formation. For the I'q5 states at the top of the valence

(v) band we can rewrite Eq. (3) using the L = 1 matrix
representation of the angular momentum operator

H, =a, (czz + eyy +. ezz) —3b, [(L —-'L )ezz + c.p.]

—(6d,./~3)[(L, L„}e„+c.p.] . (3)
oo o I'

I = 0 0 —i
0 i 0 )

Ly ——
(0 o

0 0 0

( —ioo)
Here, L is the angular momentum operator, (L,L„}=
z(L L„+L„L ), the coefFicient a~ is the hydrostatic
deformation potential for band j, while b~ and d~ are
uniaxial deformation potentials appropriate to strains of
tetragonal and rhombohedral symmetries, respectively.
c.p. denotes in Eq. (3) cyclical permutations with respect
to the indices x, y, and z. We next specialize Eq. (3) to
the j = I z and j = I'z5 states of zinc-blende semicon- where i = g—1. This gives

(0 —i 0)
L. = i 0 0

io o o)



49 OPTiCAL PROPERTIES OF ZINC-BLENDE SEMICONDUCTOR. . . 14 339

(2 o 0) (I o 0) f 1 o 0)
H„= av —bv .

0 1 0 e~~+ 0 —2 0 6yy+ 0 1 0 ~zz

0 0 1) ( 0 0 1) ( 0 0 —2)

(O —10)
—~3d„—1 0 0 e „+(o o o)

o o 0) $ o o —1)
0 0 —1 e„, + 0 0 0
0 —1 0) ( —1 0 0)

&zx (6)

t
1 0 0

Hooi „——a„+—Aooi(e) 0 1 0

(0 0 —2)
(7)

In this case E1 and E2 are degenerate, while E3 is sep-
arated &om E1 and E2 by the crystal field splitting
6osoi(e), which is given by

SBoo, = 3b„[e„——e~~] .

For (111) strain we have from Eq. (2) e = e»
e„and e „=e„, = e, , so the second term in Eq. (6)
vanishes, and the Hamiltonian becomes

( 0
+ +alii(e)

( —1 —1 0

Again, in this case E1 and E2 are degenerate while E3 is
separated Rom E1 and E2 by the crystal field splitting
b, iii(e), which is given by

3~3d1Icap (10)

The solutions of H give three energy levels, E1,E2,
and E3 for each strain. As will be illustrated next, this
Hamiltonian can be further simplified for strain parallel
to the high symmetry [001] or [111]directions.

For (001) strain we have from Eq. (2) e = e» g e„
and e „=e„, = e, = 0, so the third term in Eq. (6)
vanishes. The Hamiltonian becomes

B. Pure atomic ordering

It is now known that vapor-phase growth of most
III-V zinc-blende semiconductor alloys results in sponta-
neously ordered structures. Most of these ordered struc-
tures can be characterized as superlattices. For example,
the ordered Cupt-like structure is an alternate mono-
layer superlattice along the G,s = [111]direction, while
the ordered CuAuI-like structure is an alternate mono-
layer superlattice along the G,s = [001] direction. This
atomic ordering is analogous to an "internal strain" in
that the ordering changes the band-gap energy and the
splitting at the top of the valence bands in the same
way as external elastic strain. The Hamiltonian used to
describe the energy level shift due to the atomic order-
ing along G,s has the same form [Eqs. (3)] as the one
used to describe epitaxial strain along G,g, except that,
for long range atomic order, the fictitious internal strain
"e„„"and deformation potentials a, b, and d are func-
tions of the ordering vector G,d and the order parameter
7/ ~

For example, for the widely observed CuP t-like
ordering, the Hamiltonian which describes the valence-
band splitting due to atomic ordering can be obtained by
replacing b, iii(e) in Eq. (9) by b, iii(rt), i.e. ,

( 0 —1 —1)0 1 0xiii(&)
( —1 —1 0 )

[In our notation, A~ is positive if the doublet eigenvalues
of Eqs. (7) and (9) lie above the singlet. ] Note that Hisii „
can be brought to the same form as H001 „by applying
a unitary transformation, rotating the [111]direction to
coincide with the z axis. For all other directions the
tetragonal and rhombohedral deformation potential are
coupled to each other and no degeneracy exists except
when b„= d„/~3. In this special case the band splitting
becomes isotropic, thus, for any epitaxial strain along G
we can find a unitary transformation which rotates the z
axis to coincide with the G direction, so the Hamiltonian
of Eq. (6) acquires the same form as Hosoi „ in Eq. (7).

Since only relative energy di8'erences between two
bands are generally measured, it will be convenient to
define the center of the valence-band energy as our zero
of energy and denote by a = a —a the deformation po-
tential of the average band gap Eg = E, s(Ei+E2+Es). —
From now on we will also drop the band index j for the
deformation parameters b and d, since they are used only
for the top of the valence band.

where Alii(g) is the crystal field splitting due to the
atomic ordering. For perfect long range order (rl = 1),
the crystal field splitting can be calculated from band
theory. This was done for CuPt ordering (G,s =
[111]) and for CuAu ordering ' (G,d

—— [001]).
Similar calculations have been done for chalcopyrite
orderings2 4o (G,s = [201]), assuming a higher symme-
try, tetragonal unit cell. We found that for isovalent
alloys, because of the diferent band folding relations,

0 0 0 0 0 ~ ~

+111 + +001 + +201 4111 and 4001 are positive,
while the 4201 are mostly negative.

In imperfectly ordered A Bi C alloys, successive
ordering planes are not pure A and pure B, but
A + n B1 ~ and A n B1 +~, respectively. Wei,
Laks, and Zunger showed that for an alloy with a long
range order parameter rt, any physical properties P(x, il)
at composition x can be expressed in terms of the prop-
erties P(x, 0) and P(X, 0) of the perfectly random alloy
at composition x and X, and the property P(X, 1) of
the perfectly ordered structure 0 at composition X
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P(x, rl) = P(x, o) + rl' [P(X,1) —P(X,0)], (12)

provided that the property can be well expressed in terms
of single-site and pair interactions. Because the crystal
field splitting in the absence of ordering (rl = 0) is zero,
we have from Eq. (12)

+111(9) 7 +111(9 1)

Note that x and X do not have to be the same. However,
since the ordering parameter is limited by

0 ( rl ( min
~

(14)

perfect ordering can be achieved only when x = X . Due
to the neglect of higher order terms, Eq. (12) assumes
that the change P(x, rl) —P(x, 0) does not depend on x
and can be calculated knowing the quantities at x = X .
This approximation is best when x X

C. Spin-orbit coupling

HSO ISO
3

(0 —i 0
i 0 0
0 0 0
0 0 —1
0 0 —i

(1 z 0

0 0 1
0 0 —i

—1 i 0
0 i 0
—i 0 0
0 00)

(15)

Note that the spin-orbit splitting 4 is defined to be
positive if the fourfold degenerate eigenvalue of Eq. (15) is

above the doublet. We have also chosen the phase factor
such that the up spin g and down spin $ are parallel and
antiparallel to the [001] direction, respectively.

D. The total Hamiltonian

In constructing the total Hamiltonian Ht q we make
the assumption that the contributions from the elastic
strain, the atomic ordering, and the spin-orbit coupling
are additive. That is

H...= H, +H'+H~+Hso, (16)

The spin-orbit (SO) coupling for the s-like I'i, state is
zero. The spin-orbit coupling Hamiltonian for the spin
up (g) and spin down ($) I'is„states in the Cartesian
representation (x t, y g, z g, x $, y $, z $) is not block
diagonal, so we have to use a full 6 x 6 matrix to represent
the spin-orbit Hamiltonian in this basis, that is

E,(rl, e) = E,(0, 0) + u + Bsrl
b, V(e)

III. EXAMPLES

A. Pure (001) epitaxial strain

In this section, we consider a cubic zinc-blende film

(ij = 0) with equilibrium lattice constant ay grown co-
herently on a substrate with a lattice constant a, and
orientation G,„b,t,,~i, ——[l, m, n]. The biaxial strain e~
perpendicular to the growth direction is given by

a, —af
(18)

Using continuous elasticity theory, the epitaxial strain e~~

parallel to the growth direction is given by

equi
= [3q(G) —2]ei (19)

Here, q(G) = 1 —B/[Cii +p(G)(] is the strain reduction
factor, B = (Cii + 2Ci2)/3 is the bulk modulus, ( =
C44 —(Cii —Ci2)/2 is the elastic anisotropy, C,~ are
the elastic constants, and the orientation dependence is
given by44 p(G) = 4(l2m2+m2n +n lz)/(l2+m +n )2.
Applying these to G,„b,q, ~q, ——[001], we have e = ~

cyy = E'g and

The second term on the right hand side of Eq. (17) is due
to hydrostatic strain and a is the hydrastatic band-gap
deformation potential. The third term is due to ordering
and B~ is the average band-gap reduction AEg of the
strain-free perfectly ordered alloy relative to the strain-
free perfectly random alloy.

For the top valence states, the total Hamiltonian of
Eq. (16) is a 6 x 6 matrix: The elastic strain and atomic
ordering give each two 3x3 block diagonal matrices where
each block has the form given by Eq. (6). The spin-
orbit part is a full 6 x 6 matrix given by Eq. (15). In
the next section, we will give two examples of the total
Hamiltonian.

In many practical cases we can assume that the mixing
of the wave-functions between different states is small,
so the parameters associated with each contribution in
Eq. (16) can be determined separately. A simple test
indicates that these assumptions are reasonable. For ex-
ample, the spin-orbit splitting 6 of GaAs calculated
with strain (~e~ = 0.4%, see below) or without strain dif-
fers by less than 1 meV. The spin-orbit splitting 4
of Gao sino sP calculated with (rl = 1) or without (ill)
atomic ordering differs by jess than 5 meV. In what fol-
lows, we assume both additivity [Eq. (16)] and uncou-
pling of the crystal and spin-orbit splittings.

where Ho is the energy in the absence of strain, ordering,
and spin-orbit coupling. Note that strain and ordering
do not remove4 the Kramers (spin) degeneracy of each
state at I'.

Applying Eq. (16) to the I'i, conduction state, we find
that its energy relative to the center of the top valence
bands at I' (our energy zero) is given by

so

2Cg2
&zz =&)( = & )

AV(e) Cll —C12= 2
V Cgg

(21)
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In our definition e is negative (positive) for in-plane com-
pression (tension). From Eq. (17) the conduction-band
energy relative to the center of the top valence bands is
given by

E,(e) = E,(0)+2a e . (22)
11

The Hamiltonian for the top of the valence states can
be obtained by combining Eq. (7) with Eq. (15), i.e. ,

1H„=—
3

( +001
-~so

0
0
0

S+001
0
0
0

0
0

—2400
~SO
i~SO

0

0
0

ISO
S+001

0

0
0

~SO
ISO

S+001
0

~SO
~SO

0
0
0

2+ooi )

where the crystal 6eld splitting is

~S ( ) = 3bC11+ 2| 12

11
(24)

Diagonalization of Eq. (23) gives three spin degenerate
eigenvalues of the in-p/ane light-hole (lh) [I's„, (j
3/2, mi = +3/2)], heavy-hole (hh) [I'r„, (j = 3/2, m& ——

+1/2)], and spin-orbit split-off (SO) [I'r„, (j = 1/2, m@ ——

+1/2)] states. Here, we use the notation of Ref. 21. Note
that along the [001] direction the roles of light-hole and
heavy-hole are reversed. Explicitly,

E'"() = —3[&' +&'-()]1

E'"() = -6[&"+&o'o ()]
1

~SO + ~S ~ 2 QSO~S

E (e) = ——[6 + b,ooi(e)]
1

~SO + ~S ~ 2 ~SO~S

For systems with no strain (e = 0) the lh and hh states
are the degenerate cubic I'8 state. Note that the crystal
field splitting b,ooi(e) does not correspond to a diff'erence

of measurable levels. The measurable valence-band 8plit-
ting is given by iEi" —E"hi.

6E'"(e) = E'"(e) —E' (0) = —ae, (26)

while for the heavy-hole band gap E"h(e) = E,(e)—
Ehh(e) the strain shift is21

~Ehh( ) Ehh( ) Ehh(0) ~ P

Using Eqs. (22)—(27) in the linear region we have

o' —[ 2a(+11 +12) + b(+11 + 2+12)]/+11
P —[ 2a(~11 +12) b(+11 + 2+12)]/+11
+ooi(e) = 2(~ P)e

and

(27)

(2S)

E,(e) = E.(0) —2(o, +P)e = Es(0) + sh
-2(~+ &)~ (29)

where Es(0) is the band gap at e = 0 and E,(0) = Es(0)+
when 6 ) 0. This is true for all III-V's.

In Table I we list the experimental 5 room tempera-

Equations (22) and (25) give the the band-edge ener-
gies as functions of the (001) strain. To relate the ener-
gies above to the measured energy differences (i.e., the
band gaps) we will consider the case when the strain e is
small and the band gaps change linearly with e. For the
light-hole band gap E (e) = E,(e) —Eih(e) the strain
shift is

TABLE I. Experimental parameters used to calculate band edge energy level shifts as functions
of strain and ordering. All experimental values are taken at room temperature from Ref. 45. See
text for details.

Properties

ap (A)
Ep (eV)

(eV)
Cgg (Gpa)
C» (GPa)
a (eV)
b (eV)
a. (eV)
~LDA (eV)
P (eV)
l3Lo~ (eV)

5.6533
1.43
0.34

118
53
—9.8
—2.0

7.0
3.2

14.6
11.0

InAs

6.0583
0.36
0.37

83
45
—6.0
—1.8

1.7
0.5
9.2
7.6

GaP
5.4512
2.78
0.08

141
62
—9.9
—1.8

7.?
4.8

14.5
12.1

InP

5.8687
1.35
0.11

102
58
—6.4
—1.6

2.1
0.8
8.9
7.5

Gao.SInp 5P
5.6600
1.88
0.10

122
60
—8.2
—1.7

4.9
2.8

11.7
9.8
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ture elastic constants C;~ and deformation potentials a
and b for the III-V semiconductor compounds GaP, InP,
GaAs, and InAs. Using Eq. (28) we give also n and P
for the four compounds show in Table I. We have also
calculated o. and P directly from Eqs. (26) and (27) us-
ing the first-principles linearized augmented. plane wave
(LAPW) method within the local density approxima-
tion (LDA). The calculated T = 0 values ct.1,DA and
Pr, DA are given in Table I. We find that the calculated
I.DA values are systematically smaller than the exper-
imental values measured at room temperature. This
could be due to the strong temperature dependence of
the band-gap deformation potential. For example, for
GaAs, a at T = 120 K is about 3 eV smaller than at
room temperature. This, in turn, will reduce o. and P by
the same magnitude [Eq. (28)]. However, the calculated
difference o.r,DA —pr, DA, which determines the valence-
band splitting, agrees very well with experimental data.

Using the room temperature experimental data given
in Table I, we plot in Fig. 1 the E",E"",E, and E,
energy levels of GaAs using Eq. (25) and Eq. (29). These
are individual energy levels (not gaps), taken with respect
to the center of the top valence bands. Figure 2 shows
the band gap Es(e) = E, (e) —EvBM(e) as a function of
strain. We find the following

(i) For in-plane compressive stress e ( 0 (i.e. , a,
ao) the top of the valence band is the in-plane light-hole
state 2x, i6 This may enhance the hole mobility for two-
dimensional transport. In contrast, for in-plane tensile
stress e ) 0 (i.e. , a, ) ao) the top of the valence band is
the in-plane heavy-hole state.

(ii) Because the valence-band maximum changes its
character as the strain changes sign, there is a change
of slope of Ee(e) about e = 0. Thus, the Eg vs e curve
has a "cusp" at e = 0 (Fig. 2). This is confirmed by
experimental measurements.

1.55
(00t) strained GaAs

) 1.50

1.45

~ 1.400

1 ~ 35

1.30

1.25-
—10

I I I I I

—5 0 5 10x10 3

Strain

FIG. 2. Energy gap E, —EvaM of (001) strained GaAs as
a function of strain ~. Note the change of slope at e = 0.

(iii) The lh slope n is much smaller than the hh slope
P. Equation (28) shows that this is because the band-gap
changes due to hydrostatic and shear strain add up for
the E""gap (so P is large), while for the Et" gap the two
contributions tend to cancel each other (so o, is small).

(iv) Our calculation shows that the slope (n or P) of
the E~ vs ~ curve is reduced significantly as the ratio
(Cqq —Ct 2) /Cqq is reduced. The latter quantity is propor-
tional to the ratio A of bond-bending and bond-stretching
force constants. ' The reason is as follows. For fixed
epitaxial strain e, as A is reduced the tetragonal distortion
becomes larger [Eq. (20)], so the volume deformation +&+

becomes smaller. In addition, as A decreases the defor-
mation potential a is also reduced. ' The reduction of

and of a with decreasing A leads to a reduction in the
first term ("hydrostatic") of n and P [Eq. (28)]. This ex-
plains why the In-based III-V's (A 0.15)s have smaller
a and P values than the Ga-based III-V's (A 0.22)so
(Table I). We expect that n and P will be yet smaller for
II-VI's where A 0.1.

B. (001) strain with (ill) CuPt ordering

0.6
(001) strained GaAs

i I I I I I

I

g) 0.4i

0.2—
Q)

E-lh Ehh

U 0.0',-
Q)
C

LLI -0 2- E.so
I

I

I I I

—5 0

Stra]n

l

5 10x10

FIG. 1. Light-hole (lh), heavy-hole (hh), split-off (SO), and
conduction-band (c) energy levels of (001) strained GaAs as
function of strain c = (a, —ae)/ae, where a, and ae are the
lattice constants of substrate and GaAs, respectively. Results
are calculated from Eqs. (25) and (29) using the data of Table
I. The energy zero is at the center of the valence band.

We consider here an A Bz C alloy with CuP t-
type (111) order grown coherently on a (001) substrate.
This is pertinent to most molecular-beam epitaxy and
organometallic vapor-phase epitaxy experiments in which
III-V alloys show CuPt ordering when grown on (001)
substrates (see the review in Ref. 30). For this system the
strain is measured by e(x) = [a, —ay(x)]/ay(2:), where

ay(x) and a, are the lattice constants of the film and
the substrate, respectively. The successive (111) order-
ing planes consist of an A-rich A +~Bz ~ and B-rich

2 2.
A ~Bq +n layers, respectively, where rl is the long

2 2
range order parameter. All of our quantities are func-
tions of e and g. Our reference system is a strain-free,
perfectly random alloy (tl = e = 0) at the same compo-
sition. For example, the band-gap reduction is defined as
AEg(rt, e) = Eg(rl, e) —Es(0, 0).

From the discussion of the previous section [Eqs. (17)
and (29)], we see that for the conduction band
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E.(~ e) =Es(~ o)+ s[&' +&»i(n)] —2(~+&)e

(30)

where Es(ri, 0) is the band gap of the strain-free alloy
and b, iii (tI) ) 0 is the crystal field splitting due to (111)
ordering. To a good aPProximation both Es(rt, 0) and

xiii (tl) depend on tI quadratically [Eq. (12)], so Eq. (30)

can be expressed as

E.(q, .) = E,(0, 0) + q'aE, (1,0)

+-.'[&' + ~'&».(I)] —-'. (~+ &) (»)
The total Hamiltonian for the valence bands is con-

structed by combining Eqs. (7), (11), and (15). This
gives

K 1

3

( Qoi
gO + igSO

0+111
0
0

111
S+0010+111
0
0

+1110

111
2+O01
~SO

0

0
0

~SO
S+001

111
+111

0
0

i~SO
—6„,+id'

S+0010+111

~SO
—iA

0
0+1110+111

2i"-tooi )

(32)

where Aooi ——
2 (n —P)e and b, iii = tI b, iii(1) are the

crystal field splittings. The energy levels E1) E2) and E3
(in decreasing order) can be obtained by diagonalizing
Eq. (32).

For systems with no strain (e = 0), b,osoi ——0, the
three energy levels Ei (with I'4 s symmetry), E2 (with
I's symmetry), and Es (with I's symmetry) are given by
an analytical form similar to that of Eq. (25). That is,

E.(~ 0) = [&' +-&. .(n)],3

Ordered Gao.5lno. 5P
on (001) substrate

150 -(a)
I

100—

50

-50—
—100—

E&(&~0) = [+ + xiii(&)]
-150—

I t I

+- [&' +&„,(~)]'-

Es(rj~ 0) = [+ + xiii(&)l6

~SO+ ~0 2

8
(tv) (33)

8 ~so ~ (rt)

This corresponds to the case of lattice matched films.
We have previously shown that in this case one can
measure E,(rt, 0) —Ei (t7, 0), Ei (tI, 0) —E2 (ri, 0), and
Ei(tl, 0) —Es(r1, 0) and fit to Eqs. (33) and (31), thus
deducing the degree of order g. This procedure will be
further illustrated in Figs. 7(b), 8(b), and 9(b) below.

In a more general case, there is a finite strain, so
0 in Eq. (32). In the following we will use

the Ga In1 P alloy as an example. The needed in-
put data for evaluating Eqs. (31) and (32) are (i)
the concentration-dependent properties Es(x), af(x),

(x), C;~(x), a(x), and b(x) of the random alloy (ri =
0) and (ii) the ordering-dependent properties b, iii (1) and
b,Es(1,0) of the fully ordered alloy. The first category of
quantities are obtained for the random Ga~In1 P alloy
by assuming the usual quadratic bowing form

P(x) = xP(GaP) + (1 —x)P(InP) —b~x(1 —x), (34)

where bp is the bowing parameter for property P. For the

150

100

0

-50

g)
—1 00

-150

-(b)

E2

[q=0.5/

1 50 —(c)
E

100

50-
0-

-50—

-100—
-150—

E2

-5 0
Strain

I

5 10xl0 3

FIG. 3. The three valence-band energies Eq, E2, and Eq as
functions of the strain s and ordering parameters rl for (001)
strained Gas.sins, sP with (111) ordering at (a) rt = 0; (b)
rt = 0.5; and (c) rt = 1. Results are calculated from Eq. (32)
using the data from Table I and Ref. 34.
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spin-orbit splitting we use the bowing 6~so ———0.02
eV, while for the direct band gap the bowing is 6~
0.76 eV. We assume zero bowing for lattice constant, elas-
tic constants, and deformation potentials. These input
values for Ga Inq P are given in Table I. For the sec-
ond category of quantities, we use our previously cal-
culated band structure values xiii(1) = 0.20 eV and
AEs(1, 0) = —0.32 eV.

In what follows we will explore two ways of exerting
strain. First (Sec. III B 1) we will assume a Gap slnp sP
film of fixed composition x = 0.5 being grown on (001)
alloy substrates with varying lattice constants a, . The
biaxial strain is e(a, ) = [a, —af(0.5)]/af(0. 5), where
af(0.5) is the lattice constant of the the equimolar film.
Second (Sec. IIIB2), we will consider the more com-
mon situation of a variable composition Ga~In~ P
film with lattice constant af (z), being grown coherently
on a fixed GaAs (001) substrate with a, = 5.6533 A.
In this case, the biaxial strain is e(z) = [a, (GaAs)—
ay(z)]/af(z). Note that in the second case the prop-
erties of the film vary because of changes in strain and
composition, while in the first case there are only strain-
induced changes.

Equirnolar Gae sInesP on a (001) substrate

Using the data of Table I we have diagonalized Eq. (32)
and plotted in Fig. 3 the three valence-band energies Eq,
E2, and E3 as functions of the strain e at three different
(111) ordering parameters rl. Note that Fig. 3(a) (no
ordering) is analogous to Fig. 1. We have also plotted
the band gap Es (Fig. 4) and the valence-band splitting
b, Ei2 ——~Ei —E2] (Fig. 5), respectively as functions
of e and g for Gao 5Ino 5P. From these plots we find the
following.

(i) When rl = 0 (no ordering), both Eg (Fig. 4) and
the valence-band splitting b,Ei2 (Fig. 5) have a cusp at

0. This cusp results from E " and E"" switching
order at e = 0. Figures 4 and 5 show that this cusp

100

Ordered Gao 5lno ~P
on (001) substrate

I I I

80

w 60

40

m
20

—10 -5 0

Strain

5 10x 10

FIG. 5. Valence-band splitting b,Ei2 = ~Ei —E2~ as a func-
tion of strain e and ordering parameter rl for (001) strained
Gap. clue eP with (111)ordering at rl = 0, 0.5, and 1.

2. Ga In, P on GaAs (001) substrate

In this case the strain is caused by lattice mismatch
between the Ga Inq P film and the GaAs substrate.

is removed if rl g 0. This is so since any amount of
atomic order will mix equal amounts of lh and hh states
at e = 0, so &" ]( —p.„gp) —0. This should be observed
experimentally. The rounding of the cusp of AEq2 vs c
could be used as an indirect measure of atomic ordering.

(ii) (001) strain always increases the valence-band
splitting b Ei2 relative to the pure (111) ordering, and
vice versa (Fig. 5). This is because the (001) and the
(111) deformation potentials can be considered as com-
plementary [Eq. (32)], so the combined effect is always
larger than the individual ones.

(iii) (111) atomic ordering not only reduces the band
gaps s (Fig. 4), but it also reduces the slope
(Fig. 5). This reflects an increases in the mixing of the
E"and E""strain components. This too can be used as
an indirect measure of atomic ordering.

2. 0

) 1.9

w 1.8

Ordered Gao ~lno 5P
on (001) substrate

2. 0
Q

1.9
CL
U

C3

Ordered Ga„ln, „P/GaAs (001)

cn 1.6
Lij 1 . 5

—10
I I I I I I

—5 0 5 10x10 3
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1.7—
I I I I ~ I I I

0.40 0.44 0.48 0.52 0.56 0.60
Composition x

FIG. 4. Band gap Eg as a function of strain e and ordering
parameter rt for (001) strained Gap cine eP with (111)order-
ing at g = 0, 0.5, and 1. Results are calculated from Eqs.
(31) and (32) using the data from Table I and Ref. 34.

FIG. 6. Band-gap energy of the strained Ga In& P
as a function of composition x at g = 0 and

0.5. The band-gap energy of the strain-free ran-
dom alloy is also plotted (dashed line) using the relation
Es(x) = 2.78x + 1.35(1 —x) —0.76x(1 —x) (Ref 45). .
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100
(a)

Ordered Ga„ln, „P/GaAs (001)
I I I I I I

I

(b) „ 0 4

Ordered Ga„ln, „P /GaAs (001)
80 I I I I I I I I

(a) . (b)

60-
-0.6

)
—100

LJj

-200— I

I
I

Xp
I
I

I I I I

0.40 0.45 0.50 0.55 0.6 0
Composition x

I I I I I I

0.2 0.4 0.6 0.8
Ordering Parameter g

~ 40E
CV

LJJ
&I

20

0 50 100 150
—AE (x) (meV)

0 100 200 300
-hE, (g) (meV)

FIG. 7. Band-gsp reduction b,E~ [g, e(z)] = E~ [il, e(z)]
E~[0—, 0] of the strained Gs Ini, P alloy as s function of

(s) composition z snd (b) long range order parameter g. The
experimental data of Ref. 35 are plotted as solid dots in (b).
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FIG. 8. Valence-band splitting RE~2 of the strained
Gs Ini P allay as s function of (s) composition z snd (b)
the long range order parameter g. The experimental data of
Ref. 35 are plotted as solid dots in (b).

This strain e(z) is a function of the film composition z,
and so are the other composition-dependent properties
P(z) for the strain-free random alloy. We use Vegard's
rules2 to determine the equilibrium lattice constant at (z)
and assume that at fixed composition x ordering does not
change the lattice constant. Using the lattice parameters
&om Table I, the strain-kee composition is calculated
to be at zp = 0.516. Using the data of Table I, the
composition dependence of the input parameters given
by Eq. (34), and the Hamiltonians [Eqs. (31) and (32)],
we have plotted in Fig. 6 the band-gap energy of the
Ga Inq P film as a function of the composition x at
g = 0 and g = 0.5. This figure also shows the band gap
of the strain-free random alloy (dashed line). Figure 7
shows the band-gap reduction b Eg(q, e). Part (a) of this
figure shows dependence on composition, while part (b)
shows the dependence on the degree of ordering. Figure 8
shows the valence-band splitting b,Eiq(q, e) as a function
of composition [Fig. 8(a)] and ordering [Fig. 8(b)]. We
see that

(i) In the absence of ordering strain can either increase
(for z ( zo) or decrease (for z ) zo) the band gap [Figs.
6 and 7(a)]. On the other hand, ordering (iI ) 0) al-
ways reduces the band gap [Fig. 7(b)]. The change is
parabolic, i.e. , AEg oc g .

(ii) Ordering (i7 ) 0) and strain (z g zo) both increase
the valence-band splitting AEi2 (Fig. 8). For fixed il,
the valence-band splitting AEq2 has a minimum at xp

FIG. 9. Correlation between EEiq snd b,E~. (s) Varying
composition z at fixed long range order parameter q. (b)
Varying long range order parameter g at 6xed composition.
The experimental data of Ref. 35 are plotted as solid dots in

(b).

[Fig. 8(a)]. For small iI the valence-band splitting is
dominated by strain [Fig. 8(b)]. When the degree of
ordering increases, the splitting increases and the eÃect
of strain is reduced.

The predictions of Fig. 7(b) (b,Eg vs rl) and Fig. 8(b)
(AEi2 vs il) have been used in the pasts4 to extract from
reHectivity experiments the value of the long range order
(LRO) parameter. This was done by fitting b,Eg and
AEi2 of a given sample to Eqs. (31) and (33) and ex-
tracting iI. The solid dots in Fig. 7(b) and 8(b) (data
taken from Ref. 35) represent such a fit. In this case
the data apply to x = xp. We now extend such ideas
to strained samples. Figure 9 shows the correlation be-
tween AEq2 and EEg for varying compositions at some
fixed degree of LRO (a) and for varying degree of LRO
at some fixed composition (b). Figure 9(a) demonstrates
that one can have a valence-band splitting and a valence

gap reduction even without ordering (g = 0), but that
ordering modifies the AEq2 vs AEg dependence consid-
erably. Figure 9(b) shows that ioithout strain (z = zp)
we expect a simple nearly parabolic increase of ]DE~]
with increasing AEq2. The experimental data points of
Alonso et aL are depicted in this figure on the z = zp
curve. We see a good agreement for low ~AEg] values,
but the measured high ]AEg] values are slightly betoia

the calculated line. Figure 9(b) indicate that strain can-
not be the reason for this discrepancy since any value
of z g zo will further displace AEi2 to higher values.
A possible explanation is clustering-type short range or-
der (SRO): such clustering was recently predictedss to
reduce the band gap (larger [b,Eg [) without introducing
a crystal Geld splitting. Indeed, cluster-type SRO was
detected in many alloys. It hence appears that si-
multaneous measurements of AEq2 and AEg could be
used along with our theory to discern the effects of I RO,
SRO, and strain.

IV. OPTICAL TRANSITION PROBABILITIES
AND POLARIZATION

We have seen that both strain and ordering reduce the
symmetry of the crystal, splitting the I'8 state of the
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strain-free random alloy into two states, labeled
I

1) and

I
2). We use the convention that the energy of

I 1) is
higher than energy of

I
2). In this section we discuss the

way that strain and ordering affect the intensities of the
transition between

I
1), I 2), and the conduction-band

minimum.
The transition probability between conduction state

and valence state @„ is determined by the the ma-
trix element of the transition (iII, IH;„&IIII„&,where H; & is
the interacting Hamiltonian. For linearly polarized light
along the [I, m, n] direction we have H;„q oc lx+ my+ nz,
while for circularly polarized light o+ with angular mo-
mentum parallel and antiparallel to z' we have H;„q oc
z' + iy'. In general, for polarized light H;„q can be
expressed as a linear combination of x„= x, y, or
z. The transition intensity is proportional to I,
l(i', lH;„t liII„&

I
. Note that, due to phase correlation, the

transition intensity for coherent, linearly polarized light,
e.g. , H;„& ——c(z + y), is difFerent from the sum of the in-
tensities for the two incoherent polarized light H;„q ——cx
and H;„& ——cy. (In Ref. 59 and Ref. 60 errors were made
in the intensity analysis by making the erroneous assump-
tion that l(~.l*+yl~. ) I' = 1(~.l*l~.&

I'+ l(~.lyl~-& I )
We calculate the valence eigenstates 4' by diagonaliz-

ing the Hamiltonian in the form of Eq. (32). This pro-
duces a linear combination of the basis function (p„o j,
where p„= z, y, or z are the L = 1 orbital components
and b are the spinors parallel or antiparallel to the z di-
rection. The conduction states are taken here as @,= so,
where s is the L = 0 orbital component. In doing this
we have neglected the mixing between the conduction s
state and the valence p state. The transition matrix ele-
ments can be obtained by writing the orbital wave func-
tions and H;„q in terms of the spherical harmonics Yj
and by noticing that the allowed dipole transitions are
for Am = kl. This gives the simple selection rule

A. Pure (001) strain (rl = 0)

(001) strain splits the I's„VBM into I's„and I'7„. The
energy of I'6„ is above I'7 for e ( 0 and below it for

1.0

(111) Ordered GaII slrIO5P(s=o)
I I I I I I I I I I I

]( )

0.5

Ll
L0 0

I I

(b)
1.0

I I I I I I I I I

1(r„- r,„,„)

tensity I„,between the
I 1) and

I 2) valence states and
the conduction state in Gao sino sP as a function of (001)
strain c and (111) ordering parameter rI. [The (111)and
(111) ordering are the two subvariants of "CuPtgy" ob-
served for this system. The other two subvariants (111)
and (111) of "CuPt~" are not seen experimentally. ]
Note that to compare I, with experimentally measured
intensities we should also include line broadening, joint
density of states, and temperature factors.

We apply linearly polarized light with polarization e
[110] (defined as 0 = 0); e

II [110] (defined as 0 = 90');
and in between. The calculated intensities for these lin-
early polarized light are the same for the two CuPt~ sub-
variants. For the two CuPt~ subvariants the role of [110]
and [110]polarization is switched. We find the following
results.

(scr
I x„ I p o'& = c b„„b-- (35)

where c is a normalization parameter.
Using Eq. (35) we have calculated the transition in- 0.5

Strained, Random Gao ~lno 5P
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FIG. 10. Calculated transition intensities (iu arbitrary
units) of the random (g = 0) Gao sino 5P alloy as a func-
tion of (001) strain e. The intensity is independent of the
polarization angle O.

FIG. 11. Calculated transition intensities for (111)ordered,
strain-free (e = 0) Gao sluII 5P as a function of the va-

lence-baud splitting AEq2 for (a) light polarized along [110]
and (b) light polarized along [110]. (c) gives the intensity
ratio I(I'II,-I'4„,5„)/l(I'6 -I'6„).
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6' ) 0. We thus have the I 6, —I'6„and the I 6, —I'7„ tran-
sitions. For pure (001) strain both transition intensities
are independent of the polarization angle O. If one fur-

ther assumes zero 8-p wave-function mixing, the intensity
I(I'e,-I'e„) is also strain-independent (Fig. 10). The in-

tensity I(I's,-l'7„), however, does depend on strain due to
the coupling between the I'7„state and the split-off state,
which also has I'7„symmetry. Figure 10 shows that the
intensity I(I's,-l'y„) decreases when strain changes from
negative to positive. We are unaware of experimental
observations of such strain-dependent optical transition
intensity in cubic materials.

I[110]
I[110]

(38)

Note that Alsina et at. neglected the coupling between
the two I'6 states in the trigonal regime and replaced
coherent polarized light with incoherent polarized light.
Instead of obtaining the ratio of Eq. (37), they incorrectly
found the ratio I(I's,-l 4„s„)/I(I's, —I s„) = 1/5 for the
[110]polarization.

Figure 12 depicts the calculated normalized intensities
as functions of the polarization angle O. We 6nd that
the intensity can be described by

B. Pure (ill) CuPt ordering (e = 0)

1(r,.-r,„,„)
1(r,.-rs„)

e
I [110],

e] [110] . (38)

Pure (111)ordering (i.e. , no strain) splits the I's„VBM
into

] 1) = I'4„s„and
] 2) = I's„states. In this case the

transition probability depends on the polarization angle,
since relative to the [111 ordering axis the two polariza-
tion directions [110]and 110]are inequivalent. Figure 11
shows the calculated intensity for the transitions I'4
I's, and I'e„-I's, as functions of AExz for polarization e

[110] (a) and e ]] [110] (b). [The valence-band splitting
AExz can be obtained froxn Eq. (33) as a function of
the ordering parameter xl.] As we see from Figs. 11(a)
and ll(b) the intensity I(I'e,-l'4„s„) does not depend on
AEq2 since there is no coupling between this state and
the other two valence states (both have the I's„sym-
xnetry). In contrast, the intensity I(I's,-l's„) depends
strongly on DE~2, because the coupling of the two I 6„
states depends on the degree of ordering, and thus on
AEg2.

We will distinguish in what follows two coupling limits,
the quasicubic limit when A~~~ && 4 and the trigonal
limit when 6&&& )) 6 . In the quasicubic regime we
have AEq2 = 0. In this limit the polarization ratio is
[Fig. 11(c)]

I(O) = Ixxp sin 8 + Ixxp cos O.

For the I's,-l'4„s„ transition [Fig. 12(a)] the intensity is
independent of g. For the I'6,-I'6„ transition, however,
we see a strong dependence on the ordering parameter g.
I(8) can either be an increasing function (at large xl) or a
decreasing function (at small xl) of the polarization angle
8. Figure 12 compares our calculated results (lines) with
the recent polarized electrore8ectance data of Kanata et
aLse (solid dots). We find that the best fit to the data
can be obtained using xl = 0.58, which corresponds (see
Fig. 8) to a valence-band splitting of b,Ex2 ——34 meV.
The measured valence-band splitting is AEq2 ——34 6 4

(111) Ordered Ga~ elno eP

(e =0)

1.0
0.8

0.6

N 0 4
c
. 0.2

0

I(r,.-r,„,,„)
1(re.-r,„)

e [110
e [110 (37)

and the polarization dependence is given by [Figs. 11(a)
and 11(b)]

In this "weak ordering" regime,
] 1) and

] 2) are nearly de-
generate, so only the combined intensity I(l's, -l'4„s„)+
I(I's,-l's„) can be measured. For b,Ex2 ——0 this total
intensity is the same for the [110] or the [110] polariza-
tion [Figs. 11(a) and 11(b)], as appropriate for a cubic
system. Thus, no polarization dependence can be de-
tected if the two transitions are not resolved. As the
degree of order (thus, AEx2) increases the intensity ratio
I(I's,-l'4„s„)/I(I'e, -l's„) approaches unity for both po-
larization directions. In the extreme trigonal limit [Fig.
»()]

0.6

0.4

0.2—

0

i(r„- r,„)
I I I I I I I

20 40 60 80
Polarization Angle 8'

FIG. 12. Calculated normalized transition intensity of
(111) ordered Gae Slue eP as a function of polarization an-
gle O. Here, 0 = 0 denotes light polarized along [110],
while 0 = 90' denotes light polarized along [110]. (a) The
I'e, -I'4„e„ transition. The intensity is independent of rI. (b)
The I'6 -I'6„ transition at g = 0.00, 0.58, and 0.87. The cor-
responding AE&2 are 0, 34, and 50 meV, respectively. The
solid dots in (a) and (b) are the experimental data of Kanata
et aL (Ref. 59).
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meV, in excellent agreement with the above value. The
small discrepancy between the data and the theoretical
line of Fig. 12(a) is possibly because the incident angle of
the light in the experiment is not exactly perpendicular
to the (001) surface. It may also be due to a small strain
in the sample (see below).

In most previous analyses of experimental
data ' ' ', the intensity ratio of the quasicubic limit
[Eq. (36)] was applied to all degrees of ordering. The or-
dering dependence of the intensity ratio was thus missed.
As we seen in Figs. 11(c)and 12(b) this assumption could
introduce large errors.

C. Coexistence of ordering (g g 0) and strain (e g 0)

1.0

~ Q 5
Vl

C

Ch

0

e 1.0

[110j polarized light (8=90')
(Ego;qgo)

(a)

0
—0

(b)
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(eWO;q WO)

(o)
1.0- v&0

0.5

0

1.0
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I 1 I I

I I I I

t t I I I
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In the presence of both ordering and strain, the wave
functions at the top of the valence bands have mixed
(001) and (111) character. The symmetry of the crys-
tal is reduced to monoclinic. We will simply denote the
states as

[ 1) and
] 2). The transition intensities are de-

termined by the relative strengths of the ordering and
strain. Figure 13 shows the calculated transition inten-
sities of strained Ga05Ino 5P as functions of AEq2 for
[110] polarized light (solid lines). For comparison, we
show as dashed lines the transition intensities for pure
ordering without strain. We use the strain-induced crys-
tal field splitting Boa~ = +10 meV [Fig. 13(a)] and —10
meV [Fig. 13(b)], which correspond to e = —0.1% and
e = +0.1%, respectively.

0.5-

= 0
I I I I I I I I I I I

0 10 20 30 40 50 60
AE, 2 (meV)

FIG. 14. Strain eKects on the transition intensities for
(111)ordered Gae. clue, ep as a function of b Eqz for [110] po-
larized light. Solid lines are for (001) strain (a) e = —0.1%,
(b) e = +0.1%. The dashed lines are the results for strain-free

(e = 0) ordered samples [see Fig. 11(b)].

For weak ordering and zero strain Fig. 13(a) shows
that Iq, /Iz, 1/3. But with a small strain e & 0, the
ratio changes to 3. This result indicates that, when
strain-induced crystal Geld splitting is comparable to the
ordering-induced crystal Geld splitting, an accurate anal-
ysis of the observed transition intensity could be difficult.
When the degree of ordering (thus, b,Eq2) increases, the
transition intensities approach the e = 0 values for "pure
ordering" (Fig. 13).

Similar results are plotted in Fig. 14 for [110]polariza-
tion. Comparing to the results for [110] polarized light

(Fig. 13), we see that the effects of positive and negative
strain are reversed and that the change of intensity due
to strain is larger in the case of e ][ [110]. Figures 13
and 14 also suggest that for e ) 0 it is better to use [110]
polarized light to study ordering-induced eKects, while

for c & 0 it is better to use [110] polarized light.

0.5— D. Spin polarization

Q i I I I I I I I I I I I

0 10 20 30 40 50 60
BE,2 (meV)

FIG. 13. Strain eKects on the transition intensities for

(111)ordered Gee slue eP as a function of b,Eqz for [110]po-
larized light. Solid lines are for (001) strain (a) e = —0.1%,
(b) e = +0.1%. The dashed lines are the results for strain-free

(e = 0) ordered samples [see Fig. 11(a)].

It is interesting to study the ordering-induced changes
in spin polarization of emitted photoelectrons. We use for
this purpose circularly polarized light. ' For circu-
larly polarized light sr+ with its angular momentum along
the ordering direction [ill] we have H;„t oc z'+i,y', where
x' = ~(x + y) and y' = —

(—x + y —2z). The spinors

parallel and antiparallel to the [111] ordering direction
are given by
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cos2e '~ t+sinze'~ $,

$'= —sin —e '
g +cos-e'

(40)

where the angles 8 and y are determined by the equation
(sinocosp, sin8sinrp, cos8) = ~ (1, 1, 1). The g and $ are

the spinors parallel and antiparallel to the [001]direction,
respectively. The electron spin polarization P is defined
as58)63, 64

I —I+
I +I+ (41)

where I and I+ are the transition intensities for $' spin
and t' spin, respectively. In Fig. 15 we show the cal-
culated spin intensities (I —I+)i, and (I —I+)2, for
strain-free ordered Gas sino sP alloys (dashed lines). For
the random alloy (il = AEi2 ——0) the states

~
1) and

~
2) are degenerate. In this case, we find that optical

pumping from both states leads to a P = 50%%uo electron
spin polarization. s For the ordered alloy (g g 0), the

~
1) = I 4„s„and

~
2) = I's„states split. We find that pho-

toelectrons generated &om the 14 5 and the 16 states
are both fully polarized. Hence, if the splitting LEq2
is large enough to allow optical pumping only &om the
highest 1 4„5 state, the generated photoelectrons can be
100%%ue spin polarized. A theoretical 100% spin polariza-
tion of electrons can also be achieved by using (001) or-
dered material [with spin parallel to the (001) direction],
as proposed in Ref. 63 and tested in Ref. 65. However,
since the (111)ordered material has much larger valence-
band splitting than (001) ordered samples, ss we suggest

Strained, Ordered GaG51no 5P

(~~0)

ci 0
U

Vlc
-0Q

0

5-

0-

.5-

(i — i,)„

0 10 20 30 40 50 60
EE,2 (meV)

FIG. 15. Calculated spin intensity (I —I+)i, and
(I —I+)2 (iu arbitrary units) of ordered Gae.&Inc.eP as a
function of AE&2. The angular momentum of the circularly
polarized light is in the same direction as the ordering vector.
The dashed lines are the results for a strain-f'ree (e = 0) (111)
ordered alloy. In this case, the generated photoelectron from
each band is fully polarized. The solid lines are the results
for (111)ordered samples with (001) strain e = +0.1%. The
results are not sensitive to the sign of the strain.

that (111) ordered III-V alloys (e.g. , Gas sino sP) could
be better candidates for a spin-polarized photoelectron
source.

Note that, despite the identical optical response with
respect to the linearly polarized light along [110] and
[110] of the two CuPt~ [(111) and (111)] subvariants,
their responses to the circularly polarized light are dif-
ferent. Using the same o+ light noted above but for
(111) ordering, we find that the spin polarization P for
the transition from the top I'4„s„state is only 20% and
the total intensity I + I+ is reduced to 55.56%%ue of the
intensity for (ill) ordering. This difFerence can be used
to distinguish (111)ordering from (111)ordering, which
is not possible using linearly polarized light. This also
indicates that, in order to obtain the highest efficiency in
generating spin polarized electrons, single-variant crys-
tals are required.

To see the effects of strain on the spin polarization, we
show in Fig. 15 the spin intensity of ordered Gao 5Ino 5P
alloys with strain (solid lines). The applied (001) strains
are e = +O. l%%uo. For pure (001) strain (g = 0) the spin of
the photoelectron generated &om the VBM is fully polar-
ized along the [001] direction. Its projection on the [111]
axis reduces the polarization to only 50%. As the degree
of ordering increases, the spin polarization along the [111]
axis increases rapidly and become similar to the one for
the purely ordered sample. The results, unlike the ones
for linearly polarized light, are essentially independent of
the sign of the strain.

V. SUMMARY OF EXPERIMENTALLY
TESTABLE PREDICTIONS

The theory outlined in this paper makes a number of
testable predictions:

(i) The degree g of LRO can be obtained by measuring
AEq2 and AE~ and 6tting the results to Figs. 7 and
8. This was previously done for the lattice matched
composition xo.

(ii) Ordering can be detected by measuring the band
gap vs z: as Fig. 6 shows, the cusp disappears with
ordering. The same is true for AEi2 measurements (Fig.
8). The slopes (n and P) of Es vs e are expected to be
smaller for more ionic II-VI's.

(iii) It is useful to plot measured b,Es vs AEi2 [Fig.
9(b)] for a range of compositions near x = xo. There are
three domains in this plane. If the measured data fall on
the x = xo line one can conclude that atomic ordering
is the cause of both AE~ and AEq2. If the data fall
above the calculated x = xo line, epitaxial strain should
be considered. If the data fall below the x = zo line,
one should suspect clustering and attempt to measure it
directly.

(iv) Ordering induces anisotropy in the optical tran-
sition intensities. By measuring the relative transition
intensity of the sample, one can determine the ordering
vectors using linearly polarized light (separating CuPt~
from CuPt~) and circularly polarized light [separating
the subvariant (111) from (111) ordering].
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(v) Optical transition intensity analysis can be used to
determine the size of the strain (Fig. 10), the degree of
ordering (Figs. 11 and 12), or both (Figs. 13 and 14).

(vi) A single-variant CuPt-like ordered material can be
used as a good spin-polarized photoelectron source.
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