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Dielectric Constants of Silicon Quantum Dots
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(Received 24 January 1994)

Quantum mechanical pseudopotential calculations of the absorption spectra and static dielectric
constant e, of Si quantum dots with —100—1300 atoms are presented. The predicted e, is found to be
significantly reduced relative to the bulk value, but is considerably larger than the value deduced from
currently available model calculations. A convenient parametrization of e, vs size R is provided. We
find that for quantum dots with R ( 20 A the electron-hole pair is confined by the physical dimension
of the dot, not by the Coulomb attraction.

PACS numbers: 77.22.Ej, 73.20.Dx, 78.66.Fd

The static dielectric constant e„
2

e, = I + — e2(E)/EdE,
7T 0

is given by the integral of the absorption spectra e2(E),

e2(E) = —g 2 Mf;(E)B(E —Ef;),
fi fi

(2)

where A = 8n.2e2fi2/3m2, Ef; is the transition energy,
and Mf, = I(f Ipl i)l is the dipole transition matrix ele-
ment between final state If) and initial state Ii), p is the
momentum operator, and A is the volume. While cal-
culated static dielectric constants of buIk semiconductors
[1—3] are generally in good agreement with experiment,
little is known experimentally [4] or theoretically [5—8]
on e, (R) for quantum structures whose radius R is of the
order of a few lattice constants. Previous works [4—5] in-
dicate that e, is reduced as the size R diminishes. This
could have profound effects on (a) electron-hole (exciton)
pairs and on (b) hydrogenic impurities: Regarding exci-
tonic effects (a), recall that in the bulk, the free exciton
radius a,b scales as a,b ~ a;. So a strong reduction of E,
from the bulk value can change the ratio a,b/2R from ) I
("strong confinement" [7]) to ( 1 ("weak confinement"
[7]). This weak confinement behavior was recently pre-
dicted from a generalization [6] of Penn's model [9] to an
isotropic, spherical semiconductor of radius R, giving

a, (R) =1+ 1+ aR (3)

where I = 2, n = 10.93 A in Si, and eb = 11.4 is the
bulk dielectric constant. This generalized Penn model
(GPM) predicts (Fig. 1) that a,b/2R is very close to
unity for all R ( 20 A ("weak confinement"). Regarding
hydrogenic impurities (b), as e, is reduced with the
particle's size we expect an enhancement in the binding
energy Ez ~ —I/e2. This could lead to an exponential
reduction in free carrier density N —e ~' ~r ("freeze-
out") at temperatures T where the bulk is still conductive
[6,10].

Since simple models such as Eq. (3) are of questionable
validity, we provide here a microscopic calculation of e,

vs size for nanometer silicon quantum spheres directly
from Eqs. (1) and (2). The spectra e2(E) of quantum
dots containing up to -1300 Si atoms are calculated fully
quantum mechanically using an empirical pseudopotential
plane wave representation and a novel moments method
[11]. In contrast to the GPM results [6], this atomistic
calculation predicts strong confinement rather than weak
confinement for R ( 20 A. We further provide convenient
parametrization of e, vs R in the form of Eq. (3), finding,
however, a considerably smaller exponent l = 1.2—1.4
than assumed earlier.

We first test our empirical pseudopotential approach for
the bulk, calculating the absorption spectrum a2(E), the
static dielectric constant e„and the density of states. For
later applications to finite clusters, a continuous, momen-
tum space Si pseudopotential vs;(q) is needed. We obtain
it by fitting the bulk band structure and the surface work
function [12]. The bulk absorption spectrum e2(E) was
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FIG. 1. Dielectric constants (a) and the ratio between the free
hydrogenic exciton radius and the quantum dot diameter (b)
as a function of quantum dot radius R. Here, e, is for total
polarization and e, is for exciton screening. The diamond
symbols in (a) denote the calculated results while the solid
lines are the fitted curves. The dashed curve corresponds to the
generalized Penn model (GPM) of Eq. (3).
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calculated using conventional k . p extrapolation meth-
ods [13] and a plane wave basis with an energy cutoff
of 4.5 Ry. The results are shown in Fig. 2(a) where they
are also compared with experiment [14]. While our re-
sult compares well with similar previous calculations [15],
they all lack the lower energy excitonic peak apparent in
the experimental spectrum. This excitonic peak cannot be
described by our single particle theory. The "f-sum rule"
[16] (mfa/277 e2) fo Ee2(E) dE = N, where N is the total
number of electrons inside volume A, is satisfied to within
0.1%. From Eq. (1)wefind Eb = 10.38forthebulk. This
can be compared with the experimental result [17]of 11.4,
the local density approximation result [2] 12.7, and the
early value of Walter and Cohen [1] of 11.3. Our 10%
underestimation of the experimental value probably stems
from the neglect of exciton effects as well as from possi-
ble imperfections in the pseudopotential. In what follows
[Fig. 1(a)], we will thus scale our calculated (e, —1) using
a factor of (11.4 —1) /(10.38 —1) = 1.109. The calcu-
lated total density of states (DOS) of the bulk Si is shown
in Fig. 3(a) along with the experimental x-ray photoemis-
sion spectrum (XPS) [18]. The overall agreement is good.
We conclude that we have a reasonable pseudopotential as
far as the quantities of interest here [e2(E), e„DOS] are
concerned.

We next consider spherical Si quantum structures. We
use interatomic distances taken from bulk since experimen-
tal Si-Si interatomic distances in quantum dots are within
0.25% of the bulk value [19]. All surface dangling bonds
are saturated in our calculation by hydrogen atoms. The
surface Si-Si bond relaxations and H atom positions are
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FIG. 3. Total and surface local density of states of Si systems
with different sizes. The XPS data in (a) is from Ref. [18].
The vertical arrows denote band edge positions (see Ref. [12]).
The zero of energy is the vacuum potential level.

e.(E) = dE17(E1, E~)

X 6 [E —(E~ —Ei)]

modeled after experimental data and ab initio calculations
of H-covered (100), (110),and (111)Si surfaces [12]. We
believe that the error on the dielectric constant due to a pos-
sible difference between the current surface model and the
real quantum dot should be small unless there are massive
atomic reconstructions on the surface, about which there is
currently no experimental information. The total potential
V(r) = Lfo~ ll 10/7/ (lr —R„,~ I) is given by a superposi-
tion of local atomic pseudopotentials of Si and H. The
hydrogen pseudopotential UH (r) is fitted [12] to the mea-
sured spectra of the above mentioned three H-covered Si
surfaces. In the calculation, the quantum dots are placed
in periodic unit cells with the closest distance between two
neighboring quantum dots as 9 A. The plane wave ba-
sis set energy cutoff is 4.5 Ry„corresponding to 10 ba-
sis functions for the largest system considered here. Such
huge basis sets cannot be handled by conventional elec-
tronic structure methods that seek all eigenstates. We use
instead a newly developed generalized moments method,
which is summarized in the following.

The calculation of the optical spectrum
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FIG. 2. Calculated optical absorption spectra e2(E) of Si
systems with different sizes. The experimental data in (a) are
from Ref. [14]. The joint density of states (JDOS) in (b) is
given in arbitrary units. The vertical arrows denote band gap
values (see Ref. [12]).

[where constant A is defined as in Eq. (2), fl = Ns;a-'/8
is the volume, Ns; is the number of Si atoms, and a is
the bulk Si lattice constant] requires the two-dimensional

spectral function

r(E&1 E ) = pl(f Ipli)l ~(E1 —E;)&(E= —Et)- (5)
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The function r(Ei, E2) can then be reconstructed as

r(Ei, E2) =
~

—
~

(1 —E&) (1 —E2)&~)
X gT„(E,)T (E,)(I„, )

n, m

X (1+ 8„p) '(1+ 8 p) ', (8)

using the orthogonality of T„. We use in the present
calculations 500 && 500 Chebychev moments I „and 5—
60 randomly selected wave functions imp). The total
and local density of states can be calculated analogously.
Numerical details of this method are given elsewhere [11].

We consider five spherical quantum dots: Si87H76,
Si235H, 4p, Si429H22s, Si74&H3pp, and Si,3,5H46p. The calcu-
lated spectra e2(E) of the smallest and the largest quantum
dots are given in Figs. 2(b) and 2(c), while the total and
local density of states are shown in Figs. 3(b) and 3(c).

The results exhibit the following features: (i) The band
gaps (marked in Fig. 2 by vertical arrows) and peaks of
e2(E) shift to higher energies with decreasing size, as
expected from quantum confinement. The size scaling
of the band gap change is, however, B,Eg (R) —R
with n = 1.4, not the n = 2 exponent expected from
simplistic particle-in-a-box effective mass models. (ii)
e2(E) and the DOS of the largest quantum dot studied here
already resemble their bulk counterparts, while the smaller
particles have fundamentally different characteristics. (iii)
As seen in Figs. 3(b) and 3(c), chemisorption effects are
noticeable for the smaller cluster: Surface Si-H bonding
produces a peak in DOS at about 5 eV belo~ the valence
band maximum. The band gap region, however, has no
surface state. (iv) Comparing [Fig. 2(b)] e2 with the joint
density of state (JDOS) shows that the dipole matrix
element Mf;/Ef; controls the shape of the absorption
spectra Aconsta. nt matrix element approximation (i.e.,
equating e2 with the JDOS) is obviously useless here.

Integrating e2(E) of Fig. 2 according to Eq. (1) gives
the total polarization dielectric constant e,(R) depicted
in Fig. 1(a). This measures the total polarization P of
a system of volume 0, responding to a constant electric

This is obtained here by first calculating a series of
moments of 7 (E&, E2) and then linearly transforming them
to energy space. The moments are conveniently expressed
in a basis of orthogonal Chebychev polynomials T„. To
obtain them we use randomly generated wave function
i Pp), calculating

V„= (PpipT„(H) ' pT (H)imp), (6)
where H is the system's Hamiltonian with its energy
scaled so that all its eigenvalues fall inside domain [—1:1].
Taking an ensemble average over I „using different,
randomly generated imp)'s gives the required moments of
r(Ei, E2):

1 1

(I „)= dE, dE T„(E,) T (E ) r(E, , E ). (7)
—1 —1

field F, i.e., e,
—= 1 + P/FO. This total polarization P

consists of contributions from the interior Si atoms, as
well as from the surface Si-H bonds. The magnitudes
of these contributions can be estimated from Penn's
model using

4m e 4NS; —NH 2NH
2 + 2mA Esi —H—

(9)

l' ~ i' sin(~r)
p(r) = folr ~R,

&2R3) ~ r

and zero elsewhere. This produces an unscreened external
potential v,„,(r) obtained from p(r) by solving Poisson's
equation with a boundary condition v,„,(R) = 0. Then,
if there exists a "macroscopic" screening e (no q de-
pendence or local field effect) inside the sphere, the en-
suing screened potential for r ( R is v„,(r) = v,„,(r) /e.
For a microscopic screening, v,„,(r) and v„,(r) are not
proportional. In that case, we can define 8, as the ratio
between the unscreened and screened Coulomb energies
e, = f v,„,(r)p(r) d3r/ f v„,(r)p(r) d3r. To simplify the
calculation, we will replace the truly external potential

(10)
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where 4Ns; —NH and 2NH are the numbers of electrons
in Si-Si and Si-H bonds, respectively. Neglecting (on
purpose) the size dependence (i.e., the quantum confine-
ment effect) of Es;(R), we find Es; = 5.15 eV [taken
from bulk value, i.e., NH = 0, e, = eb in Eq. (9)] and

Es; H
= Es;/2 + 5.6 eV, where —5.6 eV is the Si-H peak

position in LDOS of Fig. 3 measured from the center of
the band gap. The dot-interior and surface contributions
to e, —1 [first and second terms of Eq. (9), respectively]
are then 9.5 + 0.7(= 10.2), 9.3 + 0.8(= 10.1), 9.0 +
1.1(= 10.1), 8.8 + 1.2(= 10.0), and 8.1 + 1.8(= 9.9),
for the quantum dots Si1315H460, Si741H300 Si429H228,
Si235H]4p and Sis7H76, respectively. We see that (i) even
though the surface-to-volume ratio increases as the dot
gets smaller, most of e, comes from the dot-interior Si
atoms, not the surface. (ii) The model e, —1 estimated
from Eq. (9) is almost size independent, being close to
the bulk value 10.4. Thus the large reduction of e, with
size noted in our direct calculation of Fig. 1(a) cannot
be explained in terms of surface effect, and must reflect
quantum confinement effects.

Another interesting quantity is the screening dielectric
constant e, (R) which effectively measures the reduction
in the Coulomb potential of an electron or hole due to
screening by the medium. Because of the wave vector
(q) dependence of the bulk dielectric function eb(q) and
the small dimension of the quantum dots, we expect
e, (R) ( e, (R). There is no unique definition of e, since
this quantity can depend on the specific potentials to
be screened. Here, we define e, from a model exciton
wave function [20], so the results are most appropriate to
describe exciton screening and exciton binding energy in
nanostructures [20].

For a spherical quantum dot with radius R, the charge
density of an uncorrelated electron or hole is [20]
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v,„,(r) by u,'„,(r), which generates (after being screened
by the medium) a screened potential u,'„(r) = v,„,(r).
We then have

v,'„,(r)p(r) d r u,'„(r)
p. (r) d'r .

With this definition, using perturbation theory, we
find that:

and

- =1+ —'
p E (12)

e2 (E) = g l(f lu, „,(r) I i &I'6(E —Ef;), (13)

where P —= f u,„,(r)p(r) d3r. Thus, e2 can be calculated
in the same way as the spectrum e2, replacing, however,
the momentum operator p in Eqs. (5) and (6) by the
external potential v,„,(r).

The calculated screening dielectric constants e, for the
spherical clusters are plotted in Fig. 1(a). As expected,
e, (R) is smaller than e, (R). At the same time, it
is still larger than the value predicted by the GPM.
Consequently, the ratio (a,h/2R) between the bulklike
(free) hydrogenic exciton radius and the system's size is
predicted to be far larger than unity for R ( 20 A (strong
confinement), as shown in Fig. 1(b).

It is useful to have a simple analytical form for the
dielectric constant vs size. Fitting our results to the
analytic form of Eq. (3) gives the solid lines shown
in Fig. 1(a). We find n = 4.25 A, l = 1.25 A for the
total polarization dielectric constant e„and a = 6.9 A,
l = 1.37 A. for the screening dielectric constant e, . The
GPM gives o. = 10.93 and I = 2. The fact that our I ~ 2
is reminiscent of the fact that we also find a band gap
scaling —1/R" with a softer exponent n —1.4 than the
effective mass n = 2 value.

A sensitive test of the size dependence of
e, (R) is to compare with experiment the calcu-
lated ratio between the conduction band edge shift
[b,E,(R) —= E,(R) —E,(~)] and the valence band edge
shift [AE„(R) = E„(~) —E„(R)]. Because this type of
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FIG. 4. Conduction band edge shifts versus valence band edge
shifts. The experimental data are from Ref. [21].
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experiment [21] does not require measurement of the
size of the quantum dots, it avoids the large uncertainty
encountered in conventional experiments which measure
b, Es,„(R) as a function of R. The measured conduction
band energy contains an exciton Coulomb energy term.
This Coulomb energy can be calculated [20] by a simple
formula —1.786/eR. As shown in Fig. 4, using the
present e, (R) rather than the bulk value eq for e brings
the calculated AE, vs AE results much closer to the
experimental data. Interestingly, using the GPM values
of e(R) gives results which are at the other side of the
experimental data range.

This work was supported by the office of Energy
Research, Materials Science Division, U.S. Department of
Energy, under Grant No. DE-AC02-83CH10093.

[1] J.P. Walter and M. L. Cohen, Phys. Rev. B 2, 1821

{1970).
[2] S. Baroni and R. Resta, Phys. Rev. B 33, 7017 {1986).
[3] M. S. Hybertsen and S. G. Louie, Comments Condens.

Matter. Phys. 13, 273 (1987), and references herein.

[4] J.F. Harvey, H. Shen, R. A. Lux, M. Dutta, J. Pamulapati,
and R. Tsu, Mater. Res. Soc. Symp. Proc. 256, 175 (1992).

[5] K. B. Kahen, J.P. Leburton, and K. Hess, Superlattices
Microstruct. 1, 289 (1985); R. Tsu and L. loriatti, ibid 4, .
295 (1985).

[6] R. Tsu, L. loriatti, J.F. Harvey, H. Shen, and R. A. Lux,
Mater. Res. Soc. Symp. Proc. 283, 437 (1993).

[7] A. D. Yoffe, Adv. Phys. 42, 173 (1993).
[8] G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908); P. Debye,

ibid 30, 57 (19.09).
[9] D. R. Penn, Phys. Rev. 128, 2093 (1962).

[10] J.F. Harvey, R.A. Lux, D. C. Morton, G. F. Mclane, and

R. Tsu, Mater. Res. Soc. Symp. Proc. 283, 395 (1993).
[11] L. W. Wang, Phys. Rev. B 49, 10154 (1994).
[12] For detail pseudopotential fitting and quantum dot atomic

structures, see L.W. Wang and A. Zunger, J. Phys. Chem.
98, 2158 (1994).

[13] D. Buss and N. J. Parada, Phys. Rev. B 1, 2692 (1970).
[14] D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985

(1983);G. E. Jellison, Jr. and F. A. Modine, ibid 2'7, 7466.
{1983).

[15] M. L. Cohen and J.R. Chelikowsky, Electronic Structure
and Optical Properties of Semiconductors (Springer-
Verlag, Berlin, 1988).

[16] M. Altarelli, D. L. Dexter, and H. M. Nussenzveig, Phys.
Rev. B 6, 4502 (1972).

[17] R. A. Faulkner, Phys. Rev. 184, 713 (1969); H. W.
Icenogle, B.C. Platt, and W. L. Wolfe, Appl. Opt. 15,
2348 (1976).

[18] L. Ley, S.P. Kowalczyk, R. A. Pollak, and D. A. Shirley,
Phys. Rev. Lett. 29, 1088 (1972).

[19] K. A. Littau, P. J. Szajowski, A. J. Muller, A. R. Kortan,
and L. E. Brus, J. Phys. Chem. 97, 1224 (1993).

[20] L.E. Brus, J. Phys. Chem. 90, 2555 (1986).
[21] T. van Buuren, T. Tiedje, J.R. Dahn, and B.M. Way,

Appl. Phys. Lett. 63, 2911 (1993).


