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Abstract 

The orthogonality requirement in either iterative diagonalization or conjugate gradient approaches to the 
single particle Schr6dinger equation/~/~u = E~u leads to an overall N 3 scaling of the effort with the number 
N of atoms. We show that the Lanczos method circumvents this problem even when applied to all occupied 
states. Our implementation shows that the method is stable, exact, scales as N 2 for N around a few hundreds, 
and is thus optimally suited for such mid-size (100 -  1000 atoms) quantum systems. The analogy between 
the basic Lanczos equations and Anderson's localization in a disordered one-dimensional tight-binding chain 
is pointed out and used to gain some insights into improved convergence and stability of the method. For a 
900-atom Si cluster tested here using pseudopotentials and a plane wave basis, the Lanczos method is about 
an order of magnitude faster than the state-of-the-art preconditioned conjugate gradient method using the same 
pseudopotentials and basis set. 

1. Introduction 

While recent developments in computational 
strategies [1] enable first principles electronic 
structure calculations for systems with up to 
100 atoms, rapid experimental advances are 
constantly shifting interest to quantum systems 
with an ever increasing number of  atoms. Ex- 
amples include the > 1000-atom quantum dot 
and quantum wire structures [2], as well as su- 
perlattices and quantum wells [ 3 ]. The effort in 
state-of-the-art/:/~u = E ~  electronic structure 
algorithms scales as N 3, where N is the num- 
ber of  atoms in the system. Recently [4], we 
have demonstrated that one could find exact 
eigenfunctions o f / : / ~  = E~u in a desired "en- 
ergy window" (e.g., E around the band gap of  
insulators and semiconductors) in a linear-in- 
N scaling. This is very useful for energy level 

calculations of  large quantum systems [5], but 
not for total energy calculations that require 
all occupied eigensolutions. Although there are 
several promising proposals for total-energy 
electronic structure method with a linear-in-size 
(N)  scaling of  the effort [6-10],  these are still 
in their formative stages and the cross-over size 
of  their cost with respect to the conventional 
(Na-scaling) methods is yet unknown. Here we 
present a method for finding all exact occu- 
pied eigenstates of  a given Schr6dinger equation 
based on the Lanczos algorithm [ 11 ]. The effort 
scales as N 2 for N around a few hundreds of  
atoms (basis set size around 30 000) and is an 
order of  magnitude faster than the state-of-the- 
art preconditioned conjugate gradient method 
[ 1 ]. Although for large N (perhaps > 1000), the 
Lanczos method could be less effective than the 
currently proposed [ 6-10 ] linear scaling meth- 
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ods, our proposed method appears competitive 
for mid-range system sizes ( 100-1000 atoms). 
Using this method, a plane-wave calculation for 
a Si617H316 cluster (having 1392 occupied states 
and 30 000 basis functions) takes 2.5 Cray- 
YMP cpu hours for a given total potential F (r), 
while our implementation of the preconditioned 
conjugate gradient is estimated to take 23 cpu 
hours for the same problem. Thus, the present 
method makes electronic structure calculations 
of all occupied states of a few hundred to one 
thousand atom quantum systems affordable. 

We use the Kohn-Sham formalism [12] in 
which the total energy of a system with external 
p o t e n t i a l  Vext (r) (e.g. the ionic potential) is: 

Etot = 2 E -~ -~  ~l'llV2~l d3r 
l 

f Vext(r)p(r) d3r + 

e 2 
+-2 f p(r)p(r') ~ 2-- r~ dardar' 

+Exc[p(r)] + Eion[{Ratom}], (1) 

where Eion is the ion-ion Coulomb repulsion 
energy of the atomic configuration {Ratom}, 
Exc [p(r)]  is the total exchange and correlation 
energy of the electronic charge density p(r) 
given by the occupied single-particle wavefunc- 
tions ~t (r): 

occupied 

p(r) = 2  Z Ig0(r)]2" (2) 
l 

The wavefunctions can be obtained from the sin- 
gle particle self-consistent Schr6dinger equation 

2m + V(r) ~'l(r) = Et~t(r), (3) 

where V(r) is the self-consistently determined 
total potential: 

e 2 f p(r') d3r, ~Exc[p(r)] 
V(r) = Vext(r) + -~- 17-7- I + Op(r) 

The preconditioned conjugate gradient (PCG) 
method is an effective method for solving Eqs. 
(3) and (4). Since however, the PCG method 
requires performing orthogonalization (a N 3 op- 
eration), it is limited to systems with fewer than 
about 100 atoms. Here, we concentrate on solv- 
ing Eq. (3) for a given V(r). Self-consistency 
can be subsequently obtained by repeating this 
step and generating V (r) from Eq. (4) using the 
solutions {q//(r)} of Eq. (3). 

We expand ~t in a plane wave basis: 

~l(r) = Eal(G)e-i6r, (5) 
G 

where G is the reciprocal lattice vector of the 
system and at (G) are the expansion coefficients 
to be determined. Then, for a given V(r),  Eq. 
(3) is a linear equation of the variables at (G), 
where its dimension is the number of reciprocal 
lattice vector {G}; for the largest systems stud- 
ied here, this is ,~30 000. In what follows we 
will assume that one can compute efficiently the 
matrix-by-vector product /:/~t [e.g. using fast 
Fourier transform (FFT) ], so individual matrix 
elements Hal,a: = < exp ( -iG1. r )]//[exp ( -iG2. 
r) > need not be computed. [Using the FFT, a 
single multiplication f/C0 scales as N In(N), so 
it is much faster than explicit matrix multiplica- 
tion using the matrix elements H6,,c2. ] 

It has been previously suggested [13,14] that 
the Lanczos algorithm could be an efficient way 
to solve for the eigenstates of large linear sys- 
tems. However, although the Lanczos method 
has been recently used to calculate some (,,~ 30) 
of the lowest eigenstates of large systems [ 15 ], 
total energy Lanczos calculations (requiring a// 
occupied eigenstates) have apparently not been 
widely used. Indeed, the alleged instability of the 
basic Lanczos scheme [ 11 ] and the success ofit- 
erative diagonalization [ 16 ] and the conjugate 
gradient method [ 17 ] in electronic structure cal- 
culations seem to have discouraged testing of the 
Lanczos method for large scale total energy cal- 
culations. To examine these paradigms, we will 
first introduce the Lanczos method and discuss 
the "Lanczos phenomena". This analysis (de- 

(4) scribed in section 2) and the unexpected anal- 
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ogy between Lanczos convergence and the An- 
derson localization problem then suggest a par- 
ticular implementation of  the Lanczos approach, 
discussed in section 3. Section 4 describes appli- 
cations to Si quantum dots and section 5 com- 
pares the method to the preconditioned conju- 
gate gradient method, while section 6 provides a 
summary. 

It is useful to illustrate some of the Lanc- 
zos phenomena on a concrete system. In what 
follows, we will use large Si quantum dots 
as examples. Here, the total potential V(r)  
will be taken as a superposition V(r)  = 
~atom Vatom (I r -- Ratom[) of  spherically symmet- 
ric empirical pseudopotentials Vatom (r)  [5 ]. Our  
basic algorithm does not depend on this choice. 
The Si atoms have a bulk-like configuration and 
are arranged in a shape of  a rectangular box; all 
surface dangling bonds are saturated by hydro- 
gen atoms. We consider four quantum boxes: 
Si47H52, Sil47Hl16, 5i329H204 and 5i617H316. We 
use a plane wave basis (Eq. (5)) with 5520, 
11 012, 18 794 and 29 982 orbitals for the four 
clusters, respectively. We apply periodic bound- 
ary conditions on each unit cell that contains the 
quantum structure surrounded by vacuum. The 
action of [ / o n  ~u is executed using FFT's with a 
real-space grid of up to 54 × 54 x 80. Figures 1-5 
illustrate various "Lanczos phenomena", to be 
discussed below, on the Si47H52 quantum dot. 

2. Lanczos method and Lanczos phenomena 

The Lanczos method [ 11,13,14 ] starts with a 
random wavefunction u l, then iteratively gener- 
ates "Lanczos vectors" {ui} from 

(6) f l i+lUi+l  = ISIui - otiu i - f l iUi_l ,  

where / : /  = - h 2 / 2 m V  2 + V(r)  is the Hamil- 
tonian of the system (Eq. (3)),  ai is given by 
< uilHlui > and fli+l is determined by the nor- 
malization condition < ui+l[Ui+l > -- 1. At the 
start of  the iterations, we have fix = 0. Using in- 
duction, it is easy to show from Eq. (6) that, for 
the exat (e) Lanczos algorithm, ui+ ~e  is orthog- 
onal to all previous Lanczos vectors, i.e: 

e e 
( UilU j > = ai,j. (7) 

Thus, the exact ut e. represents an orthonormal ba- 
sis which tridiagonalizes (Eq. (6)) the original 
Hamiltonian [/ .  The element of this matrix H/~ 

e ^ e are defined by < u i IH[uj >. However, if  we only 
have ui with a finite precision, H "r can be defined 
by Eq. (6) and written as: 

/ t~2 f13 
H r = f13 o~3 • . (8) 

t iM Ot M 

All eigenvalues {El} of  this tridiagonal matrix 
can be obtained by standard techniques [ 14,18 ] 
with an effort proportional to O (M), where M is 
the dimension o f H  x. Then, the individual eigen- 
functions {b~ } of H à  can be calculated using "in- 
verse iteration" [14] of Ha` around the energy 
Et. This is a very fast, O(M)  operation for each 
eigenfunction {b~}. Finally, the eigenfunctions 
o f / : / can  be constructed from the eigenfunction 
of  H à  as 

M 
~l(r) = y~b[  ui(r). 

i 

(9) 

The above arguments are valid only for the 
exact Lanczos algorithm, i.e, when there are no 
round off errors in the numerical implementa- 
tion. In practice, round off errors always exist, 
so some of  the above equations, especially the 
orthogonality condition of Eq. (7), are not sat- 
isfied. In the following, we will discuss some 
properties of the finite precision Lanczos algo- 
rithm. These properties are refered to as "Lanc- 
zos phenomena". We will identify here a num- 
ber of problems with the Lanczos method. Cures 
will then be offered in our algorithm described 
in section 3. 

2.1. Amplification of  end-of spectrum states 

As the number of Lanczos iterations M in- 
creases, the eigenstates at the two ends of  the 
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spectrum ("end-of-spectrum states") are the 
first to converge. This is because there is a hid- 
den driving mechanism which amplifies the 
amplitudes of the end-of-spectrum states. To see 
this effect, let's first write ui and ui+~ as sums 
of the eigenstates of/: / ,  i.e, ui = E l  C[ ~l l and 
Ui+ 1 = E l  Cff +1 ~//l" Substituting these into the 
Lanczos iterative equation (6), we have: 

Cff+ 1 1 
- -  f l i + l  [(El - Ei) - fli]c~, (10) 

where, E = ~ t  Et c~ is the average eigenvalue 
of  ui. So if at the beginning of the iterative se- 
quence, all c] have the same order of  magnitude, 
then (Et - El)  will have the largest value for 
the end-of-spectrum states l. Thus, the ampli- 
tude c~ of these states will increase exponentially 
as a function of iteration history i, until they are 
large enough to begin to change Ei. After this, 
their amplitudes will decrease because the fac- 
tor (JEt - El)  becomes small for these l. In this 
discussion, we have ignored the effect of  the fli 
term in Eq. (10). But this term will not change 
the qualitative picture. This is confirmed in Fig. 
1, which depicts the amplitude of the ~ul (r) com- 
ponent in ui(r) vs the iteration index i. We see 
that first < q/llUi > increases exponentially as 
a function of i and subsequently it decays. 'Be- 
cause these end-of-spectrum ~ut's appear in ui 
with large amplitudes, we can expect that ~ut can 
be accurately represented by some linear com- 
binations of  ui. In other words, these ~t's have 
converged. 

2. 2. Loss o f  orthogonality among {ui} 

Because of the mechanism discussed in section 
2.1 and because of  numerical round off errors, 
the orthogonality condition (7) does not hold 
in actual finite-precision computations. The ex- 
act Lanczos algorithm constrains the process, so 
the previous ( j  < i) uj will not have any com- 
ponents in the newly generated ui. However, in 
finite precision calculations, there is always a 
small, but finite admixture ofuj into ui. This ad- 
mixture will be amplified exponentially by the 
driving mechanism described in section 2.1, and 

will eventually lead to the violation of the or- 
thogonality (Eq. (7)). This violation of the or- 
thogonality is illustrated in Fig. 2, which depicts 
< ullui > versus i. After i > 180, this overlap 
becomes large. This loss of orthogonality seem 
to have led to the belief [11] that the Lanc- 
zos algorithm breaks down unless one explicitly 
reorthogonalizes ui to all the previous uj's, (a 
rather expensive operation). However, as will be 
shown in section 2.3 below, the Lanczos algo- 
rithm without explicit reorthogonalization does 
work despite of the failure of Eq. (7). 

2.3. Loss o f  orthogonality does not prevent 
f inding accurate eigenstates 

Let us just ignore for a moment  the failure of 
Eq. (7) and go ahead and diagonalize the tridi- 
agonal matrix H T of Eq. (8), finding its eigen- 
states {b~}. Then, {b~} satisfies: 

l c~ib[ l Elb~ f l ibi_l + + fl i+lbi+l = 

for I < i < M  

and 

flMblM_l + aMblM = ElbtM . (11) 

Now, using these coefficient {b~} to construct 
from Eq. (9) the wavefunction ~'t (r), and ap- 
p i ing / : / to  this ~l(r)  using Eqs. (6) and (11), 
we find 

[ t~ l  = El~! + flM+l bM UM+I. (12) 

We see that i f  bg  is very small, ~ut is a numer- 
ically accurate eigenstate o f  I;I. Equation (12) 
does not depend on the orthogonality condition 
of Eq. (7). If we had an orthogonal basis {ui), 
then a normalized {b~} would have guaranteed 
a normalized ~Ul. Thus, the lose of orthogonality 
means that ~ut is no longer normalized. However, 
as long as the norm of ¢/t is much larger than bg,  
this is not a real problem (since then the second 
term in Eq. (12) can be ignored). Thus, as will 
be demonstrated in our later numerical tests, ac- 
curate eigenstates of the original Hamiltonian/7/ 
can be obtained from Eq. (9). The reason for the 
smallness of bM is discussed next. 
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Fig. 1. The  ampl i tude  o f  the  end-of-spect rum states ¢/1 ( r )  in  the  Lanczos wavefunct ion  u i (r). The ampl i tude  increases f rom 
i = 1 to i = 25, then  it decreases f rom i = 25 to i = 50. At  i = 100, ~ul ( r )  is converged. The  next  and  o ther  peaks are 
dupl icates  of  V/1 ( r )  discussed in sect ion 2.5. These  are also indica t ions  of  the  failure of  or thogonal i ty  among  the  different  
ui (r). The  system s tudied is Si47H52. 
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dupl icate  of  ~l  ( r ) ,  shown in Fig. 1 (i  = 180). The  system s tudied is Si47H52. 



L.- W. Wang, A. Zunger / Computational Materials Science 2 (1994) 326-340 331 

1.2 

1.1 

1 
"'7". 
"3 0.9 

~-~ 0.8 

~ -  0.7 

0.6 

0.5 

0.8 

0.75 

0.7 

Q~..0.65 

0.6 

i 

(a) 
I I 

I I 

i 

(b) 

I I 0.55 
0 200 400 600 800 1000 

Lanczos iteration index i 

Fig. 3. The Lanczos coefficients ai and fli of  Eq. (6) as functions o f  Lanczos i teration number  i. Note  the large random 
fluctuations in ai and fli. The  system studied is Si47H52 . 

2.4. Anderson localization in bi is the reason for 
the convergence o f  ~ul 

To understand why bm can be so small, con- 
sider Eq. (1 1 ). Notice that this equation is 
isomorphous with the linear chain tight binding 
equation [19,20] for the eigenfunction {b~}. In 
the linear chain problem one considers a single 
orbital per atom, where i is the atomic position 
and Ot i and fli are, respectively, the diagonal 
("on-site") and the off-diagonal nearest neigh- 
bor "hopping" Hamiltonian matrix element. 
Thus, the Lanczos iteration index i=  1,...,M is 
analogous to atomic positions in a chain and 
the Lanczos coefficients a and fl are analogous 
to tight-binding matrix elements. Fig. 3 shows 
the value of ai and fli calculated from the Lanc- 
zos procedure of Eq. (6) for our test system 
Si47H52. We see that there are significant ran- 
dom fluctuations in the Lanczos value of ai and 
fli as a function of  the iteration index i. Thus, 
Eq. (1 1 ) represents a random one-dimensional 

tight-binding system. For such a system, it is 
well known that all eigenstates are localized with 
exponentially decaying tails ("Anderson local- 
izations') [ 19 ]. The decay length is determined 
by the magnitude of the randomness: the larger 
the randomness, the smaller the decay length, 
(and thus the faster the Lanczos convergence 
rate of the corresponding eigenstates). If site 
i on which localization occurs is far from site 
M, then b~ will be small and ~ut will be well 
converged. The coefficients {b~} of typical con- 
verged eigenstates ~t (l = 1 and l = 10) are 
shown in Fig. 4. The localizations and the tails 
of  {b~} are clearly seen. Because of the mecha- 
nism discussed in section 2.1, the localization 
site of  the end-of-spectrum states always occurs 
at small position index i. Thus, these states will 
be converged even for small M. In practice, 
soon after M passes the localization site i of  
{b~}, the wavefunction q/t and its eigenvalue El 
will converge. On the other hand, for a given M, 
there are eigenstates of Eq. (11 ) which have a 
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Fig. 4. The expansion coefficients {b~} of the basis {ui(r)}[Eq. (9)], for (a) ~1 (r), and (b) ~qo(r). The dimension of the 
tridiagonal matrix H T used to calculate {b~} is M = 1000. The localization of {b~} is apparent from the exponential decay 
(straight line for ln(b[)) around the localization sites (the peak positions of In (b~)). Note that {b] } has a much shorter 
decay length than {b]°}. The multiple peaks are a result of the coupling between the duplicates of ~t I (r). Because the last 
duplicate (centered around i = 1000) for {b] °} has not been fully converged, there is no coupling to this state. Thus, this 
emerging (yet unconverged) duplicate does not spoil the convergence of the previously converged duplicates. The system 
studied is Si47H52. 

localization site i close to M, so these eigenstates 
have large b t value. These eigenstates are not 
well converged and their eigenvalues are scat- 
tered throughout the spectrum. However, be- 
cause of their large b t value, their eigenvalues 
are very sensitive to a change in M. Thus, their 
eigenvalues will change as we replace M by, e.g. 
M - 1. This is useful as a criterion to identify 
these spurious states. [The absolute amplitude 
of b t is not used to judge the convergence, be- 
cause the normalization of  ~l constructed from 
Eq. (9) can be very different from unity. ] 

2.5. The occurrence of  eigenvalue duplicates 

Another consequence of  the "driving mecha- 
nism" (section 2.1 ) and the lose oforthogonality 

(section 2.2), is that the Lanczos procedure will 
produce many duplicates of a single eigenstate. 
In the language of  the one-dimensional random 
system, one can say that there are many local- 
ized states with degenerate eigenvalues. The oc- 
currence of duplicates is illustrated in Fig. 1 and 
Fig. 4. Note that b[ in Fig. 4 decays to machine 
precision e ( = 10 -13 ) before it increases again 
to generate the next duplicate. The duplicates 
are generated at almost equal intervals dt deter- 
mined by: 

dt ~- -2,;tl lne, (13) 

where 2t is the decay length of state {b~}. From 
Anderson's model [19], we know that 2t de- 
pends on the magnitude of the randomness of 
ai, fli and the eigenvalue Et. The smaller Et, the 
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Fig. 5. The Number  of converged eigenvalues as functions of the Lanczos iteration index i. Since this system has 120 occupied 
states, most of the occupied states should have already converged around i ~ 1000. The system studied is Si47H52. 

shorter is At, thus the more often it repeats itself. 
This is confirmed in Fig. 4 by the much shorter 
decay length of {b~ } relative to that of  {bl°}. 

In actual calculation, the duplicate states can 
be easily recognized by noting their nearly iden- 
tical eigenvalues. Thus, only a single {b~} and 
Vt will be calculated from these identical eigen- 
values. However, if the original Hamiltonian/: /  
supports truly degenerated states, this procedure 
will clearly miss one partner of a degenerate set. 
This problem will be solved in our algorithm (see 
below) by restarting the Lanczos iteration sev- 
eral times with different starting random wave- 
functions u~. 

A related concern is whether a yet uncon- 
verged duplicate of Et which is just emerging, 
(i.e. the localization site of  this new duplicate 
is very close to M), could spoil the convergence 
of the previously converged states of Et. Con- 
sidering the picture of a one-dimensional ran- 
dom system and actual numerical tests, we find 
that the already converged eigenvalue Et will 
not be shifted by the newly emerging duplicate. 
Furthermore, the amplitude {b~} of the newly 
emerging state can be coupled to the previously 

converged states only after the new state has 
been fully converged. This is illustrated in Fig. 
4(b). 

Another concern is that with all converged 
states generating their duplicates at a rate given 
by Eq. (13), could it be that after a while, the 
procedure will produce only duplicates of old 
states rather than new states. Fortunately, this 
does not happen, as illustrated in Fig. 5. We 
see that, while the duplicates can account for 
more than half of the total number of converged 
eigenstates, the number of unique converged 
states (without counting the duplicates) in- 
creases steadily almost as a linear function of 
the number M of Lanczos iterations. In the ex- 
ample shown in Fig. 5, there are two slopes: a 
larger slope for the states below the energy gap 
in the spectrum (i.e, the band gap of Si47H52), 
and a smaller slope for the higher energy states. 
Of  course, after all the eigenstates of the origi- 
nal Hamiltonian have been generated, further 
iterations can only produce duplicates. 

Finally, the ultimate test of  accuracy and con- 
vergence of an eigenstate ¢/t is to apply on it 
the original Hamitonian /:/ and examine the ful- 
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fillment of  the Schr6dinger equation (3). This 
check will be used in our following algorithm. 

3. The algorithm for electronic structure 
calculations 

Based on our analysis of  the Lanczos phenom- 
ena described in the previous section, we next 
present our Lanczos scheme for calculating all 
the occupied eigenstates { ~'l (r) } of Schr6dinger 
equation (3). This algorithm will cure most 
problems identified in section 2. The algorithm 
is summarized in Fig. 6, and explained step by 
step in what follows. 

Step (i): start with a randomly selected wave- 
function ut (r) (constructed from choosing ran- 
dom coefficients of  a given basis), and gener- 
ate the Lanczos wavefunction ui (r) according to 
Eq. (6), without any reorthogonalization among 
the members of { ui (r) }. If this is the first sweep 
of steps ( i ) - (v i )  (Nsweep = 1 ), skip the follow- 
ing. If this is not the first sweep - so there are 
NtCot converged eigenstate { ~t (r) } from previous 
sweeps - then orthogonalize each ui(r) to all 
{ ~'l (r)} by subtracting the component of each 
~'l(r) from ui(r), i.e. ui - F_,I < ¢/llui > ~l. 

If  disk space allows, store all generated {ui} 
on disk for later use. If  not, discard the old ut. 

Step (ii): at some Lanczos iteration i = Nt 
(e.g. every 50 or more Lanczos steps), diagonal- 
ize the tridiagonal Lanczos matrix H T of Eq. (8) 
using standard programs (e.g. the LAPACK rou- 
tines ) and obtain the eigenvalues {El (Nt) } with- 
out calculating the eigenvectors. Next, reduce the 
dimension of  H T by one and repeat the diago- 
nalization of H T, finding the set {Et(Nt - 1 )}. 
Compare {Et (Nt)} with {Et (Nt - 1 )}, keeping 
the eigenvalues that have changed by less than et, 
where ct is a desired convergence criterion (e.g. 
1 x 10 -6 Hartree). For eigenvalues that are de- 
generated within et, keep only a single copy. De- 
note these eigenvalues as {E 7 (Nt)}. Then calcu- 
late the number Nc (Nt) of E~ (Nt)'s which are 
below the Fermi energy, (the latter can be ob- 
tained for insulator from calculations on a small 
system). If Nc (Nt) is larger than a desired per- 
centage (e.g. 98%) of the total number No¢c of 

.• s t e p  (i) I 
I ~ i U i  = 

c N Ntot = 0 Nsweep = 1 

random u i 

generate U i 

H U i-1 " 0{,i-1 Ui-1 I~li-1 Ui-2 

If = 1 Nsweep 

Ui(r) = Ui(r) " Y~l <Wtl ui> ~l//(r) 

if i = NtJ ' 

step (ii) ] diagonalize HT [ {Oq, 13i } ] 
, i  

get Nc converged eigenvalues {E~} 

if N c <  0 .98 [Nocc  -N~o t ]J if Nc > 0 .98 [Nocc  "N~o t 

step (iii) I solve inverse iteration of 
Hm[{Oq,l[]i}] using {E~},  get Nc {b l }  

step (iv) l construct ~(r)  
• l(r) = zi bl ui(r) 

step (v) J check the convergence of %1/l (r) 
by H~( r )  = Ez ~/(r) 

get N c ( N sweep ) converged states ~z (r) 

N tct = N tct "1" N c ( N sweep ) 

J if N~ot < Nocc 

N sweep = N sweep -I- 1 , s ta r t  

if N~o t = Nocc 

Fig. 6. Flow chart describing the Lanczos procedure for 
large scale electronic structure calculation. See section 3 for 
details. 

occupied states, then go to step (iii). If  not, con- 
tinue step (i). 

Step (iii): using {E~(N,)} as the input ener- 
gies, and applying the inverse iteration method 
to the tridiagonal matrix H T (using standard 
programs, e.g. the LAPACK routine), calculate 
Nc (Nt) eigenfunctions of  H T, {b~} in the basis 
of  the Lanczos v e c t o r  {ui(r)}. As can be seen 
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from Fig. 4, most of  the eigenstates have been 
converged far before Nt is reached, so for each 
E~, it is worth doing a few (5 to 10) inverse it- 
erations for different matrix dimensions M (< 
Nt), and examing whether the eigenvalue that 
resulted from the inverse iteration has changed 
from Et (Nt) (within a tolerance limit el, which 
can be much smaller than £t and close to the 
machine precision). Choose the smallest M for 
which E l does not change beyond e j, and denote 
this as Mr. Then, {b~} (which has Mt terms i) are 
the coefficients based on the Mr-dimensioned 
matrix H a- . 

Step (iv): generate ~'t from {b~} and {ui}. If 
{ui} is stored on disk, retrieve {ui} from disk. 
If it is not, recalculate {ui} exactly as in step 
(i). While ui are retrieved or recalculated one 
by one, construct the Nc(Nt) ~ut(r)'s from Eq. 
(9) and from the {b~} and Mt obtained in step 
(iii). Because of the nonorthogonality of {u,-}, 
the ~ut(r) from Eq. (9) is not normalized. So, at 
the end this step, normalize all ~t (r)'s. 

Step (v): check the accuracy of the Nc (Nt) ~u[s 
generated in step (iv) by evaluating the error 
5t - <  ~utl (H-Ez)21~ut >1/2. IfS! < et, accept ~ul, 
else, discard it. If  there are two eigenstates whose 
Et's are within the order of their 6l's, then orthog- 
onalize them using the Gram-Schmidt  scheme 
[18]. The error of  the resulting wavefunction 
then needs to be checked again. Upon comple- 
tion of step (v), we will have Nc (Nsweep) newly 
converged eigenstates. This brings the total num- 
ber of converged eigenstates to NtCot (Nsweep) = 

Nt~t ( Nsweep -- 1 ) q- Nc (Nsweep). 
Step (vi): if Nt~ t (Nsweep) is less than Nocc, go 

to step (i) and begin another sweep (Nsweep = 
Nsweep + 1 ). If  NtCot (Nsweep) equals Note, stop. 

We close this section by a number of com- 
ments on the algorithm: 

(1) More recent sweeps (Nsweep > 1 ) oper- 
ate similarly as the first sweep, except that the 
already converged states ~t have been removed 
from the spectrum of their effective Hamitonian 
H T. AS a result, the Lanczos iteration of later 
sweeps have a faster convergence than that of  the 
first sweep. Typically, one needs three or four 
sweeps to get all the occupied eigenstates. The 
number of Lanczos iterations and the number of 

converged eigenstates generated at each sweep 
decay as a geometrical series. 

(2) The Lanczos procedure described here is 
stable. It guarantees that each converged eigen- 
state ~'t is accurate to within a given tolerance 
ct. Since we use consecutive sweeps (steps ( i ) -  
(vi)),  the procedure also guarantees that all oc- 
cupied eigenstates (irrespective to whether they 
are degenerate or not) are found. (An eigenstate 
missed from the first sweep can be found in sub- 
sequent sweeps. ) 

(3) All eigenstates are mutually orthogonal 
simply because they are found to be numerically 
accurate eigenstates of the hermitian Hamilto- 
nian /2/. Possible nonorthogonality among de- 
generate, or nearlydegenerate states is avoid by 
explicit orthogonalizations in steps (i) and (v). 

(4) The procedure works optimally for sys- 
tems without explicit symmetry, thus without 
too many degenerated states. Otherwise, the first 
sweep cannot generate the majority of the eigen- 
states, and the procedure will be slow. One ob- 
vious solution for systems with explicit symme- 
try is to use group theory to break the original 
Hamiltonian /2/ into several blocks, and then ap- 
ply the current procedure to diagonalize each 
block. Another solution is to apply, at the end of 
step (v), the symmetry operations on each newly 
converged eigenstate ~t, to see whether it can 
generate new (but energy degenerate) states. If 
it can, add them as converged eigenstates. 

(5) For a typical nonsymmetric system, we 
find in our numerical tests that the first sweep 
can generates more than 90% of the total num- 
ber of occupied eigenstates. Thus, the total num- 
ber of Lanczos iterations in subsequent sweeps 
(which need explicit orthogonalization to the 
previously converged eigenstates ~t) is about 
1/10 of the number of Lanczos iterations in 
the first sweep. Thus, practically speaking, the 
whole procedure can be considered as a Lanczos 
scheme without reorthogonalization. 

4. Applications to Si quantum dots 

We now apply the above Lanczos scheme to 
Si quantum dots described at the end of the In- 
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Fig. 7. Calculated total charge density contour plot for 
Si617H316. The contour plot is shown on a [110] cross sec- 
tion at the center of the rectangular box. The Hydrogen 
atoms are on the periphery. The interior Si-Si bonds can 
be deafly seen. 

troduction. The quantum dots studied here have 
approximate rectangular shapes, and all sur- 
face dangling bonds are passivated by hydrogen 
atoms. The symmetry of the pure Si skeleton is 
destroyed by the tilting of the surface H atoms. 
The pseudopotentials used for Si and H were 
given in ref. [5]. We use Ct ~- 1 × 10-6Hartree 
as our convergence criterion. We do not store on 
disk the Lanczos wavefunctions ui in step (i), 
but regenerated them in step (iv). The charge 
density contour plot of the 5i617H316 system 
calculated by the current method is shown in 
Figs. 7 and 8 in two different planes. Hydrogen 
atoms are evident at the periphery of the clus- 
ter. In Fig. 7 [the (110) plane] we see clearly 
the Si-Si bonds. Figs. 7 and 8 also demonstrate 

Fig. 8. Calculated total charge density contour plot for 
Si617H316. The contour plot is shown on a [100] cross sec- 
tion at the middle of the rectangular box. The Hydrogen 
atoms are on the periphery. 

that the charge density of the interior atoms is 
very close to that of bulk Si. At the surface, we 
find charge transfer that leads to the formation 
of strong Si-H bonds. 

The time consumed by the different parts o f  
the algorithm is given in Table 1 for the four 
systems considered here. For the Si617H316 sys- 
tem, this method takes about 2.5 Cray YMP cpu 
hours to calculate all 1392 occupied states. For 
this system, 41% of the time is spent on gen- 
erating the Lanczos wavefunction ui. This is a 
N 2 operation, where N is the size of the system. 
Thus, if{u~ (r)} are stored on disk in step (i) in- 
stead of being regenerated in step (iv), 20% of 
the total time can be saved. About 28% of the 
time is spent on the constructing ~/t (r) using Eq. 
(9) and 20% of the time is spent on orthogonal- 
izing ui ( r )  to previously converged ~/l (r) dur- 
ing the Lanczos iteration of Nsweep > 1. Both of 
these terms scale as N 3. About 9% of the time is 
spent on using standard Lapack routines to diag- 
onalize the tridiagonal matrix H T and solve its 
inverse iteration. This corresponds roughly to a 
N 2 scaling. The remaining 2% of the time ac- 
counts for all other operations. The whole pro- 
cedure scales between N 2 and N 3, as shown in 
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Table 1 
Time analysis (in Cray YMP cpu seconds) of  the Lanczos method. "cpu for constructing ~ut" denotes the t ime consumed by 
constructing gt t using Eq. (9) in step (iv). "cpu for orth." denotes the t ime consumed by making the ui orthogonal to the 
converged g0 in the other-than-first sweeps. "cpu for diag. and inv. H T" denotes the t ime used to get the eigenvalues of H T 
and to solve the inverse iteration to get the coefficients {b[}. 

Si47H52 Si147Hl16 Si329H204 Si617H316 

num. of occ. states 120 352 760 1392 
FFT grid 32 x 32 x 48 40 x 40 × 60 48 × 48 x 72 54 x 54 x 80 
memory required 6 Mb 33 Mb 120 Mb 360 Mb 
total cpu t ime (sec) 71 471 2804 8986 
cpu for [-lui 61 330 1650 3686 
cpu to construct ~ut 3 50 456 2521 
cpu for orth. 3 46 430 1792 
cpu for diag. and inv. H T 3 30 228 807 
num. of  sweeps 3 3 3 3 

num. of Lancozs iter. 1090 3359 9156 17657 
in each sweep 101 430 1285 1899 

101 151 166 256 

num. of converged states 113 319 661 1246 
in each sweep 6 28 86 125 

1 5 13 21 

cpu of each sweep 59 373 2161 6730 
6 72 567 1975 
6 26 76 281 

Fig. 9. For smaller size systems, the N 2 scaling of 
calculating [-Iui dominates the computing time. 
At N _~ 1000 atoms we find a cross-over of the 
N 2 to the N 3 scaling. Thus this method works 
best for systems with 100-1000 atoms. 

One practical limitation is the run time mem- 
ory. This is caused by the need to store in mem- 
ory all the converged eigenstates {~0(r)}. This 
aspect is the same as the conventional method 
(e.g. conjugate gradient method).  The coeffi- 
cient {b~} (30% of  {~ut(r)}, in terms of memory 
space) can be stored on disk without slowing 
down the speed of the calculation. The possi- 
bility of storing {vl(r)} on the disk depends 
on (i) how rapidly can one retrieve them from 
disk, and (ii) how accurate would the orthogo- 
nalization of ui (r) to { Vt (r)} be if this is only 
enforced every few Lanczos steps. This is left 
for future testing when memory space is not 
enough for truly large system calculations. In 
our example involving the 1392 occupied states 
of the Si617H316 cluster, the memory needed is 
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Fig. 9. The total computation times vs. system size for the 
preconditioned conjugate gradient (PCG) and the current 
Lanczos method. The computing times are in Cray YMP 
cpu seconds. The straight lines indicate the N 2 and N 3 
scalings, where N is the size of the system. Note that for 
N ~ 1000 atoms, the current Lanczos method is an order 
of magnitude faster than the PCG. 
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360Mbyte. 
To test whether this procedure is stable, we 

have repeated the calculation of  the largest sys- 
tem Si617H316 using different starting random 
wavefunctions Ul (r) in the Lanczos iteration 
(Eq. (6)).  The two sets of  the eigenvalues 
{Et} show a one-to-one correspondence, so no 
eigenstate is missed. The largest difference be- 
tween the two sets ofeigenvalues is < 1 x 10 -1° 
Hartree. The mean square difference of the 
charge density p(r) (on real space grid r) of  
these two runs is 0.0001%, indicating very ac- 
curate convergence. The sum of  the eigenvalues 
(which is used for total energy calculations) 
differs by less than 1 × 10 -1° Hartree. For most 
purposes, this accuracy is (more than) suffi- 
cient. Although the least converged eigenstates 
has a convergence error ~t (defined in step (v)) 
close to et, most eigenstates have much smaller 
convergence errors, i.e. close to machine pre- 
cision. This and our numerical tests show that 
using a smaller El does not affect much the 
computing time. The orthogonalization among 
different eigenstates ~ut was checked explicitly 
by calculating < ~utl~ul, > for l ~ l'. The largest 
value found for this overlap element is 3 x 10 -5 
and occurs for the least converged eigenstates. 
For most states, however, this quantity is much 
smaller (i.e. close to the machine precision). 

5. Comparisons with the preconditioned 
conjugate gradient method 

We applied the preconditioned conjugate gra- 
dient (PCG) algorithm to the two smallest sys- 
tems Si47H52 and Si147H116, using identical con- 
ditions and numerical techniques as in the Lanc- 
zos method for evaluation of the wavefunction 
~'t (r) and for its multiplication by the Hamito- 
nian/:/.  Also, an identical convergence criterion 
et = 1 x 10 -6, is used in both methods. The 
resulting computing times are shown in Table 
2. We found that the eigenvalues calculated by 
the PCG method exhibit a one-to-one correspon- 
dence to their Lanczos counterparts, to within 
the convergence limit of  1 x 10 -6 Hartree. The 
total charge density p(r) calculated by PCG is 

within 0.0001% of  the Lanczos results. For sys- 
tems larger than 5i147Hl16, the computational 
times denoted by "E" in Table 2 have been es- 
timated from the known scaling of the orthog- 
onalization part (N 3 scaling) and the H~u(r) 
part (N 2 scaling). It can be seen from Table 2 
that for systems larger than Si47H52 (the smallest 
considered), the computational time of PCG is 
dominated by the orthogonalization time. Thus, 
the cross-over size from N 2 to N 3 scaling for the 
PCG method is at N ~ 100 atoms, compared 
to the 1000 atom cross-over size for the Lanc- 
zos method (Table 1 and Fig. 9). Also, Table 2 
shows that for the smallest and the largest sys- 
tem, respectively, the Lanczos method is faster 
than the PCG method by a factor of  4 and 9. 
This is also illustrated in Fig. 9. 

To understand why the Lanczos method is 
faster than the PCG method, recall that the 
conjugate gradient method is related to Lanc- 
zos method by the fact that both explore the 
same subspace. So, if only one or a few lowest 
eigenfunctions are needed, the conjugate gra- 
dient method should be more efficient because 
the preconditioning technique can be applied 
to the conjugate gradient method but not to the 
Lanczos method. However, if many eigenstates 
are needed, as in our examples, then the PCG 
method is less effective since it searchs for each 
eigenstates independently (except for the or- 
thogonalizations). This is analogous to starting 
a new Lanczos iteration series for each eigen- 
states. A set of  Lanczos wavefunction {ui(r)} 
contain not only the informations of the lowest 
eigenstate gl (r), but also for other higher energy 
eigenstates. So, using {ui (r)} for just one eigen- 
state is not economical, compared with having 
a longer series of  {ui (r)} and diagonalizing H à  
of  Eq. (8) to get all the eigenstates at once. In 
our examples, to get N occupied eigenstates, we 
need approximately 1 ON Lanczos iterations for 
the two smallest systems. For the same system, 
using the PCG method with preconditioning, 
getting each eigenstates requires about 30 con- 
jugate gradient steps (line minimizations). Fur- 
thermore, note that each conjugate gradient step 
is more expensive than a Lanczos iteration step. 
More importantly, because of the independence 
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Table 2 
Time analysis of the preconditioned conjugate gradient (PCG) method and the Lanczos method. "total num. of PCG iter." 
is the total number of PCG line minimization steps. We use 1 x 10 -6 Hartree as the convergence criterion. "cpu of/ : /¥1" 
is the time of app ly ing / : / to  the wavefunction ~ut, which is a N 2 operation. This step also includes the time of other N 2 
scaling operations (e.g. operations like: ~l (r) = a yt (r) + flpl(r)). "cpu of orth." is the time of Gram-Schmidts explicit 
orthogonalization among {¥/}. This is a N 3 operation. Note that only the Si47H52 and Si147Hll 6 quantum dots are actually 
calculated by the PCG method. The PCG computing times of other two systems indicated by "E" are estimated from their 
above noted scalings. All four quantum dots were actually calculated by the Lanczos method. All times are in Cray YMP 
cpu seconds. 

Si47H52 Si147H116 Si329H204 Si617H316 

total num. of PCG iter. 
total cpu time for PCG 
total cpu time for LANCZOS 
cpu of/:/~'t in PCG 
cpu of orth. in PCG 

31 32 32(E) 32(E) 
305 2566 17800(E) 82100(E) 

71 471 2804 8986 
206 1080 4900(E) 12900(E) 

95 1470 12900(E) 69200(E) 

of  the searches of different eigenstates in the 
conjugate gradient method, the wavefunctions 
do not share any information, so their mutual 
orthogonality is not guaranteed, and has to be 
enforced explicitly. As Table 2 shows, this be- 
comes the most time consuming part of  the PCG 
algorithm. On the other hand, the Lanczos algo- 
rithm diagonalizes the tridiagonal matrix H x of 
Eq. (8) and gets all eigenstates at the same time. 
Thus, the eigenstates "avoid each other" auto- 
matically. This leads to the orthogonalization 
among { ~ut (r) } without explicit enforcement. As 
a result, the algorithm is close to a n  N 2 scaling. 

The above Lanczos algorithm is for all oc- 
cupied state calculations. Not surprisingly, it is 
an order of magnitude slower than our novel 
method [4] used to calculate a few states around 
a given energy. If the band edge states (the top 
of valence band and the bottom of conduction 
band) are all that one wants, the above Lanczos 
method is not the best algorithm. 

6. Conclusions 

In order to utilize the Lanczos algorithm, sev- 
eral Lanczos phenomena have been explored in 
details. In particular, an unexpected relation was 
found between Lanczos convergence and one- 
dimensional Anderson localization. The under- 
standing of the mechanism of exponential am- 
plification of the end-of-spectrum states is dis- 

cussed. Based on the insights into the Lanczos 
algorithm gained from this analysis, a Lanczos 
scheme is presented for large system total en- 
ergy electronic structure calculations. Details of  
this algorithm are given. The programming of 
this method is no more complicated than that 
of  the conjugate gradient method. This method 
is stable, all occupied eigenstates are guaranteed 
to be found and each eigenstate is guaranteed to 
be accurate to within a prescribed convergence 
limit. Thus, unlike other proposed schemes for 
large system calculations [ 6-10 ], the current ap- 
proach is exact. For a few hundred atom sys- 
tem, this method scales as N 2. When N > 1000, 
the scaling changes to N 3. For the largest system 
tested here, this method is 9 times faster than 
the widely used preconditioned conjugate gradi- 
ent method. Using this method, the charge den- 
sity and 1392 eigenstates of a 933 atom quantum 
dot Si 617 H316 has been calculated within two and 
a half Cray YMP cpu hours. Thus, 100 - 1000 
atom system total energy plane wave calculations 
become affordable by this method. 
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