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We have used the empirical pseudopotential method to study the electronic and optical prop-
erties of [001] Si quantum wires with (110)-(110)square cross sections ranging from 4x4 to 14x14
monolayers (7.7 x 7.7 to 26.9 x 26.9 A, respectively). We present energy levels, band gapa, oscillator-
strength, and charge-density distributions. To understand the electronic structure of these systems
we calculate their properties in a stepwise process, considering (1) wires with a free surface but
without hydrogen and (2) wires with hydrogen chemisorption on the surface. We find that (i) in
both cases, the band gap between bulklike states increases as the wire size is reduced (due to quan-
tum confinement). However, (ii) hydrogen chemisorption acts to reduce the gap. (iii) Whereas the
low-energy states near the valence-band minimum are effective-mass-like, the near-band-gap states
with or without H on the surface can be decisively non-effective-mass-like. The lowest conduction
states are pseudodirect, not direct. (iv) The calculated energy dependence of the transition lifetimes
is too strong to explain the observed low-energy "slow" emission band in porous Si purely in terms
of transitions in an ideal wire. However, an alternative model, which introduces a mixture of wires

and boxes, can account for the experimental slope.

I. INTRODUCTION
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FIG. 1. Schematic depiction of the main emission peaks
and lifetimes observed by Calcott et al. (Ref. 5) for anodically
prepared porous Si. Data for v,~,v„„„,i and "exchange"
splitting are from Ref. 5.

Since Si has an indirect band gap (1.13 eV), pristine
Si has poor optical radiative efBciency at threshold. De-
spite this, recent experimental observations ' on porous
Si have shown that Si quantum wires exhibit strong visi-
ble photoluminescence (PL) around 1.6 to 2.5 eV at room
temperature with a size-dependent peak position. These
observations have stimulated intense experimental activ-
ity in this field. 2 Of particular interest here is the physical
origin of the intense, blueshifted emission.

Recent room temperature time-resolved PL experi-
ments have found two different emission bands: the
low-energy S band and the high energy E band (Fig. 1).
The low-energy S band peaks in the deep reds (1.72 eV),
has a half width of 0.3—0.4 eV (Ref. 4), and a stretched-

exponential type of decay with a lifetime that depends on
the emission energy. Its integrated intensity accounts for
97'%%uo of the red emission from conventional porous silicon
with an overall room-temperature lifetime of 3 x 10
sec (Ref. 5). This emission vanishes as the material is
oxidized above 700'C (Ref. 6) or if it is heavily hy-
drogenated by immersing in HF under UV light. 4 The
quenching of the emission is often accompanied by the
emergence of a strong spin signal, suggesting that dan-
gling bonds are implicated in the quenching of the PL.
Since conventional porous Si is not monodispersed but
has instead a broad distribution of wire widths (e.g. ,
30+10 A in Ref. 5) and a variety of difFerent shapes,
a single sample can emit over a broad energy range. Ex-
amining the lifetimes at different emission energies shows
that these could be fitted by assuming two decay channels
with an energy difFerence in the range of 10—30 meV [see
Fig. 2(c) in Ref. 5]. The upper level lifetime is around 5
ysec ("slow" ), and the lifetime of the lower level is around
3 msec ("very slow" ).

The high-energy F band peaks at the green-blues (2.4
eV), has a half width of 0.3 eV, and a decay time faster
than 3 x 10 s sec. It accounts for only 1—3% of the emis-
sion in conventional porous silicon. It is unaffected4 by
oxidation (up to 700'C ) or by immersion in HF: since it
exists in oxihydride, oxide, and pure hydride samples, it
was suggested that this emission represents the intrinsic
properties of the Si skeleton rather than the chemisorp-
tion layer, and that this emission can be enhanced by
reducing the particle size.

In the present paper we focus on the following ques-
tions regarding Si quantum wires: (a) what causes the
blueshift? —is it a quantum confinement effect or a sur-
face efFect? (b) what causes the intense PL and (c) what
are the origins of the main emitting states of Fig. 1?
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Previous calculations suggested that the blueshift
of the emission relative to bulk Si is likely to repre-
sent a quantum size effect. However, it is not clear
if the intensity and lifetimes can be explained just in
these terms: Most calculations show that the conduction-
band minimum of the wire is made largely from bulk

states"' ' so the band gap of the wire is pseudodi-
rect, not direct. This leads to rather small transition
probabilities and long lifetimes. Coupling to other bands
and to surface states (most prominent in small wires) in-
duces some finite oscillator strength, shortening thereby
the radiative lifetime &om infinity. A number of calcu-
lations attempted to establish if the pseudodirect tran-
sition is strong enough to explain the observed radiative
lifetime, in terms of quantum confinement. The calcula-
tions of Hybertsen and Needels considered wires whose
width is much narrower than experiment, so their calcu-
lated lifetimes cannot be directly compared with exper-
iment. Read et OL. calculated ~R ——3.8 x 10 4 sec for
a 9x8 structure in reasonable agreement with the mea-
sured ~R ——6.5 x 10 sec at Eg=1.7 eV. However, Read
et at. did not calculate ~R vs wire size. Here, we will
calculate the matrix elements and radiative lifetimes ex-
tending the wire sizes to the measurable range. As will be
shown below, we find that the calculated vR rises with in-
creasing size (decreasing band gap) much faster than the
observed rR. Thus uniform-wire models, which include
nonparabolic bands, multiband coupling, and surface ef-
fects, cannot by themselves explain the observed energy
dependence of the transition lifetime of the slow band.
We show, however, that these observations are consistent
with a picture of a wire-dot mixture.

Another issue we want to address is the significance of
surface chemisorption effects. Previous theoretical work
on this subject ' ' considered Si wires covered with H
atoms. Here we are interested in the isolation of hydro-
gen chemisorption effects. We first perform direct super-
cell calculation on wires with a free surface but without
hydrogen. Only transitions between bulklike states in
the wires are considered. In the second step, we per-
form direct supercell calculation on wires with hydrogen
chemisorbed on the surface. The difference between the
two steps provides information on hydrogen chemisorp-
tion effects. In both cases, we used the empirical pseu-
dopotential methods (EPM) in a plane wave basis, which
allow us to cover a wide range of wire sizes extending the
range accessible to local density approximation (LDA)
calculation. The EPM has certain advantages over the
tight-binding scheme: it allows a detailed analysis at the
wave functions; no explicit assumption on the boundary
conditions is necessary. We have studied the effects of
quantum confinement, surface chemisorption on the en-

ergy levels, band gaps, wave functions, decay lifetimes,
and the oscillator strength of Si quantum wires with
square cross sections ranging &om 4@4 to 14x 14 mono-
layers (7.7 x 7.7 to 26.9 x 26.9 A. , respectively). Section
II describes the pseudopotential method used for direct
pseudopotential calculations of wires with kee surfaces
and with hydrogen chemisorption. Section III describes
an effective-mass approach (EMA) used for comparison
and a wave-function. projection scheme for analyzing re-

suits. Section IV summarizes all the present results,
while Sec. V provides discussions and conclusions.

II. THE DIRECT HAMILTONIAN
DIAGONALIZATION APPROACH

Here, we discuss the direct diagonalization approach
to Si wires with a free surface [Fig. 2(a)] and, separately,
covered with H [Fig. 2(b)]. In solving the Schroedinger
equation,

( 1~2 + ~wire)rewire( )
wire

rewire(

we construct V "'(r) from a superposition of atomic (Si
and H) pseudopotentials. Figure 3(a) shows a cross sec-
tion of the atomic geometry used for a wire along (001)
with free surfaces (110)x(110). In this case, there are
dangling bonds on the wire surface, leading to surface
states in the band gap. Using contour plots of the wave

function, we identify these states. Since we are inter-
ested here in transitions between bulklike states in the
wire, these surface states are discarded from the follow-

ing discussion. Figure 3(b) shows a cross section of the
atomic geometry used for the hydrogen-covered surface.

In all "direct calculations, " we have used a supercell
geometry by adding four atomic layer of vacuum around
the wire and repeating the wire+vacuum unit cell peri-
odically. The square wires have cross sections ranging
from 4x4 to 14x14 monolayers (7.7 x 7.7 to 26.9 x 26.9
A). The bond length used for Si-Si is 2.34 A (the exper-
imental bulk Si value12) whereas for Si-H we use 1.48 A.
The Si monolayer separation aL, along the [110)direction
is 1.92 A. Using these values, the length L, of a bare 8x8
square wires is 15.36 A.

We use a local empirical pseudopotential for Si of the
following form:

(a) Wire with a free surface
vacuum

VBM

vacuum

H Sj Si Si Si H

FIG. 2. Schematic diagrams shying the z-direction poten-
tial averaged over the x-y plane for (a) wire with free surface,
and (b) hydrogen-covered wire. In part (a) re denotes the
work function separating the valence-band maximum (VBM)
from vacuum.
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FIG. 3. Geometry of a (001)-oriented 8x8 Si wire with
(110) x (110) cross section, (a) free-surface wire and (b) hy-
drogen-covered wire.

lar potential produces a doubly degenerate valence-band
maximum (VBM), while the surface-fitted potential (A)
produces a singly degenerate VBM. We use here poten-
tial A because we believe that it is appropriate to Si wires
whose surfaces resemble those of sexni-infinite crystals.

III. THE EFFECTIVE-MASS APPROACH
AND WAVE-FUNCTION PROJECTIONS

A. Effective-mass approximation

It is useful to compare our results of direct calculation
with the widely used EMA. In the EMA, the periodic
potentials in Fig. 2 are renormalized away and the energy
dispersions near energy extrema k=ko are replaced by

(k) = e "'"+ h k /2m'

where q is a continuous wave vector. The four parameters
(b, ) in Eq. (2) were determined by fitting the bulk band
structure at I', X, and L, and the experimental work
function of Si. Details were discussed in Ref. 13.

The hydrogen empirical pseudopotential used here was
fitted to the observed surface density of state of hydrogen
covered (001), (ill), and (110) Si surfacests (potential
A). However, in order to test the sensitivity of the results
to the H potential, we have also constructed a molec-
ular H potentiality (potential B) by fitting the energy
levels of SiH4 as calculated by Ellis et al. An analo-
gous xnolecular-type potential was used recently in tight-
binding Si film calculated by Gavrilenko et a/. The en-

ergy levels obtained with these two H potentials for the
4x4 Si wire are shown in Fig. 4. In another calculation
on H-covered Si surface, it was found that the molecular
potential (B) produces H antibonding conduction-band
surface states that are 1 eV too low coxnpared to ex-
perimental data. In our tcim calculation (viz. Fig. 4)
we find that the molecular potential (B) gives a band
gap smaller than potential A by 0.3 eV for a 4x4 wire,
and 0.07 eV for a 12x12 wire. Furthermore, the molecu-

(4)

Using a particle-in-a-box approach with boundary
conditions, P(0, y, z) = re(L, y, z) = P(z, 0, z)
P(z, L, z) = 0 for the envelope functions, one can solve
the Schroedinger equation for P which yields (1) a quan-
tization of wave vector k into a set of discrete k*,

j,js
——positive integers, (5)

(2) a quantized energy spectrum,

h2EMA bulk + (k+2 + k+2)n cn ko 2 e y (6)

and (3) an EMA wave function

where n is the band index, k is the wave vector, and m„'
is the effective mass. The wave functions of wires, in the
simplest single band approximation, are approximated
by products of a periodic bulk Bloch function u(r) at n,
k = kp and an envelope function ttr, i.e.,

6-
4-
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= Cu„k p(r)P(k, k„)
= Nu~ k—p(r) sin(k'x) sin(k„'y),

where C is a normalization constant.
For wires with (110) and (—110) cross section, this set

of k' readily translates into k'=j (110);k„'=j„(—110) in
i»its of ~ where N is the number of atomic monolayers
within the wire width L, ao is the bulk lattice constant,
and j» j~ are integer quantum numbers.

B.Wave-function projections

4x4 Si wire along (001)

FIG. 4. Energy spectra of a Si 4 x 4 wire. (a) The
f'ree-surface wire. There are eight occupied surface ("sur")
states in the band-gap region. (b) The H-covered wire us-

ing hydrogen potential A and (c) the H-covered wire using
hydrogen potential B.

To analyze the solutions of Eq. (1) in terms of the
bulk states of Si, here we introduce a projection schexne
in which we first (i) truncate the solutions of Eq. (1)
at the wire boundaries, x = 0, L, and y = 0, I (i.e.,
we ignore the tails outside 0( x, y ( L) and analyti-
cally continue the truncated wave functions into regions
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of —L ( x (0 and —I ( y ( 0. We further require
that the new wavefunctions, g'(r), defined now in the
—L ( x ( L, —L ( y ( L region, to be antisymmetric
with respect to the x = 0 and y = 0 planes, i.e.,

for —L&x(0,
for —L(y(0,
for —I &x,y(0. (8)

3——u„A:.A: oe i(A: x—A. "y)

—'(x.~+A. "y) i
g4 —&nA: k' Oe " I (9)

where k' are given by Eq. (5), the same EMA quan-
tization conditions. This set of states forms a com-
plete and orthogonal basis for any function periodic over
—L ( x, y ( L. In this way, we are able to use the
projection

Ia, f(k )I = ) I (4f (r)l~'(r, k'))I'
i=1,4

(10)

to determine the identity of the directly calculated wire
states in terms of their bulk parentage states. It is worth
to mention here that the bulk projection. scheme needs
not be unique. For example, Hybertsen for a difFerent

purpose had projected his quantum box states onto a
bulk continuum. The EMA results in his scheme thus
are represented by a broad peak in the reciprocal space
whereas in the present scheme where the standing wave
solution is already factored in, in the limit that L; ao,
they are, instead, simple single b-functions.

IV. B.ESULTS

A. Free-surface wires

Table I summarizes the projections [Eq. (10)] of the
directly calculated wire states for an 8 x 8 Si wire with

This antisymmetric continuation of the wave functions
is a reasonable choice here since, other than the surface
states for which no projection is attempted, all bulk-
like wire states approach zero quickly, thus establishing
nodes at the boundaries upon continuation. An example
here is the EMA solutions to the quantum wires [Eq. (4)]
where since the periodic function, u„g„is assumed to be
none vanishing at the boundaries, the envelope functions

P = Csin(g m/Lx) sin(j„7r/Ly) [see Eq. (7)] must, and in
fact, satisfy Eq. (8). However, by allowing the total wave
function of Eq. (1), not just the envelope function P, to
fulfill Eq. (8), we are not bounded by the EMA approx-
imation in the current projection scheme. For example,
it will pick up states with novel cosinelike envelope func-
tions and vanishing u„g,at the boundaries. As we have
demonstrated in our earlier work, such states do exist
and are important in Si quantum films. (ii) In the second
step, we make Q'(r) periodic over the entire r space and
project them onto a discrete set (in the z-y plane) of bulk
states,

(Xi= un, s,s,oe.(a.'~+a y)

i(—Ic' a+k' y)X2= &n,I:,a„',Oe

a free surface and H-covered wire onto the bulk Si wave
functions. We label the mire states as follows: First,
wire states are designated by runrung index f starting at
the valence-band minimum. Hence, f=ll2 is the VBM
for the free-surface wire and f=144 is the VBM for H-
covered mire. Second, it is sometimes convenient to use
the label V —1, V —2, etc. , to designate states below the
VBM. Table I provides a "dictionary" between the tmo
sets of nomenclatures.

Table I shows that &ee-surface mire states have more
than 93% projections on bulk Si wave functions for the
two lowest valence bands (n = 1 and n = 2) in the energy
range from E„(—:EvBM) —11.7 to E„—3.3 eV.

The situation changes somewhat when higher-energy
wire states derived &om the upper n = 3, 4 bulk bands
are considered. Table I shows that the directly calculated
states within 1 eV below the VBM (between f=107 and

f=112) sometimes exhibit smaller projections of 80%1
thus more than one bulk state (n, k) are involved in these
states probably due to the presence of surface states.

B. Hydrogen-covered wires

Hydrogen chemisorption displaces the gap states into
the continuum (Fig. 4) thus also perturbing the Si states.
The lower part of Table I gives the projections of Eq. (10)
for the H-covered wire states near the VBM, while Fig.
5 shows their wave-function amplitudes for the 8x8 case
of both &ee-surface and hydrogen-covered wires. We see
that H chemisorption leads to important changes as fol-
lows: In the presence of H coverage, the VBM has wave-
function amplitude concentrated more in the interior of
the wire while without hydrogen, the VBM has its wave-
function amplitude concentrated in the exterior of the
wire. In either cases, the VBM is nearly a pure +=3,4
bulk state ()90% projection) showing that it is not a
surface state. The next state below the VBM for the
H-covered wire (V—1) is a singlet, with the amplitude
localized at the center of the wire. In contrast, in the
wire without hydrogen, the V —1 state is a doublet with
the wave-function amplitude localized at the exterior of
the wire [Fig. 5(a)]. To identify the symmetry features
of the near-gap states, we introduce here another set of
labels, i.e., vs and cs for valence- and conduction-band
singlets, and vd and cd for valence- and conduction-band
doublets, respectively. These are used in Fig. 5(b) for the
H-covered wire. In general, hydrogen chemisorption en-
hances the localization of the near band edge urire st-ates-
in the interior of the mire, thus making them reflect the
Si skeleton.

Previous theoretical calculations on Si wires ' ' con-
sider only H-covered wire surface. Figure 6 compares
our calculated band gaps with other theoretical results
for this case. The agreement with TB is excellent. The
agreement with the LDA calculations (including band-

gap corrections) is reasonable for the wire size larger than
6x 6 monolayers, but for the 4 x 4 wire where all the atoms
are either surfacelike or subsurfacelike, the LDA gives a
gap that is about 0.8 eV smaller than the present results.
We are amare that our approach is more adequate for
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wires of larger sizes. The experimental band gaps range
&om 1.6 to 2.5 eV but the wire size is not accurately
determined.

C. Effective mass vs direct calculations

To assess the validity of the commonly used EMA, we

plot in Fig. 7 (last column) the EMA wave functions of
Eq. (7) for the j =j„=lband-edge states The corre-
sponding states of the direct calculations for the &ee-
surface wire and H-covered wire are shown in Fig. 7 as
the Brst and second column, respectively. From Fig. 7, it
is clear that the EMA approach bears no similarities to
the direct calculations (free-surface and H-covered sur-
face alike) for several valence-band-edge states (n=2 and
n=4 in Fig. 7). This is because in the EMA, all envelope
functions are sinelike, peaking at the center of the wire
whereas the true wave functions, as revealed by the di-

rect calculations, are hollow in the wire center, instead.
The n = 5 conduction-band-edge states are composed
of two distinct j =j„states (csl and cs2). In the free-
surface wire, cs2 is below csl but the order is reversed
in H-covered wire. In contrast, the EMA approach can-
not tell the difference between the two (one of them is,
therefore, lost).

D. Relative role of quantum con8nement
and surface chemisorption efFects

on wire band gaps

Figure 8 shows the band gap as a function of the wire
size &om our two model wire calculations and EMA. ~

All three have larger band gaps as wire sizes get smaller.
Quantum confinement effects thus play an important
role here. Compared with direct calculations, however,
EMA overestimates the band-gap opening. Hydrogen

TABLE I. Projection squares [Eq. (10)] of the directly calculated wire states for the 8 x 8 Si wire
with a free surface (upper part) and for the H-covered wire (lower part). The labels V —i (C+ i)
denote the ith wire state below (above) the corresponding VBM (CBM). For the free-surface wire
the VBM is f=112, while for the H-covered surface VBM is f=141

Wire
energy
(eV)

Wire state
index

Bulk band
index

Allowed
&= r, (i-iv)

Eq. (5)

projections (%)
lo-, s(&- &v)l'

Eq. (10)

—11.71
—11.25
—11.25
—10.83
—10.56
—10.56
—10.14
—10.14
—9.72
—9.72
—9.45

—7.68
—5.61

3032
—0.97

1
2
3
4
5
6
7
8
9
10
11

22
45
60
103

Wire with free surface
1
1
1
1

1
1
1
1
1
1
1

(1,1)
(1,2)
(2,1)
(2,2)
(1,3)
(3,1)
(2 4)
(4 2)
(4,1)
(1,4)
(3 3)

(4,4)
(3,3)
(2,2)
(1,1)

99.8
99.5
99.5
99.3
98.2
98.2
97.9
97.9
93.7
93.7
98.3

98.3
97.3
93.3
94.0

—0.36
—0.32
—0.32
0.0

109 (V—2)
110 (V—1)
111 (V—1)
112 (VBM)

3
3, 4
3, 4

4

(1,1)
(1,2)
(2,1)
(1,1)

80.7
76.7
76.7
92.1

—.19
—.035
—.035
—.022
0.00

2.32
2.34
2.34
2.34

140 (V—3)
141 (V—2)
142 (V—2)
143 (V—1)
144 (VBM)

145 (CBM)
146 (C+1)
147 (C+2)
148 (C+2)

H-covered wire
2

2, 3, 4
2, 3, 4

3, 4
3, 4

5,6
5,6
5,6
5,6

(1,1)
(1,1)
(1,1)
(1,1)
(1,1)

(3,3)
(3,3)
(3,3)
(3,3)

81.8
84.5
84.5
93.3
90.1

77.5
74.3
75.3
75.3
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(a) Wire with free surface (b) H covered wire
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maximum z-direction averaged
wave function square for an
8x8 Si wire: (a) wire with
free surface and (h) hydro-
gen covered Si wire. Energy
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chemisorption efFects act to reduce the band gap of the
free-surface wires, because adding H atoms on Si &ee
surface removes the surface states &om the gap and ef-

fectively enlarges the size of the wires.

E. The nature of the near-gap electronic states
in hydrogen covered wires

Having discussed our directly calculated results and
compared them to those obtained with previous direct
calculations, and with the effective-mass method (Sec.
IV %—C), we now focus an a mare detailed discussion of
the electronic structure of hydrogen covered wires.

Figure 9 shows the near-gap energy levels of hydrogen-
covered wires in the size range of 6x6 to 12x12. This
6gure also gives the interband gap as well as the exciton-
corrected gap (in parenthesis). The correction was taken
from Ref. 10 which considers a similar range of wire sizes
to what is calculated here. However, Ref. 10 used dielec-
tric constant of bulk Si, thus underestimating the exciton
binding energy. Ohno et cl. considered the efFects of the
surrounding material on ultrathin Si wires (3x3 to 5 x 5).
They 6nd an additional 0.12 eV exciton reduction in the

gap for a 4x4 wire. Such efFects, however, reduce as the
wire width increases.

It is characteristic of the wires we studied that near the
top of the valence band there are two singly degenerate
levels, vsl and vs2, as well as a doubly-degenerate level,
vd. The energy spread of the four levels is within 0.06
eV. Similarly, the conduction-band minimum consists of
two singly degenerate states, csl and cs2, as mell as a
doubly degenerate state, cd. Again, the energy spread is
only 0.05 eV. Other zone center energy levels are well-
separated &om these four valence and four conduction
levels (as can be seen from Fig. 9). Thus, the near-
threshold optical properties can be discussed considering
only these levels. Figure 5(b) depicts the characteristic
wave-function-square pattern of these near-edge levels.
While the order of the four valence (or four conduction)
levels can change with wire size, their characteristic pat-
terns remain 6xed, as shown in Fig. 10. Note that the
wave functions can be classi6ed according to their parity
with respect to mirror plane reflection, the singlet state is
polarized in the z direction and the doublet is polarized
in the x and y directions.

It is interesting to characterize these levels hy radiative
lifetimes, and by dipole matrix elements. The matrix
element far direct transitions coupling states (i) and (f)
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is given by

M I = (d;l~p(dy) = —i J g;(r)vdf(r)d r

Here, p = —iV is a momentum operator. The radiative
lifetime is calculated by
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FIG. 8. Band gaps (without exciton correction) between
intrinsic states in Si wire as a function of size.
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where o. is the 6ne structure constant, ~ is the photon
angular &equency, n=1.48 is the experimental refrac-
tive index of porous Si, m, is the &ee electron mass, and
c is the velocity of light. We used EPM together with
Eq. (12) to calculate 7R for the direct gap in GaAs and
found ~=0.79 nsec, compared with the measured value
~=1 nsec. Figure 5 gives the calculated radiative life-
time for the near-gap states in the 8x8 Si wire (part a)
without and (part b) with hydrogen.

Figure 11 depicts the energy dependence of the radia-
tive lifetimes of all zone center level pairs starting from
the upper four valence levels and continuing into the
conduction band. It applies to the emission processes
where transitions are confined largely to the zone cen-
ter. Besides the blueshift of the spectral threshold, we
notice that the ~R vs e spectra consists of well-defined
bands denoted as a, P, and p. Band a consists of the
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FIG. 9. Energy levels of H-covered Si square wires with
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est energy states of the conduction band and the 6ve highest
energy states of the valence band are shown in the 6gure.
Band gaps without and with excitonic correction (in paren-
theses) are given. The excitonic shift is taken from Ref. 10.
The energies are measured from E„(VBM)and E, (CBM),
respectively.
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16 transitions coupling the four lower conduction-band
states with the four upper valence-band states; bands P
represent transitions &om the higher-energy conduction
states to the upper four valence states, etc. Each band
is seen to contain very slow (i.e., nearly dipole forbidden
or ra ) 10 sec) as well as faster transitions. Calcott
et al. interpreted their "very slow" transitions (see Fig.
1) as resulting from spin triplets. Although our calcula-
tions are spin-restricted, they do indicate, however, that
nearly forbidden very slow transitions exist at threshold
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FIG. 11. Calculated radiative transition lifetime from the
four highest valence-band states as a function of the transition
energy (no excitonic correction).

FIG. 12. Calculated energy dependence of the radiative
lifetime for the csl, cs2, and cd conduction states to the four
highest valence states.
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just due to orbital (not spin) symmetry. Figure 12 shows
that the prototype conduction-band states cs1, cs2, and
cd depicted in Fig. 10 have distinct lifetimes connecting
each of them to the four topmost valence-band states.
Thus, the prototype wave-function shapes of Fig. 10 rep-
resent also prototype rudiative lifetimes in Fig. 12.

In the present study, the band edge transition lifetime
from csl to vsl is 9x10 4 sec for an 8x8 wire. It com-
pares with 6.94x10 sec &om conduction-band maxi-
mum (CBM) to VBM of Sander and Chang et al. io and
differs by one order of magnitude. The symmetries of the
band-edge states in our calculation are, however, differ-
ent from Sander's. As we have demonstrated earlier in
Sec. III, these symmetry properties may vary, due to the
narrow spread of these states, when different H poten-
tials are used. Given this fact, it is probably meaningful
only to compare the most probable transitions in this
group (or band). We, therefore, calculate ri, „dwhere

Without occupation average, this

expression gives a measure of the overall strength of the
optical transitions in each band. With this modification,
our ~ „p——1.5x10 sec compares reasonably well with
that of Sander's (8.3x10 r sec). Read et al." did not
report the necessary information to calculated ~b „gso a
direct comparison is not possible. Their band threshold
transition lifetime is 3.8x10 4 sec for an 8x9 wire which
is closed to our result for a 8x8 wire (9x10 4 sec). In
Fig. 13, we plotted 7b „galso for the P, p bands for which
the energy spread is, however, much larger (Fig. 11). It
shows that the transition lifetimes decrease exponentially
with the wire size. The lower-energy band o. has a slower
decay than the higher energy bands P and p. This "slow"
or "weakly allowed" transition reQects the pseudodirect
nature of the wire band gap and is associated here with
the conventional S-band red emission from porous Si.
The "fast" transitions P and p, on the other hand, ob-
tain their spectral weight from the higher energy direct
transitions in bulk Si, as demonstrated earlier. These
transitions, nevertheless, do not occur at threshold (see
Fig. 11).

experimentally made porous Si can include not only a
distribution of x-y cross sections (denoted by N x N), but
also /mite lengths L, T. he near-gap electronic structure
(a band) of quantum boxes with the same cross section as
our wire calculation (L =L„=~L,) has been calculatedP ~2
recently by Wang and Zunger using precisely the same
pseudopotentials and atomic geometries. The calculated
band gaps and lifetimes are compared with Si wires in
Fig. 14. As expected, given the same lateral (x-y) cross
section, the band gap of the box is larger than that of the
wire due to the additional (finite L, ) confinement in the
box. However, the radiative lifetime of the box is seen (on
a logarithmic scale) to be only slightly longer than that of
the wire. Thus, despite a greater confinement, transitions
in the box are "less" allowed (refiecting a smaller overlap
of wave functions in the z direction) than in wire.

This should be contrasted with the behavior shown in
Fig. 13, namely that changing the size of a wire with a
fixed shape leads to a (nearly exponential) change in the
radiative lifetixne, yet changing a wire into a box (Fig. 14)
leaves the lifetime essentially unchanged while strongly
affecting its band gap.

V. DISCUSSIONS AND CONCLUSIONS

We have examined the (i) quantuxn confinement effects
and (ii) surface chemisorption effects on the electronic
structure of (001) Si wires. Our results can be suxnma-
rized as follows:

(i) Near the VBM the main contribution to the wire
states comes from the two highest valence bands at a sin-
gle off-I' k vector, k. Similarly, the wire CBM is formed
predominantly from the lowest bulk conduction band at
a single k, e.g. , at j =j„=3for an 8x8 wire (Table I).
Hence, it is still meaningful to discuss wire transitions
in bulk terms. In particular, the transition connecting

Quantum confinement in Si nanostructures

F. Quantum wire vs quantum box states
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Our discussion has focused thus far on wires with a
[110]-[110]cross section and length L, -+ oo. However,
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FIG. 13. Transition lifetime connecting the four highest
valence states to bands n, P, and p shown in Fig. 11. Open
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FIG. 14. Comparison of the n band radiative lifetime and
the band gap of quantum wires with quantum boxes.
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the band edge states in a wire are pseudodirect, not di-
rect. This is reflected, among others, by the logarithmic
change in lifetime with size (Fig. 13) .

(ii) Since the wire states are formed &om off-I' states
(for the VBM) and off-b„states (for the CBM), the
nonparabolicity of the bulk bands away &om these
band edges becomes important, especially for narrow
wires. Furthermore, the wire state may consist of multi-
band coupling (Table I) and involve non-effective-mass
cosine-type envelope function. Not surprisingly, sim-

ple efFective-mass models cannot describe well such com-
plicated situations regardless whether H coverage is in-
cluded or not (Fig. 7).

(iii) The effects of hydrogen chemisorption are seen
in two aspects. First, the level ordering may change:
the CBM zy-polarized, doubly degenerate states with

g j„change order with the z-polarized, singly degen-
erate j~ = j„statein Fig. 5. Second, the wave-function
localization may change: near the band edge, wave func-
tions localized at the exterior of the wire are transformed
into states with wave-function localization more at the
interior of the wire (e.g. , the VBM in Fig. 5). Thus, af-
ter chemisorption the near-band-edge states reflect more
closely the properties of the Si skeleton of the wire rather
than its outer layers. This implies that as long as all dan-
gling bonds are passivated, the value of the band gap will

probably not depend sensitively on the type of passivant
(e.g. , H or oxygen).

(iv) Both &ee-surface wire and H-covered wire have
sizeable blueshifts in the band gap. This means that
quantum con6nement effects play an important role. The
net effect of surface chemisorption is to increase the gap
by a small &action. Unfortunately, the signiflcant distri-
bution of wire sizes, which exists in currently made sam-
ples, leads to a concomitant wide distribution of emission
energies. It is thus not possible to determine at present if
a quantitative agreement exists between experiment and
con6nement-based theories.

(v) The near-gap zone center states in the wire appear
as four closely spaced valence and four closely spaced con-
duction levels (Fig. 9). They have distinct wave-function
patterns (Fig. 10) and lifetimes (Fig. 12). The overall life-
time vs energy spectrum near the zone center (Fig. 11)
shows well-defined bands. The lowest energy band (n,
or "slow" ) has the longest decay time, while the higher
energy band (P, or "fast") couples better with the direct
bulk bands for N & 6 and have thus a shorter radiative
lifetime (Fig. 13).

(vi) Quantum boxes have larger band gaps but com-
parable radiative lifetimes to wires of the same lateral
geometry (Fig. 14).

It is tempting to compare our theoretical results on
quantum wires and boxes to the experimental data on
porous Si. The comparison is, however, problematic given
that porous Si appears to represent a distributions of (a)
wire sizes (i.e., difFerent N; N„),(b) lengths (i.e., "wires"
with large N, vs boxes), (c) shapes, (d) surface orienta-
tions, and (e) surface terminations. In fact, the PL ex-
periments of Calcott et al. pertain to wires of an aver-
age cross section of 30+10 A; this wide size distribution
translates into a distribution of +0.6 eV in band gaps,
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FIG. 15. Comparison of the calculated lifetimes (weighted
by all possible transitions, r=1671, „q)of quantum wires and
quantum boxes with experiinental results. Data (1) [Ref. 24],
(2) [Ref. 25], and (3) [Ref. 5] are for the S band in porous
Si. The calculated results include excitonic energy corrections
(Ref. 10).

so a compelling comparison of measured and calculated
band gap values is not possible at present (the measured
8-band peak position of 1.76 eV agrees with our calcu-
lated results for a 12x12 wire with a gap energy 1.77
eV). Likewise, the 0.4 eV width of the S-band PL (1.7
to 2.3 eV) is indicative of a possibly wide distribution of
sizes and shapes. Indeed Fig. 11 indicates that if one has
good energy resolution but no size resolution then the
emissions in the range of 1.7 to 2.3 eV can be expected
to come anywhere &om 8x8, 10x10, and 12x12 wires
and from comparable quantum boxes (Fig. 14). Thus, a
detailed comparison with theory must await the synthe-
sis and characterization of size, shape, and surface con-
trolled, mono-dispersed Si quantum structures. In the
interim one could make the following remarks:

(i) The lifetime (weighted by all possible transitions in
the n band) vs energy curve of the wires (Fig. 15) agree
qualitatively with the similar plot of Calcott et al. for
their S band and other experimental data. 4'~ However,
the calculated curve shows a faster increase of 7R with
size compared with the measured curve. This means that
as size increases the calculated a-band transitions be-
come nearly forbidden faster than the measured S band
does.

Similar is true for the o. band in the quantum boxes.

(ii) As Fig. 14 illustrates, a wire and a box having the
same lateral dimension will have approximately the same
v.R but signi6cantly different band gaps. This means that
by assuming that a sample is made of wires and boxes,
the slope of the 7.R vs t' curve can be made arbitrar-
ily flat. This could explain the fact that Calcott's data
has a signi6cantly smaller slope than the results for pure
wires. In fact, it is reasonable to imagine that at the
beginning of the etching process of porous Si one forms
mostly thick wires, while after extended etching the wires
thin down into linked-sausage shapes. The necks of the
linked sausage provide the third dimension confinement.
Once the con6nement effects is large enough, the wires
effectively break into quantum boxes. Thus, the small
photon energy region should represent mostly emission
from wires while the higher photon energy region could
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represent a larger contribution from boxes. This means
that the "effective" vR vs ~ curve should consists of the
wire contribution at small e, moving into a box contri-
bution at larger e. This is a Batter curve than for pure
wires or boxes.

(iii) A P-band transition of the 8x 8 wire in the energy
range of 2.8 eV (without excitonic reduction) appears to
have a lifetime of 8.5 nsec, in line with the measured F-
band transition from about 10 to 100 nsec in porous Si.
A more de6nitive conclusion, however, requires the en-

ergy dependence of the lifetime also being measured and

an understanding of the competing nonradiative decay
through other channels (defects, dangling bonds, etc.).zr
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