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The sign of the formation energy AH+ of a compound indicates if the low-temperature long-
range order (LRO) corresponds to compound formation (when b,H~ ( 0) or to phase-separation
(when AH+ ) 0). However, ZHF by itself does not tell us what type (ordering or clustering)
of high-temperature short-range order (SRO) can be expected. The reason is that EHJ contains
two types of contributions: an "elastic, " volume-deformation energy G(z) that reflects the energy
invested in deforming the constituents A aud B to the volume V(z) of the Az B alloy, and a
"chemical" energy e that reflects A Bin-teractions (charge transfer and atomic relaxations) at a
jized V(z). We show that the LRO and the SRO have the same behavior only when the signs of
AHp and e are the same: ordering tendencies ("type I") when both AHy ( 0 and e ( 0, or phase-
separating/clustering tendencies ("type III") when both EH+ ) 0 and e ) 0. However, "type II"
systems (b,Hz & 0; e ( 0) can exhibit a phase-separating LRO and an ordering-type SRO. Direct
self-consistent local-density calculations of the total energy coupled with Monte-Carlo simulated
annealing calculations of the ensuing Ising-like cluster expansion illustrate these type I, II, and III
behaviors in Ni-V, Ni-Au, and Pd-Rh, respectively.

I. INTRODUCTION

The structural properties of intermetallic systems are
manifested both through low-temperature long-range or-
der (LRO) and by high-temperature short-range order
(SRO) which are measuredi by Bragg diffraction and dif-
fuse scattering, respectively. In most cases LRO and SRO
have the same underlying reciprocal-space symmetry, de-
scribed in terms of composition waves of given wave vec-
tors. For example, the classic system Cup 5Au05 crys-
tallizes at low temperatures in the Llo LRO structure
which can be described as a Cu/Au/Cu/Au. .. superlat-
tice along the [001] direction. As this structure disor-
ders at higher temperatures () 680 K), the x-ray diffuse
scattering 4 exhibits peaks with a (001) wave vector, in-

dicative of SRO with the same wave vector symmetry as
LRO. Indeed, the coincidence of the wave vector symme-
tries of LRO and SRO is so prevalent in the experimental
literature on intermetallic alloys ' ' and in its standard
theoretical interpretation (the Krivoglaz-Clapp-Mossy s

mean-field theory) that any reported exceptions'io cre-
ates signi6cant interest. Such are the cases of Pd3V
and Pt3V, where low-temperature LRO corresponds to
a (120) superlattice (the DO22 structure) while high-

temperature SRO peaks at (001) points. Solal et al. ii
argued that this unusual behavior signals the breakdown
of mean-field theory, while more recently, Wolverton et
aL showed that if electronic excitations are included the
stable LRO becomes a function of temperature; at the
temperature where SRO is (001) type, the corresponding
ordered L12 structure (ki,no = (001)) is actually lower
in energy than the DO22 structure (k&8& = (120)). In
this paper, we wish to present a simpler case where the
wave vectors of LRO and SRO are di8'erent, namely, sys-
tems where the global ground state corresponds to (in-

coherent) phase separation (i.e., ki, +Q —(000) compo-
sition wave), yet coherent SRO corresponds to ordering
tendencies (e.g. , a ksno = (001) wave). This duality
does not convict with mean-field theory. We will show

that it corresponds to physical systems which phase sepa-
rate due to size-mismatch-induced volume-altering "elas-
tic" energies, yet their constant volume "chemical" in-

teractions (i.e., charge transfer and relaxation) favor or-

dering. We will contrast the case kLso P ksso with
the conventional kr,no = ksno case. We describe
here a quantitative model, based on first-principles local-

density calculations, illustrating compound-forming (Ni-

V), phase-separating (Pd-Rh), and rriixed (Ni-Au) behav-

iors. In the first two cases, the wave vectors of LRO and
SRO are identical: (1&0) in ¹V and (000) in Pd-Rh, in

good agreement with the experiment. We predict that
the third case (Ni-Au) should exhibit a phase-separating
ground state ((000) LRO) with ordering tendencies at
higher temperatures ((00() SRO). This situation is anal-

ogous to the case of bulk-grown zinc-blende semicon-
ductor alloys which are known to phase separate at low

temperatures, i4 but are predictedis ir to exhibit (120)
SRO tendencies at higher temperatures if coherency can
be maintained.

II. CALCULATING SRO AND LRO

A. Cluster expansion: separation
into volume-dependent and -independent terms

Short- and long-range order in binary Az B systems
is generally interpreted in terms of spin-2 lattice models
in which each lattice site i (i = 1, ..., N) is labeled by a
spin variable S;, taking on the value —1(+1) if site i is
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occupied by atom A(B. ) .The excess energy b,E(e, V) of
any of the 2~ configurations 0. is

AE(o, V) = E(a, V) —[(1—x)E~(V~) + xEII(VII)] .

Equation (1) depends on volume V and is defined with
respect to the energies of equivalent amounts of pure
solid A and B at their respective equilibrium volume
V~ and V~. Low-temperature LRO of a given lattice
type is then interpreted as the configuration cr which
gives the lowest AE(a, V ) at the equilibrium volume V .
Since quantum-mechanical calculations of an astronomic
(2+) number of such configurational formation energies
b.H~(o) = b,E{cr,V ) is prohibitive, one performs such
a "ground state search" by expanding Eq. (1) in a finite
Ising-like "cluster expansion" (CE)

&E«( V) = ):DfJf(V)llf{~)
f

where Jf(V) are volume-dependent interaction energies
of basic lattice "figures" f (e.g. , nearest-neighbor pairs,
next-neighbor pairs, triangles, etc.), and the "lattice-
averaged spin products" Ilf ((r) are the product over the
figure f of the variables 8;, averaged over all symme-
try equivalent figures of the lattice. All of the terms on
the right-hand side of Eq. (2) are trivially determined
geometrical quantities, with the exception of Jf, the ef-

fective interaction energies. Since (Ilf ((r)j is a complete,
orthonormal set of polynomials, the expansion Eq. (2) is
exact, if not truncated. In practice, one hopes that this
series converges reasonably rapidly, and so only O(1Q)
interactions are retained (the first few pair interactions,
as well as many-body terms). If the series (2) converges
after M terms, an equivalent nuxnber of interaction en-
ergies (Jf(V)) can be obtained by mapping Eq. (2) on

M values of quantum-mechanically calculated excess
energies [Eq. (1)] for, e.g. , simple periodic configurations
of known DfIIf (0) values. i@ Convergence is then exam-
ined by the ability of these M interaction energies to
reproduce via Eq. (2) the quantum-mechanically calcu-
lated energies of other configurations This ap. proach has
recently been reviewed. 20

Once a useful cluster expansion (2) is established, the
lowest-energy "ground state structures" can be obtained
efficiently2 without having to visit all 2~ possibilities.
Such a ground state search involves two steps: first, find-
ing the lowest-energy configuration at each fixed compo-
sition x (thus, approximately at a fixed volume), and
second, finding the global ground state among all com-
positions. It is, therefore, useful to partition Eq. (2) ac-
cordingly. Equation {1)can be rewritten as

DE{dr, V) = {{1—z)[E~{V)—E~{Vg)]
[EII(V) —EII (VII)])

+R( V) —[(1 — )E (V)+*E (V)]) .
(S)

The first term in the curly brackets is the "volume defor-
mation" energy associated with "preparing" A and B by

deforming them to their final volume V = V(x), while the
second terxn is the energy change associated with form-

1Ilg 0' &OII1 d4. + B at the fixed 50liime .Tllls partltloI11Ilg
was discussed in detail in Refs. 15—17, 22—25. Its most
useful form is the "e-G" representation: ' Ferreira et
al. and Wei et al. have shown that if the equilibrium
volumes V (x) depend primarily on the composition x
(either linearly or nonlinearly) and only weakly on the
configuration 0, then the variables 0 and x of Eq. (2)
can be rigorously separated as

+EcE( V) = G( ) + ) DfVf+f( ) = G(z) + s{
f

(4)

The physical meaning of the two terms is as follows.

(i) The first term G(x) ) Q is essentially the elastic en-

ergy necessary to hydrostatically deform the constituents
(1—x)A+xB &om their equilibrium volumes Vdi and VII
to the alloy volume V(x). Since G(x) is positive definite,
it is not a "relaxation energy. " This elastic energy G(x)
is calculated~ &om

G(2) = (1 —x) /yZ(y)dye
7 /

(1 —y)Z(y)dy, (y)

where Z(x) is selected so that b,EcE(o', V) [Eq. (4)] and
bE(cr, V) [Eq. (3)] have the same value and the same two
volume derivatives. A simple approximation isi~

Z(x) = (dV/dx)2, —

where B is the bulk modulus and V is the volume.
(ii) The second term of Eq. (4) describes "everything

else, " i.e. , s(o) = EE(dr, V) —G[V(x)]. This is the energy
change when A combines with B at the volume V(x) to
forxn the AB compound at the same volume. This term is
labeled as "spin-Hip energy" or "chemical energy. " Since
in calculating b,E(u, V) we permit full cell-internal and
cell-external relaxation as well as charge self-consistency,
the quantity e' = AE(o, V) —G(x) includes charge trans-
fer and (nonhydrostatic) atomic relaxations. While re
laxation is always energy lowering, charge transfer at a
fixed volume need not be. Thus, e can be either neg-
ative or positive. The cluster expansion of e gives the
volume- and composition-independent "spin-Hip" inter-
action energies Vf for figure f These spin-fi. ip energies
thus correspond to a cluster expansion of the excess en-
ergy EE(o, V) after the elastic energy G[V(x)] has been
subtracted &om it. We refer to Ref. 17, Sec. IV 8, for
the description of how G(x) and Vf are calculated &om
a set of quantum-mechanical excess total energies of the
form of Eq. (1).

The important point to notice &om representation (4)
is that while the global ground state structure corre-
sponds to the minimum of the sum of the two terms of
Eq. (4), the relahI)e stability of difFerent structures at the
same coxnposition depends only on the chemical energy e
[since G(x) is a constant at fixed x]. Another way of say-
ing this is that the "ordering energy" hE, ~ {o ), defined as
the difference between the formation enthalpy AH~ {o ) of
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an ordered configuration a and the energy AH;„(x)of
a random alloy at the same x, does not depend on G(x).
Denoting a configurational average for the random (R)
state by angular brackets ( )R this results follows from

b,H;„=G(x) + ) Df Vf(IIf)~
f

= G(z) + ) DgVf(2x —I)"~
f

(7)

where (II)~ = (2x —1)"~ and kf is the number of vertices
in figure f H.ence,

bEo,s(o)= ) 'Df Vf [IIf(o) —(2'z —I)"~]

f
= s(o) —s(random)

is not affected by volume deformation.
The separation of variables in the two terms of Eq. (4)

has a physical implication in cases where ground state
LRO is determined incoherently (i.e. , each phase adopt-
ing its own equilibrium V ), while SRO is determined
coherently (all competing structures being constrained
to a fixed composition). Table I shows the three ba-
sic situations that can be encountered: Type-I systems
have a negative formation energy AHJ; ( 0 (thus, an
ordering-type LRO at low temperatures), and the dom-
inant spin-flip energy is antiferromagnetic Vf ) 0 (thus,
an ordering-type SRO at higher temperatures). This
leads to s ( 0 and bE,s & 0. Type-I systems thus corre-
spond to the usual "compound-forming" systems where
the elastic energy is overwhelmed by attractive chemical
interactions and LRO and SRO both have their compo-
sition modulation wave vector k og (000) [note, how-

ever, that ks~Q and kLRQ may differ, as in the case of
PdsV (Ref. 11)]. Type-III systems are just the oppo-
site, having AHg & 0 and ferromagnetic spin-Hip ener-
gies, and so LRO and SRO both have the same phase-
separating/clustering wave vector k = (000). This dis-
cussion shows that one could have an intermediate case
(type-II systems) where AH~ ) 0 because the elastic
energy is large [G(x) )) 0], yet the dominant spin-flip
energies are antiferromagnetic (Vf ) 0; bE,s ( 0).

Note that if we do not separate G(z) from s(o) but
extract instead the effective cluster interactions from the
sum AH~ ——G+c, then for type-II systems we are bound
to get ferromagnetic Jf ( 0 leading to a pure k = 0
type SRO. This is true whether we relax AH~ or not

(since AH~ ) 0 for type-II systems). Thus, for type-II
systems the interaction energies (Jf) that describe the
total entha/pies are not appropriate to describe coherent
SRO. The only consistent method to describe SRO for
type-II systems is to extract the effective cluster interac-
tions from AE(o, V) ofter the elastic energies have been
subtracted. This corresponds to retaining only the sec-
ond term of Eq. (3), i.e. , considering o, A, and B all at
the same volume. For type-II systems this term is neg-
ative (Table IV), and so the interaction energies (Vf)
extracted from it will be antiferromagnetic leading to an
off-I' peak in SRO.

We have previously shown ' that a hypothetical,
nonrelativistic description of Ni-Pt leads to type-II be-
havior and that most bulk-grown semiconductor alloys
belong to this class (Refs. 15—17, 20, 22—24). Here we
concentrate on demonstrating quantitatively these proto-
type behaviors on actual metallurgical systems identi6ed
in the last column of Table I.

We selected two systems whose LRO and SRO are
known experimentally to correspond to ordering type
(Ni-V) and phase-separating type (Pd-Rh). To illustrate
a type-II behavior we select a chemically reactive atom
pair (likely s ( 0) which nevertheless has a large size
mismatch (G )) 0). An example is the ¹iAu (Ref. 27
suggests that Ti-V may also be a type-II system).

B. Calculating the cluster expansion parameters

We have calculated the excess energy AE(o, V) vs
volume V for 8—12 ordered structures o. in ¹iAu, Pd-
Rh, and ¹iV. We use the local-density approximation
(LDA) as implemented by the full-potential linearized
augmented-plane-wave (LAPW) method. 2s At the equi-
librium volume V the excess energy AE(o, V )
AHg;„,t. We use the Wigner form of the exchange-
correlation potential. The core states are treated fully
relativistically while the valence states are treated scalar
relativistically. The Brillouin zone integration is per-
formed using 60—400 special k points in the irreducible
zone.

We minimize the total energy with respect to both
cell-internal and cell-external atomic degrees of &ee-
dom, assuming V(z) = (1 —x)V~ + zV~. This re-
laxation leads to major changes in the interaction en-

ergy and atomic geometry. To test the importance of
relaxation and the extent to which we describe it cor-

TABLE I. Classification of three types (I, II, and III) of alloy systems according to their elastic
energy G(x), spin-fiip chemical energy s (which includes charge transfer and sublattice relaxation),
and their sum —the formation enthalpy AHI [see Eq. (4)I. Type-I alloys are "ordering, " and so
LRO and SRO occur at the wave vectors k g 0 (ki, ao and ksao need not be equal). Type-III
systems are "phase separating, " and so LRO and SRO occur at the same wave vector k = 0.
Type-II alloys have ordering type SRO (k g 0), but phase-separating LRO (k = 0).

Type
I
II
III

AHF G(x)

+

LRO
k+0
k=0
k=0

SRO
k+0
k+0
k=0

Example
¹iV

Ni-Au
Pd-Rh
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4(Pm'+ m'n'+ n'I')
p(G

(I + m' + n2)' (10)

rectly, we must consider disordered alloys for which mea-
surements of relaxed interatomic distances exist. If one
ignores relaxation altogether (e.g. , as in the general-
ized perturbation method, concentration wave, tight-
binding direct con6gurational averaging, and the em-
bedded cluster method ), or includes only hydrostatic-
like volume deformations, 8 then the A—A., B—B,
and A B—bond lengths in an Ai B alloy end up being
equal. This could be a severe approximation: Both cell-
external and cell-internal relaxations change the spin-Hip
energies (Vf) and the atomic positions. For example,
measurementsm on disordered ¹Au show that these re-
laxations create three distinct bond lengths Ni—Ni, Ni-
Au, and Au—Au and a distribution around each of them.
We have calculated the alloy bond lengths by minimizing
the elastic energy of a supercell whose sites are occupied
by Ni and Au so as to mimic a larger supercell [i.e., us-

ing the concept of special quasirandom structures
(SQS's)]. This minimization can be done either by using
an atomistic total energy expression (e.g. , LDA) or by us-

ing continuum elasticity. We have previously shown
that the two approaches yield very similar results for
lattice distortions even at the limit of short period su-
perlattices. Since the SQS happens to be a superlattice
along some orientation G, we will calculate its equilib-
rium interlayer spacing c,q along G as a function of the
perpendicular lattice constant a~ using continuum elas-
ticity, i.e.,

c,q (a&) = a(') —[2 —Sq&' (G))[a~ —a&'&] . (9)

Here a,q is the cubic lattice constant of material i,
q('&(G) is the "strain reduction factor" along G given
by4'44 q(G) = 1 —B/[Cii + p(G)b, ], where b,
C44 —(Cii —Ci2)/2 is the elastic anisotropy, B is the
bulk modulus, C;~ are the elastic constants, and the ori-
entation dependence is given by the geometric constant

Here, l, m, and n are the Miller indices for the direction

G. Equations (9) and (10) predict very well c,~ (a&)
as computed by LDA for short period superlattices.
While the elemental solids Ni and Au have the equilib-

rium lattice constants a~q, in the alloy environment these
will expand and contract, respectively, to the alloy value

a~ ——a(z). We then imagine a coherent layer of pure
Ni (or Au) whose perpendicular lattice constant is con-
strained to equal a(x), finding from Eqs. (9) and (10)
the Ni-Ni (or Au-Au) interlayer distances along G. We
then layer these Ni and Au planes in the SQS, finding
the corresponding Ni and Au atomic position so that the
interlayer distances matches those obtained above. Using
the experimental C;~ and a('), we find that the average
bond lengths and the distribution widths are 2.64 6 0.08
A. , 2.70 +0.11 A. , and 2.77+ 0.09 A. , for Ni—Ni, Ni—Au,
and Au—Au, respectively, for Ni05Au05. These com-
pare favorably with experimental extended x-ray absorp-
tion fine structure (EXAFS) valuesss of 2.66 + 0.11 A. ,
2.70 6 0.09 A, and 2.78 6 0.06 A, respectively.

The directly calculated formation enthalpies
b,Hg;„,t(o') are collected in Table II. Table III gives
more details for Ni-V, where both relaxed and unrelaxed
calculations are reported. At this point all that can be
said is that Pd-Rh and Ni-Au have b,H~ ) 0 while Ni-
V has LHg & 0, but with this information alone one
cannot determine yet if Pd-Rh and Ni-Au are type-II or
type-III systems.

Next, the directly calculated excess energies b,E(o, V)
are mapped, as described in Ref. 17, onto EEcE(a, V) of
Eq. (4), thus obtaining G(x) and the relaxed (Vf j. We
use 8—12 6gures described in Table IV which also gives
the spin-fiip energies Vf, the chemical energy s(0'), and
the elastic energy G(x). The signs of Table I are corrob-
orated. We see that the nearest pair interaction is the
largest; however, the three- and four-body interactions
(see, in particular, lt4) are quite substantial. We have
predicted AHcE(o') for the five structures that are not
used in the 6t. The resulting average prediction error is

TABLE II. Listing of the directly calculated, relaxed LAPW energies b.Hq;„,t, (o)aud the e-'G

(Refs. 17, 22) cluster-expanded values AHoE(o) for Ai B, in various structures defined in Ta-
ble III. Here A = Pd and Ni, aud B = Rh, Au, aud V. Energy is in units of meV/atom. In
the case of ¹iV, the AH are taken with respect to fcc Ni and bcc V, and so the energy zero is
b,H[Ni(fcc)] = 0.0 and AH[V(bcc)] = 0.0. However, b,Hq;„,i [V(fcc)) = 265.2 meV/atom.

Structure
fcc (A)

L12 (A3B)
DO22 (A3B)

Pl (AgB)
I lp (AB)
Lip (AB)

"40" (AgBg)
Z2 (A2Bg)
p2 (AB2)

DOg2 (AB3)
L12 (ABg)

fcc (B)

Nip V
ZEHd;~~~i, (o') QHo@{0')

0.0 —13.0
—210.1 —211.0
—315.2 —314.3
—200.4 —231.5
—239.9 —194.6
—51.8 —37.8
—82.7 —94.2

—159.5 —123.6
—91.0 —94.5

10.9 2.5
—2.9 —15.4

265.2 273.9

76.8
167.6
83.8

124.3

76.8
167.6
83.8

124.3

78.2
0.0

78.2
0.0

Ni~ Au
AHA;...,(o) AHoE(o)

0.0 0.0
75.5 75.5

Pdg
&direct (~)

0.0
66.8
69.0
72.5
82.4
79.0
70.7
35.1
64.2
63.8
85.0
0.0

Rh
EHoF (cr)

1.3
72.4
63.4
59.6
88.6
79.0
70.5
47.0
59.2
69.9
78.9
—1.3
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TABLE III. Listing of the LAPW-calculated unrelaxed and relaxed b H(o) (in meV/atom) for
Nii V taken with respect to fcc Ni and bcc V. AH[Ni(fcc)] =O.O, AH[V(bcc)] = 0.0, and
AH[V(fcc)] = 265.2 meV/atom. The s-G cluster-expanded (CE) results (Refs. 17, 22) are also
shown. Many of the structures calculated here can be characterized as a (Ni)z(V)p superlattice
in orientation G. We use the conventional structure type name whenever available and assign an
arbitrary name for other structure type. The structures marked with an asterisk are used in the
CE fit.
Orientation

formula
AB

Unrelaxed
Relaxed

CE
AgB

Unrelaxed
Relaxed

CE
AB2

Unrelaxed
Relaxed

CE
AsB

Unrelaxed
Relaxed

CE
AB3

Unrelaxed
Relaxed

CE
AgBg

Unrelaxed
Relaxed

CE

Unrelaxed
Relaxed

CE

[001]

Llp*
—229.3
—239.9
—194.7

Pl+
—198.7
—200.4
—231~ 0

P2
—91.0

—96.5
Z1~

—148.4
—153.6
—162 ~ 3

Z3*
31 ~ 5

5.7
Z2*

—139.5
—159.5
—124.8

Llg (A3B)*
—210.1
—210.1
—211~ 0

[011]

Llp*
—229.3
—239.9
—194.7

MoPtq ~

—301.9
—302 ~ 3
—307.9

MoPtg +

27.6

56.1
Yl~

—230.4
—232 ~ 5
—212.7

Y3*
62.9

84.8
Y2~

—67.0

—96.0
other structures

L12 (AB3)*
—2.9
—2 ~ 9

—15.6

[012]

Llp +

—229.3
—239.9
—194.7

MoPtg*
—301.9
—302.3
—307.9

MoPtg ~

27.6

56.1
DOgg*

—313.3
—315~ 2
—314.3

DOgg
10.9

2.9
cc40n Q

—81.6
—82.7
—94.0

DOg3 (A6Bg)
—280.7

—262.6

Lll ~

—50.2
—51.8
—37.9

al*
—90.2
—91.2
—82.1

a2~
93.7

97.5
Vl*

—74.0
—75.5
—50.7

V3
151.0

151~ 2
V2

60.5

54.0

NisNb (AsB)~
—189.4

—175.5

[113]

Llg*
—50,2
—51.8
—37.9
MoPtg*

—301.9
—302.3
—307.9

MoPtg*
27.6

56.1
Wl~

—182.7

—215.4
W3~
69.2

29.1
W2*

—124.6

—140.0

TABLE IV. Definition of the "figures" f used in our cluster expansion in terms of the vertices
of the fcc structure (in units of —,where a is the lattice parameter). The effective T = 0 cluster
interactions Vf (including the degeneracy factor Dz) are obtained in the s Grepre-sentation for
¹iV, Pd-Rh, and ¹iAu. We also give the temperature-dependent (T = 140O K) efFective in-

teraction values for Ni-V according to the prescription of Ref. 12. Negative (positive) Vf denote
ferromagnetic (antiferromagnetic) interactions. We also give the values of a and P, which fit the
elastic energy G(x) to the form of G(x) = 4[m+ P(x —-)]x(1—x), and the calculated energy DH
of completely random alloy at x = — (corresponding to T = oo). Note that b,H;„()= n+ Jp. —

In addition, the total chemical energy s(o) is given for the I lp structure and the random alloy, as
is the ordering energy DE„&(Llp). All quantities are in units of meV/atom

Empty
Point
Pairs

Triplets

Quadruplets

Jp

Jg
K2
Lg
M2
J3
K3
Ls
Ms
Q3
J4
K4

(000)
(000),(110)
(000),(200)
(000),(211)
{ooo),(220)
(000),(110),(101)
(000),(110),(200)
(000),(110),(211)
(000),(110),(002)
{000),(110),(220)
(000),(1.10),{101),{011)
(000),(110),(101),(200)

AHmix{ 2)
G(-,' )

~(Llp)
e (rand)

b&o,d (L1p )

Cluster Type Designation Vertices
T=0K

—233.2
252.9
152 ~ 0

—20.0
58.9
33.5

—96.1
44.5
64.5

—41 ~ 1
—81 ~ 3

139.1
141~ 9
—30.2
—91~ 3
141.9

—336.4
—233.2
—103.2

¹iV
T = 1400 K
—233.2

252.9
152.0

—20.0
58.9
33.5

—142 ~ 7
44.5
64.5

—41.1
—81.3

—35 ~ 6
141.9
—30.2

Ni-Au
T=0 K

—452.9
39.0

217.9
25.6

157.2
60.6

—39.0

579.5
—208.9

126.6
579.5

—502.7
—452.9
—49.8

Pd-Rh
T =OK

53.3
2 ' 3

—46.0
—0.1

—10.8
8.2

—3.6

12.9
1.5

66.2
12.9
69.5
53 ~ 3
16.2
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9.6 meV/atom and the maximum prediction error is 18.1
me V/atom.

Having obtained the interaction energies (Vy) and
G(z) (Table IV), we can easily calculate the energy
h.H . (z) of completely random alloy (no SRO, i.e., at
T = oo) using Eq. (7). Table IV gives this EH;„(z).
As the temperature is lowered &om T = oo, we expect
AH;„to be reduced.

Now we can distinguish different behaviors in Pd-Rh
and Ni-Au: Despite the fact that both systems are phase
separating (b,Hy & 0), the dominant nearest pair in-
teractions are antiferromagnetic in ¹Au (Vy & 0) but
ferromagnetic for Pd-Rh (Vy ( 0). Thus, Pd-Rh and Ni-
Au have b,H~ & 0 for fundamentally different reasons:
In ¹Au, AH~ & 0 because of the dominance of the elas-
tic energy G(z) (noted also by Wu and Cohen4s) over the
antiferromagnetic chemical interactions, while in Pd-Rh4' & 0 because the chemical interactions themselves
are ferromagnetic (i.e., promote phase separation). Ta-
ble IV further shows that both in type-I and type-II
structures s(Llo) ( e(random) or bE,s ( 0, while in
type-III structures s(Llo) & s(random) or hE,& & 0.
This means that in type-I and -II structures some or-
dered phases (e.g. , Llo) have a lower energy than the
random alloy of the same composition. Yet, in type-II
structures, phase separation has the absolute lowest en-

ergy. This sequence of energies exists in most semicon-
ductor alloys; SRO above the miscibility gap temperature
is of the (1z0) ordering type.

C. Finding SRO and LRO from the cluster expansion

Having calculated the parameters of the Hamiltonian,
Eq. (4), we subject it to a Monte Carlo —simulated anneal-
ing treatment, so which gives us the T = 0 LRO ground
states (on a finite cell) as well as the SRO difFuse scatter-
ing map at a fixed temperature. A Monte Carlo cell size
of 16 = 4096 atoms (with periodic boundary conditions)
was used in most calculations (in NizV, cell size of 18
was also used). Monte Carlo —simulated annealing was
performed in the canonical ensemble at a fixed concen-
tration, with the transition temperature being calculated
&om the discontinuity in the internal energy as a function
of temperature, and the ground state determined by the
state of the simulation at a temperature where all config-
urational changes proved to be energetically unfavorable.
Since we run the Monte Carlo simulation with decreas-
ing temperature, it tends to supercool a structure. The
resulting transition temperature is thus a lower bound of
the real T . The estimated error is around 100 K.

The Warren-Cowley SRO parameter for the Nth
atomic shell at distance B &om the origin is

Its value depends on the number of NR of real-space
shells used in the transform:

&sRQ(k, NR) = ) o'sRQ(N)e
N

(12)

In the calculation of crsRo(N) and asRo(k, NR), 500
Monte Carlo steps per site are used to equilibrate the sys-
tem (which is initialized in a completely random state),
and subsequently, averages are taken over 100 Monte
Carlo steps per site. Twenty-one atomic shells (NIt = 21
or R = 3a where a is the lattice parameter) of asRo(N)
are used in Eq. (12) to assemble nsRo(k, NR) for Pd-
Rh and Ni-Au, whereas 35 and 10 shells are used for
NiqV and Ni2V, respectively. These latter two cases are
dictated by the number of experimental SRO parameters
reported. is Further details on our Monte Carlo simulated
annealing calculations will be given in Ref. 50.

III. RESULTS

A. Ground state LRO

For both Pd-Rh and ¹iAu all AHF values are posi-
tive, and so one expects a phase-separating ground state.
Thus, no Monte Carlo —simulated annealing is needed.
Since for Ni-Au the composition-independent chemical
interactions (Vy) are antiferromagnetic, it is interesting
to conduct a ground state search using this set alone.
This will produce constant-volume "ground states. " This
produces a rather complex structure with large unit cell
at x = 2, a reciprocal-space description of this structure
shows a strong peak at k = (s00). This structure is less
stable than phase separation, but is more stable than the
random alloy of the same composition.

For Ni-V, we correctly identify in our ground state
search the observed Pt2Mo (z = s) and DO22 (z = 4)
structures as the ground states. The transition tem-
peratures T, (listed in Table V) are, however, overes-
timated. Since we only do Monte Carlo simulations with
decreasing texnperature, the T, given here may be the
lower bound the real T, Inclusion o.f electronic excita-
tion effectsi2 4s lowers for NisV T, from 1900 K to 1400
K at z = 4i, close to the measured result of 1318 K.
Note that the calculated order-disorder transition tem-
perature at Ni3V is 50 K above that of Ni2V of the
same order as the experimental difFerence of 123 K. For
x = 9, the cluster expansion fails to find the experi-
mentally observed PtsTi-type structure as the ground
state despite the fact that direct LAPW calculations find
the PtsTi-type structure to be the lowest-energy struc-

o'sRo(N) = (Ilo,x) —q'
1 —q

TABLE V. The calculated and experimen-
tal order-disorder transition temperatures T, (in kelvin) for
NiqV and Ni3V. The experimental data are from Ref. 52.

where q = 2x —1 and the angular brackets denote config-
urational average. Note that asRo(0)—:1 by definition.
The Fourier transform of real-space SRO is nsRo(k),
which is proportional to the difFuse intensity due to SRO.

Tc
Calc.
Expt.

NigV
1850
1195

Ni3V
1900
1318
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ture at this composition. This reflects a fitting error
in the cluster expansion: While LAPW gives a value
of b,Hg;„,t ———189.4 meV/atom the cluster expansion
gives AHcE = —175.5 meV/atom. In fact, the clus-
ter expansion places another structure lower in energy
(AHcE = —189.2 meV/atom) than the Pts Ti structure.
The LAPW-calculated b,Hs;„,t ———189.4 meV/atom for
the PtsTi structure is actually 50 meV/atom helot'
the tie line connecting the known ground state DO22 at
x =

4 and end point x = 0. Thus, while LAPW pre-
dicts the Pts Ti-type structure to be the lowest-energy at
z = z, the 14 meV/atom error of the CE obscures this
result in a ground state search.

B. Diffuse scattering SRO

Figure 1 gives the calculated diffuse scattering SRO
[i.e., cr(k, NR)] for the three alloy systems studied. As
described in Table I, Ni-V (type-I) shows peaks off-I', in-
dicating ordering tendencies, and Pd-Rh (type-III) shows
only I'-like peaks, indicating phase-separating tendencies,
while Ni-Au, which is predicted to phase separate in its
ground state (Sec. IIIA), exhibits in SRO off-I' struc-
tures, indicative of ordering tendencies.

In Nio 75Vp 35 the high-temperature diffuse scattering

intensity peaks at k = (130) corresponding to the DO33
low-temperature ordered phase (the DO33 structure is a
[210] superlattice). We have calculated the short-range
order parameters at T = 2300 K (i.e. , using T/T, = 1.21)
The calculated a(N) [Fig. 2(a)] and a(k, NR) (Fig. 3)
capture the essence of the experiment~ (performed just
above the measured order-disorder transition tempera-
ture). The calculated and experimental peak intensities
at W = (120) are 8.5 and 4.2, respectively. Inclusion~ of
electronic excitation effects 5 reduce the calculated peak
intensity to 4.1 (calculated at the same T/T, ratio of
1.21).

While Nio 75Vp 35 exhibits the W = (1&0) peak
for both the low-temperature ordered structure and
high-temperature short-range order, the observed» and
calculated high-temperature SRO maps (Fig. 4) in
Nio ss7Vp 333 show peaks at the W = (1&0) point rather
than at the corresponding wave vector of the ordered
low-temperature Pt3Mo structure (3 30). This is due to
the fact that it is impossible to build an A38 structure
with (3 30) waves alone. However, the Pt3Mo is a rather
versatile structure: It is a superlattice along a few di-
rections [110], [210], and [311]. Hence its corresponding
high-temperature diffuse intensity peak at (1&0) is not

surprising, as it is in the (1&0) family of structures. ~o In-
deed, our calculated SRO at T = 2250 K shows peaks at

(a) Nip. 75V 0.25 (b) Nip 4Aup 6 (C) Pdp 5Rhp 5

020 220 020 X 220 020 220

000 200 000 X 200 000 200

000 000"

00

FIG. 1. Calculated SRO diffuse scattering map n(k, Na) [Eq. (12)j for (a) Nio7&VO. &z, (b) Nio 4Au06, and (c) Pdo &Rho. z.
The number of real-space atomic shells, NR, used is N~ ——35 for ¹iV and 21 for Ni-Au and Pd-Rh. The Monte Carlo
simulations were performed at T = 2300 K for Nio. q5Vo. 25 and 1500 K for ¹iAu and Pd-Rh. Note that the peaks are at the
W = (1—0) point in Ni-V, the I'-X line in Ni-Au, and the I' point in Pd-Rh. Electronic excitation effects (Ref. 45) are not
included (see Ref. 12 for their effect).
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W = (120) points. Figures 2(b) and 4 compare the cal-
culated and experimental a(N) and a(k, NR) (NR = 10),
where the experimental data were measured at T = 1228
K and the experimental results are scaled with respect to
a,„i,q(0) = 0.825. The calculated o.(k, NR) agrees the ex-
periment reasonably well. Quantitatively, the calculated
and experimental peak intensities at W = (120) are 3.4
and 3.3, respectively.

Pdi Rh is a prototypical phase-separating system
(type-III). While Pd and Rh have a fairly small lat-
tice mismatch of 2.3%, the repulsive chemical interac-
tion between Pd and Rh drives them apart. Indeed, the
a(k, NR) peaks at the I' point as shown in Fig. 1(c).
This behavior was also shown by Johnson et al. using
a Korringa-Kohn-Rostoker coherent ptoential approxi-
mation (KKR-CPA) method. There were a few previ-
ous theoretical attempts aimed at predicting the mis-
cibility gap; these include Connolly-Williams
type, 2s direct configurational averaging, s and the mean-
field CPA approaches. ss's4 The predicted miscibility gaps
are generally overestimated by & 400 K with respect to
experiment.

Unlike Pd-Rh, the calculated SRO for Nio 4Auo s
o.(k, NR) (NR = 21) has a peak along the I'-X (h00)
line (rather than at the I' point) as shown in Fig. 1,
with peak position at h 0.8. This is in agreement

0 2 I ~ ~

- {a)

0.1—

Nio

0.0
Z

m
LI 0

-0.2 . ".
~

: {b)

0 0~-
CC
(0

0.0

-0.1—

0
X

X

x O

X

so 8x
'lg QXD

X

Expt. T=1373K .
Gale. T=2300K-

~ I ~ ~ ~ ~ I
~ ~ ~ ~

I
I I I I

I
I ~ ~ ~ I

~ ~

Nlo. 667V0.333:

x &

a OX

X
X0

o Expt. T = 1228 K

Gale. T = 2250 K
I ~ ~ I I I ~ I I I I ~ I ~ I ~ I I I I I « I I I I I ~ I I

%gl o&m

1 2 3
Interatomic distance R/a I,I

FIG. 2. Calculated snd experimental {Ref. 13) real-space
SRO parameters a{N) for {s) Nio. 75Vo.qs snd (b)
NiQ. 667VQ.333.

~0.7. 0..5
(a) alcaic(k, NR= 35)

220

000

(Xexpt(k~ NR= 35)
020

200

220

FIG. 3. Calculated and experimental
[Ref. 13{b)] SRO difFuse scattering maps
a{k,NR) {NR = 35 pairs) for Nio. 7sVo.os.
The calculation was performed at T = 2300
K {T/T, = 1.21), while the experimen-
tal data were measured at T = 1373 K
(T/T, = 1.04) just above the measured T, .
Note that Ref. 13{b) found from inverse
Monte Carlo calculations T' ' = 1113 K
and performed Sts to the measured SRO at
Tsno/T' "= 1.23, close to our value of 1.21.
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with an x-ray diffused scattering experiment by Wu and
Cohen on a Nio 4Auo 6 single crystal at T = 1023 K.
They observed that the measured short-range order in-
tensity has a broad peak along the I'-I ((h00)) line, with
maximum near h, —0.6. Our e-only ground state search
for Nip qAup s (Sec. III A) did indeed produce a structure
with a wave vector at k = (-00). This point has the
largest weight among all wave vectors for that structure.
The calculated a(1) = —0.074 has a difFerent sign than
the measured value of 0.039 of Wu and Cohen. How-

ever, an earlier experiment on Niz Au film and poly-
crystalline samples suggested a negative n(1) —0.030
for z = 0.6. The calculated peak intensity of o.sRo(k),
however, appears to be larger than experimental results
of Wu and Cohen. ss The competition between the chem-
ical and elastic energies in Ni-Au has been discussed by
de Fontaine and Cook and by Wu and Cohen. Using
a phenomenological model developed by Cook and De
Fontaine and neutron inelastic as well as x-ray diffuse
scattering data, Wu and Cohen were able to correlate
the minimum of the elastic energy in reciprocal space
[(h00), h = 0.6] with the maximum in the experimental
os'.o(k).

It is interesting to note that while calculating coherent
SRO [i.e., extracting Vy &om the constant-volume ener-
gies s(o )] we find off-I' peaks, calculating incoherent SRO

[i.e. , extracting Jf &om excess enthalpies AH~(rr)
G + e(cr)] gives SRO peaks only at the I' point.

IV. SUMMARY AND CONCLUSIONS

We have shown that while the sign of the formation en-

thalpy, AH~, is indicative of the type of low-temperature
LRO (compound formation for b.H~ & 0; phase sepa-
ration for AHJ; ) 0), AHF by itself does not tell us

what type of SRO can be expected. However, the r-
G formalism ' shows us how to decompose AHg into
an elastic volume-deformation (G) piece and a volume-

independent chemical piece (s). When s ) 0 we expect
clustering-type SRO (k = (000)), while s & 0 indicates
ordering-type SRO (k off (000)). In many cases SRO
follows the wave vector symmetry of LRO, e.g. , in "type-
I" systems (AH~ & 0; s ( 0) or in "type-III" systems

(4H~ ) 0; s ) 0). We propose here "type-II" sys-
tems (¹iAu and most bulk-grown III-V semiconductor
alloysi 2 ), in which b,Hz ) 0 due to the domi-
nance of elastic energy (G )) 0) over chemical (z ( 0)
energies. In type-II systems the ground state is phase
separating (AHJ; = G+s ) 0), yet at a fixed composition
the relative energy of different structures shows ordering
tendencies, and so the coherent ksRQ is off (000).

0.667 0.333

(a) u„,(k, N, = &O)

020 220

000

+expt(k, NR= 10)
020

200

220

FIG. 4. Calculated and experimental
(Ref. 13) SRO difFuse scattering maps
a(k, Na) (Na = 10 pairs) for Nio servo ss3. .
The calculation was performed at T = 2250
K (T/T, = 1.22), while the experimen-
tal data was measured at T = 1228 K
(T/T, = 1.03) just above the measured T,

3.0
2.0
1.0
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0
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