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ABSTRACT

A binary substitutional system can exist in 2N configurations that can be formed by
occupying any of the N sites of a lattice by either an A or a B atom. Substitutional
configurations include compounds, alloys, superlattices, and substitutional impurities. This
article addresses the questions of (i) finding the lowest energy configuration of a given A/B
substitutional system, (ii) calculating its composition-temperature phase diagram, and (iii) its
finite-temperature thermodynamic properties, using the first-principles local density
approximation (LDA). Mapping of the LDA energies of 10-20 Aqu compounds onto an
Ising-like "cluster expansion" enables use of lattice statistical mechanics techniques that
elegantly solve the above problems. This extends the utility of the LDA from simple,
perfectly-ordered compounds to truly complex structures. We illustrate the method for

" semiconductor systems and transition-metal intermetallic systems, emphasizing the role of

lattice relaxation.
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I. INTRODUCTION

Many important solid-state structures can be described as substitutional A/B systems, in
which the sites of a crystal lattice are occupied by A and B atoms in different patterns
("configurations").  These include abrupt and intermixed superlattices, substitutional
impurities, impurity aggregates, ordered Aqu superlattices, and random A B, alloys. In
theoretical studies of the energetics of substitutional systems it is often necessary to find the
ground-state configuration for a given lattice type, or to calculate finite-temperature
thermodynamic averages. These applications require, in principle, sampling of the gH
possible configurations for placing A and B atoms on N lattice sites. This presents a major
challenge since (i) the number of possible configurations increases exponentially with the
number of lattices sites N and (ii) it may be necessary to calculate the energy of
configurations with many atoms. Since the computational effort for quantum-mechanical
total-energy calculations increases rapidly with the number of atoms in the unit cell, direct
first-principles studies are usually limited to a small subset of the configuration space, i.e.,
about 10-20 structures with < 50 atoms per cell out of a total of oM configurations. To find
the stable crystal structures in such restricted first-principles total energy approaches [1] one
usually repeats the total energy calculation for a few assumed crystal structures that by
analogy with related compounds or by "chemical intuition" are expected to be likely
competitors for the stable ground state. Comparison of total energy vs volume curves for
such a set of "intuitive structures” permits the identification of the stablest structure in this
set. While generally successful [1], the predictive value of this approach of "rounding up the
usual suspects” does depend on one’s ability to guess at the outset a set of structures which
includes the "winning" (minimum energy) configuration. One wonders, however, if a
different, hitherto unsuspected structure could have yet lower energy, or whether a linear
combinatién of two other structures could have a lower energy. Addressing this problem,
even for binary Aqu compounds requires, in principle, calculation of the total energies of
the 2 atomic configurations for each type of lattice (fce, bee...). Even limiting N to ~40
sites, this is a formidable task for first-principles electronic structure methods [1], as it
involves an astronomical number of calculations (of the order of the number of stars in this
galaxy). This problem can be circumvented to some extent by using simplified electronic
Hamiltonians (e.g., minimal basis set tight binding) in conjunction with perturbation
theory [2] or by replacing the quantum mechanical total energy by phenomenological
effective pair potentials [3]. These approaches, however, have limited accuracy and only

work for specialized cases. It is the purpose of this article to demonstrate how one can
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effectively (i) perform such a ground state search among many atomic configurations and,
(ii) obtain the temperature-composition phase diagram in a first-principles manner, using

directly calculated (local density [1]) total energies of only ~ 10-20 configurations.

IL. REAL SPACE CLUSTER EXPANSIONS

A general approach to the energetics of substitutional systems is the Cluster Expansion
(CE) [4-8], in which the energies of the different configurations are described by a
generalized Ising Hamiltonian. In the cluster expansion, the alloy is treated as a lattice
problem: One uses a given underlying lattice (fcc, bee, etc.) and defines a configuration ©
by specifying the occupation of each of the N lattice sites by an A atom or a B atom. For
each configuration, one assigns a set of fictitious "spin" variables S, (i=12,..N) to each
of the N sites of the lattice, with §; = -1 if site i is occupied by an A atom, and S, =+l
if it is occupied by a B atom. The set of spin variables {.§i} defines the configuration, o.
One can imagine that the total electronic + nuclear energy of a given configuration ¢ can be
calculated directly (in principle, quantum mechanically), yielding Egirect(0) = <¥IHIW>/
<¥I¥>. In principle, this can be repeated for each 6. The cluster expansion consists of
mapping the set {Ey;..(0)} onto an Ising-like series. In fact, for a lattice with N sites, the
problem of finding the energies of the 2N possible configurations can be exactly [9] mapped

into the Hamiltonian:

Ece@) =Jo + 3 JSi0) + ¥ J; $i0)8,(0) + Y ik 8i@80)8(0) + ..., (1)

j<i k<j<i

for configuration o, where the J’s are "interaction energies”, and the first summation is over
all sites in the lattice, the second over all pairs of sites, the third over all triplets, and so on.
These constitute the basic "figures" of the lattice, illustrated for the fce lattice in Fig. 1. The
interaction energies, {J}, are the same for all configurations 6. Thus, if the J’s are known,
the energy E-g(c) of any configuration can be calculated almost immediately by simply
calculating the spin products and summing Eq. (1). Because the Ising representation of the
energy can be calculated rapidly, and is also a linear function of the spin products, one can
readily (i) apply linear programming techniques to find ground state structures (e.g.,
Ref. [10]), (ii) use statistical mechanics techniques such as the Cluster Variation Method [11]
or Monte Carlo [12] to calculate phase diagrams, and (iii) calculate the energy of an

arbitrarily complex configuration [13],
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s WM The Hamiltonian of Eg. (1) contains

LN

2N interaction energies J, which are used

to describe the energies of the N
configurations ¢. Consequently, Eq. (1)

can be viewed as defining a set of linear

equations, in which a 2N x 2N matrix of
spin products multiples a 2N vector of J’s,

giving a vector of the energies of the g

configurations. Viewed this way, it is

obvious that the I’s of Eq. (1) can be

solved for exactly if the matrix of spin

products is nonsingular. Actually, Sanchez
et al. [9] have proven that the matrix is
orthonormal which guarantees that Eq. (1)
is always solvable.

The directly calculated energy

Ejirect(0) depends in general on the 3N-3

atomic positions R;. If these are

restricted to the ideal lattice positions, we

Figure 1. Atomic figures used in the cluster term the corresponding configuration as
expansion, (a) and (b) show pair figures; (c) and (d)
show 3-body figures; and (e) and (f) show 4-body
figures. to yield the minimum E (o) of a given

"unrelaxed", while if {fi?l } are optimized

o, the resulting configuration is "relaxed". We see that one can construct a cluster expansion
for the 2N unrelaxed energies (thus defining a set of 2N unrelaxed I’s), or construct an
expansion for the 2N relaxed energies (thus defining a set of 2N relaxed J's). In either case,
the orthonormality and completeness of the set of spin products quarantees [14] that the
mapping of {Egj..(0)} onto {E-g(0)} exists.

We can define a correlation function, ﬁF for each class of symmetry-equivalent figures,
F, as the average for each configuration of the spin products over all figures that make up
E:

"The assertion of Xi, Chakraborty, Jacobsen, and Norskov [14] that Eg(0) cannot, in
i s ; .
principle, represggt such a E..(0.{R}}), is, hence, false. Note, however, that in our
representation {R;} is fixed for each o (either at the unrelaxed or at the relaxed values) and
does not take random values. Hence, vibrational entropy is not included in the form of
Eq. (1). Vibrational entropy can be added as a separate term.
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- _ 1 o~ ~ o 2
Mg(o) = o Efj §,© §,(0.8; (@, @
where f run over the NDg, figures in class F, the spin indices run over the m sites of figure f,

and Dg is the number of figures of class F per site. We can now rewrite Eq. (1) as
Ecg(0) =N Y Dg Jg Tp(o) , (3a)
for a particular configuration ¢, and '
<Ecg> =N Y Dg Jp <> (4)
F

for the configuration-averaged disordered alloy. Here, Dy is the number of figures of class
F per site. We see that the problem breaks naturally into two parts: (a) "Energetics”, i.e.,
calculation of the interaction energies {Jg} from some microscopic Hamiltonian, and,
(b) "Statistics”, i.e., solving Eq. (4) with a given set { Jg}, thus finding the ground state (T=0)
stable configurations out of 2N possibilities [10], and obtaining finite-temperature phase
diagrams [11,12].

When the CE converges rapidly, the energies of the 2N configurations are approximately
linearly dependent. In this case, knowing a few of the energies allows us to determine the
rest. Thus the advantage of the cluster expansion is that it extracts information from a small
set of structures to make predictions for the energies of all other structures; by contrast, direct
electronic structure calculations [1] treat each configuration independently, and fail to take
advantage of the underlying relations among different substitutional configurations of the
system.

To summarize, the CE of Eq. (1) constitutes an exact mapping of either relaxed or
unrelaxed energies of a nonvibrating lattice onto an Ising series. If a practically converged
form can be established, it can be used to scan the 2N configuration space searching for
"ground state structures”. In conjunction with the CVM or MC, it can be used to calculate

phase diagrams. We next discuss how the interaction energies might be determined.

III. ENERGETICS: DETERMINATION OF INTERACTION PARAMETERS IN
THE CLUSTER EXPANSION

There are three general approaches to this problem.
The first approach is to do a purely empirical fit of the J's to known features of the phase

diagram for the alloy system [15-16]. For example, information about the values of the J's
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may be extracted from experimental critical temperatures. This approach is the simplest, but
it requires an intrinsically unverifiable truncation to a small number of J’s, and provides little
new information about the properties of the alloy. Furthermore, it was shown [17] that for
systems with size-mismatched A and B atoms the J’s extracted from fitting experimental
critical temperatures fail to reproduce the observed mixing enthalpies.

The second approach is to determine the J's by treating ordered structures as
perturbations of the random alloy. The random alloy is treated using either the Virtual
Crystal Approximation (VCA) [18] or the Coherent Potential Approximation (CPA) [19-23],
and the electronic band structure is treated with the Tight-Binding (TB) method [19-21] or
the Korringa, Kohn, and Rostoker (KKR) method [22,23]. Methods based on these
approaches include the Generalized Perturbation Method (GPM) of Ducastelle [19], the
Concentration-Wave (CW) method of Gyorffy et al. [22,23], and the Linear Response Theory
(LRT) [18]. In the latter case the random alloy is treated by applying the VCA within the
pseudopotential method. The interaction energies are then calculated using first order
perturbation theory, where the difference between the atomic pseudopotentials is the
perturbation. This method provides accurate, first-principles results, but it is limited to alloys
in which the atomic species are similar enough for first-order perturbation theory to work,
and is only practical for calculating pair interaction energies. The CPA-based mean-field
methods—GPM and CW—currently neglect both positional fluctuations (relaxations) and
charge fluctuations. 1 will return to this point in Sections IV and IX.

The third approach is the direct inversion method of Connolly and Williams [7,8,17,24-
32]. In this method, Ny configurations are selected for direct electronic structure calculations.

The excess energy of a configuration ¢ with composition A;_ B, at volume V is defined by
AE(6,V) = E(o,V) - [(1 - X)E(A,V,) + xE(B,Vy)] (&)

where E(A,V,) and E(B,V) are the energies of pure A and B solids at their equilibrium

volumes V, and Vg. The directly calculated formation enthalpy is defined by

Egirectl®) = AH(0) = AE(G,V ) = m\i{ﬂ AE(G,V) , (6)

where V; is the equilibrium volume of configuration ¢ and all structural degrees of freedom
are relaxed. One selects Ny structures and N figures, with Np < N, such that the cluster
expansion of Eq. (3a) is converged when the sum is restricted to these Np figures. The

correlation functions and the calculated energies for these configurations are then used to fit
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the interaction energies of Eq. (4), by solving

Ng Ng B 2
Y 0, By ©) -N Y Dplplgo)|” = Minimum ,
o F

(7

with respect to the Ni values of Jg, where oy are weights. Equation (7) can be solved using
the singular value decomposition technique [33]. For the special case of Ng = Ng (which is
the case used by Connolly and Williams [7], we can solve explicitly for the J’s in terms of

the E’s:

Dlg = 3 M6 Egeeo”) . ®

G"

A few comments are pertinent here:
(i) Equation (8) highlights the differences between the CE and the conventional
interatomic potentials approach [3]. In the latter, Ejirect 18 Written as a sum of two-body (Vij),

three-body (V). and higher potentials, so that Eq. (8) becomes

Delg = ), [ﬁF(O’)]“[Z Vi + Y Vi + ] ©)
o’ ij

ijk

Thus, each Jg in the CE method renormalizes in it all interatomic potentials (two-body, three-
body, etc., summed over all interatomic distances), so that even the J F = nearest-neighbor pair
interaction of the CE contains information from all interatomic potentials at this volume. We
thus sometimes refer to this CE method as the "renormalized interaction” approach.

(ii) Equation (8) clarifies the point that a "figure" F should not be interpreted
geometrically, but rather topologically: its energy Jg corresponds to a sum over config-
uration, each having differently relaxed geometries for the same figure.

(iii) One hears sometimes the question "how can interaction energies deduced from a set
of ordered configurations [Eq. (8)] be used to describe random alloys [Eq. (4)], given that
" the two phases are known to sometimes have very different physical properties?" The formal
answer goes back to the fact that the untruncated Eq. (1) is exact [9]. The only source of
etror in practical applications is its truncation. Hence, it is imperative that one examines
quantitatively truncation errors. If this is satisfied to a given tolerance, the energy of any
configuration ¢ can be expressed as a linear combination of the energies of other

configurations {G’}, as can be verified by inserting Eq. (8) into Eq. (3a):

Ece(0) = NY A(0,0)E(0) (3b)
=
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with
AGo) = Y Tip© [fixo)] " . 30)
F

(iv) The inversion method provides a direct link between electronic structure and phase
stability. The basic structure of the method involves definition of an electronic Hamil-
tonian H (e.g., LDA) used to directly calculate total energies {Egy,(0)} of some
configurations, These are then used via Eq. (7) to obtain interaction energies {Jg} which can

be used to perform a ground state search and phase diagram calculations. Schematically

ground state search
H = {Egea©@} — (g} - thermodynamics (3d)

phase diagrams.

It is possible to repeat this sequence in "computer experiments" using constrained
Hamiltonians H, e.g., nonrelativistic vs relativistic; self-consistent vs frozen charge; relaxed
vs unrelaxed; s-d hybridized vs nonhybridized and zero pressure vs finite pressure. The
corresponding {Jp} will naturally reflect these changes, as will the phase diagram. This
allows us to study how the classic metallurgical constructs of "size", "charge-transfer”, "band
structure effects”, etc., affect phase stability. This will be illustrated in Sec. VIL

The advantages of the renormalized interaction approach are that it can be applied to a
wide class of alloy systems, including both intermetallic and semiconductor alloys,
and—when combined with ab initio total-energy methods—can provide accurate first-
principles results. Since only total energies of ordered compounds are needed as input, one
can readily use the well-developed band-theoretic methods which solve the LDA equations
highly accurately. In particular, self-consistency, exchange and correlation effects, use of
full-potentials, converged total energy expressions and relativistic effects are included. This
method can also be used for cluster expansions of other calculated properties besides total
energies, such as band gaps [32], bond lengths [8b], and molar volumes [28]. The
disadvantage of the method is that convergence must be carefully examined. Clearly, the
utility of this approach depends on its rate of convergence. Mathematical completeness
requires that 2 interaction energies be used to describe 2N configurations. Were we to stop
here, the cluster expansion would be completely worthless, since calculating the 2N Psisas
hard as calculating the energies of the ol configurations. However, intuition suggests that
interactions between distant sites are less important than those between near sites, and that
interactions that involve many sites are less important than those that involve fewer sites (see

Fig. 1). Thus the number of J’s needed in practice may be much smaller than 2N, If this is
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the case, then one can determine the J’s from the energies of a small set of configurations
{0’} [Eq. (8)] whose energies are calculated directly (independently of the CE, e.g., by first-
principles total-energy methods). These J's can then be used in Egs. (3b)-(3¢) to predict the
energies of new configurations {c}. The quality of the CE is determined by comparing the
energies Exg(0) for configurations {0} determined by the CE with the energies Ey; ... (0)
determined by a direct calculation [8,13,28-32]. If necessary, one can repeat this procedure
by adding extra J’s until the predicted energies for {cG} are smaller than some prescribed
tolerance. Two recent examples of such tests were performed for the Madelung energies on
an fec lattice (using the Ewald summation technique for the direct calculations) [31] and for
the energies of AlAs/GaAs on a zinc-blende lattice (where the direct calculations were done
using local-density total energy calculations) [13]. In both cases, direct calculations for a few
(~ 10) simple, ordered structures defined a CE that can predict the remaining configurations
with a precision comparable to that of the direct calculations. We next illustrate the

convergence of the Ising series in these cases.

IV.  CONVERGENCE OF THE CLUSTER EXPANSION: THE ELECTROSTATIC
ENERGY OF AN fec LATTICE WITH POINT CHARGES

A. The Problem

Consider the classic Madelung problem of a simple lattice (e.g., fcc) with N — oo sites
labeled i = 1,2...N, each bearing a net charge Q,; and occupied either by an A atom or by a
B atom. Each of the 2N possible lattice configurations ¢ has a Madelung energy Ey(0) per
atom. It can be expressed as an Hamiltonian with infinite range interactions
1 QY

Ey@ =Ly %% _ 1 sugs g (10)
M N 7 R -K| ZN%: 2 i

where the prime excludes the i=j term, and Tij denotes the bare Coulomb interaction energy

. O 88 , (1
vORy~Rf

fo e B = . 5
between charge Q; on lattice site R; and Qj- on Rj - We wish to calculate for the fcc lattice
(a) the configuration o, with the lowest Madelung energy (out of 2N possibilities), and

(b) the energy of a random Madelung lattice A, B, as a function of composition x. We will
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first find exact analytic solutions and then, independently solve the problem by using a

truncated cluster expansion, thus providing insights into its rate of convergence.
B. Modeling Charges on Sites

Before proceeding, we need to construct a simple, yet physically reasonable model for
the distribution of point charges Q, on the sites i. To develop intuition, consider an arbitrary
configuration where each of the N sites are occupied by A or B atoms (e.g., Na and CI) by
a coin-flip. When a Na site is surrounded locally mostly by Na atoms, its effective charge
would be close to zero, much like in a Na metal; on the other hand, when a Na atom is
locally surrounded by Cl atoms, its charge will be closer to +1, much like in NaCl. It hence
makes sense to assume that the charge on site i depends in some fashion on the number of
unlike atoms surrounding it. That this is physically reasonable follows from the existence of
a rather short Thomas-Fermi screening length in solids. That this is also numerically valid
follows from computer experiments: Figure 2 shows the linear augmented plane wave
(LAPW) calculated charge transfer (i.e., atomic charge in a compound relative to the charge
in the fcc solids) in supercell models of Cug 75Au 55, Cuy 75Pdy 55, and Cu, sPdys. These
supercells were selected to contain a variety of local arrangements of atoms about a given site
(e.g., in C“o.spdo.s we have Pd atoms surrounded by 2,5,7, and 8 Pd nearest neighbors). We
see from Fig. 2 that the charge on a given site depends (essentially linearly) on the number
of unlike atoms in the first coordination shell.™ (This is hardly surprising: Indeed the
essence of structural chemistry is that the properties of atomic sites depend on their local
chemical environments.)

We hence model the net charge Q, to be proportional to the number of atoms of opposite

type in the first coordination shell (containing Z atoms):

Z .
Q=rY 5 -5 Gly, (12)
k=1
)

where gi is the spin on site i, §k(1+1 is the spin on one of the Z atoms that are nearest-
neighbors to site i, and A is a scaling constant determining the maximum charge transfer

(2Z)). The charge distribution of Eq. (12) has the following properties: (i) the charges on

* - . . 3 .
In an antiferromagnetic alloy local magnetic moments on a given site also depend almost
linearly on the number of nearest sites with an opposite moment.
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within the S-CPA. From Ref. [31].

A’s and B’s have opposite signs; (i) different A sites (and different B sites) can have
different charges reflecting variations in the local atomic arrangements; (iii) electro-
neutrality Zi Q; = 0 is satisfied; (iv) Ey of Eq. (10) is symmetrical with respect to the
A < B replacement; and (v) this definition reduces to the standard definitions of the
Madelung energy for AB ordered lattices. Note that the model of Eq. (12) is used only to
illustrate convergence effects in the CE method. Actual calculations described in Sec. V and
onwards do not involve any model for Q,, but use instead the continuous electronic charge
density pB.

The physical consideration discussed above are absent in applications of the site coherent
potential approximation (S-CPA) to phase stability. There, one postulates [19-23,34a] that
in an arbitrary configuration the effective medium potential V, and charge Q, on site i do not
depend on the environment of i: At a given composition, all A atoms are assumed to have
the same charge (and so do all B atoms). It follows from the postulated absence of
correlations that the configuration average <Qin> for the random alloy [Eq. (4)] factors into

the product <Qi><Qj> which is zero, on account of global charge neutrality. Hence, in the
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S-CPA we have <Ey> =0, i.e., the random alloy carries no electrostatic energy (Fig. 3).
This is unphysical. The definition of randomness rests on the absence of correlations between
site occupations, i.e., <§i§j> = <§i><§ > The fallacy in the S-CPA is that it assumes that
this absence of correlations can also be used for other site-related properties, e.g., for the
charge on a site, the diagonal tight-binding Hamiltonian element, etc. ~ However,
<Qin> = <Qi><Qj> does not follow from <§i§j> = <Si><§ P> Local environment effects
were recently discussed in Ref. 34b.

Using Egs. (10)-(12), the Madelung energy per atom for configuration ¢ in a fcc structure

can be written as

Ep(0) = —0y(0) [(161)%2R] (13)

while for the random alloy we have:

2
<Epp = - <opg> [(16M)12R]

where o,(0) is the Madelung constant, R = aV2 is the nearest-neighbor bond length, and a
is the cubic fcc lattice constant. We will display our results in units of (16 ?L)ZIZR, where
27)\ is the charge transfer in a system in which the A atom is surrounded locally only by
(Z) B atoms. A can be calculated from self-consistent band theory, and is expected to scale
with the ¥, - ¥p electronegativity difference. Since the S-CPA gives <Ep>g = 0 and since
in our model <oy;>g will end up being of order unity (see below), the error in the S-CPA
scales as (16A)%/2R. 1 expect that for alloys with appreciable ionicity (e.g., Li-Al, Ni-Al), the
currently practiced S-CPA methods (GPM and CW) will fail in reproducing realistic
formation energies, mixing enthalpies, and ordering energies.

Having established a model for Q;, we can now solve the problem posed at the beginning

of this section. We start with the analytic solution.
C. Analytic Solutions

The configurational average of the Madelung energy, appropriate to a random alloy is

= <Q.Q., >

<EM>R=_ _:_E QlQ—”mF_Zm, (14)
2N 5 R;; 2 m R

where Q,,, is the charge on an atom in the mth shell (containing Z, atoms) about the origin

atiand R is the distance to the origin. Substituting our model (12) for the distribution of

point charges into Eq. (14) gives
y s
<EM>R = 5 §=

m=]

Z
R_: Frn(x) » (15)
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S Fi(x) = -4x(1 - x)(2Z; - K,

Foi(®) = 4&x(1-x)K,,

(16)

and K, is the number of nearest-neighbor atoms shared by sites i and i + m. In an fcc lattice
Z is 12,6, 24, 12, 24, and 8 while K,is4,4,2,1,0and 0 for shellsm = 1, 2, 3, 4, 5, and
6, respectively. Note that K .5 = 0, hence Fo>s = 0. From Egs. (15) and (16) we have

a2| 227 z (17)

4
<E\>  =4x(1-x) 2 |- + LS o
M~ p ( )2 Rl E Rm m

m=]

Equating this to the definition of Eq. (13) then gives the analytical result
<0z:1.\,1(x)>R =4x (1 - x)0.7395182 ... (18)

We can also solve analytically for the effective interaction energies J;, using the

orthonormality of {I1 (0)} [9] as follows [35]:

1 1 1 Qi(0) Q;(o)
I = Il; (0) Ey(0) = — o) — Yy r L~ 1 7 (19)
: 2N§ J uto ZNZG: F()2§ |Ri‘RjI
Inserting our model of Eq. (12) yields

Mows 1 1 0] j
=l ye Loy = g 11; (o) [Si(cr) -5 (c)] [Sj(o) - Sk(.’)(o)}

7~ R~
) ij ij kk (20)
A .1
o= X =3 8 - B Sy + Spad
ij ij kk'

where 5‘-‘“ equals zero unless figure f equals the pair figure ij, etc. Equation (20) could be
easily evaluated to give the analytic results for J;, while Eq. (18) provides the analytic result

for the Madelung constant of the random fcc alloy.
D. Solution via the Cluster Expansion

We next use the CE formalism to obtain the equivalent quantities. Using Ewald’s
+ method [36] we have calculated the "exact" Madelung constant op(o) for Ny = 12 fee
ordered structures depicted in Fig. 4, using the charge model of Eq. (12). (Figure 5 depicts,
- for comparison, the pseudobinary structures.) We then cluster-expand these {oy,(c))
according to Eq. (3) using a set of Ng pair-interactions {J} with m = 1,2,3,4, and 5 [all
many-body interaction energies vanish here, see Eq. (20)]. Minimizing the variance of
Eq. (7) yields the interaction energies shown in Table I. We repeat the same procedure using
Ng = 27 structures. The Madelung constant of the random alloy, obtained with the cluster
expansion is

<0ty (RX)>cg = 4x (1-x) 0.7368 (for Ny = 12) (21a)
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Table I. Comparison of exact and cluster-expanded (CE) results for the fcc Madelung lattice. Here, J; gives
the ith pair interaction energy (see text).

Interaction Iy 5 1y I 1y s
Exact 0.7395 -0.3239 0.0825 0.0608 0.0345 0.0014
CE 0.7368 -0.3239 0.0835 0.0609 0.0348 0.0014

and
<(xM(R,x)>CE = 4x (1-x) 0.7392 (for N0 =270 (21b)

This can be compared with the exact result of Eq. (18). Figure 3 shows a "ground state
diagram" depicting the lowest-energy T=0 structures (searching 216 configurations) of the
Madelung lattice described by our CE, as well as the energy of the random fcc Madelung

alloy. The S-CPA results for the random alloy are given for comparison.
E. Implications

There are a few obvious implications to this exercise.

(i) The cluster expansion converges reasonably rapidly even for the case of the
(seemingly long-range) Madelung problem. This can be seen from the agreement between
the exact model and the truncated CE for the <og>, values [Egs. (18) vs (21)] and for the
{Jg} values (Table I).

(ii) The S-CPA based methods use <Ep;>p = 0, unlike the present result. While
<Epg>g = 0 is an exact mathematical result if uncorrelated charges <Qin> = <Qi><Qj> are
assumed, this assumption is physically incorrect when charge transfer exists. Significant
quantitative errors are expected for systems with non-negligible charge transfer (Fig. 3).
These include possible errors in the electrostatic "ordering energies” Ey(0) - <Eyp>g, i.e., the
difference in Madelung energy of an ordered structure © and the random alloy of the same
composition. In units of (160)%/2R these are [in parenthesis we give the S-CPA values]:

L1y -0.8549 (-1.5944)

L1;: +0.0444 (-0.6951) (22)
L1, - 0.6411 (-1.1958)

DO,,: - 0.6623 (-1.2169) .

Having discussed the convergence of the CE in the simple case of the Madelung lattice,
we now apply the method in the context of the local density approximation (LDA), where
Ejirect (0) of Egs. (5)-(6) is calculated by the LDA. In this case, the electrostatic energy is

calculated from the (continuous) electronic charge density, not from point charges.
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V. APPLICATION OF THE CE TO THE LATTICE-MATCHED
AlAs/GaAs SEMICONDUCTOR ALLOY

We now illustrate the application of the CE method to the lattice-matched semiconductor
alloy system (AlAs),_, (GaAs),, calculating the excess energies AE(0,V) of Eq. (5) using the
local density approximation, as implemented by the nonlocal pseudopotential plane-wave
method. The procedure follows Sec. IV, namely:

(i) Define a set of N periodic crystals Aqu representing a range of compositions and
atomic plane orientations G; Table I and its caption give 27 examples (including the
binaries) for the fcc symmetry. The structures are analogous to those depicted in Fig. 4
except that now we have an additional, fixed As sublattice that does not carry any statistical

degrees of freedom. Figure 5 shows examples of the semiconductor structures used.

Table II. Calculated formation energies (in meV/4 atoms) of various ordered ApB, structures (A = AlAs, B
= GaAs). The structures can be characterized as superlattices of repeat periods (p,g) in various orientations
given in this table, except for the luzonite AB; (predicted energy, 10.31; direct calculation, 10.42) and A 3B
(predicted energy, 10.31; direct calculation, 10.16) which are not superlattices. Using the energies of six
structures only (denoted by an asterisk) we predict via the cluster expansion the energies of the remaining 21
structures. In each case we list the predicted value and below it the value obtained directly from the ab initio
calculation. The standard deviation for 21 predictions is 0.13 meV, close to the relative precision (~0.1 meV)
of the underlying ab initio calculation.

Orientation
formula [111] [001] [110] [201] [113]
AB CP CA CA CA CP

10.74* 13.74* 13.74* 13.74% 10.74*
10.74 13.74 13.74 13.74 10.74

AB, al Bl ¥l vl ¥l
7.39 9.57 11.39 11.39 11.39
741 9.70 11.62 11.62 11.62

A,B o2 yirA ¥2 Y2 ¥2
7.39 9.57 11.39 11.39 11.39
7.50 9.88 11.66 11.66 11.66

AB; Vi Z1 Y1 Fl w1
5.54 7.18 8.75 10.19 8.77
549 7.12 8.68 10.31 8.78

AsB, V2 72 Y2 CH w2
572 7.48%* 10.64 13.50* 12.16
5.65 748 1048 13.50 12.13

A;B V3 z3 Y3 F3 w3
5.54 7.18 8.75 10.19 8.77
5.55 7.22 8.65 10.13 8.74
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Crystal

Structure
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Example Cu Cuy Au TiAl4
Lattice. FaRSCARINSRIONS | SaimeeGuki: et T eragonsl
Unit ( 0,1/2,1/2) (1,0,0) (1, 0,0 (172, 172, 0)
Cell (172, 0,1/2) ©,1,0) (0, 1,0 (1/2,-1/2, 0)
Vectors (1/2,1/2, 0) (0,0, 1) (1/2,1/2,1) (1/2, 0,372)
Space Group:
{int. Tables: Fm3m Pm3m 14/mmm 14/mmm
Shoenflies: 0: 0:, DI,’, 014:
|Number: 225 221 139 139
Pearson Symbol: cFa cP4 ti8 tie
Equivalent None None A;B along [201] A,B, along [001]

Superlattice

SB Name: L1, L1y (CH, "40") (Z2)
{other)
Formula: AB
TR
Crystal Tg}r I
i =T
ructure . | 1
A | ed—e
@B |I .Ti"“" |
NN e
Example CuAu-l CuPt NbP
Bravais 1 Rhombohedral Body-centered ;
Lattice Simple Tetragonal (Triagonal) Teytragonal Simple Tetragonal
Unit (1/2,1/2, 0) (172,172, 1) (1, 0,0 (1/2,1/2,0)
Cell (-1/2, 0,1/2) ( 1,1/2,1/2) (0 10 (-1/2,1/2, 0)
Vectors (0,0, 1) (12, 1,1/2) (1/2,1/2,1) ( 0,0,2)
Space Group:
Int. Tables: P4/mmm R3m 144/amd P4/nmm
1 5 19 7
Shoentlies: Dgn D3q Dy Dsh
Number: 123 166 141 129
|Pearson Symbol: P4 hR32 118 tP8
Equivalent A,B, along [001] A4B; along [111] A4B, along [201] A,B, along [001]

Superlattice

Figure 4. Crystal structure information for binary fcc compounds used in the cluster expansion.
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(ii) Calculate quantum mechanically from band-structure theory the excess total energy
AE e, (0) of these Ny periodic structures. Here, the ion-ion, electron-ion, and electron-
electron (Coulomb, exchange, and correlation) interactions are treated self-consistently in an
ab initio fashion. Great care was exercised to assure that the calculated excess energies
AE g;.0.1(0) have the same precision (within 0.1 meV/atom) for all structures; we use precisely
equivalent basis sets, Brillouin-zone sampling, and stringent self-consistency conditions.
These calculated energies AE(0)jigec for all ordered structures ¢ exhibit a nonintuitive
distribution whereby certain atomic-plane orientations [e.g., (111] have the lowest energies,
others [e.g., (201)] have the highest ones. This is illustrated in Figure 6.

(ii1) Fit all of the Ny = 27 calculated excess energies to a set of Ng < N0 interactions
{Jxm}- Here, k denotes the "order" of the interaction (k=2,3,4 are pairs, three and four body,
respectively), and m denotes the separation (m=1,2,3, are first, second and third neighbors,
respectively).  Figure 1 depicts these figures. Using only Ng =13 terms produces an
excellent fit with the root-mean-square error of 0.097 meV, comparable to the intrinsic
relative precision of the ab initio pseudopotential calculations. More importantly, these
interactions Ji m show convergence with the size of the figure, e.g., the pair (k = 2) energies
decay with interatomic separation m: they are -0.8075, -0.0279, -0.0225, -0.0051, -0.0001,
and -0.0075 for m = 1, 2, 3, 4, 5, and 6, respectively. The same is true for the three-body
terms J3’ 1 = +0.0075, 13.2 = -0.0021, and J3,3 = +0.0003, while the four-body terms are rather
small: J, | = +0.0009 and J, , = -0.0034.

(iv) Given this rapid convergence, we now select a smaller number of figures, i.e., those
that give the largest contribution Dy mJk m to the energy of Eq. (3) and use these I’s to predict

the energies of other structures (not used as input), viz Egs. (3b)-(3¢). In addition to the
normalization terms (k.m) = (0,1) and (1,1), we use the pair interactions (2,1), (2,2), (2,3), and

(2,4). Using just these Ng = 6 figures and Ng = 6 structures (denoted in Table II by asterisks)

grdscin (0,0,0) {0,0,1) (2,0,1) (1,1,1)
Name Zincblende | _Layered ' Layered
(ternary) (Sphalerite) Tetragonal “Luzonite” | Chalcopyrite | Famatinite Trigonal

Formula N 24BE; | n - 13 A8C n:2ABC, | n- 13 A8C
i L el S| 3t N G | 0 - 13dBC. |

s
‘ S
In Ga As | As Cu
ZnS type InGaAs, typeICu;,AsS4 type | CuFeS; type | Cu;SbS, type | CrCuS, type

Example
(ternary)

(Na V S;)

Figure 5. Crystal structures information for pseudobinary fcc compounds.
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we obtain by direct matrix inversion [Eq. (8)] a set of six interaction energies. These are now
used to predict the energies of the remaining 21 structures, whose energies were not used in the
determination of the Jg's. Table II shows that direct calculations on only 6 structures can be used
to predict the guantum mechanically calculated excess energies with useful precision: the
prediction error (0.13 meV; a similar value is obtained by selecting other structures) is just
slightly larger than the intrinsic precision of the direct pseudopotential calculation. This analysis
shows that the informational content of the complex total-energy calculations on various
(AlAs)( GaAs), structures can be reduced to ~6 interaction energies and that these suffice to
predict the structural energies of other configurations.

There are a number of obvious applications to this cluster-expansion:

(i) Calculation of mixing enthalpy: We can predict the mixing enthalpy of a random
A,_,B, alloy [Eq. (4)] by replacing l:lk.m(u') in Eq. (4) by its configurationally averaged value -
(2x - 1)*. Using the interaction energies {J, ,} from the N = Ng = 6 set we get the excess
energy of the random alloy depicted in Fig. 6 by the solid line. The value at x = Y is within the
experimentally determined range [37].

(ii) Ground state search: A ground-state search with the Ising Hamiltonian (3) using our
interaction energies {J } shows that the system will phase separate into AlAs + GaAsatT = 0.

This is consistent with the behavior of this systems [37].
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(iii) Prediction of superlattice energies: Given the interaction energies, it is possible to
predict from Eq. (3) the formation enthalpies of (AlAs)p(qu’Ls)q superlattices as a function of
the repeat periods (p,q) and layer orientation G simply by calculating the geometrical correlation
functions ﬁF(p,q,G) and using the interaction energies that were determined previously from
our fit (Table ). For equimolar repeat periods (p,p) we predict [8c,13] the order of the
formation enthalpies AE(111) <AE(001) <AE(110) <AE(113) <AE(201). In the few cases where
our AE can be compared with direct ab initio superlattice calculations (for structures not included
in our basis set), the agreement is good, e.g., for the p=q=3and G = (111) oriented superlattice
the result obtained from our cluster expansion, 11.4 meV/cell, is in very good agreement with
the extensive first-principles calculations [13] yielding 11.6 meV/cell.

(iv) Prediction of interfacial energies: The cluster expansion can be used to extract the
interfacial energy for the interesting case of (BC),,,(AC)p(BC),, quantum wells, i.e., p layers of
AC embedded in a continuous barrier made of BC. The results [13] are shown in Fig. 7. We
predict that a [111]-criented well is the most stable while the [201] is the least stable in this
series. The different behaviors versus p and, for fixed p, versus orientation G can be understood
in terms of the number of mixed A-B atom pairs at the interface for each geometry [13].
Application of the CE to the calculation of anti-phase-boundaries in GaAlAs, is further described
in Ref. [13].

To summarize, we have shown that in the case of lattice-matched semiconductor alloys one
obtains a rapidly-convergent cluster expansion that permits ground state searches as well as
predicting energies of "complex structures”, not currently amenable to direct first-principles
calculations. We next give a brief overview on the overall trends obtained for other

semiconductor alloys, i.e., those exhibiting size-mismatched constituents.

VI. APPLICATION TO SEMICONDUCTOR PHASE DIAGRAMS

The cluster expansion method can also be applied to lattice-mismatched semiconductors
(although it leads to slower convergence discussed in Sec. IX below). The main results we find
[8] are:

(i) Lattice-mismatched semiconductor alloys have positive formation and mixing enthalpies
AH = AEyp, + AE . > 0 because the positive elastic "volume deformation” energies AEyp
exceed in magnitude the negative "chemical energies" AE . (this is discussed in more detail
in Sec. VL.D). Because the total AH > 0, the ground state corresponds to phase-separation. The
CVM-calculated phase-diagrams (Fig. 8) hence show miscibility gaps. The calculated shape of
the miscibility line agrees with the experiment in the one case where detailed data is available

(GaSb,_,As,, see Fig. 8¢). The maximum miscibility temperature scales with the relative size
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mismatch la, - agl/a. Despite this, the random alloy exhibits ordering type short range order
(Fig. 9 below). The reason is as follows:

(i1) The main contribution to these chemical energies comes from atomic relaxations at fixed
volumes. Relaxation is illustrated in Fig. 10: it shows the calculated nearest-neighbor bond
lengths in a number of III-V alloys. They are seen to deviate dramatically from what an
unrelaxed, static lattice model (underlying the S-CPA and VCA) would assume. That the non-
elastic, "chemical” energies AE . are antiferromagnetic can be seen from the predicted short

range order. Figure 9 shows the calculated "excess probability"

AP (x,T) = P, (x,T) - P[0 (y) (23)

for finding at (x,T) a A, B, cluster, in excess of what the random (Bernoulli) probability will
grant. We see that for all lattice mismatched alloys one predicts that the mixed clusters A;B,
A,B,, and AB4 have a higher probability than in random statistics ie., the system shows
"anticlustering"-type short range order (SRO). Hence, despite the fact that the ground state is
phase separating (AEyp + AE,. > 0) the disordered phase shows short range order
(AE pem < 0). In the lattice-matched case of AlAs/GaAs one has AEyy, = 0 and AE .. > 0, so
the SRO is in the form of clustering (Fig. 9a).

(iii) Different ordered structures have different abilities to accommodate dissimilar bond
lengths. The chalcopyrite structure CH is, in fact, best able to pack different A-C and B-C bonds
(even relative to the random alloy), hence its AE .. is the most negative of all structures.
Consequently, unlike the case in lattice-matched systems (Fig. 11a), in lattice mismatched
systems (Fig. 11b) the CH structure has a lower T = 0 energy than the random alloy. In other
words, the ordering energy E(0) - <E>p, is negative for CH.

(iv) Since the chalcopyrite structure is stabler at T = 0 than the random alloy, one expects
to find this structure as a metastable bulk ordered phase below some temperature T,. This phase
will be observed if local atomic diffusion is allowed, but long-range atomic rearrangements
(which would have led to phase-separation) are kinetically too slow at low temperatures. The
transition temperatures T, for this metastable order-disorder transformation was predicted [8a,b]
for many III-V and II-VI alloys and found to be rather low (T < 600 K). Experimental testing
of this result would be desirable.

(v) One could conceive of a way of making the metastable bulk ordered structure (resulting
from attractive chemical interactions) stable: Since the ordered chalcopyrite structure is lower
in energy at T =0 than the random alloy but is higher in energy than equilibrium phase-
separation (Fig. 11b), removal of phase-separation from contention could expose the ordered
structure as the absolutely lowest energy phase (Fig. 11c). This could be done by epitaxy: grow
the A, B, alloy or the ordered AB compound coherently on a substrate that is lattice matched

to it, but is mismatched with pure A and pure B. This would destabilize the coherent epitaxial

381



2.70 T T T T T T T T T T
(a) Ga Asy.,Py (b) Iny.xGay P (e) (d)

T=800K T=800K

260 91 r 7

R'(Ga-As) et

5 R°(Ga-As) R°(Ga-As)

Iny.xGa,As Ga Sby., Asy
RHGEF) HGaE) | T=800K T-800K

N O

Bond length (A)
r
’
o2
S E
. 2
’ |
]

2.30 L - n L
GaAs 02 04 06 08 GaPInP 0. 04 06 08GaPInAs 02 04 06 08 GaAsGaSb02 04 06 08 GaAs

1 1 1 1 i 1

Composition x

Figure 10. Calculated equilibrium alloy bond lengths R(A-C) and R(B-C) at T=800 K (solid lines) for size-
mismatched systems, compared with the "ideal” zinc-blende values R%(A-C) and R%B-C) (dashed horizontal lines).
The VCA value R(xX) is given for comparison, The shaded areas represent deviations of equilibrium alloy bond
lengths from the "ideal" values. From ref [8b].

(a) AH 200[ (b) AH (c) 6H i
- 16+ A|G3A52 1 180} GazASSb GazASSb 100
E
g 160} sl L {s0
S} 115 CA | 140f 132 CP 52 CcCP {60
> L N -
E ol o8 CH | 120p 115 CA___35 CA 140
I 103 D 23 D
75 ce | 1%
5 00 L 0 bR GaAs + GaSb
%, 84D 80F —
; L 4 I
-5 B0F 52 CH | -28 CH 120
wo, T
@ 40+ ' 1-40
b 1
(3] 2+ '
& 20 -60
ol _AlAs + GaAs | o _GaAs r GaSb| 1-80
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constituents (A-on-AB and B-on-AB) relative to the epitaxial alloy (Fig. 11c). Figure 12
shows [38] how an epitaxial phase diagram exhibits stability of the bulk-metastable chalcopyrite
compound, and also lowers dramatically the miscibility temperature of the alloy. This illustrates
how epitaxy could lead to stabilization of bulk-unstable ordered compounds, and to reduction of
the immiscibility temperature.

Many of our predictions for the structural and thermodynamic properties of lattice-
mismatched semiconductor alloys await experimental testing.  These include (i) more

measurements of bulk phase diagrams (Fig. 8), (ii) observation of metastable chalcopyrite
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ordering in low-temperature bulk samples, (iii) observation of SRO of the form suggested in
Fig. 9, and (iv) observation of stable chalcopyrite ordering in coherent epitaxial samples
(Fig. 12). Since more experimental data are available on transition metal alloys, we next describe

the application of the cluster expansion to such systems.

VII. APPLICATION TO BINARY PLATINUM ALLOYS
A. The Issue

One of the well-known metallurgical rules is that binary transition metal systems whose
constituent atoms have nearly-filled d shells ("late transition metals") have positive mixing
enthalpies AH; and show, at low temperatures, phase-separation rather than long-range ordering.
This has been explained in terms of tight-binding d band filling arguments [39-41]: it was found

that even in the absence of size-mismatch between the constituents [40] occupation of the upper

383



"antibonding" part of the d band leads universally to AH; > 0 for all late TM’s with an average
d electron count N 28.

The actual situation appears to be more complex as illustrated for example, by the phase-
behavior of binary alloys of Pt with its neighboring elements in the Periodic Table [42,43]. First,
even discarding for a moment “special cases" such as the ordering Pt-Cu and Pt-Ag
intermetallics [42], that contain a noble metal, or the ordering [42,43] Pt-Co system which is
complicated by a magnetic behavior over a wide composition range, the fact that even the non-
magnetic Pt; sNi, 5 alloy orders defies all current d band theories [39]-[41]. While it is certainly
possible to fit the observed Pt-Ni phase diagram to an Ising model [44], attempts to explain even
the sign of the Ising interaction energies required to produce the fit, have all failed [41]. Second,
while Pt-Rh and Pt-Pd were surmised [2,42] to phase separate, examination of the original
data [45] shows that no evidence exists to this effect (they were measured only at very high
temperatures where solid solutions exist [42]). Only a suggestive extrapolation from the known
behavior of Pd-Rh and Pd-Ir exists. In fact, measurements on Pt-Pd have shown negative mixing
enthalpies [46] and clear evidence in X-ray diffuse scattering [47] for a substantial degree of

short-range order which remains unexplained.

B. The Effective Interaction Energies and Ground States

We have applied the CE to this problem by calculating AE(V,0) of Eq. (5) using the scalar-
relativistic LAPW method [48] for 12 simple ordered structures shown in Fig. 4. To test the
transferability of {Jg } we have recalculated these from a subset of Ny = 10 (out of a total of 12)
of our ordered structures, then used these new J’s to predict through Eq. (3) the formation
enthalpies of the remaining two structures, not included in the fit. Testing a number of different
choices of 10 out of 12 structures gives an average "prediction error" (relative to direct LAPW
calculations) that is comparable to the underlying error of LAPW itself. We can hence use these
sets of {Jg} to predict through Eq. (3) the energies of arbitrary fcc lattice configurations that are
too numerous and often too complex to directly calculate by the LDA.

The effective interactions resulting from the full fits are depicted in Fig. 13. They show:
(i) a reasonably rapid decay with interatomic distance, (ii) a non-monotonic order of energies,
e.g., J2,3 >1y, in Pt-Cu, (iii) that the dominant interactions in Pd-Rh are "ferromagnetic" (J<0
i.e., repulsive), indicating phase-separation, but "antiferromagnetic" (attractive) in Pt-Cu, Pt-Pd,
and Pt-Rh, implying [10] different types of ordering vectors.

We have used these effective interaction energies to perform a ground state search [8a]
comparing different structures at the same composition as well as the stability of the

homogeneous structure against mixing of two (ordered or disordered) phases of different
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compositions. The resulting ground state lines are shown in Fig. 14. These show that (i) Pd-Rh
phase separates, as found experimentally [45,49] and by other calculations [50], but (ii) Pt-Cu,
Pt-Pd, and Pt-Rh are found to order in [¥2,¥2,%5], [001], and [10%3] ordering vectors, respectively,
in conflict with expectations based on tight-binding model [2,39]. If, however, one uses a non-
relativistic calculation of Ey,.(6), the predicted ground state of Pd-Pt is phase separation
(denoted by asterisks in Fig. 14b). For Pty sCuy s we correctly find trigonal L1 1 ordering
showing that our expansion captures the delicate competition between trigonal (L1,) and
tetragonal (L1g) structures (we find, however, that L1 is stabler than L1 1 if one assumes the
nearest-neighbor approximation of Ref. 7). No low temperature data exist for Pt-Rh. For
Pty 5,Pd; 49, X-ray diffuse scattering experiments [47] revealed significant short range order in
the nominally disordered alloy; while the crystal structure (or phase diagram) was not determined,
the average number of Pt first-neighbors to Pd is consistent with tendencies to order in the
structure predicted here. It is interesting to note that our ground-state search also identifies new
structures that were not used to determine the interaction energies, e.g., D1 and D7 for Cu-Pt,
and D1, and X2 for Rh-Pt [29]. Hence, the cluster expansion method permits detection of

unsuspected ordered structures.
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C. Thermodynamic Properties

Using the set of interaction energies {J, ,} we have solved the spin-% fcc generalized Ising
model in the cluster-variation method [11] (CVM), evaluating the configurational entropy by
folding interactions within figures that are larger than the tetrahedron (this method agrees closely
with Monte Carlo simulations; see Fig. 15 in Ref. 8b). Of the systems studied here in detail, we
display finite-temperature results only in the cases where experimental data are available for
comparison.  Figure 15(a) compares for Pd-Rh the calculated phase diagram with
experiment [49]. The agreement is reasonable, given that no empirical data or parameter
adjustment is used and that vibrational and coherency effects are neglected. This figure also
shows that the calculated phase diagram can be brought into perfect agreement with experiment ‘
if our reduced excess enthalpy AH is lowered by a reasonable error margin of 12%. Figure 15(b)
depicts for Pt-Pd the calculated mixing enthalpy and the excess free energy, showing good

agreement with experimental data [46]. The Ni-Al phase diagram (Fig. 16) will be discussed

later.
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Ref. 49a and diamonds from Ref. 49b) phase diagram of
Pd; ,Rh_. The solid line is the binodal, the dashed line is the
spinodal, and the dash-dot line is the calculated binodal cor-
responding to a ~12% reduction in AH. (b) Calculated and
measured (Ref. 46) excess enthalpy AH (at T =300 K) and free
energy AF (at T = 1600 K) for Pt,Pd, ,. From Ref. [29].
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We next present the methodology used to analyze the electronic origins of ordering and

phase-separation in these systems [51].
D. Method of Analysis

The large body of phase-diagrams collected over the years has been used in the past to
deduce many important phenomenological rules of phase stability. These have had enormous
value in systematizing the large data bases in terms of elementary constructs such as the "size
factor," "electron per atom ratio," the "electrochemical factor," and "Brillouin zone effects.”" It
is essential that modern quantum mechanical calculations not only produce "correct results," but
also help demistify the classical metallurgical rules in terms of recognizable and quantifiable
concepts. I illustrate here how the CE method can be used to analyze its own predictions.

To analyze the underlying physics of the results of the preceding section recall that the
central energetic quantities used in theoretical discussions of phase stability are the formation
enthalpy AH; (o,) of the ordered (ord) compound A/B in structure ¢ and the mixing enthalpy
AH_; (x) of a random (rand) alloy A, B, of composition x. These are defined as the excess
energies taken with respect to the equivalent amounts of the solid constituents A and B at their

equilibrium volumes V, and Vp:
AH; (o,) = Eg(ord) - [(1-X)E, + xEg] (24)
AH,;,(x) = Eg(rand) - [(1-X)E, + xEg] . (25)

The "ordering energy” is defined as the difference
8E 4(0,) = AH; (o) - AH; (x) . (26)

If 3E4 < 0, the random alloy could develop short range order of the type underlying the
structure 0. When AH; (6) < 0, the long range ordered configuration ¢ could become a stable
"ground state structure", whereas AH; (o) > 0 means that the ordered structure © is unstable with
respect to phase-separation into A and B.

Further insight into the factors governing such stability trends can be obtained by
decomposing the energies (24)-(25) into a sequential process [24] as follows:

First, deform hydrostatically pure A and B from their equilibrium volumes V, and Vg to
the volume V akin to the final compound o with the composition x. In doing so we invest a
“volume deformation” (VD) energy AEy,: it vanishes if the constituents are size-matched
(Vo = Vg = V) and is positive (i.e., promotes phase-separation) otherwise. Since, to within a
good approximation, the molar volumes of structures at the same composition are equal [17],
AEyy, depends essentially on the composition x but not on the atomic configuration .

Second, permit A(V,) and B(V,), both prepared at the final volume Vg to form the

compound 6(V ;) in its ideal structure. In this constant-volume and constant-geometry reaction
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one permits charge-transfer, the formation of hybridied energy bands, etc.; the energy change will
thus be called the "charge transfer” (CT) energy AEct.

Finally, permit the atoms in configuration © to relax to their energy-minimizing positions.
Such strain-relieving relaxations (REL) change the energy by AEgg; (). This includes both cell-
internal displacements as well as cell-external deformation (e.g., changing the c/a ratio in the L1
structure). Like the volume deformation, the energy, AEpg () too tends to vanish for size-
matched systems. In contrast to AEyp,, however, relaxations depend on the atomic configuration
o and are energy lowering (i.e., promote ordering).

We will compute the above mentioned components of AH

AH{0) = AEy(x) + AEx7(0) + AEgg (0) 27
directly from their definitions as differences in the appropriate total energies, thus quantitatively
isolating various factors governing phase-stability. We will further repeat the calculations using
a constrained Hamiltonian (i.e., relativistic vs non-relativistic) finding how certain electronic
interactions affect phase-stability [see Eq. (3d)]. The energy of the random alloy is calculated
from Eq. (4). Since the input to Eq. (7) is a set {AH; (o)} of formation enthalpies for ordered
compounds, and since each of these can be decomposed accordingly to Eq. (27), the final random
alloy energy AH_; (x) can also be represented in the form (27). Consequently, the "ordering
energy” of Eq. (26) can be expressed as

8E4(0) = [AEqr(ord) - AE(rand)] + [AEgg (ord) - AEpg (rand)] , (28)
permitting its analysis in terms of excess relaxation and charge-exchange relative to the random
alloy. The first term of Eq. (28) represents qualitatively the classic "electronegativity factor,"

while the second term represents the "size factor."
E. Relatively-Induced Ordering (NiPt) and Phase-Separation (AuPt)

The method of analysis of the previous section are illustrated in Table III for Au-Pt, Ni-Pt,

and Ni-Au, respectively [51]. Our analysis shows the following features:
(i) A non-relativistic description of NiPt predicts AH; > 0, i.e., phase-separation, despite the

fact that the ordering energy OE.,(L1,) is negative. Neglecting AEyp, and AEpg, Pinski
et al. [52] have previously calculated (non-relativistically) the finite-temperature generalization
of 8E 4 and from it the long range order (LRO). They predicted an ordering transition into the
L1 structure at the temperature of T, ~ 1500 K. However, since the non-relativistic description
used by them gives AH{(L1,) > 0 (Table III), the system must phase-separate rather than order.
Hence, a correct non-relativistic description does not produce LRO at any temperature. This
illustrates the fact that neglect of relaxation can lead to large errors (~ 1500 K) in order-disorder
transition temperatures, and that in general, LRO cannot be predicted from a theory of 8E 4.

A similar conclusion is apparent in the relativistic description of NiAu (Table III): we find that
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Table ITI. Contributions of volume deformation (VD), charge-exchange (CT), and
relaxation (REL) to the excess enthalpies [Eqgs. (27) and (28)]. Results are in meV/atom.

Non-Relativistic Relativistic
L1, Random Ll, Random

Nip sPlg 5
AEyp +543.6 +543.6 +426.8 +426.8
AE-r -398.4 -307.0 -504.5 -403.3
AEpp;. -51.6 -60.5 -18.0 -53.8
AH +93.6 +176.1 -95.7 -30.3
OE 4 -82.5 -65.4

Aug 5Pty 5
AEyp +42.3 +42.3 +48.6 +48.6
AE~t -113.5 -103.5 +28.2 +1.5
Afppy. ~0 ~0 ~0 ~0
AH -71.2 -61.2 +76.8 +50.1
3E 4 -10.0 +26.7

Nig sAug 5
AEyp +722.2 +722.2 +561.8 +561.8
AE~r -337.8 -283.8 464.8 -369.2
AEppr -11.9 -82.5 -20.2 -68.3
AH +372.5 +355.9 +76.8 +124.3
SE, +16.6 -47.5

ord

AH¢(L1,) > 0 despite 5E0rd(L]O) < 0. This is consistent with the observation of (001) short range
order in high temperature NiAu alloys which phase separates at lower temperatures [53].

(ii) The reason that the non-relativistic ground state of NiPt is phase-separation is the
dominance of volume deformation over charge-exchange and relaxation (Table IIT). Indeed, the
calculated non-relativistic lattice constants of the fcc constituents shows a large (16.6%) relative
size mismatch leading to a large destabilizing AEy,. Relativity stabilizes NiPt for two reasons.
First, it reduces the size mismatch to 12.9%. The relativistic reduction in size mismatch leads
to a reduction in AEyy,, hence, stabilization. The same effect exists in other compounds in which
only one of the two elements is heavy; see for example AEyp, in NiAu, Table III.  Second,
relativity leads to a significant lowering of AE~;. Examination of the density of states and
charge transfer shows the reason: relativistic effects lower the Pt s band more than the Ni s

band, leading to a more effective Ni—Pt charge transfer and s-d hybridization. The combined
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effect of reduced repulsiveness of AEyp, and increased attractiveness of AE.p leads in a
relativistic description to a negative AH{L1,)) = -95.7 meV/atom, i.c., ordering.

(iii) A non-relativistic description of AuPt leads to ordering, while a relativistic description
leads to the observed phase-separating behavior: The reason is again two-folded. First, while
relativity does not significantly change the lattice mismatch if both atoms are heavy, it raises
significantly the bulk moduli B of heavy elements: non-relativietically Bp, = 1.79 Mbar and
B,, = 1.03 Mbar, while relativistically Bp, = 2.87 MBarand B, , = 1.83 MBar. (The measured
values are 2.78 Mbar and 1.73 Mbar, respectively.) This leads to a (small) relativistic increase
in AEy, hence, destabilization. Second, relativity diminishes strongly the stabilizing effects of
charge-exchange in AuPt (indeed, it even changes the sign of AE-t; see Table III). The reason
is evident by inspecting the calculated electronic structure of fcc Au, Pt, and L1, AuPt (all
evaluated at the same L1, atomic volume): Au has 11 valence electrons and exhibits s-like states
at the Fermi surface, while Pt has only 10 valence electrons and exhibits d states at the Fermi
surface. In a non-relativistic description there is a significant stabilizing charge-transfer from the
higher Au s-p band into the Pt d band. However, relativity shifts the Aus band to deeper
binding energies; this band is then less able to provides charge to the Pt d band (the Pt charge
now comes predominantly from the Au d band). Hence, ordered AuPt is less stable in a
relativistic description. Simple d band models miss these effects.

Considering the Au-Ni-Pt triangle, we concude that when borh elements are heavy (AuPt),
relativity promotes phase-separation through increased AEy; and diminished AE7, while when

only one of the two elements is heavy

' ' ' (NiPt and NiAu), relativity reduces AEy
T 600t -~ NR-
S BT SR 1 and increases AEcr, thus contributing to
— -" \- -1 .
‘S 400 ./ X ordering.
> ;
E 200_‘,-" The same conclusions can be
? Ok deduced from an "e-G" decomposition
S -200 [17] of the formation energies. Here,
“
L] . . .
§_400 G(x) is the configuration-independent
T . X " elastic energy (analogous to VD) and g,
Ni 0.25 0.50 0.75 pt : - :
X, is the "spin flip" energy (analogous to
Figure 17. &-G decomposition (Ref [17]) of the CT + REL). Figure 17 shows that in a

excess energies of Ni-Pt using a non-relativistic (NR)

O - non-relativistic description the positive
and scalar relativistic (SR) model. Note that relativity

reduces the positive elastic energy G(x) and increases G(x) overwhelms the negative g, so the
the attractiveness of the spin-flip energies g,. This formation enthalpy AHn =g, + G(Xn) is
leads to negative SR formation enthalpies AH, = )

g, + G(X,). Non relativistically, AH, > 0. positive.  Relativity reduces the re-

pulsiveness of G(x) and enhances the

attractiveness of €, thus leading to AH, <0 and LRO.
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The same method of analysis explains the trends in lattice-mismatch semiconductor alloys
(Sec. VI). In fact, non-relativistic NiPt is analogous to size-mismatched semiconductor alloys,
where €, < 0 leads to SRO (Fig. 9), but the overwhelming role of G(x) >> 0 leads to positive
formation enthalpies AH, = g, + G(X) (Fig. 11b) and a phase-separating behavior (Fig. 8). The
main contribution to stabilizing, €, < 0 in semiconductors is lattice relaxation (Fig. 10). This
leads to a negative ordering energy 8E_ 4 < 0 for the chalcopyrite structure (Fig. 11b), despite
AH; > 0.

To summarize, this section demonstrated how the cluster expansion can be used not only to

predict novel structures, but also to analyze the electronic origins of stability.
VIII. APPLICATION TO BINARY COPPER ALLOYS AND TO Ni-Al

The intermetallic systems Cu-Au, Cu-Pd, Cu-Pt, and Cu-Rh form an interesting set in that
while in elemental form, Cu, Pd, Pt, and Rh are all fcc metals, their 50%-50% equimolar
compounds exhibit at low temperatures a range of structural symmetries [42,54-57]: CuAu has
the fcc-based (L1,) structure, CuPd has a bee-based (B2) structure, CuPt has a rhombohedral
(L1,) structure, and CuRh does not exist (it phase separates into pure Cu + Rh). We have
applied the CE method to these systems [28] in a parallel way to what was described earlier for
the Pt systems. For Cu-Pd and for Ni-Al we also do a parallel CE for fcc vs bee structures.

Figure 18 depicts the ground-state lines for the Cu-based alloy systems studied here and for
Ni-Al (whose energies are calculated by the LMTO method). The symmetries established clearly
from experiment [42,54-57] are also found theoretically, even though we have purposely omitted
from the basis set used to extract J; some of the structures which are known to be ground states.
The results are as follows:

* CuPt: We find for CuPt (Fig. 18c) the established Cu4Pt (L1,) and CuPt (L1,) phases, i.e.,
we correctly describe the competition between rhombohedral (L1,) and tetragonal (L1p)
symmetries. Two additional ground-state fcc compounds Cu;Pt ("D1") and CuPty ("D7"),
having twice the primitive fcc lattice vectors are also identified; these structures were not
included in the "basis set" as they were unsuspected by the normal method of guessing to
be ground states. We tested our prediction by calculating the energy of Cu,Pt (D1) directly
from LAPW (finding AH; = -65.5 meV/atom), confirming the cluster expansion prediction
(AH; = -61.5 meV/atom). Indeed an early [58] investigation did propose the existence of the
CuPt; ("D7") structure on the basis of electric measurements (however, this was not directly
confirmed by x-ray studies).

¢ CuPd: Our calculated results [Fig. 18(b)] for CuPd show the observed fee-type CusPd
(L1) and bee-type CuPd (B2) structures, indicating that our theory correctly reproduces the

delicate balance between fcc and bec interactions. The cluster expansion also predicts that
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CuPd, (L1,) and CuPd, (D7) are only ~3 meV/atom below the line connecting B2 (x = ¥2)
with Pd (x = 1), hence, could form at low temperatures.

CuAu: Our calculation [Fig. 18(a)] for CuAu correctly identifies CusAu (L1,), CuAu (L1y),
and CuAusg(L1,) to be on the ground state line (GSL). The CujAu and CuAu structures are
found to be very stable. On the other hand, the CuAu, is less stable: it moves above the
GSL, when the structural relaxation is incorporated. This is consistent with the experimental
fact that other structures can effectively compete with CuAu; at low temperatures.

CuRh: Experimentally [42,54-57], Cu,_,Rh, exhibits fcc disordered solid solutions above
1150°C.

corresponding to phase separation into Cu-rich and Rh-rich fcc alloys. Our calculation for

At lower temperatures, the phase field exhibits a wide miscibility gap

CuRh shows indeed a trivial horizontal GSL (not shown in Fig. 18) representing phase

separation, as observed.
AlNi: Experimentally [42,54-57], Al, ,Ni, shows both fcc- and bce-based structures. The
presence of the CsCl (B2) structure at x =% and the LI, structure at x = 3/4 well
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established. In addition, a bcc-like

AlNig structure has been identified
recently at low temperatures at x = 5/8
[57b). It is isotypical with GasPt;. Our
calculations are shown in Fig. 18(d). The
presence of the cubic CsCl structure

(B2) wnd the NiAly (L1,) phase in the
ground state are comrectly reproduced.
These are very stable phases with
properties studied by many authors [54].
At x=5/8 we find the D5
structure(Ga;Pts-like) in the GSL. It is
barely below the line joining the B2 and
L1, points in Fig. 18(d), which means
that, if truly a stable phase, it exists only
at lower temperatures. True Ga;Pts has
an orthorhombic distortion which we
have not considered, but which could
lower its energy still further. At x = 7/8
we predict the fcc-based configuration
denoted D7, whose stability is not an
experimental fact. In addition to these

ground-state structures we have iden-

tified other metastable structures whose



energies are not far from the GSL. For example, ourcalculations place the DO,,

configuration just 2.2 meV above the  ground state at x =3/4, while the DO,
energy is further above. At x= 3/4 we find the DO,; structure just 1.3 meV
above the L1, structure: it can be characterized as an AlNi; Al;Ni, superlattice along the [410]

direction. It is hence an intermediate structure between L1, and DO,, with ordering vector
[201). Finally, at x = 5/6 we found a configuration just 0.9 meV above the GSL. It is a
AlgNisAly superlattice along the [531] direction. The recent CPA-based calculation on
Ni-Al [59] produces formation energies (ibid, Table 2) that are 2-3 times smaller in magnitude
than our direct ab-initio results. This could be due to the neglect of charge-transfer (CT) in their
calculation [compare the CPA and the present Madelung energies in Fig. 3 and in Eq. (22)].
Testing awaits inclusion of CT in CPA.

Figure 16(a) gives the observed [42,54] Ni-Al phase diagram; the calculated fcc and bee
solid phase portions of the Al Ni, phases diagram is given in Fig. 16(b). The lines of
equilibrium are cut at T = 1640 K where melting begins. The binodal of B2-L1, and L1,-Ni
equilibrium lines agree well with experiment at temperatures near melting. At lower temperatures
the B2-L1, binodal is deformed by the occurrence of the Al;Nig phase D35, which we find to be
stable below 950 K. The experimental phase diagram near the onset of the D5 stability is not
well reproduced by our calculation, but does not differ much from it. Thus, the onset of the D5
stability marks the appearance of a new parameter of order in the B2 medium. At lower
temperatures, our L1,-Ni binodal falls faster (vertically) than experiment, due to the presence of
the stable AINi; phase (D7) in our calculations. This phase has never been reported, but the
observed instability of the binodal might be indicating the presence of a hidden phase like our
D7. Since this phase has a very low Al concentration, and since its translation vectors are fcc-
like (but doubled), this phase might be easily confused with fcc Ni with a random distribution

of Al impurities.

IX. THE ROLE OF ATOMIC RELAXATIONS

A. When Is Relaxation Expected to Be Important

As we have seen, the utility of the CE is largely determined by its rate of convergence. For
systems with inherently short-ranged interactions, such as chemical interactions in size-matched
alloys [13] or magnetic exchange interactions in spin alloys [4,5], the CE can be applied
easily—requiring < 10 interactions. But when A and B have very different sizes, then changing
the occupancy of some sites of a given configuration will cause the atoms to relax from their
original lattice positions, leading to changes, AEpg, in the formation enthalpy (Table IIT) and

ordering energy [Eq. (28)]. For example, replacing a small atom by a larger one will cause its

393



immediate neighbors to relax outwards. The relaxation of the nearest neighbors can, in turn,
cause a relaxation of their neighbors. This effect is cumulative: if several consecutive atoms are
replaced by larger atoms, then the relaxation of their neighbors will be even greater. This does
not pose a formal problem for the CE because Eqgs. (1)-(7) can be applied to any quantity that
is a unique property of the configurations of the system. (Different properties will, of course,
have different J’s.) This includes the energy of any relaxed configurations, since this energy is
a unique function of the unrelaxed configuration.

Indeed, cluster expansions for systems with lattice relaxation converge more slowly than
cluster expansions for unrelaxed systems. This can be seen from the contribution of the
relaxations to the pair interaction energies:

i

A = —%j F(R} - R)) - @7 ®y - R} -F®; -RY , (29a)

where F(l?i - i)k) is the force on site i: induced by the atom at site ﬁ; ("Kanzaki
force") [18,60] and (I)(E)k - ﬁ)l) is the force-constant matrix. In many systems the force
constants decay slowly along particular directions, so the relaxations will propagate for long
distances; such is the case for zincblende semiconductors, where the force constants decay slowly
along the <001> bond chains [18].

One can develop a qualitative model showing when relaxation is expected to be important.
Consider the simple relations w ~ VO/M: & ~ 1/(<m2>M) and ? ~a’B [1/a 0a/0x], where
w is the phonon frequency and V<w?> is its mean, M is the mass, a(x) is the lattice constant, and

B(x) is the bulk modulus. Using these in Eq. (29a) leads to the scaling rule

4n 2 _ 2
AT & a"Ba, - ag/a) . (29b)

<w’> M

Hence, relaxation is important when (i) the relative size difference (a, - ag)/a is large, (ii) the
alloy is hydrostatically stiff (large B) but has (iii) low-energy phonons (<w?> small). Similar
relations have recently been used by Beiden and Vaks [61] to illustrate that for TiV, TiCr, and
CuZn the relaxation correction AJ is comparable to the unrelaxed J.

Since the term "relaxation” has, in the author’s view, been used rather vaguely in the phase
stability literture, I next attempt to define it more precisely, using a "sequential process”. While
the order of the sequence is chosen arbitrarily, it will nevertheless serve to clarify the basic

elements of relaxation.
B. Decomposition of the Relaxation Process

We will decompose the excess energy at fixed volume of an AC/BC system. Here we

generalize our previous notation to a pseudo binary alloy where the statistical variables are A/B,
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as before, but an additional, fixed sublattice is occupied by the "common atom" C. This
decomposition is identical to that of Sec. VIL.D, except that here we identify the components of
AEgg;-  The purpose of this decomposition is to help us understand the role of relaxation in
CEs; (our method of calculation does not, however, depend on this decomposition). We break

AE as follows:
AE(0,V) = AEyp(x,V) + 8EyR(0,V) + SEq(0,V) + 8Ey(0.V) + SE(g,V) . (30)

*  The first term is the "volume deformation” (VD) energy of Sec. VILD, i.e., the energy

required to change the volume of AC from Vac to V, and that of BC from Vg to V:

AEyp(x,V) = (1 - X)[E(AC,V) - E(AC,V,,0)] + x[E(BC,V) - E(BC, Vgl . (31)

Since AEyp, depends prirharily on x and not on the individual configuration [8a], it
affects neither the ordering temperature nor relative energies of configurations at a fixed
composition. It could, however, determine whether or not an homogeneous ordered phase
will decompose into its constituents,
*  The second term, 3E;p, is the energy difference between the unrelaxed (UR) structure
(all atoms at ideal lattice sites) and AEyp,. This is often termed the "spin-flip" energy.
Classic Ising models [4] as well as the S-CPA based GPM and CW methods treat only this
energy.
*  The third term, 8E, occurs only in pseudo binary alloys with a common sublattice. It
is the energy gained when the common C atoms (P for GaP/InP) are relaxed, but the A and
B atoms are held in their ideal positions. In a binary A, B, system, where there are no
common C atoms, there is no E.
*  The "cell internal” relaxation energy OE :?]; is the energy gained when all atoms inside
a unit cell are relaxed, but the unit cell is kept cubic. It corresponds to relaxation of the
crystallographic degrees of freedom which are not determined by symmetry, e.g., the inter-
planar distances in L1,. This relaxation is zero in certain high-symmetry structures, such as
the A B, [001] superlattice (the L1, structure), the A;B; [201] superlattice (DOy,), and the
Luzonite A,B; structures (L1,).
*  Finally, the cell-external relaxation energy SE®*' is the energy gained when the unit cell
vectors are allowed to relax, e.g., the tetragonal c/a ratio in L1, This term vanishes by sym-

metry for the L1, structures. Note that AEpg; of Sec. VILD is" 8E. + 8E };’3; + BE‘:?};-

"One may wonder why we treated AEy, separately from SE™ + SE®* since the former
represents a large energy investment that is partially returned once the A,B relaxation takes
place. The answer is that AEy, is configuration-independent while 8E depends explicitly on
o. Hence, the qrdering energy of Eq. (26) and T, do not depend on AEyyp, but they do
depend on SE [viz., Eq. (28)].
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Figure 19. Effect of relaxation on the calculated Figure 20. Effect of relaxation on the mixing
phase-diagram and mixing enthalpy parameter £ of enthalpy of (GaP), (InP),_,. Here n = c/a (cell-
(GaSb), (GaAs),_,. Note that relaxation of the As + external) and u measures the cell internal relaxa-
Sb sublattices reduces the miscibility gap temperature tion. (u, M, denotes unrelaxed; (U M)
from 1716 K to 1115 K. The mixing-enthalpy param- denotes relaxed. The mixing-entbalpy interaction
eter (in Kcal/mole) is defined as AH_;, = Qx(I-x) parameter (in Kcal/mole) is defined as AH;, =
and is reduced from 6.07 to 3.72. From ref [8a]. Qx(1-x). Diamond-like symbols shows results
for ordered structures using the notation of
Table 1.

C. Manifestations of Relaxations

There are numerous experimental and theoretical manifestations of the effects of relaxation
on phase stability:

(i) Relaxation in alloys is an experimental fact. Both cell-internal and common-sublattice
relaxations are clearly seen in EXAFS studies of pseudobinary (AC),_4(BC), semiconductor .
alloys [62] that show that the A-C and B-C bond lengths were closer to the bond lengths in pure
AC and pure BC than to the average bond length of the alloy. This is also illustrated by the
calculation of Fig. 10. Cell-internal relaxation was also demonstrated recently by EXAFS studies
in binary metal systems, e.g., Ni;_, Au, [63] where distinct, non-VCA Ni-Ni; Ni-Au and Au-Au
bond lengths are seen. Off-site atomic displacements further lead to distinct asymmetric diffuse

scattering of x-rays and neutrons.
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Figure 21. Comparison between our fully relativistic Figure 22. Total DOS of the GaAs-InAs system.
DOS and the measured valence band photoemission (a) Binaries at the unrelaxed alloy equilibrium
(UPS) for CusAu. The thin lines represent the cal- lattice constant a = 5.80A, (b) VCA, at the
culated results, while the connected dotted lines same lattice constant, (c) unrelaxed, and
represent the experimental results. (a) The ordered (d) relaxed. Note in (c) and (d) the relaxation-
L1, CusAu. (b) The unrelaxed Cuy ;5 Aug ,5 DOS. independent splitting in the P1 region (absent in
(c) The relaxed Cug 75Aug 55 DOS. The shaded area the VCA) and the relaxation-induced spitting in
in (b) highlights the ~ 1-eV discrepancy with experi- the P3 region (absent in CPA). From ref. [66].

ment, which is rectified by including relaxation (c).
From ref [30].

(ii) Volume-deformation (AEyp) effects can determine whether or not an homogeneous
ordered phase will decompose into its constituents. Neglect of AEyp, [52] can lead to the wrong
sign for the formation energy and wrong conclusions on ordering, as shown in Ref. [29].
Furthermore, previous phase-diagram calculations on Cu-Au [17] have shown that inclusion of
volume deformation narrows significantly the single-phase domains while broadening the phase-

coexistence regions. Simple Ising models miss this effect.
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(iii) 3E is the dominant energy-lowering mechanism in size-mismatched semiconductor
alloys. Calculations [8,24,64] show that it lowers the miscibility gap temperature by a few
hundred degrees (Fig. 19), and the mixing enthalpy by more than a factor of two (Fig. 20).

(iv) Cell-internal relaxations SE™ can have a profound effect both on the short range order
(underlying 8E ;) and on the LRO. Table IIl shows for example that (in a non-relativistic
description) NiAu has BEord(Llo) < 0 in the absence of relaxation. In contrast, when relaxation
is permitted one finds 8E_ 4(L.1,) > 0 (since the random alloy relaxes more than the ordered L1,
structure). Hence, ordering is predicted in the absence of relaxation, while inclusion of relaxation
leads to the prediction of phase-separation. In general the cell-internal relaxation energy depends
strongly on the symmetry of the structure: AEpg; for the L1, L1, and the Z2 structures are
-20.2, -28.0, and -177.8 meV/atom in NiAu, and -18.0, -24.5, and -134.0 meV/atom in NiPt [51].

(v) Cell-external relaxation SE°** can have a decisive effect on phase stability: c/a
relaxations can decide the relative stability of the L1, structure (for which ¢/a = 1 by symmetry)
and the DO,, structure (for which ¢/a # 1 is allowed by symmetry). This is the case for some
transition metal alluminides [65].

(vi) Relaxation can cause large, ~1 eV energy shifts in the density of states. This is
illustrated in Fig. 21 for Cuj75Au,,5 [30] and in Fig. 22 for the semiconductor alloy
Gay 5In;, sAs [66]. Note that relaxation displaces the deep -7 eV bonding states of Cu 75Au; 55
by ~ 1 eV to lower binding energies, thus removing the main disagreement with UPS data. In
Gag 5Ing sAs (Fig. 22) it leads to a pronounced splitting of the cation s-band at ~-6 eV to In-
derived and Ga-derived peaks, P3, and P3, respectively.

Clearly, relaxation has profound effects on phase stability, phase diagrams, and the electronic

structure. Unfortunately, it was neglected in many previous methods, as discussed next.
D. How Was Relaxation Treated in Previous Cluster Expansions

The recognition of the "atomic size factor" is as old as structural chemistry and physical
metallurgy, and is clearly reflected in the thinking of Pauling, Hume-Rothery, Pearson, Darken
and Gurry, Miedema, and others. Despite that, there is, in my view, a great deal of confusion
in the current literature in relating the "size factor” to "relaxation". This is illustrated by the
often posed question "what is meant by atomic size (in a crystal),” and by incorrect statements
such as "if an alloy obeys Vegard’s rule, relaxation must be negligible" or "in a random alloy,
relaxation is averaged out." We saw in Eq. (29b) that relaxation exists if there is an la, - agl # 0
size mismatch, whether Vegard rule is obeyed or not. Furthermore, relaxation exists even in a
configurationally-averaged random alloy, simply because it is not the atomic geometry that is

being averaged, but the energies of the differently relaxed configurations. Hence, relaxation
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survives configurational averaging (cf. Fig. 10). Finally, our inability to uniquely define "atomic
size" in a multi-component system should not be confused with the fact that atoms generally do
not reside on the idealized, mathematical lattice points. In fact, the propensity of atoms to select
certain local chemical environments is manifested by relaxation. Hence, since relaxation
can be measured and calculated, I will focus on it, rather than on its metaphorical cause ("size
factor") which involves model assumptions on apportioning a measured bond length into rigid
atomic radii of the constituents.

With this in mind, let me use the decomposition of the relaxation outlined in Sec. IX B to
review how previous works treated relaxation within the CE.

(i) The CPA-based "concentration wave" and "Generalized Perturbation Method" [19-
23,52,67a], neglected all forms of relaxation. Practical methods, enabling inclusion of all forms
of relaxation in these otherwise successful approaches must be developed. Furthermore, since

relaxation is an experimental fact, it would be interesting to understand in detail the mechanism
that lead in these previous calculations to the often cited agreement with experimental phase
diagrams and diffuse scattering in size mismatched alloys despite the neglect of relaxation.

(ii) In previous (5-structure) Connolly-Williams cluster expansions [7,25-27] only high-
symmetry short-period structures were used as input, so the important effects of 8E :?][3 and SE**
went unnoticed.

(iii) Many approaches use the unit cell volume or some "sublattice volumes" V, and Vg
[67b] as the central external parameter, so they just include the hydrostatic volume relaxation.
This is done either by using volume-dependent interaction energies [7,24-27] or by adding an
Qx(l -x) term to the CE [17]. None of these techniques, however, captures the effects of
sublattice relaxation, i.e., 8E¢ and SE::E, which are cell-internal relaxations.

(iv) A number of calculations on semiconductor alloys [24,68] included 8E -, but neglected
all or part of 8E ;ﬁa

(v) A recent calculation on Cu,_,Au, included 8E!, but neglect cell-internal relaxations [14].

(vi) Calculations that incorporate all terms of Eq. (30) (but with certain limitations on the

symmetries of the structures) include Refs. [8,13,18,28-32,51].
E. Effects of Relaxation on Convergence of the Cluster Expansion

Many of the examples cited above demonstrate that relaxation has some quantitative effects
on calculated properties. I next demonstrate how ignoring relaxation can lead to a qualitative
failure. The case in point is coherent superlattices. To illustrate this effect we construct a CE,
using as input N = 20 ordered structures for AC = GaP and BC = InP. We calculated their fully
relaxed formation energies AH; (o) [Eq. (6)] with the "valence force field" (VFF) model [69],
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Figure 23, Formation energies for GaP/InP super- Figure 24. (a) Formation energies for GaP/InP
lattices as a function of repeat period p and of super- superlattices as a function of repeat period, p,
lattice direction.  Solid lines are direct results when only the common P atoms are allowed to
calculated with the VFF model. Dashed lines are relax, (b) Energy gained when the Ga and In
results of a real-space cluster expansion of the VFF atoms are also allowed to relax (cell internal AB-
energies using a set of input structures with p < 2, relaxation energy).  Solid lines are results
and interaction energies Jo, J;, Ja, Jy, and the first calculated with the VFF model. Dashed lines are
seven pair interactions. The correct formation energy results of a cluster expansion of the VFF results
for long periods (solid lines) tends to a constant for a set of input structures with p <2, and
energy that is a function of direction, but the cluster interaction energies Jo, J;, Ja, J,, and the first
expansion results (dashed lines) tend to zero for all seven pair interactions. From ref [70].

directions. From ref [70].

and obtained [70] the interaction energies from Eq. (7). Figure 23 contrast the predictions
[Eq. (3a)] of this CE (dashed lines) with the results of direct calculations [Eq. (6), solid lines]
for the formation energies of (GzzlP)p(Inl:‘)p with I < p < 20. The VFF results for p = 1,2 (circles)
were used to fit the I’s of the CE; the CE energies for p > 3 are pure predictions. Note that the
CE begins to fail even for p = 3. Including structures with periods 3 and 4 in the fit delays the
failure of the CE to longer periods, but direct calculations for longer period superlattices can be
very expensive. The most disturbing feature of Fig. 23 is that it fails completely for long-period
superlattice limit. The true long-period limit for the formation energy of a coherent super-lattice
in the direction G is the constituent strain (CS) energy [71] of the two components:
AH(p = «,G) = AECS(C), while the CE converges to a G-independent constant as p—ee.
To see how the various components of the relaxation energy of Eq. (30) affect this behavior,

we have constructed a CE from each individual relaxation energy term (Fig. 24). We find that
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the cluster expansion works perfectly well for the unrelaxed lattice: 8Eyp is captured in this case
almost exactly by a single nearest neighbor pair interaction. 8E is the dominant relaxation for
short-period superlattices, but it vanishes as p — eo. It too is very accurately represented by a
short-ranged CE with only four pair interactions. This is illustrated in Fig. 24(a), which shows
direct and CE energies for AEy(x,V) + SEUR(O‘,V) + SEC(O',V) for superlattices as a function

of p. The figure also shows that the CE captures this energy almost exactly. The long-period

limit of this quantity is AE,, for all superlattice directions. The dominant form of relaxation
for medium- and long-period superlattices is 8E 2;3, but, as shown in Fig. 24(b), this term is not
properly represented by the CE, which predicts 8E :3;3 =0 as p = e=. (This feature depends
on the order in which cell-internal A,B relaxation and common-atom relaxation is performed.)
In any event, a finite-ranged CE is completely incapable of capturing either the concerted
relaxation that determines the strain energy or the directional dependence that it causes; it
predicts AH = 0 as p — oo,

The long-period superlattice problem is intrinsic to the CE, in that any finite cluster
expansion will predict that the coherent superlattice formation energy goes to zero in the long-
period limit. The reason for this failure is simple: the CE sees all A atoms that are far from the
interface as if they were in a bulk A crystal, since the figures of a finite CE connect them
exclusively to other A atoms. Similarly, the CE treats almost all B atoms as bulk B. As a result,
the formation energy per atom in the long-period superlattice limit of the CE is zero—the
formation energy of both bulk A and bulk B—and the CE completely misses the constituent
strain present in coherent superlattices.

Another way of seeing how relaxation mandates long range interactions in a cluster
expansion was illustrated to me by a question asked by M. Sluiter. Consider a system that orders
in a tetragonally-deformed (c/a # 1) structure (e.g., DO,,) below T, and has a disordered cubic
(c/a = 1) phase with strong SRO above T,. The existence of strong SRO in the disordered phase
implies that the first few T_Ip's are rather similar below and above T,. Were we to stop the CE
aftera few IT's, the configurational internal energies of the ordered and disordered phases would
be very similar. Yet, we know that these phases have different c/a ratios, so something must be
missing in the CE which fails to recognize this fact. The answer is that the two phases are
distinguished by their medium and long range ﬁF's so, by implication, a proper description of
relaxed configurations requires inclusion of many Jg’s. One might try and fix this problem by
splitting the degeneracy factor D of the figures [Eq. (2)], e.g., use different Ji for the parallel
and perpendicular directions. Since this will have to be done for all superlattice orientations, it
will require many total energy calculations and many J’s. Our foregoing discussion highlights
the main drawback of the cluster expansion: in the presence of relaxation the series converges
slowly! I next demonstrate how an ordinary long range CE can be constructed instead, using as

input the total energies of 10-20 ordered configurations. This addresses the two questions raised
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by S. C. Moss in his summary talk, namely "How to (a) incorporate properly strain in the
theoretical calculation of local order and phase stability, and (b) derive it from first-principles

electronic calculations of alloy structure."

X. RECIPROCAL SPACE CLUSTER EXPANSION

In this section we will show that a reciprocal space CE provides an effective way to deal
with systems that have slowly converging cluster expansions. The basic idea [70] of the
reciprocal space expansion is to replace the individual real-space interaction energies Jg, where
the interaction energy of one figure has no relationship with the interaction energy of any other,
with a single reciprocal space function, J(B, on which we impose a smoothness condition, which
minimizes the gradient of J(ﬁ. Using this construction lets the CE select the important figures,
and we are not limited by N = Nj; as in the real-space Connolly-Williams approach [Eq. (8)].
Furthermore, the singular J(?= 0) term causing the failure of the CE for long period
superlattices, will be treated separately. Since a sum over only a few k-points
of J(_k>) corresponds to an infinite series in real space, this series will correctly predict the

energies of arbitrary relaxed configurations.
A. Maximum-Smoothness Constraint in the Reciprocal-Space Representation

To recast the CE in reciprocal space, we first Fourier transform the spin products:

N P (32)
SKo) = % Y S0 ™,
1

and the inverse transform is

e BE (33)

Y s®
k

Sy(o)

where the sum over ¥ in Eq. (33) runs over the first Brillouin Zone and I?; denotes unrelaxed
lattice site positions. The S(k_,)cs) functions have a very useful feature: for an ordered
configuration o, S(E?G) will only be non-zero for a finite set of points k_) In particular, the

only ?—points that can have S(k_,>c) #0 are K =0 and the T(_)—point that are reciprocal
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lattice vectors of the unit cell of o. In the following, we choose the coordinate system such that
one of the lattice sites is at the origin, and we label that site R, = 0. We will use the definition
of S(k_,>0') to transform the part of the CE energy due to the pair interactions [third term on the
right-hand-side of Eq. (1)]. By defining

N S
J(B - % E Jo,n eLkRn (34)
n

using the convolution theorem and averaging over the point group, we arrive, at

Ey0) = N Y IK) ISR.o)P . )
k

We have replaced the sum over an infinite set of real-space pair interactions with a sum over a
few F)—points. This is the "concentration wave" representation of Khachaturyan [60]. While
three-body and higher figures could also be described by a reciprocal-space expansion, the
formulae are too complicated for practical use. Instead three-body and four-body figures will be

added as explicit real space figures:

Ecg(©®) =N Y’ Dg Jg figo) + N Y I 5@o)? )
F k

where the primed sum runs over the set of non-pair figures included in the expansion.

Since the reciprocal space expansion up to this point is equivalent to a real space expansion,
the two forms share the same problems. In particular, the total number of figures N included
in Eq. (7) or Eq. (36) must be less than the number of structures N; whose energies are used to
fit J and J(l?)). To this end we deviate from Khachaturyan’s concentration wave method in two
ways. First, J(B will be calculated from the local density theory (much like in the Connolly-
Williams approach), not from elasticity theory. Second, we require that J(B be a smooth
function of E) thus assuring that any number of figures can be included, and that the interactions
fall off at large interatomic separations.

We define a "smoothness value" M as

w2
M=Lly @ [—Vﬂ 1@ = N s rhp;s2, =0
K 200

where R; are interatomic distances to shell I, the exponent A is a free parameter, and « is a
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normalization constant:

o=

0| Z

Y R D;. (38)
I

The smoothness condition is achieved by minimizing M through a Lagrange multiplier. It is
equivalent to requiring that the pair interactions fall off rapidly for large distances. Our use of
this smoothness condition will be tested when we examine the quality of predictions made using
the function J(B.

Our fitting procedure will be to solve

Y g Egiree(0) - Ecg(@)? + tM = Minimum (39)
ag

by varying {Jg} (for the non-pair figures included in the expansion) and {J;} (for the pair
figures). Here Ej () is the directly calculated and fully relaxed energy [Eq. (6)], Ecg(0) is
defined in Eg. (36), and t is a scaling factor. The function J(ﬁ appearing in Eq. (36) is
represented by symmetrized plane waves, thus interpolating between those values of ? included
in the set of input structures. The scaling factor is a matter of choice, but we have found in tests
that any value in the range 1 <t < 100 produces almost identical results. Unless otherwise
indicated, we will use t = 1. Note that using t = 0 completely eliminates the smoothness
condition, and results in a plain real space fit of Eq. (7). If we fit with a large number of figures
and t = 0, the fitting procedure has no way of knowing which interactions are short-ranged and
which are long-ranged. As a result, the long-ranged interactions will be as strong as the short-
ranged interactions, which appears unphysical. The chief advantage of the reciprocal space
method is that it lets the fitting procedure choose which pairs are important. Because of the
smoothness criterion, any pair figure that is not strictly necessary for a good fit will have an
interaction energy of zero. Also, the smoothness criterion naturally favors short-ranged over
long-ranged interactions, which is physically sensible. The maximum smoothness condition does

not solve the long superlattice problem noted in Figs. 23 and 24. This will be fixed shortly.
B. Tests of Reciprocal Space Cluster Expansion

We are now ready to apply the reciprocal space CE. As in Sec. IX.E, we will use the VFF
model to calculate the energies Ey..(0) of different structures for the GaP/InP system. To

examine the convergence of the CE we will use four different sets, sy € 5; € s, C 5, of input

structures for the calculations. These sets are (see Table IT and Fig. 5)
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so = {A, B, CA, L1, L3} (5 elements),

sy = soU {CH, CP, 72} (8 elements),
s, =5, U (V2, Y2, W1, W3) (12 elements), and
s3 = all structures in Table II (27 elements).

The set s is the standard Connolly-Williams set [7], while the set s; was previously used in real
space fits for many semiconductor alloys [8]. Set s; was previously used in a real space CE of
semiconductor band gaps [32].

To test the reciprocal space versus real space CE, we will solve Eqg. (39) to determine the
interaction energies, using each input set sy, s, s, and s3. For each input set, we then predict
the total energies of a large set of new structures, none of which are used in the fit. The
predictions are performed for four types of structures: (i) long-period superlattices: (GaP)p(In_P)p
superlattices with 3 <p <6 and p = 10 in the [001], [011], [111], and [201] directions (20
structures), (ii) intermixed superlattices: superlattices with p = 1,2 in which some of the atoms
on each side of the interface have been swapped—thereby lowering the symmetry (24 structures),
(iii) x = 1/2 structures: structures in which the composition is x # 1/2. These structures consist
of (Gal")p(lnP)q superlattices, with p # q, e.g., (GaP),(InP)s and (GaP)4(InP), superlattices. We
also include here substitutional impurities, i.e., GaP (InP) supercells with 8, 16, 32, and 64 atoms,
containing a single Ing, (or Gay,) substitutional impurity (43 structures). Our final test case is
(iv) large supercell simulations of random alloys: the energy of a random Ga,In, P alloy is
determined by averaging over many different randomly generated configurations of a fully-
relaxed 1000-atom supercell [72]. For each of the new structures in (i)-(iv), we independently
calculate the VFF formation energy and compare it with the CE prediction. The calculated
formation energies for sets (i)-(iii) cover a wide range: 17.7 — 30.6, 14.9 — 32.2, and
2.2 — 31.0 meV/atom, respectively.

We perform the CE in three different ways, shown in panels (a)-(c) of Fig. 25. In all cases,
we use the following real-space interactions in the first term of Eq. (36): Jo. the empty figure
(i.e., a constant term that is independent of o), J |» 4 single site term, J; the nearest-neighbor
three-body interaction, J,, the nearest-neighbor four body interaction. Our first calculation (a)
is a simple real space CE using the first seven pair figures, where the number of pair figures is
adjusted to assure that Ng 2 N for set 5. In our second calculation (b), we repeat the same real
space expansion, but expand E - E_., in place of E. We use the volume-deformation energy
Qx(1 -x) for E . The value of Q is treated as a fitting parameter, and we find
Q = 147.1 meV/atom, using input set s,. Finally (c), we repeat the latter CE, but this time using

the reciprocal space formalism, i.e., we set t = 1 instead of t = 0 in Eq. (39), and we include the
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Figure 25. Prediction errors for dif-
ferent CE's of GaP/InP. The CE is
applied to E - E ¢ for four different
fitting procedures: (a) Real-space fit
with E ;=0 and N; <7. (b) Real-
space fit with E ;= Qx(1 -x) and
Np £ 7. (c) Reciprocal-space fit with
Es=Qx(1 -x) and Np = 20.
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and structures with x # 1/2 (solid rec-
tangles). Each CE is repeated using the
input sets sy, $y, S5, and sy (defined in
text). Real space fits have the scaling
parameter t = 0, while reciprocal space
fits have t=1 [Eqgs. (39) and (45)].
From ref [70].
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first twenty pair interactions. The fitted value of Q
is 129.5 meV/atom, using s,.

In Fig. 25(a-c), we present the root mean square
(rms) prediction error of the CE’s for each of the
three sets of new structures. Table IV summarizes
the results. Note that the interaction energies were
fitted without any knowledge of the energies of
these new structures.

We note the following trends: (i) For the inter-
mixed structures, we see that using set s, of 12 in-
put structures is adequate for making accurate pre-
dictions for all three methods. (ii) Using E =
Qx(1 - x) works better than using E_ = 0. (iii) The
reciprocal space expansion works better than the
real space expansion. Another indication of the
superiority of the reciprocal space expansion is the
maximum error made in the CE predictions— which
is a measure of how well CE predictions can be
trusted. (A CE that predicts the energy 95% of
structures exactly, but has a large prediction error
for the remaining 5%, will have a small rms "pre-
diction error”, but is not worth much because we
can never be sure whether the prediction for a new
structure belongs to the 95% or the 5%.) Table IV
shows both the rms and the maximum prediction
error of the three fitting procedures using input set
s,. The reciprocal space fit (c), having much smal-
ler maximum errors, is clearly superior to the real
space fit. (iv) The predictions for the formation
energy of the random alloy, using input set s,, are
19.90, 20.95, and 20.77 meV/atom, for the three fit-
ting procedures (a)-(c). The directly calculated for-
mation energy for the random alloy using the 1000
atom simulation is 20.45 meV/atom. Hence, all
methods predict the energy of the random alloy

rather well. Finally, (v) as discussed above, all



Table IV. Root mean square (rms) and maximum (max) prediction errors for different cluster expansions of
GaP/InP. Errors are reported separately for long-period superlattices, intermixed short-period superlattices, and for
structures with composition x # 1/2. The input set s, was used for each CE. Real-space figures Jor Jps I3, and Jy
were included in each CE. Lines (a), (b), (), and (d) refer to the CE’s described in panels (a), (b), (c), and (d),
respectively of Fig. 25. All energies are in meV/atom.

Cluster expansion Long-period SL’s Intermixed SL’s x # 1/2 structures
Space E. ms max ms max rms max
(a) Real 0 10.24 21.93 1.09 295 2.14 544
(b) Real Qx(1-x) 6.51 13.36 1.03 3.05 1.77 4.40
(c) Recip. Qx(1-x) 3.94 8.78 0.74 1.80 1.29 2.67
(d Recip. AE g 1.08 2.33 0.70 142 0.82 222

three CE’s (a)-(c) fails to predict the energies of the longer period superlattices. We will fix this

problem next.
C. Treating Long-Period Superlattices

As shown in Figs. 23 and 24, the CE fails to predict the energies of coherent lattice-
mismatched superlattices—even for periods as short as p = 3. We explained in the previous
section that the cause of this problem is the long range coherent relaxation that occurs to relieve
the lattice-mismatch-induced strain. In fact, this superlattice problem is caused by a singularity
in J(ﬁ at K= 0, so that no finite real space expansion will predict the correct limit. It is
possible, however, to get the correct long-period superlattice limit if we rewrite the reciprocal

space interaction energies as

1B = Ios® + Igp® (40)

where the first term on the right-hand side is singular at K= 0, and contains the correct long-
period superlattice limit, i.e., the constituent-strain (CS) energy. The continuous part Jop
describes the short-ranged (SR) interactions that are ignored by Jog- We will subtract the

constituent-strain energy from Eg ... and determine Jgp by fitting to the right hand side of

Egirec(® = N Y Jog® ISE®0)F = N Y I ® 1SE ,0)2 + N Y’ Dg Jg Tigo) .
k k F
(41)
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The division into Jg and Jg, is somewhat arbitrary; the essential feature is that J-q contain the
singularity at the origin, leaving a smooth function Jgp, that can be fitted using the techniques
of the previous section. Since Jcs(ﬁ is singular at K= 0, the corresponding real-space pair
expansion has an infinite number of non-zero pair interactions.

We have previously shown [70] that Jog = AEGe (k,x)/[4x(1-x)] can be obtained

analytically from continuum elasticity theory as

i qak) gg(k) AE,(ag) AEg(a,)

’ ] . (42)
(I = 0)q(k) AE(ap) + xqp(k) AEg(a,)

Jestkx) =

£

Here, AE,(ag) is the excess energy of cubic A deformed hydrostatically to the lattice constant
ay of pure B; an analogous quantity for B-on-A is given by AEg(a,). The quantity qak) s

the "epitaxial strain reduction factor” [71]. Its general form is [30,73]:

B

qk) =1 - ——
SRR

(43)

where B is the bulk modulus, A = C,, - (C, - C,,)/2 is the elastic anisotropy, and 7 is a purely

geometrical factor given by

'y(l?) =v(0.0) = sin220 + sin“0 sin22¢ . (44)

where ¢ and 0 are spherical polar coordinates defined by r = [r sin@ cos ¢; r sin® sind; r cos].
For the principal directions we have y{001] = 0; y{011] = 1, and ¥{111] = 4/3, which is its
maximum value. The practical calculation steps are:

(a) Use the LDA to calculate the energies of cubic A at the lattice constant of cubic B
[AE,(ag)] and of B at the lattice constant of A [AEg(a,)].

(b) Determine q, (k) and qg(k) by calculating within the LDA the energies of A
constrained epitaxially to ay in the plane perpendicular to k and relaxed along
the k direction [AEipi (k, ag)], and similarly for B on A [AE:pi (E,aB)]. This is repeated for
two directions k, and the values can then be used to solve for B/C;; and A/C|, for A
using qA(lE) = AE':pi (E,a)/AEA(a), and similarly for B. The added work required relative to
the regular CE is quite small since each calculation is for the basic unit cell of the lattice,

containing only one or two atoms.
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Figure 26. Real-space pair interaction Figure 27. J(k—)) of GaP/InP along the principal
energies of GaP/InP from the reciprocal directions in the Brillouin Zone for the same CE
space fit using input set s, and E = described in Fig. 26. From ref [70].

AEEJ(k,x). From ref [70).

(c) Evaluate Jcs(ﬁ,x) using Eq. (42) and use Eq. (45) to perform the cluster expansion:

2
Y 0B - % Jes kx) ISE 6P - Eqg(a)|  + tM = Minimum,
o'es k (45)
where EéE is defined by the r.h.s. of Eq. (36). The CE prediction for the Ediml(c)‘) is
(46)

Ece(©0) = Eqp(0) + N T Jgkx)ISE o) 12 .
k

D. Tests of the Reciprocal Space Cluster Expansion with the Constituent Strain Term

We now present the results for the procedure outlined above. This CE differs from that of
Fig. 25¢ only in that we subtract from the directly-calculated energies the quantity
Eor = Eég (E,x) in place of E .t = Qx(I - x). The prediction errors from this CE are shown in
Fig. 25(d), and the real space pair interactions and J(B (excluding J~g) for this CE are shown
in Figs. 26 and 27, respectively. Figure 28 shows that, as promised, the new fit solves the long-
period superlattice problem demonstrated in Fig. 23. As before, we test the CE by predicting the

energies of three sets of new structures, the long-period superlattices, swapped short-period
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Figure 28. Formation energies for GaP/InP
superlattices as a function of repeat period, p.
Solid lines are results calculated with the VFF
model. Dashed lines are results of a CE of
Eq. (45). The set of structures used to fit the
interaction energics contains only structures with
p <€ 2. From ref [70].

structures, and x # 1/2 structures. These
results are shown in the last line of
Table IV. Comparing parts (¢) and (d) of
Fig. 25, we find that the predictions for
the long-period  superlattices are of
course, greatly improved. But we also find
better predictions for the swapped structures.
This shows that the form that we use for Jrg
is also helpful for short-period structures.
Hence, the CE of Egs. (41)-(46) should be
generally applicable, replacing the conven-
tional real space methods.

We can also use this CE to predict the
energy of the random GaP/InP alloy. For
the CE prediction of the random alloy
energy for x = 1/2, we average
AEGd(kx = 1/2) over all solid angles.
(This involves a slight approximation, as we
should really be averaging over the first

Brillouin Zone.) We write

Ecg(random) = J; + fAEég (k,x) dk (47)

The angular average of AEéLS' is 27.16 meV/ atom and J, = -6.47 meV/atom. The CE predicted

energy is 20.69 meV/atom, compared with 20.45 meV/atom from direct calculations [72].

We expect that our reciprocal-space cluster expansion will open the way to accurate, first-

principles calculations of systems with significant size-mismatch. We have applied it to the

Cu-Pd system in the fce structure, using the LAPW-calculated formation enthalpies discussed in

Sec. VIII. We find a reasonably good fit and small prediction errors. We are applying the

simulated annealing method to the reciprocal-space cluster expansion to find ground state

structures and predict diffuse scattering profiles.
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XI. OTHER APPLICATIONS
We close this review by noting other applications of the cluster expansion.

A. Surface Thermodynamics

It is possible to apply the cluster expansion formalism to surface thermodynamics by
replacing the calculated bulk energies of Eq. (5) with surface formation energies [74]. The latter
calculations involve both surface relaxation and surface reconstructions. Application to the
GaOISInO.SP/GaAs (001) surface shows that the CuPt-surface contains homopolar Ga-Ga and In-In
dimers, whereas the chalcopyrite surface (Fig. 29) exhibits heteropolar dimers [75]. Relative to
the undimerized surfaces, dimerization lowers the energy by an average of 600 meV per surface
atom. In addition to dimerization (Fig. 29b) we find in all cases two other energy-lowering
reconstructions within the 2x2 surface unit cell. First, dimers relax perpendicularly to the surface
creating [110] dimer rows of alternating high and low dimers (see Fig. 29¢). We will refer to
this as "buckling”". Second the high dimer tilts in the [110] direction becoming nonhorizontal,
whereas the low dimer remains virtually horizontal [Fig. 29(d)]. This tilt is natural for surfaces
with heteropolar dimers, but constitutes a symmetry breaking for the other surfaces. Since the
four surface sites are inequivalent in the final geometry, there are two different ways of
distributing the two Ga and the two In atoms in each of the topologies. We will characterize this
by the type of atom (Ga or In) occupying the site on the high dimer that tilts upwards. We find
that the CuPt-surface strongly prefers having the larger In atom on the high dimer, whereas the
chalcopyrite surface shows a slight preference for the smaller (but more electronegative) Ga atom
to be tilted up. Tilting leads to a uniform energy lowering of 100 meV but does not affect the
relative stability of the surfaces.

We find that the reconstructions (dimerization, buckling, and tilting) considerably lower the
energy of all the surfaces and, most significantly, make the surface corresponding to the observed
CuPt ordering the lowest in energy by 84 meV per surface atom. Thus, surface reconstruction
not only favors atomic arrangements that are unstable in the bulk (see the CP = CuPt bulk energy
in Fig. 11b), but it also results in energy differences large enough to produce order at growth
temperature.

At finite temperatures, the thermodynamics of the unreconstructed and the 2x2 reconstructed
surfaces is obtained by minimizing the free energy with respect to the average spin
products ﬁF(G). For the unreconstructed surface we use the model of an anisotropic square

lattice (equivalent to the rectangular lattice), while for the reconstructed surface we use the model
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(s) Relaxed of 2xe independent rows. The square approxi-
mation of the CVM [11] was used to get the
thermodynamics in both cases.

Minimization of the Hamiltonian produces
the T = 0 ground-state energy as a function of
composition x. For both the unreconstructed
and reconstructed cation-terminated top surfaces
we find that the CuPtg structure is the ground
state at x = 1/2. To see if the energy differences

between different surface structures are suf-

(d) Dimerized + Buckled + Tilted (DBT) ficient to preserve any type of order at typical
growth temperatures, we calculated the CuPt

order parameter Mg, defined as

1
) =_lc, +c, -c, —cgl, (48)
Figure 29. Side view of atomic geometries Mg 7 < o Y 8

for the various reconstruction modes de-
scribed in the text for the cation terminated
chalcopyrite surface of GalnP,. The atoms
for Ga (white), In (grey), and P (black) on occupation probabilities on the four sublattices
top of a (001) substrate GaAs layer (white).

as a function of temperature, where CY are the In

v. For the CuPt structure, perfect ordering gives

Cation-terminated (001) Gay ;In, ;P top surface

1.0 Y T T T ol
L \
s | \ Reconsired}
5 L
E 06 | -]
5 L
(=%
b
S s
02 7]
0.0 : . - : —
0 400 800 1200
Temperature (K)

Figure 30. Calculated CuPt long range order parameter 1) [Eq. (48)] for the cation-terminated Gag sIng sP (001)
surface. Note how reconstruction eliminates the low-temperature critical transition, replacing it by a continuous
transition in which significant ordering exists even at growth temperature (~ 900 K). From ref [76].
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n = 1. Figure 30 displays the CVM results for 1(T), of the cation-terminated surface. For the
unreconstructed case, the system undergoes a phase transition to the disordered phase at
T, = 146 K. It is clear that at growth temperatures (typically 900 K) no traces of long-range
CuPty ordering are to be expected with an unreconstructed surface. For the reconstructed case,
on the other hand, there is no phase transition. However, the CuPty order parameter ng [Eq.
(48)] is seen to be significant at growth temperatures (e.g., Mg = 0.87 at T = 900 K.) This order
parameter approaches zero only asymptotically as T — oo,

To summarize, the CE can be used to understand also surface thermodynamics. For I1I-V
semiconductors we discover that surface reconstruction stabilizes even at growth temperatures

a bulk-unstable ordered structure that is observed experimentally [74].
B. Ternary Systems

Many interesting alloys exhibit competition of three atomic species on the same lattice.
Semiconductor examples include the technologically-important (in solar cells) (CulnSe,),
(ZnSe)y, system in which Cu, In, and Zn can reside on the fcc lattice. More generally, we have
an alloy of A, B,C with DC. We will address here the x =% problem. The statistical
mechanis [76] was addressed in two steps. First, we consider the occupations of the fcc cation
sublattice by A and B atoms in the AO%SBOIEC - system. Second, we add the third cation
P competing for the same sublattice. The common anion C resides on its own fcc sublattice
and hence does not carry a statistical degree of freedom. (We neglect high-energy anion-cation
anti-site defects.) In addressing the first problem we consider the spin-1/2 Ising model where
site i is occupied by either an A atom (0; =-1) or by a B atom (o; = +1). We take the Ising

Hamiltonian for an arbitrary configuration &> of this binary system to be

Hy, @) =Y Jo0 + ¥ T G000 (49)
(ij) (ijkl)
where (ij) indicates a summation over all pairs, and (ijkl) indicates a summation over all
tetrahedra in the lattice. To find the values of the interaction parameters {J} we fit Eq. (49) to
a set of directly calculated LDA formation enthalpies AH(c) of simple AC/BC ordered
structures at the equilibrium volume. We have used LDA to calculate AH(o) for six
equimolar (CuSe)p(InSc)p short-period (p = 1,2) superlattices, not including the chalcopyrite
structure. Retaining in Eq. (49) only the empty-site energy Jy and the nearest-neighbor pair
interaction J, produces a prediction of AH{CH) = -1183.4 meV/cation compared with the LDA
value AH{CH) = -1163.0 meV/cation. This 20 meV prediction error can be reduced to 0.4 meV
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if the nearest-neighbor four-body term J, is added. Further addition of second-, third-, and
fourth-neighbor pair interactions Jij lead to a similar prediction error of (.25 meV. We thus
choose to retain only J,, J,, and J in the Hamiltonian of Eq. (49). The order-disorder
transition obtained in a Monte-Carlo (MC) simulation for CulnSe, [8¢] is T, = 1120 K, in perfect
agreement with the result using up to fourth-neighbor pair interactions (the experimental result
is [8e] 1083 K). The CVM tetrahedron approximation leads to T, = 1224 K. The four-body
term J, acts to lower T, by as much as 300 K in both the MC and the CVM calculation. We
will hence proceed using CVM with the fitted interaction energies given above.

The consideration of the pseudoternary case (ABC,);_,(DC),, requires two changes. First,
a generalization to a spin-1 Hamiltonian, representing occupations of site i by A (§;=1), B
(S;=1), and D (§5;=0) is needed. Second, the added interaction terms are now volume-
dependent since the end-point chalcopyrite and zincblende constituents can have different
equilibrium molar volumes, in contrast to the pseudobinary case, where all structures
(Cl.lSe)p(lnSe)p had the same composition and, hence, nearly equal molar volumes. We will
therefore use a nearest-neighbor spin-1 Ising model (a generalized Blume-Emergy-Griffiths [77],

or BEG model) with volume-dependent interactions:

HenSV) = (LY S8; + 1, Y SiS;S,S
<ij> <ijkl> (50)

+JV) + DV Y 82 -KW) ¥ s’s].

<ij>

The terms in brackets are the nearest-neighbor terms of Eq. (49). All odd terms [77] were
omitted, assuming that the Hamiltonian is invariant under the A<>B interchange.

Using the LAPW method we have calculated the volume-dependent total energies Eqg for
structures S = ZB, CH, and stannite ST, finding also the equilibrium volumes Vg. Interpolating
these volumes we get V(x). The functions Jy[V(x)], D[V(x)], and K[V(x)] are then obtained by
fitting Eq. (50) to the three LAPW equations of state Eg(V), keeping J, and ], constant at their
values in A, 5B, sC.

We solved the statistical mechanics of Eq. (50) in the CVM tetrahedron approximation.
Statistical correlations inside the tetrahedron cluster are correctly described, but longer-range
correlations, present in MC simulations, are neglected. We have therefore scaled down our CVM
temperature approximately by Ty o/Teoyy = 0.92, obtained from MC and CVM calculations on
the pseudobinary Ay 5B, sC system (including both J, and J,). At each composition and
temperature, the CVM free energy F = Hy,, - TS is minimized with respect to the occupation

variables, using the "natural iteration” [11] procedure, and with respect to the molar volume V.
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Figure 31 shows the calculated phase diagrams

— i of (CulnSe,), ,(ZnSe),,, using a hierarchy of
: approximations in the Hamiltonian of Eq. (50): (i) J,
800} only (ii) J, and K (iii), J,, K and J (iv) volume-
dependent interaction-energies. In cases (ii) and
(iii) we used the value K =K +g(Vgp)/2=

10.5 meV for K, corresponding to a fit of the BEG

400}

(b) Hamiltonian to the equilibrium-volume energies of

1200 || (CulnSez)x(ZnSe)a | the CH, ST, and ZB structures. The diagram of

Temperature (K)
o

case (i) corresponds to the antiferromagnetic
soor spin-1 Ising model in the fcc sublattice. The

diagram of case (ii) shows the role of positive K
400

values: it widens the CH-ZB miscibility gaps,

suppressing the small second-order transition line

8.0 0z 04 06 08 1.0

CulnSe, X ZnSe present in case (i} between = 410 and 550 K, and
Figure 31. Calculated phase diagram of removes the triple point. The diagram of case (iii)
CulnSe,/ZnSe using a few represen-
tations: (@) J,-only; J, + Ky I +
K, +J; In (b) we show the result transition temperatures in the low-x region and to
including volume-dependent interaction
energies. From Ref. [76].

shows that J, acts to reduce considerably the

reduce the width of the CH-ZB miscibility gap.
Finally, the use of volume-dependent interactions
acts to increase the CH-ZB miscibility gap
[Fig. 31(b)]. The maximum equilibrium solubility of ZnSe in CulnSe, with the chalcopyrite
structure is 22% (at T = 770 K), while CulnSe, becomes completely soluble in ZnSe with the
zinc-blendestructure above the order-disorder temperature of CulnSe,. Our results hence show
that, contrary to the other known heterostructural ternary alloy (GaAs),_,Ge,,, characterized by
vanishing solid solubility, (CulnSe,),_,(ZnSe),, should exhibit substantial miscibility. Additional
metastable features are presented for this ab initio phase diagram. The left dashed line in
Fig. 31(b) marks the chalcopyrite spinodal, which is the upper-composition limit of metastability
for the CH phase. The right dashed line is the unstable second-order transition line inside the
coexistence region and marks the lower-composition limit for metastability of the zinc-blende
phase. Between these two lines we find 9°F/dx? < 0, which implies that any incipient phase
separation will be preferred to a single-phase state. Since at x = 1/2 we found 0 < AH(ST) <
AEyy, < AEg,4, the stannite structure could be observed in (CulnSe,),_,(ZnSe),, if long-range
atomic diffusion were inhibited. The shaded region at x ~ 1/2, T < 440 K shows this marginally
metastable ST phase. It should be observed if short-range atomic rearrangements are allowed

but long-range atomic migration (and hence, phase separation) is slow at T < 440 K. The
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chalcopyrite-forbidden x-ray diffraction peaks at (001), (110), (112), and (221) 2n/a characterize
the ST phase. Calorimetric and magnetic-susceptibility measurements in (AIBmTez)l_x(MnTe)ZX
alloys have indicated two low-temperature phases described by ordering of the Mn atoms.
Although the structure of these phases is still unknown (the above mentioned x-ray peaks were

not measured) the structure called "chalcopyrite-ordered” could be stannite-like.

XIl. SUMMARY

We have shown how total energy LDA calculations of O(10) ordered structures can be used
to extract the "building blocks" interaction energies {Jz}, and how these can be used in )
conjunction with lattice statistical mechanics techniques to calculate thermodynamic properties.
The quantities that can be calculated in this way include: (i) identification of the T = 0 lowest ‘
energy configuration out of 2N possibilities, (i) formation energies of "complex" structures, not
amenable to direct LDA calculations, (iii) excess configurational enthalpies, entropies, and free
energies as a function of (x,T), (iv) composition-temperature phase diagrams, (v) SRO and LRO
parameters as a function of (x,T), and (vi) equilibrium lattice constants, interatomic distances, and
elastic constants as a function of (x,T). The systems for which the method has been illustrated
include (a) pseudobinary A, ,B,C semiconductor alloys, (b) binary A, , B, transition metal alloys,
(c) Ternary alloys such as CulnSe,/ZnSe, (d) epitaxial phase diagrams, and (e) surface phase
diagrams. The main advantages of this method lie in its ability to predict unsuspected structures
and to analyze trends in the above quantities in terms of electronic structure constracts, thus
helping to demistify the highly successful Pauling-esque rules of metallurgy and structural solid-
state chemistry. Its main drawback is that in the presence of relaxation, it requires LDA
calculations on a significant number (10-20) of ordered structures. Its main distinguishing feature
relative to the coherent potential approximation based methods (e.g., GPM, CW) is that charge,
potential and relaxational fluctuations are included at the outset in a non-perturbative fashion and
that the mean-field approximation is avoided. Consequently, our method is capable of treating
complex, low-symmetry atomic configurations with a similar degree of accuracy currently

afforded by LDA calculations on ordered crystals.
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