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A conventional quantum well is a supported quantum structure whereas a free-
standing film is an isolated quantum structure. The application of the effective mass
particle-in-a-well approach (EMA) to quantum wells leads to the well-known quantiza-
tion rule whereby the lowest, j = 0 quantum state is forbidden. The EMA identifies
these forbidden states with the bottom of the potential wells at the band energy minima
and maxima for each band n. Direct pseudopotential band structure calculations for free
standing silicon films are compared here with such EMA solutions. While near the band
energy mintma the EMA wavefunctions agree with the results of the direct approach,
they disagree completely near the band energy mazima. The standard EMA forbidden
states I'yy, Tosiy, Doz, Tosey, and A,y for n=1,2,3.4, and 3, respectively, are all poten-
tial well minimum states, whereas the forbidden states found in the direct calculation,
I'voy Xioo Xav, Xigo, Appin and Xy, for bands n=1,2,3,4.5 and 6, respectively, are all band
minimum energy states. At the valence band maximum [;5,,, direct calculations reveal
a novel quantum state of constant envelope functions, whose energy does not vary with
film’s size. Such a “zero confinement state” is absent in the EMA quantum well problem.

Keywords: Quantum Structure, Quantum Confinement. Si Film, Effective Mass

I. INTRODUCTION

Novel optical and electrical properties can be engi-
neered through the control of size and dimensionality
(D) of quantum structures in 0D (boxes), 1D (wires)
and 2D (wells and films). Such structures can be either
“supported” or “isolated”. Supported quantum struc-
tures are coupled to another material with a similar un-
derlying bulk electronic structure, e.g., a GaAs well sur-
rounded by an AlGaAs barrier. Such supported struc-
tures are treated successfully by the effective mass ap-
proximation (EMA) for a particle in an external poten-
tial well [1.2]. One can also consider isolaied quantum
structures such as a free-standing film: these are embed-
ded in a medium lacking any quantum structure (i.e.
vacuum). There is an important difference between a
supported structure (e.g., a 1D gquantum well) and an
1solated structure (e.g., a 1D quantum film) which, as
shown below, invalidates the EMA prescription for the
latter case. This is illustrated in Fig. 1: A supported
quantum well (Fig. la) is characterized by a sequence of
band (n, k. )-dependent potential wells with hights given
by the appropriate band offset (typically ~ leV in semi-
conductors). These wells can be concave (as is the case
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for the valence band minimum, VB,.in, or the conduc-
tion band minimum, CB, in Fig. 1a) or convex (e.g.,
the valence band maximum, VB,,,. in Fig. la). The
mini bands associated with a particular well are sepa-
rated from those of other wells by energy continua (i.e.,
extended scattering states) and by band gaps (i.c., for-
bidden regions). These are depicted in Fig. la by the
shaded areas. In the EMA these “electronic isolations”
act to effectively cut-off much of the coupling between
wells belonging to different (n,k.) bands of the same
material. Thus, in many cases one needs to consider
quantization in one (n, k;) well at a time. Consequently,
the numbering of the EMA quantized levels starts with
the quantum number j_, , =1 in each well, and the null
solution 7,,,, =0 (corresponding to the minimum of the
well) does not represent a probability wave and is thus
disallowed. In the following, we will term the missing
Jesa 10 the quantum spectrum as a “forbidden state”,
In contrast to a supported quantum well, in an iso-
lated quantum film (Fig. 1b) numerous bands are con-
fined by a single, concave well extending from the va-
lence band minimum, all the way to the vacuum level
(~ 20 eV in most covalent semiconductors). While the

Jema =0 state at the VB, is still forbidden, just like
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FIG. 1. Schematic depiction of quantum confinement in
(a) a quantum well and (b) a quantum film. A and B de-
note well and barrier materials, respectively, whereas Vac.
denotes vacuum. @ is the work function. The shaded ar-
eas denote the region of energy continua. Energy levels
and wavefunctions, indexed by quantum numbers j., ., are
shown schematically. Note that the convex wells are hole
wells for which the quantum number j, . decends with the
band energy.

in the supported quantum well case, the other (n >1)
forbidden j,,,, =0 states can be different. For exam-
ple, since there is no distinct potential well at the filin’s
VBinaz, the corresponding j,,, =0 state (which is forbid-
den in a quantum well) could be allowed in a quantum
film. We will see below that, in fact, unlike the quantum
well case, the forbidden states in a film correspond to the
lowest enerqy states in each bulk band.

The purpose of this paper is to explore the conse-
quences of the qualitative difference between a (sup-
ported) 1D quantum well and an (isolated) 1D quan-
tum film and points out the limitations of the effective
mass model. We will compare the wavefunctions of a
free standing Si. film as obtained by the EMA and by an
“exact” direct diagonalization of a realistic approxima-
tion to the film’s Hamiltonian. We find that the effec-
tive mass description, which is appropriate for quantum
wells, does not apply to quantum films. In particular,
the film forbidden states obtained in the “exact”™ ap-
proach differ from those predicted by the EMA, as evi-
denced by the wavefunctions. A simple alternative (the
“truncated crystal approach”) to the EMA, which cap-
tures most of the features of the “exact” approach will
then be offered.

Superlattices and Microstructures, Vol. 14, No. 2/3, 1993

II. THEORETICAL APPROACHES TO
QUANTUM FILM WAVEFUNCTIONS

A. The Effective Mass Approximation

The electronic states of a quantum well can be rigor-
ously described by considering the the well (W) material
+ the barrier (B) material as a (combined) solid in its
own right. In this description both B and W are char-
acterized by periodic potentials in their interiors and
a potential step at the interface between them. The
problem is then addressed by solving the band structure
of B4+W. The effective mass method approximates this
problem by considering instead a particle in an exlernal
potential. The latter is taken to be constant inside B and
W, with a physical band offset at the interface (Notice
that the need for a slow varying potential with respect
to the unit cell size has been dropped here, making the
application of the EMA to large offset systems question-
able.) In doing so, one replaces the bulk band structure
e?4¥ by a (band index n dependent) pure kinetic energy
form

. h*(k — ko)?
CEHIL‘:!A = Enkg 4 il S B I

1
Qm;‘ku (1)
where €, x, and m}, are the band edge energy and ef-
fective mass at kg. One further replaces the bulk eigen-
states ¥iF(r) by I,szﬁm(r) which is a product of an
envelope function fx_k,(r) and a fixed ko Bloch peri-
odic piece u, x,(r). This transforms the boundary prob-
lem of a finite solid into a particle-in-a-box problem for
fk—kq(r). TFor concreteness, consider the zone center
states (I' = ky = ky, = keo = kyo = 0) of a (001)= =-
oriented Si quantum film of thickness L = Na/4, where
N is the number of monolayers and a is the bulk cubic
lattice constant. The requirement that the wavefunc-
tion l,ﬁ';%:iyA(l‘) will vanish at the boundaries leads to an
envelope function represented hy a sine-like standing
wave created by a destructive interference between two
running plane waves of opposite directions. i.e.,

u'rf‘ll"""‘(r) = Up o (r)sin(k; — ko)z . (2)

The ensuing quantization conditions are

T, 2r 25, . .
ks — ko = I-IE-MA = ? %; ‘jEMf(l =1,2,3,..
(3a)
where
2r 2 21 2jo .
k, = — —: kg = — =2 :
e N’ TT 4N (58]

The quantum numbers. j. jo and jg,,, satisfy therefore
the relation
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FIG. 2. Silicon bulk band structure. The solid and
dashed lines of index n denote single and twofold degener-
ate bands, respectively. The figure also shows the mapping
of a 12 layer film states of the direct approach (solid dots)
to those given by ff[{f" = (f."ié
intersections of the vertical dotted lines at j with the bulk

dispersion. Forbidden j’s are shown as large open circles.

The latter are given by

jl = jEMA +j0 2 (3(‘)

Note that the state at k. = k.o (corresponding to
Jews = 0 and j = jo) 1s forbidden. The EMA identifies
this forbidden state with the minimum of the appropri-
ate potential well (and is hence band index n depen-
dent). For example, in bulk Si (whose band structure
is shown in Fig. 2), the I'y, state of band n=1 consti-
tutes the bottom of the VB,.;. potential well (Fig. la),
50 k:o = 'y, in Eq. (3) is forbidden. Likewise, the T'ysn,
states of bands n=2,3,4 are taken as the minima of the
VB,.ax (hole) potential wells, so k. = '35, 1s forbidden
too. In the n=>5 conduction band the minimum is at
Armins 50 kg = Apin 18 forbidden. Thus, the EMA ap-
proach excludes from the spectrum of Si quantum wells
the states 'y, oz, and A, which are potential well
minimum states. Note that in general, potential well
minimum states can differ from band minimum states:
Fig. 2 shows that the latters (denoted as large open cir-
cles) are I'y,, X1,, Xqp. Xqp. for bands n=1,2,3, and 4,
respectively,

We have calculated the EMA wavefunctions for a 12
layer (001) Si quantum film. Figure 3 shows the xy-
averaged wavefunction amplitude |[¢¥*(z)|2. The well-
minimum Bloch functions u, k_, (r) appearing in Eq. (2)
were calculated from the bulk pseudopotential band
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FIG. 3. x-y planar averaged wavefunctions |q’!ﬂ!‘“(z)|2
of a 12-layer Si (001) film obtained by the EMA. j indexes
k*-vector and n is the band index. The value of jy corre-
sponding to the band extrema (used by the EMA) are in-
dicated. Symmetry labels, I'zsr,, 1y, X1o, Xapo and Appin,
denote EMA forbidden states. The ticks in the horizontal
axis denote the atomic planes, The arrow in the upper panel
denotes that the two states are identical.

structure (see below). Because the EMA is valid only
in the region k — ko < %, we show in Fig. 3 the EMA
wavefunctions just for j,,,, =1. We have sorted in Fig. 3
the calculated wavefunctions according to the quantum
number j [Eq. (3)] and the bulk band index n. n and j
appear along the x and y axis of Fig. 3, respectively. The
band-edge points k.o (or, alternatively, the value of jo)
were selected as follows. For n=5, we take k.o ~ Anin,
so jo = 5. For n=1,23, and 4, we use jo = 0. Besides
these standard EMA choices of jg in Fig. 3, we also use
for comparison jo = 6 for zone boundary states for n =
1,2,3,4. The EMA-forbidden states are denoted in Fig.
3 by their symmetry labels, i.e. Ty, Tasn, and Apuin,
etc.

B. The Direct Diagonalization Approach

To assess the validity of the EMA results for a film
(Fig. 3), we have calculated independently the film’s
wavefunctions from a direct diagonalization approach
which is free of effective mass approximations. We solve



144

[7%‘72 4 iz’fi”"(r}]n-‘fi[m(r} - E__;_'i!mv_}'n'm[r) . (4)
where V™ (r) is the potential of the film constructed
here from a superposition of atomic pseudopotentials.
Equation (4) was solved by imposing periodic bound-
ary conditions on the N-layer film straddled by N,,cpum
layers of vacuum. This transforms the film problem into
a Bloch-periodic band structure problem, solved by ex-
panding v film plane waves. We increase Ny,cpum un-
til the resnlts are independent of it to within 0.02 eV,
Since the EMA does not consider surface effects, we try
to mimic this situation also in the direct diagonaliza-
tion approach of Eq. (4). To this end we have used
a non-self-consistent empirical pseudopotential descrip-
tion here rather than a self-consistent one, because the
latter propagates the unwanted surface effects deeper
into the interior of the film. The atomic Si pseudopo-
tentials used to construct VS (r) of Bq. (4) were fit-
ted both to the bulk band structure and to the Si work
function (~ 4.9 eV) [3,4]. This was done to assure that
the confinement potential of Fig. 1b is realistic. The
Si bulk band structure is shown in Fig. 2. We use the
same pseudopotential approach to calculate the Bloch-
periodic functions w, (1) of Eq. (2) and Fig. 3. The
“direct diagonalization” approach of Eq. (4) includes in
a natural way the periodic potential of the film material
as well as the “potential well” outside it. No implication
is made that the solutions are valid only near band edges
or that the dispersion relations are parabolic. The only
approximation involved is the use of an empirical pseu-
dopotential, which, however, is fit to a realistic form.
Hence, this “exact” approach will be used as a bench-
mark against which the EMA results will be compared.

Figure 4 depictb the directly calculated film wave-
functions |4 '!"'( )|? for a 12 layer Si(001) film up to n
= 6. The near-I" states for band n=>5.6 are omitted since
they are too close to the vacuum level and are thus not
completely confined.

It is useful to sort out the directly calculated film
wavefunctions according to bulk bands, so a comparison
with the EMA results of Fig. 3 can be made. While
the EMA states are constructed from an interference of
plane waves of opposite propagation directions, an ap-
propriate basis for the directly calculated film wavefune-
tions is given by an interference of Bloch waves, i.e.

i () = {f»"‘ii‘.‘i—f( J—tnd(r) f0<z<L
: 0 ifz<0 or 2L .
(5)
Since 2% (r) = = [pfd5 ()7, Bq. (5) can be rewritten

fm(]<.,<Lrit~

Yika(r)i= V2 [H,’T_kt(r)ﬁin(k::] + -uj;_,‘_:(r)cos(.(-::)]
(6)
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where uff, (r) and !, (r) are the real and imaginary
parts of the bulk u, . (r), and k. is quantized as

Equation (7) differs from Eq. (3a) in that no forbidden
state Jo is assigned a priori. Equations (6) and (7) define
a set of orthornormal and complete “truncated crystal
basis functions™ [3.4]. The zone center film () state,
z.,-"}r_}l.""(r). can thus be expanded [3,4] as

Fffx{lm ):ZZ””J“‘Z)\

nooky

ks () (8)

The expansion coefficients are calculated from
(-'nf(]‘ } =<4 fi}ml\nk' 3 (g)

using Eq. (6) for y, 4 and the solutions -L,".vf,.’l‘.'_’“ from
Eq. (4). The p10|((1|0t |an s (K2)|* can then be used
to (i) find which &7 values are forbidden in the film (i.e.,
states with null projection), (ii) identify the parentage
of the directly caleulated film states in terms of bulk
bands, and (ii1) identify surface states.

The caleulated projections (shown in % as inserts
to Fig. 4) reveal that: (i) Each valence band film state
evolves essentially from a single bulk state of band n at
a special k2 of Eq. (7). In this case, the boundary condi-
tions at z = 0 and z = L are satisfied, in the first part of
Eq. (6), by the sine envelope function and, in the second
part of Eq. (6), by the nodal planes of !, (r). (i) Con-
duction band film states are found to evolve from two
bulk states. This is because for n = 5, ky = A, is nei-
ther a zone center nor a zone houndary point. In order
to satisfy the boundary conditions at (0,L) the destruc-
tive interference takes place hetween states at k. and
2A,.in— k. in the extended zone (Fig. 2). This translates
into two k-points in the firqt zone: (n.kZ) and (m.k3,).
For example, the (n,k7,)=(n=5, j=4) state couples with
the (m.k7,)=(n=5, j=6) state, and the (1.} )=(n=5,
j=3) state couples with the (m.k,)=(n=6, j=3) state,
etc. These are represented by the arrows in the conduc-
tion bands of I'ige 4. Hence, in this case

U"j‘ff;‘m(r) R~ “u.f{f";) }\n.k; ( } + A, f“‘ )\m kip ( )
(10)

The inserted numbers for conduction band states in Fig.
4 give the appropriate sum of the two state projections.
The fact that a film state couples only to one or two
truncated crystal basis functions suggests that the basis
set given by Eq. (6) is an optimal choice.

Figure 4 sorts out the directly calculated film wave-
functions according to the quantum number j of Eq. (7)
as well as the band index n for which there is a max-
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imum projection. This sorting establishes a correspon-
dence with the EMA wavelunctions of Fig. 3. Note that
while the direct approach provides all film wavefunc-
tions (Fig. 4), in the EMA (Iig. 3) only near band edge
wavefunctions (small j or large j) are meaningful. Like
in Fig. 3, forbidden states are denoted in Fig. 4 by their
symmetry labels, i.c. 'y, X, Xy, ete. States evolving
into surface states are marked as S'S.

It is immediately evident that the EMA identifies
incorrectly some of the forbidden states: the EMA for-
bidden states T'y,. Dasre. oz, ose, and A, for
n=1.2.3,4, and 5, respectively, are all potential well min-
imum states, whereas the forbidden states found in the
direct calculation. 'y, Xiu Xawy Naw, Ain and Xy, for
n=1,2,3.4,5 and 6, respectively, are all band minimum
encrgy states (see Fig. 2). This is discussed next.

III. WAVEFUNCTION PATTERNS

Comparing the wavefunction patterns of Fig. 3 with
those of Fig. 4, we see that:

(1) The EMA provides a good approximation to the
states near the true energy band minima, I'y, and X,.

(11) The EMA works less satisfactorily for states near
A (in Fig. 3a), because an effective mass approxima-
tion gives only the sine modulation and cannot tell the
differences between states on the left-hand side and on
the right-hand side of Ay, In the direct diagonaliza-
tion approach, the states on these two sides are different:
one is sine-type and the other is cosine-type (see below).

(iii) The EMA is incorrect for states near I'yse, and
Xi.. For n =34, the j=1 states should he cosine-like
and sine-like [Eq. (6)], respectively, as shown in Iig. 4.
Also at n =3, the EMA rules out the j=0 state which
exists in the direct approach (Fig. 4) with a constant
envelope function. The patterns do not agree for the
states near X,,. and in addition a j=6 and n=1 state
does not exist in Fig. 3¢ but exists in Fig. 4.

We expect that the failure of the EMA near ['yse,, (in
Fig. 3) cannot be fixed by multi-band coupling schemes
such as the Luttinger model [5] which still relys on the
assumption of hole confinement. Since the truncated
crystal basis set of Eq. (6) has a near 100% projection
on the films states (Fig. 4), we can inspect its form to see
why even multi-band effective mass models are still in-
sufficient: Equation (6) shows that realistic film’s wave-
functions need not to have ky dependence but instead
they allow cosine-type modulation. The cosine com-
ponent satisfies the boundary conditions by the nodal
structure of the Bloch-periodic function u,,‘k;(r). not by
the envelope function as is the case in the EMA. For
example, materials whose atoms exhibit but s valence
orbitals (e.g.. hvdrogen) have nodeless w, x(r), so the
boundary conditions in films made of such atoms must
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FIG. 4. x-y planar averaged wavefunctions EL'}"‘:.'"(:)[E
of a 12-layer Si (001) film obtained by the direct approach
(solid lines). Sehematic drawing of the global peaks at n=2
and 5 are represented by the dotted lines. j indexes the
kZ-vector and 7 is the band index. =557 denotes film surface
states. Symmetry labels, 'y, Xy N Ngeo Xycand Ay
denote the forbidden states. The inserted mumbers show
the bulk projections in percent. Arrows in the upper panel
denote the paired kZ%s in Eq. (10). “sum™ means the sum of
the projections of a film state to these paired bulk states.

be satisfied by the envelope functions (which hence must
he sine-type). This is also the case for Si film states
evolving from the s-like n=1 band. On the other hand.
materials with valence bands derived [rom atomic p, d
orbitals may have w, g+ (r)’s with nodal structures, so for
some film states the boundary conditions could be safis-

fied by the Bloch function vather than by the envelope
funetion. This feature is absent in either single-band or

multi-band EMA and leads to the significant differences
in film wavefunctions noted in Fig. 3 vs. Fig. 4.

Before comparing Fig. 3 and Fig. 4 in detail. two
comments are pertinent: (a) In general, the nodal struc-
ture of u, z+(r) and that of the envelope function could
create interference patterns. We thus expect complex
wavefunction patterns both in the EMA, where wu, 4,
inferferes with sin[(A. — k.g)z]. and in the general so-
lution of Eq. (6) where w, - can interfere both with
sine and cosine envelope functions. (b) The projection
lans|? reveals that the directly caleulated Si film states
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are either nearly-pure-sine or nearly-pure-cosine states:
e.g. the film states evolving from band n=1.2.4 and 6
are sine-like, whereas the film states evolving from n=3
and 5 are cosine-like. With these general comments, we
next discuss the wavefunction patterns of Iig. 4 in some
detail:

(i) For n=1: the number of peaks (n,) correlates
with the quantization index j, i.e., n, = j. This is what
we expected.

(ii) For n = 2. {&f"™(r)} show a complex pattern
(Fig. 4) with both fine (solid lines) and global (dotted
lines) peaks. In moving from j =1 to j = % = 6, the
number of global (G) peaks (ngs) increases from one to
five, in line with the change of j. The number of fine
(F) peaks ng = N-j changes from 11 to 7 as j changes
from 1 to 6. Using an extended zone scheme, these fine
peaks can be viewed as an extension of the peaks in the
n = 1 band.

(iii) For n = 3: (a) an EMA-forbidden j, = 0 state
is present, with a constant envelope function (zero con-
finement state), and (b) the j=1 state has an envelope
function maxima near the boundaries of the film, in con-
trast to the EMA solutions where the maxima are in the
interior of the film.

(iv) For n = 4: as for n = 2, the wavefunction pat-
terns can also be sorted as global and fine peaks. A
simple relation between the peak numbers with j is ob-
tained by assuming that the global peaks at small j’s
evolve into fine peaks at large j's, and vis versa. This is
shown in Fig. 5 where the global peak sequence at small
7's is labeled as ng, = j and at large j’s is labeled as
ner = %] This kind of sorting also works for the n =
3 band. In contrast to the n = 4 band where the two
peak sequences are both sine-like, for n = 3 the Gs is,
however, cosine-like while the (;{ is sine-like (I1g. 5).

(v) For n = 5 and 6: while it is difficult to sort out
all the fine peaks, the global peaks (dotted lines in Fig.
4) follow ng = |j — jo| = |7 — 5| States to the left of
Apin in Fig. 4 are cosine-like; states to the right (n=5,
j=6) and those in the n = 6 band, i.e. (n=6, j=5).
(n=6, j=4) etc. are sine-like.

Here, we summarize the wavefunctions patterns
given by the direct approach:

n=J1x n, =3 , (11a)
. ng=j ;
=
=i {np:;’\"—j .‘ (11b)
BE=
n=3and4: {?’Pii :J%_j i (11c)
n =75 (including n = 6) : ng =17 — Jol (11d)

where N = 12 and j, = 5 for the 12-layer Si(001) film.
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| Decomposition of the Film Wavefunctions l
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FIG. 5. Schematic drawing of the decomposition of the
film wavefunction (solid lines) into small-j-global (G;) and
large-j-global (G) peaks (dotted lines) for n=3 and 4. The
inserts are the number of the peaks neg, (ng) of the envelope
functions which increase as j increase (decrease). Note that
for n=3, G, consists of peaks centered at the boundaries.
Two boundary (half) peaks are counted as one peak in the
figure and Eq. (11).

IV. ENERGY LEVELS AND THEIR
EVOLUTION WITH SIZE REDUCTION

The layout of Fig. 4 and the fact that a near 100%
bulk projection value is achieved for most of the film
states suggest that one can set up an energy map be-
tween film energy eigenvalues /'™ and the bulk band
structure ¢*“* at the specified (n, k7) points:

Titm o hulk (12)

(j,‘lw = €p ke

This is tested in Fig. 2, where the solid dots denote the
directly calculated film eigenvalues (if"'i’.’", and the dot-
ted vertical lines give the quantized k7 values of Eq. (7).
The intersections of the dotted lines with the bulk band
structure give %%, The amount by which these in-
tersections miss the solid dots thus gives the error in
Eq. (12). We see from Fig. 2 that Eq. (12) works very
well. A comparison between the EMA energy levels and
those of the direct calculations is given in Table 1. In
contrast to the wave functions, the EMA energy levels
appear to agree reasonably well with those of the direct
approach for N=12. However, as the film thickness re-
duces, the EMA results often get worse because the bulk
energy despersion for larger k ~ 1 is less parabolic. This
is discussed further in Ref [3.4]. In what follows we use
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TABLE I. Comparison of the energy levels (in eV) of
states in the nth band and jth quantum number, (n,j). Ae
= €Direct -~ CEMA -

N=8 N=12

(n,j) EMA Direct Ac (n,j) EMA Direct Ae
(1.1) -12.30 -12.23 0.07 (1,1) -12.45 -12.42 0.03
(2,1) -1.68 -1.79 -0.11 (2,1) -0.75 -0.91 -0.16
(3,1) -1.14 -0.77 037 (3,1) -0.51 -0.42 0.09
(3,3) -2.71 -2.70 0.01 (3.,5) -2.86 -2.86 0.00
(4,1) -1.13  -0.77  0.36 (4,1) -0.51 -0.41 0.10
(4,3) -2.71 -2.70 0.01 (4,5) -2.86 -2.86 0.00
(5,2) 1.56 1.65 0.11 (5,4) 1.38 1.35  -0.03
(54) 156 145 -0.11 (56) 1.38 123 -0.15
Film States for n = 3 band
0 1 2 3 4 5 6
out D\ VBM N=12

Energy Level

0 1 2
r X

F1G. 6. Energy relation between 12 layers (small circle)

and 14 layers (square) films. The large circle denotes the

forbidden Xy, state. The solid line represents the bulk Si n

= 3 band.

Eq. (12) to study the evolution of energy levels with size
reduction.

Figure 6 shows the film states derived from the n = 3
band which includes the VBM state n = 3, j = 0 of Fig.
4. It shows the energy eigenvalues for two film thick-
nesses: N = 12 and 14 (dots and squares, respectively).
The solid line denotes the bulk energy dispersion. The
forbidden k = kg at the X point is denoted by a large
open circle. Although we discuss here only the n = 3
hand, the general conclusions apply to any other band.
We see from Fig. 6 the following:
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(1) The forbidden ko state is fixed for any N at the
bottomof the n = 3 band. It is a general observation that
in free-standing films, states at the bulk band minimae
(not at the EMA potential well minima) are eliminated
due to quantum confinement.

(ii) With the decrease of N from 14 to 12, each N
= 14 (square) state evolves into a N = 12 (circle) state
along the trajectory determined by the bulk band struc-
ture (the solid line). The motion (indicated in Fig. 6 by
arrows) is away from the forbidden state at X towards
I'. In the EMA, this takes place along the trajectory of
parabolic bands [Eq. (1)], leading to the familiar € o 5
behavior. In a more realistic description, however, it
occurs along the actual (possibly non-parabolic) bulk
band.

(i11) The horizontal k-space separation between any
two adjacent states [proportional to 4+, see Eq. (7)] in-
crease as N decreases. Thus, the total number of states
in the band (= %) decreases: it is 7 for N = 14 and 6 for
N = 12. The net effect of (i)-(iii) is that a size reduction
reduces the number of confined states in each band by
expelling states from the top of the band (VBM in Fig.
6) to the gap region. In contrast, in the EMA approach
it is assumed that states at the top of the potential wells
{whether they are band energy minima or band energy
maxima) are expelled to the energy continua (see Fig.
la).

(iv) Despite the change in number of confined states,
there is a } = 0 state for both N = 14 and 12, corre-
sponding to the constant envelope function “zero con-
finement state” in Fig. 4. The energy of this state is
pinned at the bulk VBM level and is independent of
layer number N. Hence, for even layered free-standing
Si(001) films there is no confinement-related energy shift
at the VBM.

V. SUMMARY

We presented wavefunction patterns for Si(001) films
using a direct Hamiltonian diagonalization approach.
Due to the fundamental difference between the confin-
ing potentials between free standing quantum films and
supported quantum wells, these wavefunction pattern
have important difference from thoese of quantum wells.
In particular, projecting these wavefunctions onto bulk
states shows that: (i) states near the band energy min-
ima resemble closely to those of the wells, described by
an effective-mass particle-in-a-hbox approach while (ii)
states near the band energy mazima are totally differ-
ent, containing effectively cosine-type envelope functions
in addition to the well known sine-type envelopes. Use
of a combined sine/cosine “truncated crystal” basis al-
lows us to describe the film states fully in terms of their
parent bulk states. A simple relation between the shape,



148 Superlattices and Microstructures, Vol 14, No. 2/3, 1993

the number of pedaks of a film state and its quantum in- REFERENCES

dex (n, j) is found. The evolution of energy levels with

film laver thickness is examined, revealing the impor- [1] G. Bastard, Wave Mechanics Applied to Semicondue-
tance of non parabolic energy dispersion and the lack of tor Heterostructures, (Les editions de physique, Les
quantum confinement at the top of valence band. Ulis, 1988), p63.

[2] R. Dingle, W. Wiegmann and C. H. Henry, Phys.
. _ , Rev. Lett. 33, 827 (1974).
Acknowledgement—This work was supported by the 3] S. B. Zhang and A. Zunger, Appl. Phys. Lett. 63

Office of Energy Research, Division of Materials Science, 1399 (1993).

U. S. Department of Energy, under contract DE-AC02- 48 B '/h;mg C.-Y. Yeh, and A. Zunger. Phys. Rev
e .B.Z L C-Y. } A. Zunger, Phys. :
St B48, 11204 (1993).

[5] J. M. Luttinger, Phys. Rev. 102, 1030 (1956).



