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Solving SchrOdinger's equation around a desired energy: Application 
to silicon quantum dots 

Lin-Wang Wang and Alex Zunger 
National Renewable Energy Laboratory, Golden, Colorado 80401 

(Received 28 June 1993; accepted 26 November 1993) 

We present a simple, linear-in-size method that enables calculation of the eigensolutions of a 
Schrodinger equation in a desired energy window. We illustrate this method by studying the 
near-gap electronic structure ofSi quantum dots with size up to Sil3lSH460 ( ;::::37 A in diameter) 
using a plane wave pseudopotential representation. 

Modem ab-initio electronic structure calculations on 
large molecules and solids are generally cast in terms of 
solutions to some effective single-particle Schrodinger 
equation 

(1) 

e.g., using the local density formalism 1 for if. These appli­
cations can generally be divided into two classes. In the 
first class one investigates problems in which both the self­
consistent potential vCr) and the atomic positions are not 
known in advance and thus have to be obtained from so­
lutions of all occupied 1/1i based on Eq. (I). Examples in­
clude surfaces with unsuspected reconstruction geome­
tries2,3 or crystals and molecules with intricate patterns of 
charge transfer and hybridization. Here we address the 
second class of problems, i.e., cases where vCr) and the 
atomic geometry are either (i) known, or, (li) can be ob­
tained from small-scale calculations, and one is interested 
to inspect eigensolutions only in a given energy range, e.g., 
around a band gap in insulators. An example of (i) in­
cludes the study of band gap variation with size in mesos­
copic quantum structures,4 where both the potential and 
the atomic geometry can be approximated as nearly bulk­
like quantities. An example of (ii) is the study of band-gap 
impurity levels or superlattices, where vCr) and the atomic 
relaxations are often localized near the impurity or at the 
interface (and thus can be obtained from self-consistent 
calculations on small systems) but the wave functions ex­
tend over many atomic cells.5 

Most electronic structure methods treat both classes of 
problems equally. They require solving Eq. (1) for all oc­
cupied wave functions {1/1;}, even though in "class-two 
problems" one is interested only in the near band gap so­
lutions. This strategy is inefficient: For a given Hamil­
tonian iI, the conventional variational method is to mini­
mize the energy ( 1/1 I iI 11/1) by varying the expansion 
coefficients of 1/1. Then the first 1/1 obtained is the lowest 
energy state of iI. To find a higher state, one needs to 
orthogonalize 1/1 to all energy states below it. The effort 
needed to accomplish this orthogonalization scales as N 3 

where N is the number of atoms in the system. Conse­
quently, only small systems (N<loo) can be conveniently 
addressed. Although advances in solving Eq. (I) as a mul­
tiparameter minimization problem6 and progress in paral­
lel computing3,7 has increased the size of systems amenable 

to treatment via Eq. (1), fully quantum mechanical me­
soscopic problems ( > 1000 atoms) are still outside the 
scope of such first-principles methods. 

We present here an approach which enables calcula­
tion of eigensolutions around an interesting energy without 
having to calculate any of the wave functions below it. The 
effort involved scales linearly with the system's size thus 
enabling calculations of band gap properties in mesoscopic 
systems. The method is exact in that the solutions are iden­
tical to those of Eq. (I). 

The central point of the present approach is that the 
eigensolutions (€;, tPi) of the Eq. (1) also satisfy 

(2) 

Here the spectrum {€;} of iI has been folded at the refer­
ence point €ref into the spectrum {(€;-€ref)2} of eiI 
-€ref)2. The lowest solution of the folded spectrum (2) is 
the eigenstate with €i closest to Eref. Hence, by placing €ref 
in the physically interesting range, one transforms an ar­
bitrarily high eigensolution into the lowest one, thus obvi­
ating the need for orthogonalization. For example, if €ref is 
placed inside an energy gap, minimization of (t/ll eH 
- €ref) 211/1) results either in the highest occupied molecular 
orbital (HOMO) or the lowest unoccupied molecular or­
bital (LUMO), depending on which is closer to Eref. 

Changing Eref within the gap region then assures that both 
the HOMO and the LUMO are found. Because only a few 
wave functions are calculated, the effort scales linearly 
with the system's size N.8,9 

Our basic strategy is to solve Eq. (2) by seeking the 
minimum of 

(3) 

in the space of the variational parameters of tP. This re­
quires special treatment, because the use of (iI -Eref) 

2 

slows down considerably the convergence of standard min­
imization methods . when compared to minimization of 
<t/lIHI t/I). We solved this problem by using a plane wave 
expansion of tP and minimizing F using a carefully precon­
ditioned conjugate gradient approach. Equation (3) is cal­
culated by applying [_!V2+v(r) -€ref] to 1/1=~GCGeiGr 
twice. Once F is obtained, we minimize it with respect to 
the variational wave function coefficients CG , using the 
conjugate gradient method.6 This is defined as line mini-
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mizations along the search directions, i.e., finding 0 in tPnew 

=tPold cos(O) +Psearch sin(O) which minimizes F. Here, 
-f~earch is the normalized search direction which is made 
orthogonal to tPold' The search direction Psearch is given by 
the derivative A . aF I atP phis a correction from the search 
direction of the previous step. We use the Polak-Ribiere 
formula9 for this correction. The prefactor A = a 2/WG2 

+VO-Ercf)2+a2] is used in G space as a preconditioner, 
where Vo is the average potential of the system and a is a 
parameter which is in the same order of the wave function 
kinetic energy. It is effacacious to test the value of a before 
doing large scale computations. lo We will test our method 
relative to the multiparameter minimization of < tP I HI tP) 

[Eq. (1)] using the conjugate gradient approach.6 We will 
refer to the latter as "conventional" approach only because 
Eq. (1) rather than Eq. (2) is solved. Note, however, that 
this approach is considerably more efficient than the (truly 
conventional) method of directly diagonalizing Eq. (1) in 
a basis. 

While this method is quite general, we apply it here to 
the calculation of LUMO-HOMO band gap of Si quantum 
dots containing up to ~ 1300 Si atoms. We use the empir­
ical pseudopotential method (EPM) II to describe the sys­
tem's potential v(r). X-rayditrraction studiesl2-14 indicate 
that the core of Si quantum dots is crystalline with lattice 
constant close to the bulk value. We thus use the bulk 
lattice constant, fitting the Si empirical pseudopotential 
both to the bulk band structure and to the surface work 
function (4.9 eV)Y We passivate the surface dangling 
bonds by hydrogen atoms and model the surface relax­
ations of the chemisorbed layer according to data for 
hydrogen-covered (001), (111),16 and (110) 17 Si surfaces. 
The hydrogen empirical pseudopotentiallS is determined 
by fitting the calculated surface density of state of these 
surfaces to experiment. 18 A plane' wave basis set with a 
kinetic energy cutoff of 4.5 Ry is used throughout the cal­
culations. For the largest system this corresponds to a basis 
set of 100 000 orbitals. The reference energy Eref of Eq. (2) 
is obtained by perform~ng first conventional calculations 
[Eq. (1)] on small quantum dots and using this €ref for all 
dot sizes. The eigensolutions found in conventional calcu­
lations for such small Si13H 28 and Si59H76 clusters were 
found to be identical to the results of the present method. 
We then applied our method also to larger rectangular 
Si163H148' Si349H244' Si641H364, and Si\063HS08 boxes (Fig. 
1). This figure compares the efforts involved in calculating 
these quantum dots using the conventional approach [Eq. 
(1)] and the present approach [Eqs. (2)-(3)]. Both cal­
culations use the preconditioned conjugate gradient 
method6 with the same convergence tolerance. The dashed 
line is obtained by extrapolating the actual. CPU times for 
the conventional calculations on the two smallest dots us­
ing the expected N 3 scaling with size. This extrapolation 
(Fig. 1) suggests that using the conventional method, cal­
culating the largest quantum dot in the" figure would re­
quire about two weeks Cray CPU time. The solid line in 
Fig. 1 shows that the effort involved in actual calculations 
with the current method scales linearly with the system's 
size and requires less than one CPU hour for the largest 

Total number of atoms per cell 
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FIG. 1. Computational time t (in units of Cray-YMPCPU seconds) vs 
the size n of the system measured by the number nx ny nz of fast Fourier 
transform grid points. The solid line is a fit: t=9.0X 10-3 n. The dashed 
line depicts a projection of the computer time needed with the conven­
tional conjugate gradient method based on Eq. (1). The clusters here are 
rectangular shaped. 

system. Thus, our method enables efficient direct pseudo­
potential band gap calculations on O( 103

) atom systems. 
Figure 219 compares our calculated band gaps vs size 

variations for spherical quantum dots with model calcula­
tions [part; (a)], other direct calculations [part (b)] and 
with experimental data [part (c)]. The largest quantum 
dots calculated here consists of 1315 Si and 460 H atoms 
(2860 occupied states). 

Figure 2(a) compares our results with model calcula­
tions, i.e., those designed as approximations to direct cal­
culations. These. include the effective. mass approximation 
(EMA)20 and the model used by Rama-I<rishna and 
Friesner (RKF) recalculated with the present pseudopo­
tential,2l The EMA uses parabolic bands while the method 
of RKF approximates the states of a quantum dot using a 
single bulk band. Figure 2 shows that our directly calcu­
lated band gaps can be fitted as ~~~k+88.34(dIA)-1.37 
(eV). Th<: EMA, which predicts a d-2 dependence, over­
estimates considerably the band gap opening, while the 
method ofRKF underestimates it. For example, for a 15 A 
particle the method of RKF underestimates the directly 
calculated band gap by as much as 1 eV out of -3 eV [Fig. 
2(a)], even though the same pseudopotential1S has been 
used in both calculations (the bulk band structure pro- . 
duced by the present EPM agrees with that of Ref. 21 to . 
within 0.1 eV). Thus, at present, none of the model calcu­
lations approach the results of the direct calculation with 
satisfactory precision (more on that later). 

Figure 2(b) compares next the present results with 
those of other direct calculation methods, including the 
nearest-neighbor tight binding (NN-TB) ,22 third neighbor 
nonorthogonal basis tight binding (TNN-TB),23 small ba­
sis linear-combination-of-atomic~orbital-local-density ap­
proximation (LCAO-LDA)24 and plane-wave-Iocal­
density approximation (PW_LDA).25 Our result agrees 
closely to TNN-TB result, suggesting that further tha~ . 
nearest-neighbor interactions and nonorthogonal basis 
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FIG. 2. Band gaps (LUMO-HOMO) of spherical Si quantum dots as a 
function of the diameter d=(3/41TX'?oI8XNsi )1/3. Here ao is the bulk 
lattice constant and NSi is the number of Si atoms in the quantum dot. (a) 
Comparison of the present results with model calculations, i.e., the EMA 
(Ref. 20) (with Coulomb interaction being taken out) and the model of 
RKF [calculated using the present Si EPM (Ref. 15) and the spherical 
forinula of Ref. 21]. (b) Comparison of the present results with other 
direct calculations (see text for references). ec) Comparison of the 
Coulomb-corrected present result with observed luminescence data. The 
Coulomb correction is -3.572/€d-0.248ERy (a.u.) (Ref. 19), with 
€=11.91 and ERy =Q.0082 (eV). The symbols, 0, b., and 0 denote PI 
data from Refs. 12, 14, and 13, respectively. The vertical lines are the 
half-height widths of the PL spectra. The horizontalliries denote the size 
distributions estimated from high-pressure-liquid chromatograph 
(HPLC), transmission electron microscopic and x-ray experiments. The 
symbol ° are placed at the positions of the x-ray data whenever possible. 
The experiment of Ref. 13 does not report the size distribution. The 
shaded area represents a range of the experimental points of Ref. 13. 

must be important 
Figure 2(c) compares our results with photolumines­

cence (PL) experimentsl 2-14 on nearly spherical Si parti­
cles. Unfortunately, the existence of a broad size distribu­
tion in current Si samples prevents a quantitative 
comparison with theory. We can only conclude that the 
current results agree with experiment within the experi­
mental uncertainty. 

Figures 3 (a) and 3 (b) depict the wave function square 
of the LUMO and HOMO of a rectangular quantum box 
wi!.,h sides dx =dy =d/v'1=23.04 A and faces ~ (110), 
( 110), and (001). Note that most of the amplitude is at the 
interior of the dot, so surface perturbations are expected to 

FIG. 3. Wave function contour plots of the rectangular quantum dot 
described in the text viewed from [001] direction. (a) The resulting 
charge density after summing along z direction of tbe LUMO wave func­
tion square. (b) The wave function square of HOMO on the z=d/2 cross 
section. ec) Square of the composed HOMO wave function based on Eq. 
( 4) on the same cross section. It has the same contour steps a~ in (b). The 
crossed circles in (b) and (c) denote the positions of the silicon atoms. 

have minimal effects on these band edge states.: It is inter­
esting to analyze the directly calculated wave functions of 
quantum structure in terms of expansion in bulk Bloch 
wave functions,26 thus shedding light on various models. 
We can expand the HOMO state as 
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(4) 

Here, n is the band index and k is a wave vector. This is a 
generalization of the Luttinger-Kohn modef7 to include 
interband mixing. Consider, for concreteness, the rectan­
gular quantum box defined above. The wave vectors k are 
then quantized as 1T[±jx d; 1, ±jy d;1 ,±J •. d,;I], where 
j x,j y,j z are positive integers larger than zero. In a particle­
in-a-box model, the lowest energy occurs at j x= j y= j z= 1 
called here k*. We have calculated the projections Pn 
=~k* 1 an,k* 12 of Eq. (4) at the above k* and found that as 
much as 93% of the amplitude of 1 t,b~6MO 12 comes from 
the three upper valence bands nl,n2,n3 which become tri­
ply degenerate at the r 25 point (the remaining 7% comes 

v 
primarily from other k points for the same bands). Figure 
3(c) shows the approximate tfHoMO(r) of Eg. (4) con­
structed from superposition of just these three valence 
bands at k*. This analysis shows that the HOMO state is 
"bulklike" in that it can be constructed from just a few 
bulk states at the "special" k* points. Equation (4) shows 
that €~6Mog,;~nPn€~ullc(k*)/~J'n' This analysis explains 
why the method of RKF underestimates the band gap: 
their method limits ad hoc the wave function expansion to 
a single band ( the highest). The neglect of the other 
(lighter-mass) bands results therefore in a HOMO that is 
too high, thus in a band gap that is too small.28 The sig­
nificant differences between the results of the direct diago~ 
nalization and the RKF method [Fig. 2(a)] thus reflect the 
neglect of multiband coupling in the latter method. Agree­
ment with experiment then must be fortuitous. 

In summary, we have demonstrated a simple, linear­
in-size method for solving Schrodinger's equation in a 
given energy window without having to obtain (and or­
thogonalize to) the lower eigensolutions, The method en­
ables direct pseudopotential band gap calculations on semi­
conductor quantum particles with > 1000 atoms. 

This work was supported by the office of Energy Re­
search, . Materials Science Division, U.S. Department of 
Energy, under Grant No. DE-AC02-83CHlO0093. 
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