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Predictions of New Semiconductor of Transition Metal Structures
and Their Properties
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I describe how one can use the ‘‘Cluster Expansion Method’’ to predict systematically what are the thermodynamical-
ly stable crystal structures on a given lattice type. The method is used to illustrate how hitherto unsuspected ordered com-
pounds can be identified, including new transition metal intermetallics and ternary semiconductors.
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1. Introduction

Perhaps the most intriguing aspect of the spectacular
success that semiconductor-based ‘high technology’’ has
had in the past 50 years is the tiny number of core materi-
als on which these technologies are based. Even consider-
inga broad range of semiconductor devices—transistors,
computer chips, solid state lasers, detectors, solar cells,
light-emitting diodes, etc.—one finds but ~O(10) basic
semiconductors that enable these technologies. This is a
strikingly narrow material base, considering the number
of core materials that enable other technologies, e.g., the
0(10*)-0(10°) species used in metallurgy, polymer tech-
nologies, biotech, and the pharmaceutical industry. The
currently used ‘‘high tech’’ semiconductors also provide
but a limited set of relevant materials properties, such as
band gaps, lattice constants, effective masses and mobili-
ties. Of course, there are good historical reasons for this
narrowness of material base, ranging from the stringent
criteria which electronic devices place on material perfec-
tion and purity, to the natural human inertia associated
with the large investments that have been made in the
first semiconductor to work in a big way. Given,
however, the remarkable progress in our ability to grow
high-purity artificial structures, (even in defiance of con-
ventional equilibrium thermodynamics), and the increas-
ing need to diversify materials properties in new device ar-
chitectures, one wonders whether time has come to take
another, systematic look at enlarging the data base of
potentially useful electronic materials and structures.
The obvious approach to this need is to use educated,
phenomenological trial-and-error techniques that have
brought us, among others, new superconductors, ferro-
electrics, and quasicrystals. It is almost certaln that a com-
bination of such Edisonian approaches with a considera-
ble amount of “‘guided Iuck’ will continue to provide us
with exciting new materials. There is, however, a possible
complementary approach: use of solid state theory as a
guide to selecting promising new materials. This article
outlines a possible methodology for systematic predic-
tions of stable materials and their properties.

2. General Strategies for Predicting New Compounds

One approach for searching for new compounds is to
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limit oneself to a known class of materials with a known
crystal structure, and to search for new members in this
class. Examples include the 1984 prediction by Jaffe and
Zunger? of 22 yet unmade I-III-VI, or II-IV-V, chal-
copyrites (e.g., ZnSiSb,, CdGeSb,, MgGeP,, MgGeAs,,
CuTlITe;, BeCN,), or the predicted properties of the I-
II-V filled tetrahedral semiconductors®? (e.g., LiZnN,
LiZnP, CuMgP, CuZnAs) and their initial experimental
testing.?

A more general (although less certain) approach is not
to limit ourselves to a known structure. Instead, one can
ask ‘““What are the stable crystal structures that can be
made from certain atoms on given substitutional lat-
tices.”’ Indeed, many important solid-state structures can
be described as substitutional A /B systems, in which the
sites of a crystal lattice are occupied by A and B atoms in
different patterns (‘‘configurations’’). These include
abrupt and intermixed superlattices, substitutional impur-
ities, impurity aggregates, ordered A,B, superlattices,
and random A,;_,B, alloys. In theoretical studies of the
energetics of substitutional systems one requires in princi-
ple, sampling of the 2V possible configurations for plac-
ing A and B atoms on N lattice sites. Even limiting N to
~ 40 sites, this is a formidable task for first-principles elec-
tronic structure methods, as it involves an astronomical
number of calculations (of the order of the number of
stars in this galaxy). Of these configurations, only ~ 1-5
are stable ground states. In conventional first-principles
total energy approaches® to a material AB one usually
performs the total energy calculation for a 5-10 (rather
than 2") assumed crystal structures that by analogy with
related compounds or by ‘‘chemical intuition’’ are expect-
ed to be likely competitors for the stable ground state of
AB. Comparison of total energy vs volume curves for
such a set of ““intuitive structures’’ permits the identifica-
tion of the stablest structure in this set. While generally
successful, the predictive value of this approach of
“‘rounding up the usual suspects’’ does depend on one’s
ability to guess at the outset a set of structures which in-
cludes the “winning’’ (minimum energy) configuration.
One wonders, however, if a different, hitherto
unsuspected structure could have yet lower energy, or
whether a linear combination of two other structures
could have a lower energy.
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I will discuss here the prospects of the recently devel-
oped “‘cluster expansion methods’’® which allow one to
(i) perform a systematic ground state search among ~ 10°
atomic configurations and, (i) obtain the temperature-
composition phase diagram in a first-principles manner,
using directly calculated total energies of only ~ 10-20
configurations. Once a handful of ground state stable
structures have been identified, one can proceed and
calculate their band structures and other interesting
materials properties.

3. Basic Principles of the Cluster Expansion

A general approach to the energetics of substitutional
systems is the Cluster Expansion (CE),> in which the
energies of the different configurations are described by a
generalized Ising Hamiltonian.” In the cluster expansion,
the alloy is treated as a lattice problem: One uses a given
underlying lattice (fcc, bee, etc.) and defines a configura-
tion o by specifying the occupation of each of the N lat-
tice sites by an A atom or a B atom. For each configura-
tion, one assigns a set of fictitious ‘‘spin’’ variables S;
(/=1,2,---, N)toeach of the N sites of the lattice, with
S;= —1if site i is occupied by an A atom, and S;= +1 if
it is occupied by a B atom. The set of spin variables {S;}
defines the configuration, . One can imagine that the
total electronic + nuclear energy of a given configuration
o can be calculated directly from quantum mechanics
(using e.g., the local density or the Hartree Fock
methods) yielding

Esrei(0)=<¥ | HI ¥ >/{¥] ). @

In principle, this can be repeated for each o. The cluster
expansion consists of mapping the set { Egrect(0)} Onto an
Ising-like series:

Ece(0)=Jot Y] JiSi(0)+ ] J;5/0)5i(0)

j<i

+ Y JuSi@)8()Sk(@)+ -+ -, )

k<j<i

for configuration o, where the J’s are ‘‘interaction ener-
gies’’, and the first summation is over all sites in the lat-
tice, the second over all pairs of sites, the third over all
triplets, and so on. These constitute the basic ‘‘figures’’
of the lattice. We have 2~ configurations and 2V interac-
tion energies, sO Egiect(0)=Ece(0g) can be solved. The
whole point of the cluster expansion® is to find a scheme
for obtaining a rapidly convergent series that requires
only a small number of calculations. When the final J’s
are known, the energy Ecg(a) of any of the 2¥ configura-
tions can be calculated almost immediately. Further-
more, one can readily (i) apply linear programming tech-
niques to find ground state structures,'® (ii) use statistical
mechanics techniques such as the Cluster Variation
Method''® or Monte Carlo"® to calculate phase dia-
grams, and (iii) calculate the energy of an arbitrarily com-
plex configuration.'?

The main challenge is then to establish a first-princi-
ples theory for obtaining the interaction energies {J}.
There are three general approaches to this problem.

The first approach is to do a purely empirical fit of the
J’s to known features of the phase diagram for the alloy
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system.'® For example, information about the values of
the J’s may be extracted from experimental critical tem-
peratures.'® This approach is the simplest, but it provides
little new information about the properties of the alloy.

The second approach is to determine the J’s by treating
ordered structures as perturbations of the random alloy.
The random alloy is treated using either the Coherent
Potential Approximation (CPA). Methods based on
these approaches include the Generalized Perturbation
Method (GPM) of Ducastelle and Gautier,'® and the Con-
centration-Wave (CW) method of Gyorffy and Stocks.!®
These CPA-based methods currently neglect® both posi-
tional fluctuations (atomic relaxations) and charge fluctu-
ations, so they apply only to a narrow set of AB materials
having small A vs B size and electronegativity difference.

The third approach is the direct inversion
method®**12162) which was recentiy reviewed.® This
method is based on the recognition that when the CE con-
verges rapidly, the energies of the 2V configurations are
approximately linearly dependent. In this case, knowing
a few of the energies allows us to determine the rest. The
method thus extracts the J’s from total energy calcula-
tions on a set of ordered structures. We first compute
E (o) of eq. (1) for a few (10-20) ordered structures (o) us-
ing ab initio methods, and then substitute the results on
the left hand side of eq. (2). We then solve eq. (2), finding
a set {J} of interaction energies. These are tested as to
their ability to predict the energies of other configura-
tions. The method includes in a natural way atomic relax-
ation as well as charge fluctuation effects. Convergence
with respect to the range of the interaction energies is sys-
tematically tested. Thus, the advantage of the cluster ex-
pansion is that it extracts information from a small set of
structures to make predictions for the energies of all
other structures; by contrast, direct electronic structure
calculations® treat each configuration independentiy,
and fail to take advantage of the underlying relations
among different substitutional configurations of the sys-
tem.

4. Applications to New Transition Metal Compounds

4.1 Old and new Pt compounds

One of the well-known metallurgical rules is that
binary transition metal systems whose constituent atoms
have nearly-filled d shells (‘‘late transition metals’’) have
positive mixing enthalpies 4 Hr and show, at low tempera-
tures, phase-separation rather than long-range ordering.
I was wondering if this is valid. Consider for example,
the phase-behavior of binary alloys of Pt with its
neighboring elements in the Periodic Table.?**® First, Pt-
Ni and Pt-Cu actually order. Second, while Pt-Rh and
Pt-Pd were surmised*?> to phase separate, examination
of the original data®® shows no evidence to this effect. In
fact, measurements on Pt-Pd have shown negative mix-
ing enthalpies® and clear evidence in X-ray diffuse scat-
tering?® for a substantial degree of short-range order
which remains unexplained.

We have applied the CE to this problem,?” using the lo-
cal density approximation (LLDAY) within the linear aug-
mented plane wave (LAPW) method.? We have used the
calculated effective interaction energies {J} to perform a
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ground state search comparing different structures at the
same composition as well as the stability of the
homogeneous structure against mixing of two (ordered
or disordered) phases of different compositions. The
resulting ground state lines are shown in Fig. 1. These
show that (i) Pd-Rh phase separates, as found experimen-
tally,?® but (ii) Pt-Cu, Pt-Pd, and Pt-Rh are predicted
to order in [1/2, 1/2, 1/2], [001], and [10 1/2] ordering
vectors, respectively. For PtosCuys we correctly find
trigonal L1; ordering showing that our expansion cap-
tures the delicate competition between trigonal (L1;) and
tetragonal (L1,) structures. No low temperature data ex-
ist for Pt-Rh so our result constitutes a prediction for an
ordered structure. For Pty s;Pdg4, X-ray diffuse scatter-
ing experiments® revealed significant short range order
in the nominally disordered alloy; while the crystal struc-
ture (or phase diagram) was not determined, the average
number of Pt first-neighbors to Pd is consistent with ten-
dencies to order in the structure predicted here. It is in-
teresting to note that our ground-state search (Fig. 1)
identifies new structures that were not used to determine
the interaction energies, e.g., D1 and D7 for Cu-Pt, and
D1, and X2 for Rh-Pt. Hence, the cluster expansion
method permits predictions of unsuspected ordered struc-
tures. These results await experimental testing.

4.2 Old and new Cu and Ni compounds
The intermetallic systems Cu-Au, Cu-Pd, Cu-Pt, and
Cu-Rh form an interesting set in that while in elemental

Excess energy (meV/atom)

i D022
gy Pt}
0.0 02 04 06 08 1.0

Composition x

Fig. 1. Predicted 7=0 ground states (diamond-like symbols) of Pt-
based binaries as a function of composition. D1, is the MoNigtype
A,B superlattice along [201]. “X,”’ is the AsB, superlattice along
[201] and D1 (A;B) and D7 (AB,) are fcc-like structures with the unit
cell vectors double that of the underlying fcc unit vectors. Crosses in
part (b) show non-relativistic results that indicate that in the absence
of relativistic effects the ground state of Pt-Pd is phase separating.
From ref. 20.
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form, Cu, Pd, Pt, and Rh are all fcc metals, their 50%-
50% equimolar compounds exhibit at low temperatures a
range of structural symmetries:**?> CuAu has the fcc-
based (L1,) structure, CuPd has a bce-based (B2) struc-
ture, CuPt has a rhombohedral (L1,) structure, and
CuRh does not exist (it phase separates into pure
Cu-+Rh). We have applied the CE method to these sys-
tems'” in a parallel way to what was described earlier for
the Pt systems. For Cu-Pd and for Ni-Al we also do a
parallel CE for fcc vs bee structures.

Figure 2 depicts the ground-state lines for the Cu-
based alloy systems studied here and for Ni-Al. The sym-

L1,

L1,

.60} D7 -
' D1

Formation Energy (meV/atom)
[~
o
o

-200 D7/ -

-400 4
L1,
D5

-800 * B2 b

-600

-1000 s R ' . 1 s [
Al 02 04 06 038 Ni
Composition x
Fig. 2. Predicted T=0 ground-state line for (a) Cu,_,Au,, (b)
Cu,_,Pd,, (c) Cu,_,Pt,, (d) Cu,_,Rh, and (e) Al,_,Ni,. From ref.
19.
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metries established clearly from experiment?® are also
found theoretically, even though we have purposely omit-
ted from the basis set used to extract Jr some of the struc-
tures which are known to be ground states. Note the new
compound (*‘D7”’) predicted for Ni;Al.

We next tested whether this new ground state structure
is stable at finite temperatures. This requires calculating
the free energies of eq. (2) using the cluster variation'®
or Monte-Carlo'™® methods. Here we used the former.
Figure 3(a) gives the observed® Ni-Al phase diagram;
the calculated fcc and bec solid phase portions of the
Al,_;Ni, phases diagram are given in Fig. 3(b). The new
“D7” structure Ni;Al is predicted to be stable up to
=900 K. This phase has never been reported, but the ob-
served instability of the binodal might be indicating the
presence of a hidden phase like our D7. Since this phase
has a very low Al concentration, and since its translation
vectors are fcc-like (but doubled), this phase might be
easily confused with fcc Ni with a random distribution of
Al impurities. It awaits experimental testing.

5. New, Surface-Stabilized Ternary Semiconductors

A generally interesting question is whether one can
make surface-stabilized ordered structures that have no
counterpart in the bulk phase diagrams. It is possible to
apply the cluster expansion formalism to surface ther-
modynamics by replacing the calculated bulk energies of
eq. (1) with surface formation energies.>**V The latter cal-
culations involve both surface relaxation and surface
reconstructions. Indeed, it has recently been noted that
numerous III-V alloys exhibit in vapor phase growth
spontaneous long-range ordering in the form of mono-

1600
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Fig. 3. (a) Experimental® and (b) calculated'® phase diagram of Ni-
rich Al; . Ni,. Note the predicted new Ni;Al phase.
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layer (AC),/(BC), superlattices in the (111) orientation®?
(the *‘CuPt-like structure’’). The degree of ordering is
never perfect; it can however, be maximized in certain
growth temperature ranges and substrate misorienta-
tions. An extended list of observations of CuPt ordering
is given in ref. 32. In all cases, ordering occurred as a
result of homogeneous alloy growth without sequential
(shutter-controlled) exposures. Bulk phase diagrams of
Gayln; —,P show no ordering. To see whether such novel
ordered structures can be explained by surface stabiliza-
tion, we have applied our surface CE of egs. (1) and (2)
to the Gag sIngsP/GaAs(001) surface. Total energy calcu-
lations showed that the CuPt-surface contains homopo-
lar Ga-Ga and In-In dimers, whereas the chalcopyrite
surface exhibits heteropolar dimers.*® We find that sur-
face reconstructions (dimerization, buckling, and tilting)
considerably lower the 7=0 energy of all the surfaces
and, most significantiy, make the surface corresponding
to the CuPt ordering the lowest energy. Thus, surface
reconstruction favors atomic arrangements that are unsta-
ble in the bulk.

To see if the T=0 energy differences between different
surface structures are sufficient to preserve any type of
order at typical growth temperatures, we calculated’’ the
CuPt order parameter 7, as a function of temperature us-
ing the cluster variation approach!'® to eq. (2). For the
CuPt structure, perfect ordering gives #7=1. Figure 4 dis-
plays the results for #(7T), of the cation-terminated sur-
face. For the unreconstructed case, the system undergoes
a phase transition to the disordered phase at 7.=146 K.
It is clear that at growth temperatures (typically 900 K)
no traces of long-range CuPty ordering are to be expect-
ed with an unreconstructed surface. For the reconstruct-
ed case, on the other hand, the CuPt order parameter 7 is
seen to be significant at growth temperatures (e.g.,
n=0.87 at T=900 K). Thus, surface effects stabilize the
bulk-unstable CuPt ternary compound even at growth
temperatures. Reference 32 discusses a few scenarios of
this surface-stable structure growth.

6. Electronic Properties of CuPt-Like Ternary Semicon-
ductors

This unique phenomenon of spontaneous ordering was

Cation-terminated (001) Ga, 5In,, ;P top surface

1.0 " T -
i W [Reconsiructed}— -
Q
g 06 | .
|
5 04 [ b\ .
ks
o

02t E

005 200 800 1200

Temperature (K)

Fig. 4. Calculated CuPt long range order parameter 7 for the cation-
terminated GagsIngsP (001) surface. Note how reconstruction
eliminates the low-temperature critical transition, -replacing it by a
continuous transition in which sigriificant ordering exists even at
growth temperature (~ 900 K). From ref. 31.
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predicted to alter the alloy’s band structure in a sig-
nificant way.***¥ The basic mechanism can be appreciat-
ed as follows. Denoting superiattice (SL) states by an
overbar and the homogeneous alloy states by angular
brackets, folding relations show that in a monolayer
(AC):(BC), (111) superlattice the states at the I” point are
constructed from the zincblende-like states at <I")
=+ < L™, The folded zincblende states at this wave vector
are coupled by the perrurbing superlattice potential
oV (r). This coupling leads to a ‘‘level repulsion’’ be-
tween states of the same symmetry,* i.e., the superlattice
states are displaced relative to the unperturbed states.
For example, the Ifolding alloy states <I.> and {L.»
couple through oV, producing the superlattice states I"{¢
and I"Q that are lowered and raised, respectively, relative
to the averaged alloy states. The downward displacement
of the I' { (the conduction band minimum, or CBM) and
the upward displacement of the I'$% (the valence band
maximum, or VBM) reduce the band gap. Theoretical de-
tails describing this mechanism are given in refs. 33 and
34. Figure 5 shows predictions for band gap reductions
through spontaneous ordering for many systems. It illus-
trates how the direct band gap of the random alloy at
x=1/2 changes if the alloy orders in the monolayer (201)
structure  (‘“‘chalcopyrite’’), the (001) structure
(‘““CuAu’’), or the (111) structure (‘“‘CuPt’’). These
results pertain to perfect ordering, i.e., #=1. It was
pointed out (see review in ref. 32) that the band gap
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Fig. 5. Calculated direct band gaps of various 50%-50% ordered al-

loys of III-V and II-VI systems. The band gaps of the random alloy
are cited here with respect to the crystal-field averaged VBM. To ob-
tain the value with respect to the VBM (using GalnP, as an illustra-
tion) we calculate 1.96-+(0.80-0.62)/4=2.01 eV. Hence, the band-
gap reduction in the CuPt structure relative to the VBM of the
random alloy is 1.70-2.01=—0.31 eV. From ref. 34.
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reduction depends (quadratically) on the degree n of long
range ordering. Hence, a variable gap over a significant
spectral range can be obtained by controlling the degree
of ordering.

This mechanism of ordering-induced band gap reduc-
tion can lead to the interesting opportunity of tuning al-
loy band gaps at a fixed composition, by selecting those
growth conditions that induce spontaneous ordering.
Reference 34 lists may common semiconductor alloys
and gives their predicted band gaps for a few forms of
crystallographic order. Such effects have also been seen
experimentally®® in GalnP,. This mechanism of order-
ing-induced band gap narrowing has been recentiy
proposed®® to yield ~10u band gap in spontaneously-
ordered Ga,-,In,Sb and InAs;_,Sb, alloys. Initial ex-
perimental results®” appear very encouraging. Another
example is the prediction of ref. 38 that (111)-oriented
AlAs/GaAs superlattice (SL) (the CuPt structure) will
have direct band gaps despite the fact that short-period
AlAs/GaAs SL’s oriented along (001) are known to have
an indirect band gap. Recent experimental resuits*® have
failed, however, to find a direct gap in (111)-oriented
AlAs/GaAs SL’s. The authors® believe, however, that
these (111) samples may not exhibit sufficiently abrupt in-
terfaces to reveal the properties of true (111) SL’s. To
test this, Laks and Zunger*® have recently formulated the-
oretical approaches that predict the value of the band
gap as a function of the interfacial roughness. It was
shown, for example*” that while in an abrupt (001)-orient-
ed monolayer GaAs/AlAs superiattice the lowest gap
(1.93 eV) is an L-derived GaAs-like state, in a locally in-
terdiffused SL the gap reverts to the 2.08 eV X*-derived
AlAs state. This suggests the possible use of the degree of
interfacial abruptness as a new degree of freedom in tun-
ing band gaps.

All previous examples pertain to use of ordering
without strain to get new band gaps. Biaxial strain can,
however, be used to reduce band gaps.*” The basic idea
here is to take a material with a small band gap and small
lattice constant (SGSL) and layer it coherently with a
material having a larger gap and larger lattice constant
(LGLL), forming a strained-layer (SGSL),/(LGLL), su-
perlattice. Coherence of SGSL with LGLL then expands
the lattice constant of SGSL parallel to the interface,
thus lowering its I" conduction-band minimum. At the
same time, tetragonal compression of SGSL in the per-
pendicular direction splits its valence band maximum,
raising the energy of the upper split components. Both
effects act to reduce the band gap relative to unstrained
bulk SGSL. This approach has been proposed by
Osbourn*’ for SGSL=InAsg3Sbos and LGLL
=1InAs;-,Sb, with x>0.61. Since quantum confinement
effects at small (p, g) act in the opposite direction (in-
creasing the band gap) relatively thick layers are needed
to achieve the maximum band-gap narrowing.*? Yet, the
need to accommodate coherently the misfit strain limits
the maximum thickness that can be used.

Biaxial strain has also been used recently to make a few
predictions, e.g., (i) use of strain to convert the norm-
ally-indirect (GaAs),(GaP), SL grown on a lattice match-
ed substrate into a direct gap superlattice (GaAs)(GaP),
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grown on GaAs*? (rather than the alloy). There are now
experimental confirmations of this idea.”® (ii) Use of
strain to convert the indirect gap Si,Ge, SL grown on Si
to a direct gap SL when grown on Siy sGeo s or on pure Ge
substrates.*” The experimental results here are yet incon-
clusive; there are, however, strong ongoing interactions
between experimentalists and theorists to clarify this situ-
ation.* Again, the research opportunities here are
almost unlimited, once one realizes the basic design prin-
ciple of use of biaxial strain.

7. Chalcopyrite-Zincblende Alloys and Compounds

Many interesting alloys exhibit competition of three
atomic species on the same lattice. Semiconductor exam-
ples include the technologically-important (in solar cells)
(CulnSe,).(ZnSe),, system in which Cu, In, and Zn can
reside on the fcc lattice. More generally, we have an alloy
of A; ,B,C with DC. We will address here the x=1/2
problem. The statistical mechanis*® was addressed in two
steps. First, we consider the occupations of the fcc cation
sublattice by A and B atoms in the A};Bi:CY' chal-
copyrite system. Second, we add the third cation D" com-
peting for the same sublattice. In addressing the first
problem we consider the spin-1/2 Ising model where site
i is occupied by either an A atom (6;,=—1) or by a B
atom (g;= +1). This pertains to CulnSe, with Cu=A
and In=B. We take the Ising Hamiltonian for an arbitra-
ry configuration ¢ of this binary system to be

Hyin(0)=Jo Z Jyoi0;+ Z Jimoi0;0ka1, 3

an (Kl

where (ij) indicates a summation over all pairs, and
(ijkl) indicates a summation over all tetrahedra in the lat-
tice. To find the values of the interaction parameters { J }
we fit eq. (3) to a set of directly calculated LDA forma-
tion enthalpies 4 H (o) of simple CuSe/InSe ordered
structures at the equilibrium volume. Retaining only J;,
J,, and J, in the Hamiltonian of eq. (3) gives a very good
fit. The order-disorder transition obtained in a Monte-
Carlo (MC) simulation for CulnSe; is*® T.=1120K, in
perfect agreement with the result using up to fourth-
neighbor pair interacllons (the experimental result is
1083 K). The CVM tetrahedron approximation leads to
T.=1224K.

The consideration of the pseudoternary case (ABC,);—x-
(DC),, (e.g., CulnSe,~-ZnSe) requires two changes.
First, a generalization to a spin-1 Hamiltonian, represent-
ing occupations of site i by A (S;=1), B (S;=1), and D
(§;,=0) is needed. Second, the added interaction terms
are now volume-dependent since the end-point chal-
copyrite and zincblende constituents can have different
equilibrium molar volumes, in contrast to the pseudobi-
nary case, where all structures (CuSe),(InSe), had the
same composition and, hence, nearly equal molar
volumes. We will therefore use a nearest-neighbor spin-1
Ising model (a generalized Blume-Emergy-Griffiths,*” or
BEG model) with volume-dependent interactions:

I{tem(S, V):[Jz 2 S,Sj‘i‘J‘t Z S,SJSkS1]+J0(V)

) <kl
+D(V) Y Si—K(V) 2 Sisi. @

iy
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The terms in brackets are the nearest-neighbor terms of
eq. (3). All odd terms were omitted, assuming that the
Hamiltonian is invariant under the A< B interchange.
Using the LAPW method we have calculated the
volume-dependent total energies Es for structures
S=ZB, CH, and stannite ST, finding also the equilibri-
um volumes Vs. We solved the statistical mechanics of
eq. (4) in the CVM tetrahedron approximation.!'® Figure
6 shows the calculated phase diagrarns of (CulnSe;);—x-
(ZnSe),,, using a hierarchy of approximations in the
Hamiltonian of eq. (4). The diagram of case (i) cor-
responds to the antiferromagnetic spin-1 Ising model in
the fcc sublattice. The diagram of case (ii) shows the role
of positive K values: it widens the CH-ZB miscibility
gaps, suppressing the small second-order transition line
present in case (i) between =410 and 550 K, and removes
the triple point. The diagram of case (iii) shows that J,
acts to reduce considerably the transition temperatures in
the low-x region and to reduce the width of the CH-ZB
miscibility gap. Finally, the use of volume-dependent in-
teractions acts to increase the CH-ZB miscibility gap

1200
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400 |

Temperature (K)
o
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800

400

1 ! AY

O . 1 N g L 2
0.0 0.2 04 06 08 1.0
CulnSe, X ZnSe

Fig. 6. Calculated phase diagram of CulnSe,/ZnSe using a few
representations: (a) J,-only; J,+K,; I,+K,+J,. In (b) we show the
result including volume-dependent interaction energies. From ref.
46.
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[Fig. 6(b)]. The maximum equilibrium solubility of ZnSe
in CulnSe, with the chalcopyrite structure is 22% (at
T=770K), while CulnSe; becomes completely soluble in
ZnSe with the zinc-blendestructure above the order-dis-
order temperature of CulnSe,. Our results hence show
that, contrary to the other known heterostructural terna-
ry alloy (GaAs),-.»Ge,,, characterized by vanishing solid
solubility, (CulnSe,);—»(ZnSe),, should exhibit substan-
tial miscibility. Additional metastable features are
presented for this ab initio phase diagram. The left
dashed line in Fig. 6(b) marks the chalcopyrite spinodal,
which is the upper-composition limit of metastability for
the CH phase. The right dashed line is the unstable sec-
ond-order transition line inside the coexistence region
and marks the lower-composition limit for metastability
of the zinc-blende phase. Between these two lines we find
8°F/dx*< 0, which implies that any incipient phase sepa-
ration will be preferred to a single-phase state. Since at
x=1/2 we found 0< A H (ST) <A Eyp <A Egana, the stan-
nite structure could be observed in (CulnSe;);—»(ZnSe),,
if long-range atomic diffusion were inhibited. The shaded
region at x~1/2, T<440K shows this marginally
metastable ST phase. It should be observed if short-
range atomic rearrangements are allowed but long-range
atomic migration (and hence, phase separation) is slow at
T<440 K. The chalcopyrite-forbidden X-ray diffraction
peaks at (001), (110), (112), and (221) 27/ a characterize
the ST phase. It would be very interesting to measure
such X-ray reflections in chalcopyrite-zincblende alloys
to see if the stannite structure is stabilized. Recently, Gal-
lardo*® suggested that such a phase could exist in solid so-
lutions of AgInSe, with HgSe. To test this, Lu and
Zunger* calculated (using the LAPW method) the for-
mation enthalpy of the relevant Stannie phases. While
for CulnSe,/2SnSe, Osorio et al.*® found A H;=+25.6
meV/4-atoms, Lu and Zunger found*® for AglnSe,/
2HgSe a much smaller number of 2.6 meV/4 atoms.
Thus, this stannite phase could be stable!

8. Epitaxial Stabilization of New Semiconductors

Section 5 showed how surface reconstruction can stabi-
lize a structure that is bulk unstable. Another effect is the
use of epilaxial strain to stabilize thermodynamically a
bulk-unstable compound.’®*? Figure 7 gives a calculated
example:’Y MgS is stable in the NaCl (B1) structure, so
the total energy vs lattice constant curve has a minimum
for that structure, whereas the zincblende (B3) phase is
higher in energy. To stabilize zincblende MgS, one can
grow it epitaxially on a substrate whose lattice constant is
larger than a&f. Then, the epitaxial (dashed line) B3
energy is lower than the epitaxial Bl energy. References
50 and 51 discuss in detail how such predictions are
made, what is the film thickness for which epitaxial stabil-
ity is maintained, and how one can make zincblende
NacCl or NaCl-type CdTe.

9. Summary

We have shown how total energy LDA calculations of
O(10) ordered structures can be used to extract the
“‘building blocks’’ interaction energies { Jr}, and how
these can be used in conjunction with lattice statistical
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Fig. 7. Calculated bulk (solid line) and epitaxial (dashed lines) total
energies of MgS in the zincblende (B3) and NaCl (B1) structures. The
top figure shows the ¢/a ratio. From ref. 51.

mechanics techniques to calculate thermodynaniic prop-
erties. The quantities that can be calculated in this way in-
clude: (i) identification of the 7=0 lowest energy configu-
ration out of 2% possibilities, (ii) formation energies of
‘“‘complex’’ structures, not amenable to direct LDA calcu-
lations, (iii) excess configurational enthalpies, entropies,
and free energies as a function of (x, T'), (iv) composi-
tion-temperature phase diagrams, (v) SRO and LRO
parameters as a function of (x, 7'), and (vi) equilibrium
lattice constants, interatomic distances, and elastic con-
stants as a function of (x, 7).

The systems for which the method has been illustrated
include (a) pseudobinary A;_,B,C semiconductor alloys,
(b) binary A;_,B, transition metal alloys, (¢) Ternary al-
loys such as CulnSe,/ZnSe, (d) epitaxial phase diagrams,
and (e) surface phase diagrams. The main advantages of
this method lie in its ability to predict unsuspected struc-
tures and to analyze trends in the above quantities in
terms of electronic structure constracts, thus helping to
demistify the highly successful Pauling-esque rules of
metallurgy and structural solid-state chemistry.

The main predictions discussed here are: (i) new chal-
copyrites and pnictides (see ref. 1); (ii) I-II-V filled tetra-
hedral compounds (refs. 2-4); (iii) new ordered phases
for Pt-Pd and Pt-Rh (ref. 20); (iv) a new Ni-Al structure
(ref. 19); (v) ternaiy III-IV-V, CuPt-like semiconductors
(ref. 32) having new gaps (ref. 34); (vi) direct-gap AIAs/
GaAs (111) superlattices (ref. 38); (vii) direct gap GaAs/
GaP superlattices grown on GaAs (ref. 42); (viii) stannite
ordering in CulnSe,/ZnSe (ref. 46) and AglnSe,/HgSe
(ref. 49); (ix) epitaxial stabilization of the NaCl structure
of CdTe or the zincblende structure of NaCl (ref. 50).

This work was supported by DOE (Office of Energy
Research and Office of Conservation and Renewable)
through grant DE-AC02-83-CH10093.
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