
2 1.58 J.  Phys. Chem. 1994,98, 2158-2165 

Electronic Structure Pseudopotential Calculations of Large ( - 1000 Atoms) Si Quantum Dots 

Lin-Wang Wang and Alex Zunger’ 
National Renewable Energy Laboratory, Golden, Colorado 80401 

Received: September 30, 1993; In Final Form: December IS, 1993’ 

The electronic structure of quantum dots containing N 1 1000 atoms is difficult to calculate by conventional 
molecular methods since the effort scales as N. Our newly developed method allows calculation of eigenstates 
within a desired “energy window” and thus has a linear-in-Nscaling. This method is applied here to Si quantum 
dots using a plane wave basis expansion and an empirical pseudopotential Hamiltonian. Hydrogen atoms 
passivate the surface dangling bonds using a realistic surface relaxation geometry. We  investigate the dependences 
of energy gaps and radiative recombination rates on the size, shape, and orientation of the Si quantum dots. 
We find that (1) a unified curve exists for band gap us size of quantum spheres, cubes, and rectangular boxes; 
(2) the band edge states of Si quantum dots are bulklike, not surfacelike; (3) the band gap is insensitive to  the 
surface orientation and to the overall shape of the quantum dot as long as it is not too prolate; (4) the radiative 
lifetime is sensitive to the shape and orientation; and ( 5 )  effective mass and single band truncated crystal models 
describe inadequately the electronic structure of Si  quantum dots in the size range (540 A) studied here. 

I. Introduction: The Basic Problem and Theoretical 
Strategies 

Quantum confinement at reduced dimensions leads to fasci- 
nating changes in the optical properties relative to those of the 
3D bulk materials.’ Small gap semiconductors are particularly 
interesting in this respect as these black substances can be 
transformed via control of the shape and size of the quantum 
structure into materials whose color can extend throughout the 
visible range.2 Nanometer size silicon particles are an example 
of semiconductor quantum structure, which have been made by 
vaporization of Si electrodes,3 microwave plasma decomposition 
of Si&$ and gas-phase pyrolysis of di~ilene.~ A related 
development in the area of Si nanostructure is the discovery of 
intense, blue-shifted photoluminescence from “porous Si”.6 One 
explanation for this blue shift7 is that the microstructure consists 
of islands of isolated quantum dots, each experiencing quantum 
confinement. These experimental developments in the area of 
silicon nanostructures have raised a number of questions which 
we will attempt to address in this work 

(i) Given the relatively large surface-to-volume ratio in small 
quantum dots, one wonders to what extent are their optical 
properties decided by surface phenomena (reconstruction, chemi- 
sorption) as opposed to bulk-intrinsic quantum size effects. In 
particular, are the band edge wave functions “bulklike” or 
“surfacelike”? 

(ii) In its simplest form, the notion of quantum confinement 
addresses the “smallness” effects, without reference to the shape 
of the small objects. However, current quantum dot formation 
methods are likely to produce not only a distribution of sizes but 
also a distribution of “isomers” (various shapes and surface 
orientations) for each size. One then needs to know what is the 
dependence of the band gap on the shape of the quantum dot 
(sphere, box, rectangular, etc.) or the orientation of its surface 
planes [e.g., (001) us (llO)]. 

(iii) While the effects of size on transition energies (band gap) 
are rather well studied, the effects of size and shape on transition 
probabilities (radiative recombination rate) are known to a lesser 
extent. 

Addressing these issues requires an electronic structure theory. 
While ultrasmall quantum dots (5100 atoms) can be treated by 
molecular methods such as the ab-initio Hartree-Focks or local 
density approximation (LDA),9 considerable experimental interest 
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exists in larger quantum dots (11000 atoms) for which such 
methods appear impractical. Three classes of electronic structure 
approaches exist for such large sizes: 

( i )  The Effective Mass Approximation (EMA).lo Here one 
replaces the microscopic quasi-periodic potential V(r) (which 
exists inside the material) by a constant potential, while the kinetic 
energy operator is replaced by an effective mass operator, derived 
from the parabolic expansion of the bulk band structure. The 
EMA treats “large systems” accurately and can be extended to 
incorporate multiband coupling (“band mixing”).lI However, 
for the sizes studied here (140 A), the parabolic band approx- 
imation might not be valid. This will be tested below. 

(i i)  The Truncated Crystal Method ( TC).12J3 Instead of using 
parabolic bands, this method uses the actual dispersion relation 
of the bulk band structure and approximates the quantum dot 
wave functions by a sum of a few bulk Bloch wave functions of 
a single band at different wavevectors. It ignores band mixing 
and can be applied only to simple quantum dot geometries. It has 
been tested by comparison with direct calculations for 2D films13* 
and works very well. However, the formula of Rama Krishna 
and Friesner12 for OD quantum dots remains untested relative to 
direct calculations. This will be tested below. 

(iii) Direct Molecular Calculations. In this approach one 
diagonalizes the microscopic Hamiltonian consisting of the full 
kinetic energy and quasi-periodic atomic potential, thus avoiding 
the approximations of methods i and ii. However, because full 
variational ab-initio approaches to this Hamiltonian are im- 
practical, the Hamiltonian or its basis representations are usually 
simplified. In the widely used tight binding (TB) model14 a small, 
implicit basis set (4-5 orbital per atom) is used; the function 
form of the basis function is, however, undermined, since only the 
empirically adjusted Hamiltonian matrix elements are used. The 
small basis suggests limited variational flexibility, particularly 
for the conduction bands. Furthermore, because the lack of 
explicit basis functions, it is difficult to correctly describe the 
dependence of the Hamiltonian matrix elements on the atomic 
geometry (e.g., on the surface structure of the quantum dot) or 
to compare the ?-space wave functions $(i) with the results of 
ab-initio calculations on smaller reference systems. Another 
version is the linear combination of atomic orbitals (LCAO)15 
method in which explicit basis functions are used. This method 
is usually applied to rather small quantum dots (1100 atoms) 
while applications to larger systems require a drastic truncation 
of the basis set size. 
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Structure of Large Si Quantum Dots 

Most of these difficulties can be overcome by the empirical 
pseudopotential method (EPM)16 which we will use here. The 
EPM approximates the total screened potential V(r) in H = 
-I/,V2 + V(r) by a superposition of atomic pseudopotentials 
~atodlrl), i.e. 

where the "effective potential" Vacom(lrl) is adjusted to fit either 
experimental or ab-initio calculated data on relevant prototype 
systems. In the present work we have fitted Vat, to the bulk Si 
band structure, effective masses, and the surface work function. 
The quantum dot wave functions are expanded in a large basis 
of plane waves: 

where G is a reciprocal vector and Bj(G) are the expansion 
coefficients to be determined variationally. Although the basis 
set (2) is not _atomiclike, it can be increased systematically, and 
the product H+ can be evaluated both accurately and ea~i1y.I~ 
The atomic structure (Ratom], including realistic surface relax- 
ations, is taken from experiment and/or ab-initio total energy 
calculations on prototype systems. 

The remaining problem is to solve the single-particle Schro- 
dinger's equation: 

fw/ = e/+/ (3) 

for a - 1000-atom quantum dot given the representations of eqs 
1 and 2. Conventional variational methods17 force one to calculate 
all occupied eigensolutions even though one is inlerested here 
only in the HOMO and LUMO. Thus, if a variationally accurate 
basis set is used, conventional methods for solving eq 3 are generally 
limited to 1100-atom systems. We have developed a new 
methodla which permits calculating the energy eigenstates within 
an "energy window", so the effort scales linearly with the system's 
size. It can thus be used with modest computational effort to 
solve - 1000-atom systems with a variationally accurate basis 
set. We will use here this new method along with our recently 
developed Si and H empirical pseudopotentials (see below) to 
study the questions raised in this section. 

In summary, we will use a direct calculation approach to the 
el&tronic structure of Si quantum dots, obviating the effective 
mass approximation. We include nonparabolic bands, interband 
coupling, realistic surface relaxations, and a large basis set. The 
main approximations are the use of a local and non-self-consistent 
pseudopotential. We will study the dependence of the band gap 
of Si quantum dots on (i) size, (ii) shape, and (iii) surface 
orientation and compare our results to previous model calculations 
(the EMAlOand the T P ) ,  direct calculations, and  experiment^.^^ 

11. Details of Calculation 
A. The Si asd H Pseudopotentials and the Surface Relaxation 

Model. The application of the empirical pseudopotential method 
to band structure and optical spectra of extended solidiis reviewed 
in ref 16. .In the classic EPM, the pseudopotential V(G) isdefined 
only on thediscrete bulk reciprocal latticevectors {Ei]. Todescribe 
a finite quantum dot, one needs a continuous momentum space 
form V&), so the original bulk EPM's are insufficient. We 
have fitted the local pseudopotential of the form13a 

VSi(q) = a,(q2 - u2)/(a3ea4q2 - 1) (4) 

to the bulk band structure, effective masses, and the work 
function.lg-26 This gave a1 = 0.2685, a2 = 2.19, a3 = 2.06, and 
a4 = 0.487 in atomic units (hartrees for energy, bohr '  for 
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TABLE 1: Comparison of the Si Bulk Baad Structures and 
Effective Masses, As Obtained &I the Present EPM (Eq 4) 
and in the Bulk EPM of Chelikowsky and Coherqn 
Resnectivelv. 

property present EPM bulk EPM (ref 27) experiment 
r25c 0 0 0 

FISC 3.24 3.34 3.35( l)b 
rzlc 4.12 4.19 4.15 (5)' 
LZ'V -10.19 -10.26 -9.3(4Y 
LID -1.25 -1.33 -6.8(2y 
L33" -1.28 -1.27 -1.2(2)e 
Llc 2.18 2.13 2.04(6)* 
4 c  4.02 3.88 3.9( 1 )e 

Xl c 1.32 1.14 1.13(?)b 
Lli" -4.47 4 . 5 5  -4.48' 
E,, 1.167 1.062 1.124e 
W 4.96 4.9' 
d e )  0.928 0.912 0.916r 
M e )  0.199 0.194 0.19r 
m$?,&) 0.272 0.271 0.34h 
mg!,Jh) 0.168 0.170 0.15h 
mh?Jh) 0.669 0.676 0.69h 

a We use a cutoff energy of 4.5 Ry for the plane wave expansion and 
a Si bulk lattice constant of 5.43 A. The last column gives experimental 
values. The numbers in parentheses of the experimental data indicate 
the estimated error in the last digit. mk!ih) and n&(h) stand for the 
non-spin-coupled effective hole mass on the r-X and r-L directions 
(defined as ( hk)2/2aE); i denotes the degeneracy of the band. Wis the 
work function. Energies are in eV, and effective masses are in the unit 
of electron mass. From ref 19. c From ref 20. From ref 21. I From ref 
22. f From ref 23. From ref 24. From ref 25. From ref 26. 

-12.57 -12.68 -12.5(6y 

X40 -3.01 -3.03 -2.9' 

m$!Jh) 0.098 0.097 0.11* 
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Figure 1. Comparison between the present empirical Si pseudopotential 
and a first-principles screened local pseudopotential obtained in self- 
consistent LDA calculation. The total LDA screened potential is 
decomposed into atomic potentials according to &dWV,,(G) = V(G), 
where G is the bulk reciprocal lattice vector and Ri is the Si atomic 
positon. 

momentumq). Table 1 19-26 compares thesequantities asobtained 
with the current EPM, the bulkEPM of Chelikowsky and Cohen,2' 
and experiment. It is clear from Table 1 that the two empirical 
pseudopotentials have similar quality; the band energies are within 
0.1 eV of the experimental data (i.e., similar to the experimental 
uncertainty). Figure 1 compares the current atomic Si pseudo- 
potential Vsi(q) with the screened LDA potential, showing that 
the two are very close. Thus, one can think of our empirical 
pseudopotential as a modification of the LDA potential such that 
the resulting band structure (especially the band gap) is corrected. 
This is the main advantage of our empirical pseudopotential 
method over tght-binding-like methods. 

Surface passivation of the Si quantum dots3-5 was modeled by 
saturating all dangling bonds with hydrogen atoms. The surface 
of a quantum dot can usually be represented as a combination 
of "patches" of the primary (1 1 l), (1 lo), and (100) surfaces of 
Si films. [If it is not, a few atoms are added or removed from 
the surface to make it so.] This correction is minor, so the overall 
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shapeof the quantumdot does not change. The precise relaxation 
of the quantum dot surface atoms is taken from data on these 
three primary surfaces of H-covered Si films. The reconstructed 
surface geometries we used are (1 X 1):H for the (1 1 1)-oriented 
film surfa~e,28.~~ (1Xl):H for the (1 10)-oriented film surface,30 
and (1X1):2H for the (100)-oriented film ~urface.~~-32 The 
previously determined relaxations for (1 11) and (1 10) surfaces 
are relatively small,” so for these surfaces we used an ideal 
unrelaxed structure with Si-H bond distance of 1.487 A. There 
are different relaxation modeld4 for the (100) (1 X 1):2H surface. 
We have used a “canted dihydride” model of NorthrupI3‘ derived 
from a LDA total energy minimization. 

The hydrogen pseudopotential was obtained by fitting the 
surface local density of states of our primary surfaces to the data 
of ultraviolet photoemission spectroscopy (UPS)29.30 and angle- 
resolved electron-energy-loss spectroscopy (AR-EELS).3’ The 
antibonding conduction band surface states was fitted to the LDA 
result placing these states at 2 1  eV above the conduction band 
minimum.35 Fitting all these data results in the following H 
empirical pseudopotential in atomic units: 

vH(q) = -0.1416 + 9.802 x w 3 q  + 6.231 x 1O-’qz- 
1.895 X 10-*q3; when q I 2 

vH(q) 2.898 x 10-’/q - 0.3877/q2 + 0.9692/q3 - 
1 .022/q4; when q > 2 (5) 

B. Solving Scbrodinger’s Equation in a Linear-in-Size Fashion. 
Having determined the pseudopotentials and surface relaxation 
model, we can now construct the product A$ = [-‘/2VZ + V(r)]. 
$(r). Using the conventional variational minimization methods 
based on eq 3, one is forced to calculate all occupied eigenstates 
starting from the lowest one. Such methods lead to a N, ~cal ing , ’~  
where N i s  the number of atoms in the system. This makes the 
conventional method impractical, unless the basis set is heavily 
truncated, as in the tight-binding method. However, here we are 
interestedonly in thehighest occupiedandin thelowest unoccupied 
states. A central point is that the eigensolutions $j of eq 3 also 
satisfy 

(fi - €ref)z$j = b j  - e,,f)*$j (6) 

where e,fis a reference energy placedinside the band gap. Thus, 
instead of minimizing E = J$,(r) IWf(r) d3r and computing 
thousands of $j(r)’s, like in the conventional method,” we 
minimize the quantity 
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(7) 

for ’ust a few $,(r)’s. The state with the lowest Fis the eigenstate 

the highest occupied molecular orbital (HOMO) or the lowest 
unoccupied molecular orbital (LUMO). The initial guess of Crcf 

is obtained by performing a single conventional calculation (eq 
3) on a small cluster. Shifting emf inside the band gap will ensure 
that both the HOMOand the LUMO are captured by this method. 
The function F is minimized with respect to the plane wave 
coefficients Bj(G) using a carefully preconditioned conjugate 
gradient scheme.18 Using this scheme, the solution for the 
S i l3 l~Hw quantum ddt takes 2 h of Cray-YMP CPU time. (We 
calculated four wave functions on each side of the band gap.) 
Extrapolating the actual calculation times for small quantum 
dots, one can show that conventional variational method (Le., eq 
3 rather than eq 6 )  would take several weeks of continuous Cray- 
YMP CPU time for the Si131sHm system. Use of our method 
enables, for the first time, pseudopotential calculations of O( lo3) 
atom systems. In our calculations, the wave function $f(r) is 
expanded as in eq 2. The cutoff energy of G in eq 2 is 4.5 Ry, 

of A with eigenvalue el closest to ercf. Thus, this state is either 
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Figure 2. LUMO-HOMO band gap versus the effective sizes d = (3/ 
4xp)’l3Nsi’l3 (A) for the three prototype quantum dot shapes. The 
symbols +,+,and.standforspheres,(llO) X (110) X(001)rectangular 
boxes, and (100) X (010) X (001) cubic boxes, respectively. The fitted 
solid line is E,(d). = 1.1673 + 88.34(d/A)-1,37 (eV). Also shown are the 
multiband effective mass result (EMA)39 and the result of the method 
of Rama Krishna and Friesner (RKF)*2 (applied here to cubic quantum 
dots with the present Si peudopotential of eq 4). In all casea, the excitonic 
Coulomb shift (eq 9) is excluded. 
and the same cutoff is used in the fitting of above Vsi(q) and 
VH(q). The transformation between J.l(r) on a real space grid 
and E,(G) on a reciprocal space grid is done by numerical fast 
Fourier transform (FFT).36 For the largest quantum dot 
considered here, there are 13 15 Si atoms, 460 H atoms, and 100 
X 100 X 100 real space FFT grid points. Further detail of this 
method will be described elsewhere.18 

III. Results 
A. Dependence of the Band Gap (HI Size for Si Spheres, Cubes, 

and Rectangular Boxes. The most commonly addressed question 
in quantum dot physics is the size dependence of the energy gap.’ 
However, experimentally prepared quantum dots not only have 
different sizes, but for each size there could be a distribution of 
shapes and surface orientations. Although in some cases the 
synthesized  particle^^-^ are assumed to have a spherical shape, 
a variety of quantum dot shapes were proposed” in the porous 
silicon materials. To understand the effects of the shapes on the 
energy levels of quantum dots, we study here three “primary 
prototype shapes”: (i) spherical balls, (ii) rectangular boxes [the 
surfaces are in the (110), (lie), and (001) directions and the 
lengths of the edges satisfy Lx = L, = L,/d2], and (iii) cubic 
boxes [the surfaces are in the (OOl), (OlO), and (100) directions]. 
To compare the electronic properties of these different prototype 
shapes, we need a consistent definition of the quantum dot’s size. 
A natural choice is to associate the effective size with the diameter 
of a sphere which has the mass density p of bulk Si and contains 
thesamenumber Nofsiliconatomsas thequantumdot inquestion. 
Then, d ( N )  = (3/4~p)’ / ’N’/~ = 3.3685N/’ (A). Using this 
definition, the calculated size dependence of the LUMO-HOMO 
band gaps of the three prototype quantum dots is depicted as 
symbols and the solid line in Figure 2. Quite surprisingly, the 
three sets of data corresponding to the three prototype quantum 
dots collapse into a single unified curve. Thus, if we measure the 
effective size by d a: N/3 and vary N, the gaps of all prototype 
shapes (which are not too prolate) fall on a “universal” curve. 

B. Quantum Dot Wave Functions and the Role of Surface 
Atoms. Having presented the global variation of the energy gaps, 
we next describe the basic characteristics of the wave functions. 
Shown in Figure 3a,b are the wave function square of the LUMO 
and HOMO of the rectangular quantum box with d = 34.1 A 
(Nsi = 1035). While other quantum dots represented in Figure 
2 may have different wave function patterns, in all cases, the 
HOMOand LUMOstatesarefound to belocalizedin theinterior 
of the quantum dot with zero amplitude on the surfaces. Because 
of this and the fact that hydrogen potential is of very short range, 
we find that the surface hydrogen atoms play little direct role in 



Structure of Large Si Quantum Dots 

U 

Figure 3. Wave function square contour plots of the (1 10) X (170) X 
(001) rectangular quantum box with d = 34.1 8, and Nsi = 1035 viewed 
from the [OOl] direction. (a) The LUMO wave function square summed 
along the z direction. (b) The HOMO wave function square plotted on 
the z = LJ2 cross section. The crossed circles in (b) and (c) denote the 
positions of the silicon atoms on that plane. (c) The square of the HOMO 
wave function reconstructed from eq 8 using just three bulk bands at k* 
(see text). This is plotted on the same cross section and has the same 
contour steps as in (b). 

the determination of the wave functions and hence the band gaps 
and oscillator strengths. This is in direct conflict with the tight- 
binding result of Gavrilenko et al.38 which produces surfacelike 
features in their LUMO states. In ref 38, the same type of hydride 
termination on the Si (001) surface is used as in the present work, 
but the surface atomic relaxation is done by total energy 
calculations based on the tight-binding Hamiltonian. However, 
we believe that the main reason of the difference is due to the 
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different treatments of the surface H potentials: In ref 38, the 
energy levels of the SiH4 molecule are fitted to give the matrix 
elements of the TB Hamiltonian. We have tested this procedure 
using EPM and find a similar surfacelike LUMO state. However, 
we feel that a SiH4 molecule is not an adequate model for 
H-covered Si surfaces. On the (001) film surface, there are two 
H atoms from neighboring H:Si:H groups which can be quite 
close, but this situation is totally absent in the SiH4 molecule. 
Thus, we fit our H potential directly to the local density of state 
of these surfaces. This shows that the LUMO and HOMO of 
quantum dots are both bulklike. 

Both the effective mass and the truncated crystal methods 
model the states of quantum structure in terms of an expansion 
in periodic crystal solutions. It is thus interesting to analyze our 
directly calculated “exact” wave functions also in terms of bulk 
Bloch wave functions. We can expand the directly calculated 
quantum dot state as a linear combination of the bulk Bloch 
states: 

where k and n are the wave vector and the band index of the bulk 
Bloch wave function $FLk. Consider as an example the rectan- 
gular quantum box whose directly calculated wave functions are 
shown in Figure 3a,b. In a rectangular box, k of eq 8 is quantized 
as ~ [ * j x ~ ~ - l , * j y L y - l , * j ~ ~ ~ - l ] ,  where j,, jy ,  and j ,  are positive 
integers larger than zero. In a particle-in-a-box model, the lowest 
energy is obtained for j ,  = Jy = jz = 1, denoted here as k*. We 
refere to these as the “particle in a box k points”. These k* lie 
on lines connecting the r point with a point between L and Kin  
the first bulk Brillouin zone. We have calculated the projection 
Pn = &*lan,k*lZ for the quantum dot HOMO state and found that 
as much as 93% of the amplitude of l$$hMor comes from the 
three upper valence bands nl,  n2, and n3 at k*. (These three 
bands become triply degenerate at  the rzscl point. The remaining 
7% comes primarily from other k points for the same bands.) 
Similar percentage is found in other quantum dots. The projection 
weights Pn,,n2,n, for these three bands are 0.774.0.005, and 0.149. 
(The small P,, value in this case is accidental; for most other 
cases we tested, these three numbers are comparable.) Figure 
3c shows the approximate +’HoMo(r), using just these three bands 
at  k* in eq 8. We see that this approximation is very close to the 
directly calculated wave function shown in Figure 3b. 

From our analysis of the wave functions, we conclude that (i) 
the band-edge quantum dot wave functions are “bulklike” in that 
they can be constructed from just a few bulk Bloch wave functions; 
(ii) it is essential to have in eq 8 a band mixing since no single 
bulk band represents accurately the wave function of the quantum 
dot; and (iii) the k-point selection rules of particle-in-a-box are 
a reasonable approximation to the exact results. 

C. Comparison with Previous Model Calculations. Figure 2 
also compares the results of two model calculations with out direct 
uexact” calculations. These models includes the multiband 
effective mass approximation39 and the model of Rama Krishna 
and Friesner (RKF),12 recalculated here (for consistency of 
comparison with the direct calculation results) for cubic boxes 
using the present pseudopotential. The present pseudopotential 
and the one used by RKF differ in bulk by less than 0.1 eV. 

We start with a comparison of our direct results with the EMA. 
As we saw above, the HOMO and LUMO states found in our 
direct calculations are not surface states; hence, a comparison 
with the results of the (surfaceless) EMA is warranted. Fitting 
our “exact” calculation gives (solid line of Figure 2) a E,(d) = 
1.167 + 88.34(d/A)-1,37 (eV) scaling, while the effective mass 
model with an infiniteconfining wall (shown in Figure 2) predicts 
a l /& scaling. The EMA model overestimates considerably the 
increase of band gap [&.(a = E,(d) -E?] with reduced size, 
despite the fact that multiband coupling is correctly included in 
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Figure 4. Comparison of calculated LUMO-HOMO gaps us size as 
obtained withdifferent direct calculation methods. The curve representing 
the current result is fitted from Figure 2. The results are for PW-LDA,43 
NN-TB,@ TNN-TB,41 and LCAO-LDA.42 See text for definitions of 
these methods. 
this EMA calculation. Replacing in the EMA calculation the 
infinite confining wall by a finite barrier reduces AE,(d) and 
softens the 1 /d2 scaling. Indeed, solving the EMA equation for 
a finite barrier of height 4 eV and using an effective mass m* = 
0.2m gives a 10% lower AEg(d) for d = 40 8, and a 15% lower 
AEg(d) for d = 25 A. This reduces the EMA error relative to 
our direct calculations by 20% and 30% for d = 40 and 25 A, 
respectively. The remaining, bigger part of the error must come 
from the EMA Hamiltonian itself, Le., from the assumption of 
parabolic dispersion. 

We next compare our direct results with the model of RKF.12 
The method of RKF, which corrects the parabolic scaling of the 
effective mass model by explicitly using the dispersion relations 
of the bulk band structure, underestimates the band gap opening 
AE(d). For d = 15 A, the RKF method error is - 1 eV out of 
-2 eV. The reason for this is the neglect of band mixing: eq 
8 suggests that = C,,P,,C~'~(~*)/C,~,. The simple 
truncated crystal method uses the same particle-in-a-box k* value 
as in the above analysis, computes the bulk bands from a similar 
empirical pseudopotential, but assumes ad-hoc that a single band 
(the highest) can be used in the sum of eq 8. The neglect of the 
other lighter bands results therefore in a HOMO that is too high 
and thus in a band gap that is too small. In the rectangular box 
example of the previous section, e y ( k * )  = (-0.205,-0.555,- 
1.089) eV (measured from the top of bulk valence band) for nl ,  
n2, n3, respectively. Using all three bands gives &AMo = -0.348 
eV, which compares well with the directly calculated result -0.338 
eV, while using only nl gives t$kMO = -0.205 eV. Since the 
single-bandTC wave function (eq 8) can satisfy the film boundary 
condition, it works much better for quantum films13a than for 
quantum wiresl3b or quantum dots. 

We conclude from Figure 2 that, at  present, there is no simple, 
shortcut model which can treat correctly both the band mixing 
and noparabolic band structure dispersion relation in quantum 
dots. Before such a model becomes available, one has to rely on 
direct computations to study the properties of quantum dots in 
the size range considered here. 

D. Comparison with Previous Direct Calculations. Figure 4 
compares our results for E,  us d with four previous direct 
calculations: the empirically fitted nearest-neighbor tight-binding 
(NN-TB) of Ren and Dow,M the empirically fitted third-neighbor 
(nonorthogonal) tight-binding (TNN-TB) model of Proot, 
Delerue, and Allan,41 and two LDA calculations-one which uses 
a small LCAO basis (LCAO-LDA) by Delly and Steigmeier42 
and one which uses a plane wave basis (PW-LDA) by Hirao, 
Udo, and Murayama43 but is limited to small (Nsi 5 123) quantum 
dots. In all calculations, an ideal atomic structure (no surface 
reconstructions and relaxations) was assumed. 

We conclude the following: (i) The PW-LDA calculation 
underestimates the band gap since the intrinsic LDA band gap 

Effective Size d ( ) 

Experiments: 0 , ,A 

Current result with Coulomb term: - 2.5 

Or 2.n 
'0 
\ 

u" 1.0 $ 1  
0.0 I 

5 10 15 20 25 30 35 40 45 50 55 
size d (x) 

Figure 5. Excitonic gap (eq 9) compared with PL data for spherical 
quantum dots. The Coulomb interaction is included in the calculated 
band gap according to eq 9. The symbols 0, A, and denote PL data 
from ref 5,3, and 4, respectively. Thevertical lines represent the widths 
at half-maximum of the PL spectra. The horizontal lines denote the size 
distributions. The size distribution for 0 is estimated mostly from TEM 
and X-ray data in ref 5 .  The experiment of ref 4 does not report the size 
distribution. The shaded area represents a range of the experimental 
points of ref 4. The solid line connecting 0 represents our calculation. 

err0144 was not corrected. (ii) The two TB models differ essentially 
by a constant shift. Our results agree closely with the TNN-TB, 
implying that longer than nearest-neighbor interactions (and basis 
set overlap effects) are important. (iii) The small basis LCAO- 
LDA results appear to be inaccurate. 

E. Comparison of Band Caps with Experiment. Having found 
that using our definition of effectivesized(N), all prototypeshapes 
give similar band gaps; we can now compare the calculated band 
gaps with experiment. We will discuss experiments3-5 which 
measure the band gap of nearly spherical Si quantum dots by 
photoluminescence (PL) spectra. The size distribution is mea- 
sured by high-pressure liquid chromatograph (HPLC), trans- 
mission electron microscopic (TEM), and X-ray peak width. The 
results are summarized in Figure 5. There, we use a solid symbol 
to represent each sample and a crossing horizontal line to indicate 
the width of the size distribution for that sample. For the data 
from ref 5, we put the symbol at  the X-ray position and mostly 
ignore the HPLC value because it tends to overestimate the size 
due to the aggregation of monomers. As can be seen, there is a 
very widesizedistribution in these particles. Averticalline passing 
through each symbol represents the width at  half-maximum of 
the PL spectra. Although our calculated band gap for the three 
prototype shapes follows the same curve, to simplify matters, we 
show in Figure 5 only the results for the spherical quantum dots. 
A Coulomb energy representing attraction between the excited 
electron in the conduction band and the hole in valence band was 
added to our calculated band gap EBsp in order to compare with 
the PL data. The exciton energy for a sphere is (in atomic unit, 
hartrees for energy and bohr radius for d):45 

(9) 

The second term is the Coulomb term, and the third term is 
a correlation energy correction. e is the dielectric constant and 
ER, = pe4/2$h2,  where p is the effective mass of electron-hole 
pair. We used the bulk Si value t = 1 1.9 1 and ER, = 8.18 meV. 
The resulting calculated curve is shown in Figure 5. While it is 
not clear whether the bulk c value is appropriate for small quantum 
dots,46 the large experimental uncertainty prevents us from 
assessing the best value of c. Given this large size distribution, 
we can only conclude that our calculated result agrees with the 
experimental data within the experimental uncertainty. This 
large experimental uncertainty also prevents us from determining 
at  present which direct calculation results in Figure 4 agrees best 
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Figure 6. Radiative recombination rate 1/r (eq 10) as a function of the 
luminescence photon energy (excitonic band gap). Experimental curves 
1 and 2 are from ref 7 and 47, respectively. The symbols +, +, and 
represent calculations for spherical, (1 10) X (110) X (001) rectangular, 
and (100) X (010) X (001) cubicquantumdots. TheCoulombinteraction 
energy (eq 9) has been added to the calculated band gap. 

with experiment. It would clearly be desirable to synthesis Si 
dots with a tighter size control. 

F. Radiative Recombination Rate YS Quantum Dot's Size. 
Figure 6 depicts the calculated radiative recombination rate us 
the band gap for our three prototype quantum dots. The results 
are compared with the experimental data.7*47 The recombination 
rate is defined as 117; here T is the radiative lifetime, calculated 
from48 

Here, n(=2.6) is the effective refractive index of Si quantum 
dot,49 o is the photon angular frequency, (Y = e2/hc ,  and the 
matrix element (ilpv) represents purely electronic wave functions, 
ignoring the contribution from atomic vibrations. The value of 
T calculated from eq 10 strictly between the HOMO and LUMO 
states fluctuates widely even with small changes in quantum dot's 
size. To reduce this fluctuation, we have taken an average of 
(ilpv)' over the four highest occupied states i and four lowest 
unoccupied statesf. The energy spread for these four eigenstates 
is about 20 meV for the largest quantum dots studied here, thus 
of the order of kT at room temperature. Figure 6 shows that, 
unlike the E,  US d curves (Figure 2), which collapse into a single 
"unified" curve for all prototype quantum dots, the 1 / T  us dcurve 
shows some scatter and does not collapse into a universal curve 
for all quantum dot shapes. In the small band gap (large size) 
region, cubic quantum dots have a larger recombination rate, 
followed by spherical quantum dots, and then by rectangular 
quantum dots. Our results agree qualitatively with the exper- 
imental data7q4' in that the difference between the experimental 
data and the current result is in the same order of magnitude as 
the difference between the two sets of the experimental data. 

G. Orientation Dependence. We have next studied the effect 
of the surface orientation of the quantum dot on its band gap and 
recombination rate: To eliminate other effects, we have chosen 
two quantum dots with the same shape (cubic) and almost the 
same sizes (differing by 1.7%). One quantum dot has (loo), 
(OlO), and (001) surfaces, and the other has (110), (liO), and 
(001) surfaces. Thus, the latter structure represents a 4S0 rotation 
of the first structure around one of its principal axes. The 
calculated band gaps and radiative lifetimes are given in Table 
2. After correcting the small size difference using the unified 
curve of Figure 2, we find that the band gap difference for these 
two orientations is 0.014 eV. This is only 2% of the band gap 
blue shift (D,) and is thus negligible. However, the recombi- 
nation rate of the [(llO),(l~O),(OOl)] oriented quantum dot is 
40 times smaller than that of the [(100),(010),(001)] oriented 
quantum dot (similar to the situation in Figure 6). We can 
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TABLE 2 Orientation Dependence of the Band Gap and 
Radiative Lifetime of Cubic Quantum Dots' 
system orientation Nsi Nn d ( A )  Eu.(eV) ? ( U S )  

1 (100) X (010) X (001) 1101 532 34.783 1.8173 231.2 

The band gap difference after correcting for the small difference in 

2 ( i i o ) x ( i i o ) x ( o o i )  1157 492 35.363 1.8237 8647 

size is 0.014 eV. 

3.0 I I ( b )  / 
Present Calculation 

w 
2.0 

conclude that the band gap energy has negligibly small dependence 
on orientation, but the radiative lifetime (recombination rate) is 
more sensitive to it. 

H. Shape Dependence at Constant Size. Quantum confinement 
effects can exist in one-dimension (film), two-dimension (wire), 
and three-dimension (particle) systems. In Figure 2, we showed 
that if the effective size is measured as d Nsi1I3, the band gap 
us size (or Nsi) curves are similar for three prototype shapes, as 
long as the structure is not too prolate. It would be interesting 
to study the band gap change when a quantum dot goes through 
an extreme shape change, e.g., from a filmlike object to a wirelike 
object. We examined this by changing the aspect ratio L,/L, = 
Lz /Ly  of a rectangular box (see inserts to Figure 7): When the 
ratio L,/L, << 1, the quantum dot is filmlike; when LJL, = 1, 
the quantum dot is cubic; and when L,/L, >> 1, the quantum dot 
is wirelike. To eliminate the effects of orientation, we studied 
boxes with fixed surface orientations [(lOO),(OlO),(OOl)] for all 
LJL,  ratios. To eliminate the effect of size Nsi, we studied 
quantum dots having almost the same number Nsi = 1108 f 13 
of Si atoms. Figure 7 depicts the recombination rate (part a) and 
band gap energy (part b) versus the ratio L,/L,. Note that 
different shapes at  Nsi = constant can have gaps that differ by 
as much as 0.8 eV. The structure with the smallest band gap 
(i.e., weakest quantum confinement effect) occurs when L,/L, 
= 1 (cubic). Fitting the L,/L, = 1 point to an EMA formula 
shows that when LJL, differs from 1, the effective mass formula 
overestimates thequantumconfinement effects. This is consistent 
with the results of Figure 2, which indicates that the smaller the 
length L, or L,, the larger the error of the EMA. 



2164 The Journal of Physical Chemistry, Vol. 98, No. 8, 1994 Wang and Zunger 

lifetimes for these two systems are very close, within a factor of 
2. The fact that the gap of a dots is larger than that of the wire 
is consistent with the larger quantum confinement for finite L, 
(Le., box). However, the nearly identical radiative lifetimes of 
these two systems is surprising given that in the wire k, = 0 for 
the HOMO and LUMO while in the box k, # 0 for both of them. 
This implies that, in this case, the radiative lifetime is mostly 
determined by the x, y directions, while the z direction has little 
effect. 

4.5 I I 

2.0 + - 
I 

....* 

.- 

2 4 6 8 10 12 14 
square cross section NxN (monolayers) 

Figure 8. Comparison of the band gap and radiative lifetime ( T )  of finite 
rectangular quantum boxes of length L, = V k X  = .\/zL, and infinitely 
long (Lz = m) quantum wires. In_both cases, thecross section perpendicular 
to the z direction is [(lOO),(llO)], and there are N Si monola ers on 
each sides. The distance between two Si  monolayers is 1.92 1. The 
quantum wire results are taken from ref 13b with adjustments (for the 
effective refractive index n and the way of averaging matrix element 
(ilpV)zineq lO),sothat thesamewayofcalculating~isusedasdescribed 
in section 1II.F. 

An interesting point gleaned from Figure 7a concerns the 
recombination rate of the longest wirelike system (L, /L,  = 13.22). 
Although the band gap of this wirelike system is larger than the 
gapsof other systems (indicating a stronger quantum confinement 
effect for the band gap), the recombination rate is smaller than 
the other systems (indicating a weaker quantum confinement 
effect as far as the rate is concerned). This can be understood 
as follows: The band gap increase is determined by the two 
smallest confining dimensions Lx and Ly; thus, the wirelike system 
shows a large band gap increase. However, we find from the 
projection analysis of the wave function that the k points of eq 
8 have k, components which equal roughly k, = a/L, + 0.34a/a0 
for the HOMO and k,  = r/L, for the LUMO (a0 is the bulk 
lattice constant). According to the product of the HOMO and 
LUMO envelop functions, the matrix element (ilpN2 is roughly 
proportional to (0.34 (a/ao)L,)-2 and is thus small because of the 
large value of L,. Extrapolating from this, one can conclude that 
in some infinitely long quantum wires the band gap could be very 
large due to quantum confinement, yet the recombination rate 
could still be small because of the nonzero k,  value of the HOMO 
state. The fact that HOMO and not LUMO has a nonzero k, 
point in the wirelike system is interesting. It is the bulk Si 
conduction band minimum and not the valence band maximum 
which has a nonzero k, point. This may be a result of an interplay 
between the quantumconfinement effect and multiband coupling, 
because a single band model would not predict a nonzero k, point 
for HOMO state. Notice that the first principle LDA 
calc~lat ions~O-~~ of [OOl] oriented quantum wires do not give 
nonzero k, HOMO states. However, the wire cross sections of 
these LDA calculations are squares with the [( l  lo),( lTO)] 
orientations, while we have used square cross sections in the 
[( lOO),(OlO)]  orientation in our calculations. Also, from Figure 
1 of ref 5 1, one can see that the k, dispersion of the HOMO state 
is very flat (flatter than that of LUMO state). So it is easier to 
develop a nonzero k, at the HOMO than at  the LUMO state. 

It is interesting to compare the band gap and radiative lifetime 
of rectangular boxs (finite L,) to those of infinitely long (L,  = 
-) quantum wires. In both cases, we use structures with cross 
section [(llO),(llO)]. The results of our rectangular box are 
given in Figures 2 and 6. The results of the quantum wire are 
from ref 13b. (The HOMO and LUMO for these quantum wires 
have k, = 0.) The comparison in Figure 8 shows that (i) given 
the same [ (1 lo),( 1 TO)] cross sections for the wire and rectangular 
box, the box has a band gap 0.2-0.3 eV higher than that of the 
wire (in the cross section size range 10-20 A) and (ii) the radiative 

IV. Conclusions 

We have used the empirical pseudopotential method tocalculate 
the electronic structure of Si quantum dots of different sizes, 
shapes, and orientations. This was made possible by a newly 
developed calculational method which enables one to calculate 
the eigenstates within a desired ‘energy window” in a linear- 
in-size scaling. Realistic surface relaxations are used, and the 
surface density of states are fitted to give the surface hydrogen 
potential. We found that: 

(i) A unified band gap us size curve exists for a few prototype 
quantum dot shapes. 

(ii) The band gap is rather insensitive to the orientation and 
the shape as long as the shape is not too prolate. 

(iii) In contrast, the radiative lifetime is more sensitive to the 
shape and orientation. 

(iv) The HOMO and LUMO are bulklike states; thus, once 
the system is passivated, surface atoms have little direct effect 
to the band gap and radiative lifetime. 

(v) The effective mass model ouerestimates the band gap blue 
shift mostly because of the assumed parabolic scaling. The latter 
approximation reflects the retention of kinetic energy and neglect 
of potential energy. The simple truncated crystal model un- 
derestimates the blue shift because of the neglect of band mixing. 

(vi) Comparison to other direct calculation results reveals that 
the longer than nearest-neighbor interaction and the overlapping 
matrix of the basis are important in the tight-binding Hamiltonian 
in order to give the right band gap us size relation. 
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