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Total-energy local-density calculations on approximately 20 periodic crystal structures of a given
AB compound are used to define a long-range Ising Hamiltonian which correctly represents atomic
relaxations. This allows us to accurately calculate structural energies of relaxed substitutional
Aj B systems containing thousands of transition-metal atoms, simply by adding up spin prod-
ucts in the Ising Hamiltonian. The computational cost is thus size independent. We then apply
Monte Carlo and simulated-annealing techniques to this Ising Hamiltonian, finding (i) the T = 0
ground-state structures, (ii) the order-disorder transition temperatures T„and (iii) the T ) T,
short-range-order parameters. The method is illustrated for a transition-metal alloy (Cui Pd )
and a semiconductor alloy (Gai, In P). It extends the applicability of the local-density method
to 6nite temperatures and to huge substitutional supercells. We 6nd for Cup. 75Pdp. 25 a charac-
teristic fourfold splitting of the difFuse scattering intensity due to short-range order as observed
experimentally.

I. INTRODUCTION

The cluster expansion (CE) is a powerful method for
extending the applicability of Grst-principles total-energy
calculations to a large range of substitutional con6gura-
tions. In the CE, a solid made up of A and B atoms
is treated as a lattice problem, assigning a set of "spin"
variables S; (i = 1, 2, . . . , N) to each of the N sites of the

lattice, with S, = —1 if site i is occupied by an A atom,
and S, = +1 if it is occupied by a B atom. A con6gura-
tion cr is then defined by the occupation of each of the N
lattice sites by an A atom or a B atom. The energies of
any of the 2~ possible configurations rr can be exactly
mapped into a generalized Ising Hamiltonian:

E(rr) = Jo+ ) J,S;(o) + ) J, S;(0.)S (o)

+ ) J,,gS;(o)S, (o)Sg(a.) +

where the J's are "interaction energies, " and the first
summation is over all sites in the lattice, the second over
all pairs of sites, the third over all triplets, and so on.
The interaction energies J are the same for all configu-
rations 0. Thus, if the J's can be calculated and if the
series [Eq. (I)] converges reasonably rapidly, the energy
E(rr) of any configuration can be obtained almost im-
mediately by simply calculating the spin products and
summing Eq. (1). Because the Ising representation of
the energy can be calculated rapidly, and is also a lin-
ear function of the spin products, one can readily use
Eq. (1) and (i) apply linear programming techniques3
to find ground state structures, (ii) use statistical-
mechanics techniques (Monte Carlo and cluster vari-
ation methods ) to calculate phase diagrams, (iii)

calculate excess enthalpies ' and free energies ' at
T g 0, (iv) calculate the energy of an arbitrarily com-
plex configuration such as superlattice and antiphase
boundaries, and (v) calculate short-rangei4 is and long-
range order parameters.

The problem with representation (1) is that often
atoms move off their ideal lattice sites ("relaxation" ) and
that when this happens the convergence of Eq. (1) be-
comes slow. i 2o Relaxation takes the form of "volume
deformation" (compression and dilation of pure solid A
and B to the equilibrium volume of configuration o) as
well as the displacement of the unit cell vectors ("cell
external relaxations") and symmetry-allowed atomic dis-
placements within the unit cell ("cell-internal relax-
ations"). The degree of relaxation scales2o with the rela-
tive A-to-B lattice size mismatch, the average bulk mod-
ulus, and inversely with the average phonon frequency
squared. Relaxation in alloys has been observed by ex-
tended x-ray-absorption fine structure (EXAFS) both in
metallic and jn semiconducting ' systems. Most of
the standard theories of calculating the interaction en-

ergies J neglect, however, all forms of relaxation. This
is true for the "direct configurational averaging (DCA)
method, " the "generalized perturbation method"
(GPM), the "concentration-wave (CW) method, "
and the "embedded cluster method" (ECM). Recent
calculations have demonstrated, however, the importance
of incorporating relaxation effects into Eq. (1): These can
alter the interaction energies of transition-metal alloys by
as much as 200%,2o change the predicted symmetry of the
ground-state structure in NiPt, narrow significantly
the single-phase domains in the Cu-Au phase diagram,
lower the miscibility gap temperature of semiconductor
alloys by a few hundred degrees, ' ' change the sign
of the ordering energy of NiAu, and shift peaks in the
density of states of Cu-Au (Ref. 33) and Cu-Pd (Ref.
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33) by as much as 1 eV. Also, while standard elastic-
ity theoryi 'i predicts that long-period superlattices
A„B„havean orientation-dependent energy, this feature
cannot be captured in any finite real-space cluster expan-
sions that neglects relaxation.

A number of efforts have recently been made to intro-
duce phenomenologically relaxation into the calculation
of the interaction energies J. None of these, how-

ever, includes cell internal and cell external relaxation
nor do they solve the above mentioned problem of long-
period superlattices.

We have recently developed an efBcient scheme for
including all form of relaxation in Eq. (1). The
method combines the direct inversion method (Connolly-
Williams40) with Khachaturyan's concentration wave
method. The result is an Ising-type Hamiltonian using
a both real-space and reciprocal-space interaction ener-
gies. All of the interaction energies are derived from 6rst-
principles local-density-approximation42 (LDA) calcula-
tions for a small (+ 20) set of structures. The interac-
tion energies include the full effects of atomic relaxations,
which allows us to make predictions for the energies of
very large structures (with thousands of atoms) in which
all of the atoms are fully relaxed. Since we derive inter-
action energies (J) that directly incorporate relaxation
effects on the energy, we can use Eq. (1) to predict the
relaxed E(cr) of any substitutional configuration without
having to determine the actual relaxed atomic positions.

In this work we apply the method both to a semicon-
ductor system GaP-InP and to a transition-metal sys-
tem Cu-Pd, using the LDA to construct Eq. (1) and the
Monte Carlo s (MC) and simulated-annealing4s meth-
ods to perform ground-state searches for large unit cells
and to solve for thermodynamic quantities. We also pre-
dict the degree of short-range order (SRO) in a sim-
ple and natural way, since our reciprocal-space energy
expression is a function of the diffuse scattering inten-
sity, which is the Fourier transform of the Cowley SRO
parameters. 44'45

The paper is organized as follows: We present in Sec. II
a brief summary of the mixed real- and reciprocal-space
expression for the total energy. The interaction ener-
gies used in the total-energy expression are derived &om
LDA calculations for a small set of ordered structures.
Section III describes the details of the LDA calculations,
and how we extract the interaction energies from. them.
The total-energy expression contains a reciprocal-space
part that is related to the diffuse scattering and to the
SRO parameters. Section IV A describes the search of
the ground-state structures, while in Sec. IVB we de-
scribe how this reciprocal-space energy can be efBciently
implemented in a MC simulation and how to extract
the SRO parameters &om the simulation. Sec. V de-
scribes our implementation of simulated annealing and
the results of ground-state searches for Gaq In P and
Cuq Pd ground states, and the order-disorder tran-
sition temperatures. In Sec. VI we show our results for
SRO in Cuq Pd and Gaq In P and compare this cal-
culated SRO with the results of diffuse scattering exper-
iments. Section VII describes how we use cluster expan-
sion to study the stability of long-period superlattices

which is outside the range of the direct LDA calculations.
Finally, Sec. VIII summarizes the results.

II. FORMULATING THE CLUSTER EXPANSION
OF THE TOTAL ENERGY: SUMMARY OF

RESULTS

Accurate first-principles total-energy calculations (e.g. ,

using the LDA) can be conveniently performed only on a
limited set (out of 2+ possibilities) of rather simple lattice
con6gurations. For example, one can directly compute
the total energy Es;„,&(o', ) of a few ordered, periodic
configurations (o', ) with a reasonably small number of
atoms in the unit cells. Focusing on the relative energies
we define the formation energy of structure 0, as

&Eaireci((ra) = Es;„,i(&,) —[(1 —x) E(A, VA)

+xE(B,Vg)j, (2)

where f run over the ND~ figures in class Ii, and the spin
indices run over the m sites of figure f In the rem. ainder
of this paper, we will use the term 6gure for a class of
equivalent figures, as in "the nearest-neighbor pair 6g-
ure. " The set (II~(o)) defines2 a complete, orthogonal
set of basis functions over the space defined by (o'j. This
means that we can rigorously expand any lattice prop-
erty P(o) in terms of an appropriate set of J~'s (which
need not be energies). In particular, we can also expand
the energies of the configurations after all of the atoms
have been fully relaxed —even though the atoms are no
longer on their original lattice sites. We can therefore
rewrite Eq. (1) as a cluster expansion (CE):

b,EgE( ) = N) Dy J~ IIp( ).
F

(4)

%'e now take a few steps in anticipation of a possible slow
c jnvergence of Eq. (4):.

First, rather than expand EEq;, ,t(o), we will expand
the energy with respect to a reference (ref) energy,

which is taken with respect to the energy of equivalent
amounts of the constituent solids A and B at their respec-
tive equilibrium volumes V~ and V~. Here Es;„,i(o,)'
denotes the total energy of the directly calculated (i.e. ,

no cluster expansion) fully relaxed configuration o, . Our
task here is to use a set of such directly calculated first-
principles formation energies of simple (s) configurations

(o,) to define a general cluster expansion of the type
of Eq. (1) applicable to any configuration. To this end,
the Ising series of Eq. (1) is first cast in terms of lattice-
averaged functions. The lattice is broken into a set of
"figures" f each being a specific set of sites, such as
a nearest-neighbor pair or a nearest-neighbor triangle.
Since the interaction energies have the full symmetry of
the lattice, we can average the spin products of Eq. (1)
over each class I" of symmetry-equivalent "figures. " This
de6nes a lattice-average spin product for I',
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b,EcE(o) = aE&;..., (~) —E,.&(o).

Second, we will separate the sum in Eq. (4) into (i) a
term including all pair interactions, which will be con-
veniently summed to infinity using the reciprocal-space
concentration-wave formalism, and (ii) the many-body
terms which will be cast in real space. This gives

+ECHE( ) = &).J(k)IS(» )I' + ~ ) .D~ JF 11~( ),

where the first term includes all pair interactions and
the second term extends to F = many-body figures. The
Fourier transform of the real-space pair interaction Jo

„

between site 0 and site n is

N

J(k) ) J ik R

while the Fourier transform of the spin variables is

deformed constituents at this a& is

AEcs(k, x) = (1 —x)AE~~'(k, a~q) + xAEf'(k, a~~)

One can compute AEcqs(k, z) by performing LDA calcu-
lations for epitaxially constrained A and B solids along
directions k, finding a& at each k. This "direct" calcula-

tion, however, has to be repeated for all directions k(o)
for which a given lattice configuration o has S(k, o ) g 0.
Reference 18 has shown that this procedure can be sim-
plified considerably if one assumes harmonic elasticity.
In this case a&q(k) is computed analytically so the k de-

P

pendence of b,Ecqs(k, z) is given in closed form by

AEcqs(k, x)
4z(1 —z)

qz (k) qa (k) &Ex (aa) &Ea (ax)
4 (1 —x)q/(k)&E/(a/) + zqB(k)&EB(aA)

(»)

1 W 'Q RS(k, o) = —) Si(o)e*"
l

(8)

M = —) J(k) —V„J(k),
k

where o. is a normalization constant and the exponent
A is a parameter. Second, they selected E„rof Eq. (5)
to contain long-range interaction terms so that the ex-
pansion of EEs;,«t(o) —E„r(o') converges faster than
otherwise. If relaxation is unimportant, one might use
E„~——0 just like in the Connolly-Williams approach.
However, when relaxation is significant, there is a sin-
gular k = 0 term which can cause a slow decay of the
real-space interactions, Jo with distance Ro —R . In
this case one can choose E„r(o)as the energy per atom
of a n —+ oo superlattice A B whose layers are oriented
along the direction k(o) defined by the Lifshitz points of
configuration o [Eq. (8)]. This "constituents strain" (CS)
energy AE~s is the energy change when the bulk solids A
and B are deformed kom their equilibrium cubic lattice
constants a~ and a~ to a common lattice constant a~
in the direction perpendicular to k. For each direction
k, some equilibrium (eq) value of a~ will minimize this
elastic energy. The composition-weighted energy of the

where Ri (or R„)is the coordinate of the lth atomic
site, and k is a vector in the first Brillouin zone. For an
ordered configuration o, the S(k, o) functions will only
be nonzero for a finite set of points k.

Assuming E„~——0 the mixed-space cluster expansion
of Eq. (6) is entirely equivalent to the real-space form
of Eq. (4). Laks et al. i introduced, at this point, two
modifications.

First, they required that J(k) be a smooth function.
This was accomplished by minimizing

where AEg(a~) = E~(a~) —E~(a~) and DEB(a~) =
Eii(a~) E~(a~),—and E~(a) and EB(a) are the energies
of bulk cubic A and B at the lattice constant a. The
function q(k) is

AE'~'(k, a~)
AE(a) 1+Pp(k)

where n and P are determined from epitaxial LDA cal-
culations of pure A and B at just two to three directions

k, and p(k) is a purely geometrical factor given by

p(k) = p($, 8) = sin (28) + sin (8) sin (2P).

E f(o) = X) Jcs(k)~S(k, o)~ (14)

where

DEcqs(k, x)
Jcs(k) = Jcs(k, x) =

4z(1 —x)
(15)

The reference energy of Eq. (14) corresponds to an
infinite series of real-space elastic interactions. Re-
moving them from the relaxed LDA-calculated energies
AEs;,«t(o) prior to a cluster expansion significantly ac-
celerates the convergence of this expansion.

Combining a set (b,Eg;„,t, (o,)j of LDA calculations
on simple configurations (iT,) with Eqs. (5)—(9) we then

Thus, simple LDA calculations for epitaxially deformed
A and B in two to three directions determined o; and
p. Along with two cubic bulk calculations of the en-

ergy AE~(a~) of pure A at the lattice constant of B
and similarly for b,Eii(a~), these give the full composi-
tion and direction dependence of the long-period super-
lattice energy AEcqs(k, z) of Eq. (11). The reference en-

ergy E„r(o)which we subtract from AEs;„„(o)before
a cluster expansion is attempted is hence
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solve

) (u~ ]AEg;...t(o, ) E r(o ) EE~E(o )] +tM

= Min, (16)

bEcE(o) = bE~E(o) + E„f(o). (17)

Convergence is tested by applying Eq. (17) to a set of
structures (0') not used in constructing the CE of Eq.
(16). If the predictions errors

b(0' ) [+ECE(0 ) +Ed' t(0 )]

where u, are statistical weights for configuration o.
„

AEg;«, t is given by Eq. (2), the reference energy is given

by Eqs. (14) and (15), the cluster expanded energy b,ECE
is given by Eq. (6), the smoothness condition M is from
Eq. (9), and t is a Lagrange multiplier. The inputs
to our calculation are N LDA configurational energies

(AE~;„,t(cr) ), the LDA epitaxial parameters of Eq. (12),
and the values of A and t The.output consists of the pair
spectrum J(k) (or, equivalently, its Fourier transform
Jo„)and the many-body interactions fJ~). Together
these enable calculation of the excess energy of any of
the 2+ configurations rr from

are larger than a prescribed tolerance, more many-body
figures and input structures are added to the expan-
sion (6). This method has been tested~ previously by
comparing the prediction AE~E(cr') to directly calcu-
lated energies of huge supercells (up to 1000 atoms) with
difFerent symmetries (abrupt and interdifFused superlat-
tices, random alloys, impurities). The direct calcula-
tions as well as the corresponding CE were done using
valence force Geld method. Excellent agreement was
found. Here we extend the method to Grst-principles
local-density-approximation4z (LDA) approach.

III. EVALUATING THE CLUSTER EXPANSION
FROM LOCAL-DENSITY TOTAL-ENERGY

CALCULATIONS

A. LDA calculation of LEd;, t for ordered
structures

We calculate the total energies [Eq. (2)] of periodic
crystals in tH'e LDA. For the purpose of constructing and

testing the CE, we have chosen 30 ordered structures
which have a small number of atoms per cell (& 16),
so that we can accurately calculate their total ener-

gies in a reasonable amount of computer time. These
structures ' are defined in Tables I and II. They

TABLE I. Directly calculated relaxed LDA excess energies b,Es;„,& (error +2 meV/atom) and the corresponding cluster
expanded [Eqs. (16) and (17)] formation energies b,EoE (in meV/atom) for GaP-InP. Many of the structures calculated here
can be characterized as a (GaP)„(inP)v superlattice in orientation G. We use the conventional structure (or prototype) name
when available, and assign our own label otherwise. The "special quasirandom structures" (SQS's) are structures with small
number of atoms/cell used to mimic the random alloy. The structural information for these SQS s is given in Ref. 47. The
structures labeled here with the asterisk are used in the fit of Eq. (16); others are for predictions.

Orientation
formula

AB
+@direct
&@cE
A2B

+Edirect
AEcE
AB2

+Edirect
&&cE
A3B

+Edirect
+@CE
AB3

+Edirect
&&cE
A2B2

+@direct
&EcE

+Edirect
&&cE

+Edirect
EEcE

[001]

Llp*
22.6
22.6
Pl

19.8
17.0

P2
20.5
17.6
Zl

16.9
16.6
Z3

18.2
17.4
Z2*

22.7
22.7

A*
0.0
0.0

SQS8A (A4B4)
16.6
17.5

[011]

Llp
22.6
22.6

MoPt2
11.4
11.6

MoPt2
11.7
8.8
Yl

13.7
14.1
Y3

13.6
12.4
Y2*
15.2
15.2

other structures

0.0
0.0

SQS8B (A4B4)
16.3
19.0

[012]

Llp*
22.6
22.6

MoPtg
11.4
11.6

MoPtg
11.7
8.8

DO22
11.3
11.8
DO22

8.0
7.0

ct40)7 )Ic

7.5
7.5

L12* (AsB)
19.5
19.5

Ll *
36.1
36.1

o,l
31.7
29.1

A2

32.0
30.2
Vl

26.3
26.1
V3

27.6
27.4
V2*
35.5
35.5

L12* (ABs)
14.4
14.3

Llg*
36.1
36.1

MoPt2
11.4
11.6

MoPt2
11.7
8.8

Wl*
17.4
17.4
W3*
15.7
15.8
W2

15.3
15.1
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correspond to short-period superlattices in a range of
compositions and orientations. For Cu-Pd, the I 12-
based long-period superstructures (LPS's) are also in-
cluded (see Fig. 1). The LDA equations are solved
self-consistently by the linearized augmented-plane-wave
(LAPW) method. For Cu-Pd we used the Wignersi
exchange-correlation potential, while for GaP-InP we
used the Ceperley-Alder exchange-correlation potential
as parametrized by Perdew and Zunger. The core
states are treated fully relativistically, while the valence
states are treated semirelativistically (without spin-orbit
interaction). No shape approximation is made for either
the potential or the charge density. Inside the muffin-tin
spheres, the nonspherical charge density and potential
are expanded in terms of lattice harmonics of angular mo-
mentum I & 8. A basis set of about 90 LAPW's/atom
are used (equivalent to kinetic energy cutoff of 16.7 Ry).
The Brillouin zone integration is performed using the spe-

cial k-point methods. About 60—400 special k points in
the irreducible Brillouin zone (BZ) (depending on the
structure and the material) are used for the metallic
compounds; for GaP-InP ten special k points for the
zinc-blende structure and their symmetry-equivalent k
points for the other superstructures are used. VVe have
used relaxed atomic positions, i.e., allow the cell exter-
nal lattice parameters and the position of the atoms in-

side the unit cell (that are not fixed by symmetry) to
vary so as to minimize AE(o, V ). For Cu-Pd we assume
V = (1 —z)VA + xVn. When structural degrees of free-

dom are forbidden by symmetry (e.g. , in L12), relaxation
does not exist; otherwise, it lowers the energy. Table III
shows that this lowering can be significant in structures
possessing a number of such structural degrees of freedom

(e.g. , Pl, P2, Z2), but is small in more symmetrical struc-
tures (e.g. , DO22, "40"). The convergence error for the
total energy is estimated to be about 10 meV/atom for

TABLE II. Directly calculated relaxed LDA excess energies 6Eg;„,q(o ) (error +10 meV/atom) and the corresponding cluster
expanded [Eqs. (16) and (17)] formation energies b Eon(o') (in meV/atom) for Cu-Pd. Many structures calculated here can
be characterized as a Cu~pdg superlattice in orientation G. We use the conventional structure (or prototype) name when

available and assign our own label otherwise. The definition of the Dl, D7, and D4 structures is given in Ref. 9. The special
quasirandom structures" (SQS's) are structures with small number of atoms/cell used to mimic the random alloy. The structural
information for these SQS's is given in Refs. 47 and 33. The Llg-based one-dimensional long-period superlattices (LPS's) are

denoted by their Fisher-Selke (see Ref. 48 and Fig. 1) notation which specifies, between angular brackets, the sequence of
nonantiphased domains. The structures labeled here with the asterisk are used in the fit of Eq. (16); others are for predictions.

Orientation
formula

AB
+Edirect
AECE
A2B

&Edirect
AECE
AB2

+Edirect
+EcE
A3B

+Edirect
+ECE
ABp

+@direct
AECE
A2B2

+Edirect
&ECE

+Edirect
&&CE

+@direct
AECE

++direct
+@CE

++direct
++CE

[001]

L1o*
—86.3
—82.2

Pl*
—45.6
—46.3

P2
—72.0
—65.6

Zl*
—32.9
—41.0

Z3*
—50.2
—59.2

Z2*
—?2.0
—62.7

A~

0.0
2.5

Dl(A7B)
—38.1
—30.7

SQS8A (A4B4)
—57.1
—54.5

D&gg (AgBg)
—83.9
—85.8

[011]

—86.3
—82.2
MoPt2

—80.0
—74.6
MoPt2

—45.7
—54.6

Yl
—65.9
—56.4

Y3
—36.6
—47.5

Y2
—63.2
—67.7
other structures

0.0
2.1

D7(AB7)
—31.8
—24.9

SQSSB (A4B4)
—67.8
—69.?

LPS (21) (AgBg)
—80.7
—82.4

[012]

Llo*
—86.3
—82.2
MoPt2

—80.0
—74.6
MoPtg

—45.7
—54.6
DO22*

—76.4
—77.8
DOgg*

—46.4
—47.0

tt40)f g

—84.6
—83.8

Llg (AgB)*
—85.0
—85.9

D4(A4B4)
—65.3
—65.5

SQS14 (AgBg)
—48.6
—43.6

LPS (3) (AgB3)*
—90.0
—88.0

Llg*
—82.0
—81.0

o, l~
—40.3
—39.3

o.2*
—49.2
—49.8

—20.0
—22.2

V3
—34.1
—34.4

V2
—29.5
—18.8

Ilg (ABg)*
—53.4
—53.0

LPS (4) (AigB4)
—87.4
—88.1
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o'
I

I

0
I

I

at z 0.25). These phase-separation (in Gai In P)
and ordering (in Cui Pd ) behaviors are already sug-
gested by the signs of their 6';„,t(o') in Fig. 2: For
all the calculated structures BEs;„,t(o) are positive for
Gaq In P and negative for Cuq Pd . The dashed lines
in Fig. 2 connect the lowest energies of the structures
of Tables I and II. The maximum b.Es;,«t(o') among
the calculated set is +40 meV/atom for Gai In P;
the minimum for Cuq Pd among the calculated set is

—90 me V/atom.

M=3/"
B. Cluster expanding EE(o')

FIG. 1. A long-period superstructure can be constructed
from an L1& unit by modulating it with a square wave. An
antiphase boundary is introduced whenever the modulation
function changes sign and the structure is denoted by spec-
ifying the length of nonantiphased domains in the unit cell.
Here we show the LPS (21) (using the Fished and Selke no-

tation in Ref. 48), which has modulation wavelength M =—
(in units of the fcc lattice parameter), and fundamental re-
ciprocal-space wave vector k = (1 MO)—:(1-'0). See Ref. 49
for a more detailed descriptions of these LPS's.

Cu-Pd and about 2 meV/atom for the GaP-InP system.
We will see later (Sec. IIIB) that the cluster expansion
fitting errors are equal or lower than these LAPW er-
rors. For configurations with a large number of structural
degrees of f'reedom, we calculate quantum-mechanical
atomic forcess to aid the total-energy minimization pro-
cess.

Tables I and II give the calculated b,Eg;„,t(o') for
(GaP)„(InP) and (Cu)„(Pd) structures, respectively.
The LDA results for GaP-InP shown here are slightly
diHerent &om those given in Ref. 8, reflecting a better
convergence in the present calculation. Figure 2 shows
the LAPW-calculated b,Ed;„,t(o) for (a) Gai In P and

(b) Cui Pd in a number of crystal structures and
compositions. While these two systems have a simi-
lar lattice constant mismatches (7.4% for GaP-InP and
7.3% for Cu-Pd) and form fcc-based solid solutions at
high temperatures, they exhibit drastically different al-

loying behaviors at low temperatures: The Ga~ In P
phase separates into its constituents GaP and InP,
while Cui Pd form ordered compoundssr (bcc-based
CsCl structure at x 0.5 and fcc-based L12 structure

The reference energy of Eqs. (14) and (15) is com-
puted from the harmonic elasticity [Eqs. (11)—(13)]. This
requires fitting LDA calculations of AE'P'(k, aJ ) to
Eq. (12). The fitting parameters a and P are given
in Table IV. Figure 3 compares the constituent strain

energy AEcqs(k, z) in GaP-InP and Cu-Pd as predicted
by the harmonic elasticity theory of Eqs. (11)—(13) with

b,EPs(k, z) as calculated directly by the LDA [Eq. (10)]
in the three principal directions [001], [011], and [111].
The two results agree within 1 meV/atom for GaP-InP
and 5 meV/atom for Cu-Pd.

We next proceed to cluster expand AE~;„,t(o')—
E„f(o)of Eq. (5). We thus need to choose (i) the con-
figurations (o.,) used to construct the CE and (ii) the
many-body figures fF) used in the expansion.

(i) Conf'Igurations: For Gai In P, we used an input
set of 12 structures denoted in Table I by asterisks, i.e. ,

A, B, Llo, L13, Lls, "40", Lli, Z2, V2, Y2, Wl, and
W3 (this set has been denoted as "set sz" in Ref. 18).
We find that the interactions in Cu-Pd are longer ranged
than in GaP-InP (see later); therefore more input struc-
tures are needed. We used an input set which includes 18
structures for Cuq ~Pd, i.e., A, B, Llp, L12y L12y 40
Lli, Z2, DO33, DO33, Zl, Z3, al, n2, Igl, Vl, D4, and
LPS (3). These structures are denoted by asterisks in
Table II. We use u = 1 in Eq. (16).

(ii) Figures: The many-body figures considered are
given in Table V. In addition to the nearest-neighbor
three- (J3) and four-body (J4) interactions, we also in-
cluded the following three- and four-body terms: K3 L3,
M3 K4 and L4 for Cu-Pd.

Having computed E„gand selected configurations and
figures, Eq. (16) is solved via a least squares fit. The
results are used to predict via Eq. (17) the energies of

TABLE III. This table illustrates the importance of the lattice relaxation for structures having
a number of internal degrees of freedom (Pl, Z2, P2) and relative unimportance of relaxation for
more symmetrical structures (DO&2, "40"). The structures are defined in Table II. Energies are in
meV/atom.

+Eunrelaxed
+@relaxed

+Eunrelaxed
+Erelaxed

pl (Cu2Pd)
—36.4
—45.6

DO23 (Cu3Pd)
—75.5
—76.4

Z2 (CugPd2)
—4.3
—72.0

"40" (CugPd2)
—76.4
—84.6

P2 (Cupdq)
—48.6
—72.0

DO22 (Cupd3)
—46.4
—46.4
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other structures. Figure 4 illustrates the prediction and
fitting error [average of b(o') in Eq. (18)] as a function of
the number of pair interactions (while the other fitting
parameters are kept fixed at their optimal values). The
dash-dotted lines denote the errors among the structures
used in the fit (structures denoted with asterisks in Ta-
bles I and II). The dashed lines denote the average pre-
diction errors for structures not used in the 6t, while the
solid lines denote the maximum prediction error in either
sets. It is quite apparent &om Fig. 4 that Gaz In P has
a much shorter interaction range (requiring 30 pair fig-
ures) than Cui Pd (requiring 190 pair figures). In
our previous work on the Cu-Pd alloy, a much shorter
range of interaction (up to fourth nearest neighbor) was
used. Tables I and II compare the energies AEcE(o)
obtained in the cluster expansion with the directly cal-
culated values AEg;,«t(o'): For GaP-InP, where a typical
excess energy DE(z) is around +20 meV/atom, we find
a fitting error of 0.01 meV/atom and an average predic-
tion error for the 17 structures not used in the Gt of 1.66
meV/atom. For Cu-Pd where a typical excess energy
AE(z) is around —70 meV/atom we find an average fit-
ting error of 3.9 meV/atom, an average prediction error

TABLE IV. The dimensionless fitting parameters n sud p
&Eos(k, 2') of Eqs. (11) sud (12). The energy

SEA(aa) of cubic A st the equilibrium constant of B is in
units of meV/stom.

1QQ ~ I a I a I a I s

0.0 0.2 0.4 0.6 0.8 1.0
Composition x

FIG. 2. Directly calculated LAPW excess energies [Eq. (2)]
EEs;,«i(o) for (s) Gsi In P snd (b) Cui Pd . The
dashed lines connect the lowest energy at each composition
among the calculated set.

10

0
0.0 0.2 0.4 0.6 0.8 1.0

Composition x

FIG. 3. Comparison of the elastic energy DEoqs(k, x) pre-
dicted by harmonic elasticity [Eqs. (11)—(13)] with those cal-
culated directly by the LDA for (s) GsP-InP snd (b) Cu-Pd.
The LDA results for the [00], [011], snd [111]directions sre
indicated by squares, circles, and triangles, respectively. The
harmonic elastic theory predictions for these three direction
are indicated by dash-dotted, solid, and dashed lines, respec-
tively.

of 6.2 meV/atom (for 16 structures that are not used in
the fit). Recall (Sec. III) that the inherent LAPW con-
vergence errors are 10 meV/atom and 2 meV/atom for
Cu-Pd and GaP-InP, respectively. Thus, these errors are
the real limiting factors at this time: It makes no sense
to improve the CE before the LAPW errors are reduced.
Within these error limits, it is now possible to predict
from Eq. (17) the relaxed LDA energies of complex many-
atom structures essentially effortlessly. Note that the CE
error b'(o) is a non-negligible part of AE for nonreactive
systems (small AE's, e.g. , Cu-Pd or GaP-InP) but the
situation is much better in reactive alloys having large
AE's (e.g. , ¹iA1 with AE —600 meV/atom or Pt-Ti
with b E —900 meV/atom).

Figure 5 shows the pair interaction energies J(k) of
Eq. (7) in the first Brillouin zone, while Fig. 6 shows the
Fourier transform, i.e., real-pace pair interaction energies
Jo „ofEq. (7). Note that while for Gai In P the pair
energies Jo have both positive and negative parts, for
Cui Pd they are mostly "antiferromagnetic" [positive
Jo „],with only a few of them slightly negative. We see
that the minima of J(k) occur at the W (k = (120))
point for GaP-InP and between the TV and X points for
Cu-Pd; we will see later in Secs. VIB and VIC that
these k points correspond to the peaks in the calculated
disuse scattering intensity due to short-range order at
high temperatures for these materials.

GaP
Inp
Cu
Pd

AEg (aa)
240.5
360.0
326.3
866.0

0.6131
0.7644
0.8656
0.8064

0.3570
0.1317
0.4015
0.1133

IV. APPLICATIONS OF THE CLUSTER
EXPANSION

This section describes how our mixed-basis cluster ex-
pansion
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TABLE V. T e
~ ~

e vertices of multibody interactions f th f
where a is the lattice parameter. ) The m lt'b d

s o e cc structure used here
r. e mu ti ody interactions (includin the de ene

( V/t )fo GP-I P dC-Pd
Cluster type

Null
Point

Triplets

Quadruplets

Designation
Jp

J3
K3
L3
M3
J4
K4
L4

(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)

(1,1,0)
(1,1,0)
(1,1,0)
(1,1,0)
(1,1,0)
(1,1,0)
(1,1,0)

(1,0,1)
(2,0,0)
(2,1,1)
(0,0,2)
(1,0,1)
(1,0,1)
(1,0,1)

Vertices

(0,1,1)
(2,0,0)
(2,1,1)

GaP-InP
—9.29
—2.97

2.96

0.02

Cu-Pd
—100.41

14.66
—26.87

8.37
6.16

—2.50
6.26

—13.70
—1.48

EEcp = N) [J(k) + Jcs(k)]~S(k, o)~

+N) Dp Jg II@( ) (19)
F

can be used with the Monte Carlo sim 1 t d- lua e

-annealing

me o to perform (a) ground-state searches of the sta-
blest T=Oc= 0 configurations, (b) calculation of the T g 0
short-range order, and (c) calculations of co 't'

temperature phase diagram.

A. Ground-state search

Findin the
ofE. 1 isa

'
g ground-state for a Hamiltonian f th t

q. ( ) is a classical problem in magnetism and in

the theor of aly loys. The ground-state problem can be
solved using the linear programming method For fcc
alloys, the most complete search for the ground state
was given by Kanamori and Kakehashi; ' 9 for bcc, it
was given by Finel and Ducastelle.

We first should define what we understand by the
ground state of the alloy. Let o, ci, and P be three config-
urations with concentration of B atoms x(o), z(a), and

z(P) in the order x(n) & z(o') & x(P). If E(o)' 1'
than the linear average of E(n) and E(P), that is 'f

E( )
x(~) z(p) E -+ x(&) - z(~)
*( ) —*(p) *(p) —

( )

then configuration o does not belong to the ground state
because a mixture of the phases ci and P would have a
lower energy.

0
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FIG. 4. This fi urg e illustrates the prediction and fittin er-
rors [average h(o) in Eq. (18)] as a function of number of air
interactions t e

num er o pair

their o tiru
e other fitting parameters are ke t fi d
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e ep xe at

he dash-dotted lines denote the fitte ing errors among the
structures used in the St (uumbers with asterisks iu T bl I

). e dashed lines denote the aver d'
s in a es

e average pre iction er-
rors for structures not used in the fit h 1 he, w i e t e solid lines de-
note the maximum redprediction errors in either sets. Note that
Cu-Pd requires consideraq iderably longer-range interactions than
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K L I" XW

FIG. 5. Fourier transformation of then o e pair interaction en-
ergies (k) of Eq. (7) along the principal directions in the fcc
Britlouiu zone for (a) Gai Iu. P d b Cu~ Pd using the
mixed-basis cluster expansion.
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Reciprocal space CE, E„el=AEcs
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FIG. 6. Real-space pair interaction energies Jo,„ofEq. (7)
from the mixed-basis cluster expansion for (a) Gai In P
and (b) Cui, Pd, . Note that for Gai, In P, Jo „

is both
positive and negative; Cu1 Pd shows almost exclusive "an-
tiferromagnetic" behavior (positive Jo „).

While performing a ground-state search using linear
programming is relatively easy, it has one major draw-
back: The lattice-averaged products II~ functions of the
ground state found may not correspond to those of an ac-
tual lattice structure. This is because the II~ functions
[Eq. (3)] of a real structure are constrained. The gen-
eral constraint equations for the lattice products Ilp(o)
are unknown, and therefore cannot be included in the
ground-state search. A related problem with using lin-
ear programming for ground-state searches is that the
ground state found is identi6ed only by its lattice prod-
ucts II~(o'); even if the ground state corresponds to a
real structure, the only way to identify that structure re-
ally is by a trial-and-error search of lattice structures,
until one is fortunate enough to find a real structure
whose II~(o) exactly match those of the ground state.
The cause of these problems is that linear programming
works only with the II~(o), and never with actual lat-
tice structures. Simulated annealing (SA), by contrast,
performs a ground-state search directly on real lattice

I

structures. This guarantees that the ground state found
is always a real structure, and that the exact structure
is also known. The limitation for SA search is that one
constrain the search to a Bnite cell; only structures com-
mensurate with the cell can be obtained exactly.

B. Monte Carlo simulations and short-range order

In this section we describe how to implement the
reciprocal-space cluster expansion in a Monte Carlo sim-
ulation and how to extract the SRO parameters from
the results. Performing MC simulations for a reciprocal-
space CE is a major challenge because the reciprocal-
space energy is nonlocal in real space. This is because
flipping one spin changes the S(k) for al/ k points. Since
there are N k points in an N-site lattice, updating S(k)
at each time step is an order-N process, compared to up-
dating one or more II~'s for a standard real-space Ising
model (which is of order I). This means that a MC sim-
ulation for a reciprocal-space CE is O(N2) as opposed
to O(N) for a real-space Ising model. (In this analysis
we ignore possible changes in the convergence rate of the
MC algorithm versus size. ) One possible solution to this
problem is to replace the spin Hip move of the standard
MC method —which is local in real space —with a move
that changes S(k) locally at a few points in reciprocal
space. Such a scheme would again be O(N). The prob-
lem with this idea is that there appears to be no way to
define a local move that changes S(k) at a few k points
but guarantees that when the new S(k) is Fourier trans-
formed to real space, it still corresponds to a set of spins
that can be only +1.

Instead we will retain the standard real-space MC spin
Hip with the following modi6cation: We avoid the neces-
sity of recalculating S(k) for each move by directly cal-
culating the change in J(k) ~S(k)

~

for each move. To do
this we write S(k) after l MC moves have been accepted
as

E

S&'&(k) = S&'l(k) ——) S(R;)e-*"R,
i,=1

where Sl l(k) is the initial value of S(k) and S(R,) is
the initial value of the spin that is Hipped on move i.
Since rejected moves do not change the spins, they make
no contribution to subsequent moves. We now write the
reciprocal-space energy after l accepted moves as

Z,',"„., = N ) J(k) ~Sl'l(k) ~'

= N ) J(k)]s (k) ~
+ —) J(k) —2S(Ri) ) J(k) S (k)e ' ' ' + c.c.

k k k

E„,, +2J(R = 0)

Z,",;„"+2J(R = 0)

E —1
—2S(Ri) ) J(k) S (k)e '" ' ——) S(R,)e' ' ' + c.c.

k i=1
—2S(R, ) ) J(k)Sl'l(k). —"n +..

E —1

+—S(Ri) ) S(R;)) J(k)e'"'l ' 'l + c.c.

= F„'„'+2J(R = 0) -- 4S.(Ri) [S * J](Ri) + 4S(Ri) ) S(R;)J(Ri —R, ),
i=1

(22)
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where c.c. stands for complex conjugate and [S * J](R) = g& J(k)S~ 1(k)e '"'n is the convolution of S~ol(R) and

J(R), and we make use of the fact that both J(R) and [SeJ](R) are real functions. This formula allows us to calculate
the convolution once, using a fast Fourier transform (FFT), and then evaluate the change in reciprocal-space energy

[first term of Eq. (6)] due to the tth spin fiip using

EE„„=.E„„—E„,, = 2J(R = 0) —4S(Ri)[S * J](Ri) + 4S(R() ) S(R;)J(Ri —R;). (23)

This equation requires the summation of l+ l for each
trial MC move, as opposed to N terms for a direct eval-
uation of the change in S(k). When t grows too large,
it will be faster to recalculate [S e J](R) using an FFT
routine, resetting S~ 1(R) ~ S~ l(R) and I ~ 0. If we

perform this procedure every m moves, the average cost
of each move will be approximately

Cim/2 + C2N ln(N)/m, (24)

C. Calculation of the phase diagram

where the 6rst term represents the cost of summing over
Eq. (23) and the second the cost of performing two FFT's
every m moves. This expression is minimized by m =
g(2C2/Ci)N ln(N). In our implementation we find that
m = ~N is about the optimum choice. Using Eq. (23)
improves the scaling of the algorithm from N2 ln(N) to
Ni spin(N), and allows us to perform MC simulations
on cells as large as 32 . In order to calculate the short-
range-order (SRO) parameters, we first equilibrate the
system using a small amount of moves per site (40) at the
simulation temperatures; then we collect the SRO data
over a longer Monte Carlo run (100 moves/per site). SRO
is calculated using a 32 x 32 x 32 (16 x 16 x 16) Monte
Carlo simulation cell for Cu-Pd (GaP-InP).

heat (as calculated from the variance of the internal en-

ergy) at each simulation temperature. At temperatures
where the specific heat is high, the annealing schedule is

slowed down to allow for better equilibration. Note that
simulated annealing tends to supercool a structure and
therefore predicts lower transition temperatures than the
standard Monte Carlo approach. In the standard Monte
Carlo approach, at each temperature, one starts from the
initial configuration (either random or ordered or a com-
bination of the two), while in the simulated annealing one
reuses the con6guration &om the higher temperature as
the temperature is lowered; therefore one can use fewer

steps at each temperature and zoom in on the ground
state quickly in the SA approach.

The average value of ~S(k)
~

is calculated at each tem-
perature, sampling its value at each step in which the full

FFT is performed, and then weighting the value by the
number of steps &om the FFT until the next accepted
step. This calculation adds a negligible amount to the
calculation time. The value of [S(k)~ is directly propor-
tional to the diffuse scattering intensity, and its Fourier
transform gives the full set of Warren-Cowley SRO pa-
rameters (see Sec. VI). It also provides a convenient

way to monitor the simulation for phase transitions, since
these are accompanied by a large discontinuous jurnp in

IS(k)I'.

We performed a standard Metropolis Monte Carlo
simulation4 on the substitutional alloy system, using
Eq. (23) to evaluate the energy change due to each Monte
Carlo move. Since the reciprocal-space interaction energy
J(k) depends on the composition 2: through Eq. (11),our
scheme requires that x remain fixed throughout a given
simulation. To do this, we use a swap of sites as the basic
Monte Carlo step: At each step, one A site and one B site
are chosen at random, and the occupations of each site
are reversed. Equation (23) is then used twice to account
for the energy change due to two spin Hips that constitute
the move. The simulations are performed using periodic
boundary conditions in all three dimensions.

Using the aforementioned MC simulated-annealing
method, we can calculate the disorder-order transition
temperature at difFerent composition. We start the sim-
ulation at high temperatures for a random configuration,
run the simulation for a prescribed number of Monte
Carlo steps, and then lower the simulation temperature
by multiplying it by a constant scale factor, typically
0.9. The annealing schedule is adjusted by hand, where
both the number of steps at a given temperature and the
scale factor can be adjusted for best performance. To de-
termine the annealing schedule, we monitor the speciHc

V. RESULTS: TRANSITION TEMPERATURES
AND GROUND-STATE STRUCTURES

Using the simulated annealing technique, we have
searched the coherent ground-state structures for
Cuq Pd and Gaq In P and studied the temperature
versus composition phase diagrams. Since this is a fairly
costly procedure, we limited our search to only a few

principal compositions, i.e., x = 4, 2, and 4.
In Cu-Pd both coherent and incoherent ground states

are ordered. The observed ground state at x =
4 is the

L12-based structure and at x =
2 is the bcc-based CsCl

structure denoted B2. Since our theory is based on the
fcc lattice only, we will restrict our search to fcc-based
structures only.

Table VI lists the predicted ground states along with
the calculated transition temperature T &om the dis-
ordered phase to the order ground states. Figure 7 de-
picts the internal energies of the systems as a function
of temperature. For Cuo 75Pdo 25 we 6nd from cluster
expansion that the L12-based long-period superstructure
LPS (4) structure (Fig. 1) is the ground state with its en-

ergy 0.1 meV/atom lower than LPS (3). Direct LAPW
calculation, however, reverses the order, ending that LPS
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TABLE VI. The table gives the ground-state fcc-based structures at x = —,—,and —,and their
transition temperatures into disordered fcc alloy as obtained using Monte Carlo simulation (T, )
and estimated using the ideal mixing entropy (IME) formula kT™[z ln z+(1—z) ln(1 —z)j = bE»s
We also give the cluster expanded energies Ecs(0) in meV/atom of the ground-state energy struc-
tures and the random alloys, as well as the ordering energies hEo,s(o) = AE(o) —AE(rand, z).

Structure
NIECE(&)

b,ECF (rand, z)
bE,d

TMc (K)T™(K)

Structure
AECE(0)

EEcE(rand, z)
bE,g

TMCT™(K)

2:=0.25

LpS (4)
—88.1
—41.8
—46.3

850
956

Complex
9.1

15.5
—6.4

133

Cul Pd

Gay In P

x=0.50

Complex
—92.1
—67.1
—25.0

300
419

Chalcopyrite
7.5

20.0
—12.5

150
209

x=0.75

Z3
—59.2
—44.0
—15.2

350
314

Complex
6.0

14.6
—8.6

177

(3) is lower in energy than LPS (4) by 2.6 meV/atom. We
see from Fig. 7(b) that Cup 75Pdp zs undergoes a first-
order phase transition from the high-temperature ran-
dom alloy to the ordered LPS structure, with the transi-
tion temperatures of about 850 K. The observed Cu-Pd
phase diagram5 near x = 0.25 is quite complicated: One
finds L12, and the Llz-based one-dimensional (1D) and
2D LPS's. 4 's ss The existence of LPS's, which is a mix-
ture of the L12 and the DO22 structures, can be inferred
from the small energy difference of only 8.6 meV/atom
between the Llz and the DO2z structures (Table II). The
assessed phase diagram shows a transition from a dis-
ordered alloy to a 2D LPS at 730 K for x = 0.25, which
is about 120 K below the presently calculated value.

Our results for x =
2 cannot be compared with exper-

iment since we restricted ourselves in this study to fcc
superstructures (see, however, Refs. 9 and 10 where both
fcc and bcc Cu-Pd was considered). At x = 2, the lowest-
energy fcc structure is rather complex and has a very
low T, = 300 K. The observed ground-state structure
at x =

z is actually the bcc-based CsC1 (B2) structure.
The directly calculated LAPW value AH(B2) = —97.6
meV/atom is indeed below the lowest calculated energy
of fcc structures in agreement with experiment.

At x = 4, the cluster expansion finds that the Z3 struc-
ture has the lowest energy: 6.2 meV/atom below the L12.
However, direct LAP& calculation places the Llq below
the Z3 by 3.2 meV/atom. The calculated transition tem-
perature for Z3 is rather low: only 350 K. This low
ordering temperature probably explains why there is no
ordered structure being observed at this composition.

Previously, Lu et al. calculated the ground states of
Cu-Pd by extending the real-space CE (up to fourth near-
est neighbor) to both fcc and bcc lattices. This enabled
them to perform ground-state searches for the full com-
position range. They found the following ground states:
L12 at x = 4, B2 at x = 2, L12 at x = 4, and D7 at
x == 7

8'

In the case of GaP-InP, the incoherent ground state
predicted by our theory corresponds to global phase sep-
aration, but the coherent ground state is ordered (Ta-
ble VI) corresponding at x =

2 to the chalcopyrite struc-
ture. The transition temperature &om the disordered
phase to this metastable chalcopyrite phase is about 150
K [Fig. 6(a)j. The lowest-energy structures for x =

4 and

20
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8
a

ee

-50
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Ordered Gao.sino. 5P
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FIG. 7. The internal energies as a function of temperature
for (a) Gao 5Ino 5P aud (b) Cuo 75Pdp. 2g. Here we show three
difFerent simulation cell sizes (n x n x n): dashed line, solid
line, and dotted line are for n = 8, 12, and 16, respectively.
The order-disorder transition temperatures are T 150 K in

(a) and T 620 K in (b).
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4 are identical having 16 fcc sites/cell (or 32 atoms/cell).
It is rather difficult to estimate the transition tempera-
tures for these compositions, since the internal energy
versus temperature curves change rather gradual, unlike
at x =

2 where a clear first-order transition takes place.
Wei et al. have previously searched the coherent

ground states of Gaq In P using an Ising interactions
set which includes pairs up to fourth nearest neighbor
and multiplets up to nearest-neighbor four-body interac-
tions. At x = 2, they found that chalcopyrite structure
(a A2B2 [210] superlattice) is the lowest-energy struc-
ture, in agreement with the present result. Their calcu-
lated transition temperature (using the cluster variation

method rather than Monte Carlo simulated annealing
and a shorter set of interactions) is 463 K, much higher
than the present result. At x =

4 and 4, they found that
the Cl and C2 structures (A4BA2B and B4AB2A [210]
superlattice, with 8 fcc sites/cell) are the lowest-energy
states, respectively. The pair II~ of the Cl (C2) are
identical to those of the presently found 16 fcc sites/cell
structure up to the Ising interaction set used by Wei et
al. The difference in pair II~ with respect to our struc-
ture starts &om the fifth pair.

Our cluster expansion can be used to compute the en-

ergy b,ECK(random) of the ideally random alloy by tak-
ing a configuration average of Eq. (19). This gives

2E 1(rnad,an)=x(dr+ Jr(2x —1)) + (2x —1) $ Ja + $ Dx dx (2x —1)" +f EEna(kx)dk
n A:~)3

(25)

For the last term in Eq. (25), we use a slight approxima-
tion as we average AEcqs (k, z) over all solid angles (rather
than averaging over the first Brillouin zone). is Table VI
gives the energy of a random alloy and also the "order-
ing energy" defined as the energy difference between an
order structure and a random alloy at the same composi-
tion: h'E, s(o) = AEc@(o) —b,Ec@(rand, z). Assuming
ideal mixing entropy (IME), T, can be estimated from
bE,s —kT™[zlnz+(1 —z) ln(1 —z)]. This leads to
TiMK —956 K for CusPd in the random to LPS (4) tran-
sition, which is compared to the Monte Carlo simulated
annealing value of TPC 850 K. Table VI also gives the
estimated transition temperature at other composition
using the IME formula.

Table VII gives a breakdown of the energies of random
and ordered structures at x = 4, 2, and 4 according to
Eq. (25). We see that the first term —the null and point
cluster energy Jo + Ji(2z —1) does not distinguish ran-

I

dom from ordered structures at the same z and gives a
significant asymmetry with respect to x =

2
—is negative

for both systems and dominates AE in Cu-Pd. The sec-
ond term of Eq. (25) [also, the first term of Eq. (6)] is the
total energy due to pair interactions, which in Table VII
is symmetric about x = 2. The third term denotes the
contributions &om many-atom interactions which is seen
to be significant compared with the pair energy (it is
neglected in the generalized perturbation methodis). Fi-
nally, the last term of Eq. (25) is the positive-definite
direction-dependent constituent strain energy which is
lower in these ordered structures than in the random al-

loy. What sets Cu-Pd and GaP-InP apart is the rela-
tive importance of the the constituent strain energy: For
GaP-InP, the constituent strain energies overwhelm the
other terms, so that EH ) 0. On the other hand, while
for Cu-Pd, the constituent strain energies are close to
those in GaP-InP, the dominant, chemically attractive

TABLE VII. The table gives the cluster expanded energies of the ordered compound and random
alloy decomposed according to Eq. (25): the null and point energy, the pair energy, many-body
energy, and constituent strain energy. We also give the ordering energies of the ordered structures.
Energy is in units of meV/atom.

J, + J,(2z —1)
Pair

Many-body
Constituent strain

Total
bEora

Jo+ Jk(2z —1)
Pair

Many-body
Constituent strain

Total
bE,g

z = 0.25

L1,
—107.7

21.5
—18.1

18.4
—85.9
—44.1

DOg2
—7.8
—1.0

1.5
19.1
11.8
—3.6

Random
—7.8

2.3
—0.4
21.3
15.4

Random
—107.7

27.9
1.3

36.7
—41.8

z = 0.50
Cup Pd

Llp Random
—100.4

0.0
0.0

33.3
—67.1

—100.4

Random
—9.3

0.0
0.0

29.3
20.0

—9.3
—11.4

0.0
28.2
7.5

—12.5

—8.6
9.4

17.4
—82.2
—15.1

Cap In P
cc40N

x = 0.75

L1.
—93.1

21.5
8.5

10.1
—53.0
—9.0

Random
—93.1

27.9
—2.4
23.6

—44.0

DO22
—10.8
—1.0
—1.5
20.3
7.0

—7.6

Random
—10.8

2.3
0.4

22.7
14.6
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Jp + Ji(2z —1) term overwhelms the constituent strain
energies and favors ordering (AH ( 0).

Table VII illustrates an interesting point about
GaP-InP (and indeed in most alloys of zinc-blende
semiconductors ' i' ' ' ): Although AH & 0 (so the
T = 0 ground state is phase separating), still the ordering
energy bE,d ( 0 for o = DO22 and "40." As discussed
in Refs. 8, 11, 12, 64, 65, this means that those ordered
structures have a lower energy than the random alloy of
the same composition, yet the energy of the relaxed de-
composition products (GaP at aG p plus InP at ai„p)is
still lower. However, if the decomposition products were
held at the lattice constant a(z) of the homogeneous alloy
("coherent decomposition"), then the ordered structures
will be stabler than these (unrelaxed) constituents. In
this case (see Fig. 2 in Ref. 65) SRO will reflect order-
ing tendencies, as calculated in Refs. 8 and 11. If the
constituents relax from a(z) to their equilibrium lattice
constants ("incoherent decomposition"), then SRO will
exhibit segregation tendencies. Thus, coherence will pro-
duce a o.(R) ( 0 or k g 0 peak in o.(k), while incoherence
will lead to a n(R) & 0 or k = 0 peak in n(k).

sured data for Cup 7p2Pdp 2g8. The measured intensities
I,„&&(k)can be converted into a(k) using the method
of Georgopoulos and Cohen or of Boric and Sparks.
This function can then be Fourier transformed to give

n(Rt ) in successive, real-space atomic shells (tmn).
Back transforming with a cutofF R „[corresponding to
the inclusion of N~ shells of atoms in Eq. (28)] then
yields cL(k, NIt). Figure 8 shows this quantity, evalu-

ated from the experimental data of Ohshima, Watanabe,
and Harada, for NR ——10, 20' 30' and 72. We see
that a splitting of the central peaks occurs after & 30
atomic shells are included in the sum (surprisingly, this
splitting is not seen even after NR ——78 terms for the
latest experiment on Cup 7]5Pdp g85, by Saha, Koga, and
Ohshima ). Figure 6(b) indicates, however, that the cal-
culated interaction energies for shell NIt = 20 (R/ap ——3)
and beyond are extremely small and are thus difFicult to
be determined accurately. Figure 9 shows that a sim-

ilar conclusion can be reached by plotting JMp(k, NIt)
instead of o. (k, N~). Here, JMF(k, N~) is obtained from
the Krivoglaz-Clapp-Moss mean-Geld formula

VI. RESULTS: COHERENT SHORT-RANGE
ORDER

The Warren-Cowley short-range-order parameters
are defined as

+expt(k~ NR)

CU0.702Pd 0.298

PA/B(R ) (26) (a) NR=10 (b) NR=20

where P+~+(Rt „)is the conditional probability that an
A atom is at origin while a B atom is on site (lmn) for
an Ai B alloy. From this definition o.(Rppp) = 1 (a B
atom can not sit on the A origin site). All other a(Rt „)
is related to the pair correlation function (II(R~ „))of
Eq. (3):

(II(Rt „))—qn Rt
1 —

Q

where q = 2z —1. For a completely random alloy (II) = q
and a(Rt „)= 0. When there is a preference for asso-
ciation of unlike neighbors, n(Rt „)is negative, while

when the preference is for association of like neighbors,
ct(Rt „)is positive. The Fourier transform of n(Rt „)
1S

(c) MR= 30 (d) NR= 72

n(k, NR) = ) a(Rt „)e'""'-"
Emn

(28) 00 00

n(k) can be extracted experimentally from the measured
x-ray or neutron disuse scattering intensity

IsRo(k) = z(1 —z)(fa —fA) n(k)

where f~ and f~ are x-ray or neutron scattering factors.
A central question surrounding the comparison of mea-

sured and calculated o.(k) is the issue of truncation of the
series of Eq. (28). This can be illustrated using the mea-

FIG. 8. This figure shows the measured (Ref. 66) re-
ciprocal-space short-range-order maps [Eq. (27)] n(k, N~)
as a function of the number N~ of atomic shells used for
+up. 792Pdp. 298. (a) Nn = 10, (b) NR = 20, (c) NR = 30,
and (d) Nn = 72. u(k, Na) was synthesized using the exper-
imentally determined (Ref. 66) real space o(B~ ). o.(Rppp)
is taken as 1. The characteristic four-fold splitting near the
[110] points shows up only after N ) 30 pairs are included.
The plots are shown in the z-y fcc reciprocal plane, i.e. , [000]
to [200]—and [000] to [020]—.
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J»(k, ~R)

CU0.702Pd 0.298
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FIG. 9. This plot shows the mean-field pair interaction
energies in reciprocal space JMF(k, NR) (in arbitrary unit)
as a function of the number NR of atomic shells used for
Cu0. 702Pd0. 29e. (s) NR = 10, (b) NR = 15 (c) NR = 20,
(d) N = 72. JMF(k, NR) wss synthesized using the ex-
perimentally determined [Ref. 66] SRO parameter snd the
Krivoglsz-Clspp-Moss mean-Beld formula Eq. (30).

a(k) = 1

1+2z(1 —z) JMp(k)/10T'

using for a(k) the experimental data. Again, the char-
acteristic fourfold splitting seen in n(k, NR) also shows

up in JMp(k, NR). This splitting in JMp(k, NR) starts
to appear at NR 15 but is significant only past 25
shells. The splitting in JMp(k, NR) is much weaker than
in a(k, NR) especially at NR = 72 [see Figs. 8(d) and
9(d)]. Even though the absolute values of high order
a(R~ ) are very small, their collective contributions are
important in determining the appearance of split diffuse
maxima. This is analogous to the situation in charge
density analysis: One needs high-order structure fac-
tors p(k) to accurately determine the real-space charge
density p(r).

FIG. 10. Calculated real-space SRO parameters a(RI „)
(crosses) compared with measured a.(RI „)(circles) for
Cui Pd alloys (s) z = 0.130, (b) z = 0.285, snd (c)
z = 0.420, at T = 1023 K. The experimental data were taken
from Ref. 69.

Koga, and Ohshima for z = 0.130, 0.285, and 0.420.
The measured results depend quite sensitively on the
sample and preparation condition, as can be seen from
Table VIII: The experimental data at z = 0.285 (Ref.
69), measured from a sample quenched at 1023 K, give

a(Riip) = —0.157. Yet, Ref. 66 finds a value that is
50% different, n(Riip) = —0.105, for a sample at

z = 0.298 quenched at 773 K. [Naively, one would ex-
pect that a(R~ „)will be more negative at lower tem-
perature, since the ordered, low-temperature phase near
this composition is Llz like, for which n(Riip) = —s.]
By definition, a(Rppp) = 1; the degree of deviation from
unity for the measured n(Rppp) reflects the quality of
sample preparation, measurement, and subsequent data
analyses. Thus the agreement between the theory and
experiment (Fig. 10) is reasonable given the experimen-
tal scatter.

B. a(k) for Cu-Pd

A. a(R) for Cu-Pd

Figures 10 compares a, ~,(R~~„)to a«~t(R~~~) for
Cu~ Pd for x = 0.130, 0.285, 0.298, and 0.420. The
experimental data were taken from the work of Ohshima,
Watanabe, and Harada for x = 0.298 and of Saha,

Figure 1 shows how long-period superstructures
(LPS's) can be constructed from L12 units. Figure 11
and Table IX show our calculated energies E((M))—
Z(L12) as a function of the modulation wavelength M
(in Imits of underlying fcc lattice constant). We see that
for CusPd the minimum is at M = 3 while in NisV
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TABLE VIII. Calculated and measured real-space SRO parameters n(A' „)for Cu~ Pd alloys.

lmn
000
110
200
211
220
310
222
321
400
330
411
420
332
422
431
510
521
440
433
530
442
600

R)
0.000
0.707
1.000
1.225
1.414
1.581
1.732
1.871
2.000
2.121
2.121
2.236
2.345
2.449
2.550
2.550
2.739
2.828
2.915
2.915
3.000
3.000

T=1
Expt.

1.009
—0.073

0.091
—0.024
—0.010
—0.016

O.Q25

0.014
0.007

—0.025
0.006
0.018

—0.006
0.007

—0.007
0.005

-0.011
0.005

—0.003
0.023

—0.003
—0.021

0.130
023 K

Theory
1.000

—0.063
0.069

—0.006
0.016

—0.006
—Q.001
—0.002

0.009
—0.004

0.003
0.001

—0.002
—0.001

0.001
0.000
0.000
0.000
0.000

—0.001
—0.001

0.001

T = 773 K
Expt.

1.786
-0.105

0.178
—0.028

0.076
-0.039

0.046
—0.007

0.04Q
—0.016

0.013
0.009

—0.007
0.000
0.008

—0.016
—0.002
—0.007
-0.006
—0.007
—0.006

0.006

0.298
T = 1023 K

Theory
1.000

—0 ~ 116
0.139

—0.015
0.061

—0.024
0.023

—0.009
0.029

-0.013
0.005
Q.014

-0.005
0.006
0.001

—0.007
—0.004

0.005
0.001

-0.005
—0.001

0.006

T=1
Expt.

1.014
—0.157

0.171
—0.011

0.066
—0.024

Q.Q46
-0.008

0.033
—0.035
—0.013

0.044
—0.013

0.024
—0.007
—0.005
-0.014

0.009
—0.002
-0.003

0.011
0.025

x = 0.285
023 K

Theory
1.000

—0.114
0.134

—0.013
0.055

—0.023
0.018

—0.008
0.026

—0.012
0.007
0.011

—0.003
0.002
0.003

—0.007
—0.004

0.002
0.001

—0.003
—0.002

0.004

T=900K
Theory

1.000
-0.135

0.195
—0.027

0.102
—0.042

0.054
—0.019

0.057
—0.027

0.006
0.035

-0.013
0.021
0.002

—Q.019
—0.012

0.013
0.001

—0.013
0.005
0.018

.420
23 K

Theory
1.000

—0.103
0.099

—0.009
0.039

—0.014
0.005

-0.005
0.016

-0.009
0.006
0.005

-0.002
-0.001

0.003
—0.003
—0.003

0.002
0.002

—0.001
—0.003

0.002

x=0
T =10

Expt.
1.017

—0.144
0.125

—0.005
0.035

—0.009
0.017
0.007
0.002

—0.026
0.001
0.016

—0.013
-0.004

Q.QQ5

—0.007
—0.005
—0.019

0.010
0.001

—0.004
Q.Q12

Reference 69.
Reference 66.

and Pd3V all superstructures are stabler than L12. In
reciprocal space, the L12 structure is characterized by
the I waves, while the DO22 structure is characterized
by the fundamental wave vector k = (12O), i.e., the W
point (it also has an X wave with smaller weight than
the W wave). Had the ground state of CusPd been at
M = I (D022), then by mean-field theory SRO would
have peaked at the W point. This is the case for NisV.
However, as Fig. 11 shows, the minimum for Cu3Pd is at
M & I, and so, by mean-field theory SRO will concomi-
tantly peak behveen X and W. This is evident, in part,
in Fig. 5(b) showing that J(k) has a minimum between
X and R'.

Figure 12 shows calculated and measured k space
a(k, Ng) for Cup 7p2Pdp 2gs, which was Fourier synthe-
sized using N~ = 72 shells of n(Ri „).The experimental
result shown here is identical to Fig. 8(d). The Fourier
synthesized n(k, Nn) (NR = 72) has a peak at (IkO) with
k = 0.18 and a peak intensity value of 5.9. Our calcu-
lated n(k, NR) (N" = 72 and at T = 1023 K) shows
the fourfold splitting with peaks at (Iko) (k = 0.13)
points, i.e., between the X and W points. This peak
has an intensity value of 4.3; inclusion of N~ ——200
terms, this peak intensity increased to a value of 5.4.
Working directly in k space, previous mean-field-based
concentration-wave calculations were able to show the
characteristic fourfold splitting in a(k) for Cu-Pd alloys.
Note that since many physical eÃects are ignored in this
mean-6eld CW approach —i.e. , only the "band energy"
terms rather the whole LDA Hamiltonian are used (the

16—
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o
co 8—

E
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0
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LU
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A A
O 0 0r Ic4~lN ~l+
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C)
v-(CO

T
V
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FIG. 11. This figure illustrates the LAP'-calculated for-

mation energy of the L12-based long-period superstructures
(relative to Llq in units of meV jatom) for Cu+Pd as a func-

tion of the modulation wavelengths M. On the top of the
figure, we also give the reciprocal-space fundamental wave

vectors of these LPS's. For comparison, we also show the
available data of Ni3V and Pd3V.

"charge transfer" terms are left out) —the atomic relax-
ation is disallowed (all bond lengths A-A, A B, and BB--
are assumed equal), and it seems to be that the splitting
in n(k) for Cu-Pd alloys is not sensitive to these approx-
irnations. In Ref. 27 these authors did not compare n(R)
with experiment.
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-calculated and cluster-expanded (CE) formation energies

gp o p ~ ~ (
the LAPW-calculated formation energies of t eFor comparison, we also give e

PdBV.

Structure
L12

DO» ((1))
(21)

DOgs ((2))
(3)
(4)

Modulation
Wavelength M

1.0
1.5
2.0
3.0
4.0

LAPW
Cu3Pd

0.0
8.6
4.3
1.1

—5.0
—2.4

CE

0.0
8.3
3.5
0.1

—2.1
—2.2

LAPW
Ni3V
0.0

—105.1

—70.6

LAPW
Pd3V

0.0
—71.5

C. a(R} and a(k) for GaP-InP: Comparison
with Ni-Au

The calculated SRO for Gao 5Ino 5P is shown in Fig. 13.
The values of a(Ri „)are given in Table X. Our calcu-
lated SRO of Fig. 13 is seen to peak at the W = [120]
point [corresponding to the minimum in J(A, ) in Fig. 5(a)]
in the BZ rather than at the I' = [OGO] point, as would be
expected &om the fact that the ground state corresponds
to phase separation. The reason, discussed in Sec. V, is

that at a fixed composition the interaction energies are
antiferromagne ic ut b t the large strain that exists in t is

was also discusse ina oyll favors phase separation. T 's was
Refs. 8 and 11. This efFect has actually been obserserved
in the Nii Au alloy. The Nii Au phase diagram is
rather simple: It phase separates at low temperatures
into Ni and Au due primarily to the large strain associ-
ated with the large ( 15%) lattice mismatch between
N d A . However the attractive chemical interaction
between Ni and Au actually prefers ordering. ' n ee,

CU 0.702 Pd 0.298

(a) Expt, NR=72, T=773 K (b) Calc, NR=72, T=1023 K (c) Calc, NR=200, T=1023 K

020 220 020 220 020 220

X X

SL

K
X 000 200 000 X 200 000 200

OO OO OO

i rocal SRO arameters a(k, Na, T) for Cup rpgpdp. ggs p lotted as a contour plot (topp p
rtlot (bottom anels). The experimenta a a par apane ~ a

quenched at 773 K and fitted to ~ —— s eN = 72 shells while the calculations were carne ou a
Na = 72 [part (b)] and Na = 200 [part (c)].
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TABLE X. Calculated real-space SRO parameters a(R& ) for Gas sin& sP alloys.

lmn
110
200
211
220
310
222
321
400
330
411
420
332
422
431
510
521
440
433
530
442
600

0.707
1.000
1.225
1.414
1.581
1.732
1.871
2.000
2.121
2.121
2.236
2.345
2.449
2.550
2.550
2.739
2.828
2.915
2.915
3.000
3.000

T=250K

—0.122
0.070
0.059

—0.066
—0.017
—0.052

0.014
0.039
0.005

—0.007
0.001
0.004

—0.005
—0.008
-0.005

0.004
0.015

—0.004
0.001
0.004
0.005

Theory
T = 1200 K

—0.033
0.014
0.008

—0.015
0.003
0.000
0.001
0.002
0.000
0.001

—0.001
—0.001
—0.001

0.000
0.001
0.000
0.000
0.000
0.000

—0.001
0.001

this is demonstrated in an x-ray diffuse scattering exper-
iment by Wu and Cohen" on a Nio 4Auo 6 single crystal
at T = 1023 K. The measured short-range-order intensity
has a broad peak along the I'-X ((h00)) line, with max-
imum near h = 0.6. We extracted eight (Jj's from
eight LDA-calculated AEg;„,t(o, ). We then obtain the
a(R~ „)in a Monte Carlo simulation for the Nio 4Aue s
alloy at T = 1500 K. Figure 14 shows the calculated
SRO n(k, N&) (N& = 21) for the Nio4Auos alloy. We
indeed observe the peak along the I'-X (h00) line, with
the peak position at h —0.8. Thus, in analogy with
GaP-InP (indeed, with most bulk-grown semiconductor
alloys) Ni-Au too shows phase separation at low tempera-
tures, while at higher temperatures the disordered phase

exhibits ordering tendencies.
Unfortunately, most currently measured SRO param-

eters in GaInP ' do not lend themselves to compar-
ison with theory since these measurements were done
on vapor-phase-grozun thin epitaxial films that are now
know~ 's4'rs to exhibit surface induced orde-ring. What is
needed is SRO measurements on melt-grown or solution-
grown bulk alloys which are closer to bulk equilibrium.
Only a few results are available in this category.
Briihl et a/. have studied the Gaq In P x-ray diffuse
scattering using polycrystalline samples. These samples
were grown at high temperature () 1273 K), then cooled
to room temperature, i.e., below the miscibility tempera-
tures at T 733 K at x 0.62. These authors extracted

&ealc(k~ NR —2'l)

Ga0 5ln 0 5P

IX„i,(k, NR ——21)
Ni04Au06

020

000

220

200

00

000
Ar P A(hh

020 x

gU~ lJ QU~

220

((c

(Cc

200

FIG. 13. Calculated reciprocal short-range-order parame-
ters o(k, Nn) for Gao.sins sP at T = 250 K using a cutoff of
%R = 21 shells.

FIG. 14. Calculated reciprocal short-range-order parame-
ters a(k, Nn) for Nis 4Aus s at T = 1500 K using a cutoff of
%R ——21 shells.
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FIG. 15. The Cu„Pd~ superlattice ener-

gies as a function of repeat period. The en-

ergy E& of the ideal random alloy is shown by
1the dot-dashed lines. (a) x = —,(b) z = —,

and (c) z = —.

n(RqqII) = +0.13 for x = 0.5. The positive value re-
fiects the fact that the sample has partly undergone a
phase-segregation processes; i.e., there are local domains
of GaP and InP adopting their own equilibrium volumes.
More modern and accurate studies were conducted by
Osamura et al.so on liquid-phase epitaxial samples of
Ino ssGao 4rAs, finding o.(RqIo) ( 0 and o.(R2pp) ) 0
for the first and second shells RIyp and R2oo, resPec-
tively, consistent with our calculated signs for GaP-InP.
For more quantitative comparison, better x-ray scatter-
ing measurements are needed on bulk semiconductor al-
loys.

VII. SUPERLATTICE ENERGIES

As an additional application of the cluster expan-
sion, we can predict the energies of substitutional
configurations ' which are too complex to be calcu-
lated directly by the LDA. Once we have (J(k)), (JF),
and (Jcs) we can calculate AEcE(o) of Eq. (19), since
the structural function II(o.) and S(k, o) can be evalu-
ated trivially using Eqs. (3) and (8), respectively. Fig-
ure 15 shows the cluster-expanded formation energies
EEcE(k,p) for a Cu-Pd superlattice as a function of
repeat period p. (The zero of energy, as usual, is the
energy of phase-separated equilibrium Cu and Pd. ) We
give results for (a) AspBp, (b) A„Bp,and (c) ApB3p su-
perlattices along four directions [001], [011], [012], and
[111].For comparison we also show as dash-dotted lines
in Fig. 15 the energies ER of the random alloys at the
corresponding compositions. We see that at small repeat
period p, the superlattice formation energies EEcE(k, p)
are negative and lower than the random alloy values
(hE,g ( 0), suggesting spontaneous ordering. As p
increase, AE(k, p) turns positive, and eventually ap-
proach the constituent strain energy b,E&&(k, x) limit
as p ~ oo. The conventional truncated real-space-
only cluster expansion ' will incorrectly predict
EE(k, p) = 0 as p ~ oo. Note that for large periods p,
the [001]-oriented superlattices are energetically the sta-
blest, while at short period, the [012]- and [001]-oriented
superlattices are energetically favorable.

Another interesting application of the CE is the stabil-
ity of the one-dimensional L12-based long-period super-
structure in Cu3Pd. Figure 11 shows only the LAPW-
calculated excess energies for the LPS with a small num-

ber of atoms per unit cell (up to 16 atoms/cell) that are
directly accessible to the first-principles method. Using
the CE, we can thus extends the applicability of the first-

principles method to larger unit cell, as shown in Fig. 16,
where we plot the excess energy of the LPS as a function
of modulation wavelength M, the cluster-expanded and
LAPW-calculated excess energies are denoted by circles
and squares, respectively. The excess energy has a min-

ima around M =3—4 and approaches the value of L12 at
large modulation wavelength.

VIII. CONCLUSIONS

We have shown that LDA-calculated excess energies

EE6;„„(o,) = Es;„„(o,)—[(1—z)E(A, V~)+zE(B, V~)]

of 20 ordered structures o can be used to define a
converged cluster expansion

EEcE = N) [J(k) + Jcs(k)]~S(k, o)[
k

+N) DF JF IIF( )

I I I I
I

I I I I
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FIG. 16. The CuqPd long-period superstructures (LPS
(M)) energies as a function of modulation wavelength M (see
Fig. 1). The open circles are the cluster-expanded results,
which extend the direct LAPW-calculated results (for small
unit cell, denoted by the open squares) to large unit cells. The
solid circle and square are the cluster-expanded and direct
LAPW-calculated energies of the Llq structure (correspond-
ing to LPS (oo)), respectively.
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in terms of reciprocal-space pair energies J(k), con-
stituent strain energies Jcs(k), and real-space many-
body energies J~. Once these functions are obtained
from the LDA, b,EcE(o) of any relaxed substitutional
configuration can be obtained essentially effortlessly from
structural information S(k, o) and II~(o). This clus-
ter expansion can be readily coupled with Monte Carlo
simulated-annealing methods, thus providing the T = 0
ground-state configurations, T ) 0 short- and long-range
order, and x versus T phase diagrams as well as predic-
tion of internal energies of complex substitutional config-
urations containing thousands of transition-metal atoms.
We find that use of long-range interactions is essential

to correctly predict the existence of the long-period su-

perstructure at low temperatures and splitting in diffuse
scattering intensity due to short-range order at higher
temperatures for Cu3Pd.
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