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Direct pseudopotential band structure calculations of thin Si(OO1) tilms reveal a number of 
features that are unexpected on the basis of conventional quantum confinement models: (i) The 
energies of some valence-band states exhibit oscillations when the number of monolayers in the 
film changes from even to odd, (ii) certain film wave functions have a cosine (rather than sine) 
envelope function, and (iii) the energy of the highest occupied film state remains pinned at a 
constant value for all even-layered film. We demonstrate a simple alternative to the 
effective-mass model which explains these results. 

Free-standing quantum films are two-dimensional 
(2D)-periodic systems confined in the perpendicular di- 
mension by vacuum. The qualitative features of their elec- 
tronic structure can be described by the effective-mass 
particle-in-a-box model.’ This approach predicts that (a) 
The film’s energy eigenvalues ef vary monotonically with 
film thickness L as l fa 1/L2, (b) the film has a sine-type 
envelope function which guarantees that the wave func- 
tions vanish at the film’s boundaries, and (c) the energies 
of all levels depend on the film’s thickness. 

Naturally, these predictions could reflect, in part, the 
underlying approximations of the effective-mass model 
(EMA). To assess this we will first describe the electronic 
structure of quantum films by direct band structure tech- 
niques, thus obviating the effective-mass approximation. 
This can be done by defining a “supercell” consisting of Nf 
layers of the film’s material straddled on each side by IV,, 
layers of vacuum, and imposing periodic boundary condi- 
tions. The electronic structure of the film is then addressed 
by directly diagonalizing 

the film, (ii) multiband and intervalley couplings neglected 
in the EMA are permitted, (iii) no implication is made 
that the bulk bands have a parabolic .ti2 (k - k,) “/2m* dis- 
persion. The results obtained from Eq. (1) can then be 
contrasted with the EMA predictions. Of course, such a 
comparison requires that surface states, which could ap- 
pear in the solutions of Eq. (1) but not in the EMA, be 
discarded. 

Such calculations reveal the following unexpected re- 
sults. 

[-f V2+ V&)(r)]l$yr) =pqp(r), (1) 

where 4 is expanded, e.g., in plane waves. The number IV,, 
of vacuum layers is increased until the resulting energy 
spectrum {edirect f 3 becomes independent of N,,. We con- 
struct Vfilm(r> by a superposition of screened Si atomic 
empirical pseudopotentials Vsi ( P - Ri) over the atomic 
sites Ri. Far outside the film Vfilm( r) approaches the vac- 
uum level, thus establishing the work function. We frt 
vsi(r) to the bulk Si band structure as well as to the film 
work function2@=4.9 eV. Equation (1) is solved by ex- 
panding the wave functions in a plane wave basis with a 
cutoff of 4.5 Ry. The bulk energy eigenvalues [in eV, rel- 
ative to the bulk valence-band maximum (VBM)] at the 
symmetry points Xl0 L,, Ljo and r2rc are 1.28 (1.13); 
2.18 (2.04); 4.02 (3.9), and 4.11 (4.15), respectively, 
where the values in parentheses are experimental.3 Our 
primary aim is to compare our results with ‘%.urfaceless” 
models such as the EMA. Thus, we deliberately avoided 
iterating the films potential to self-consistency as we do not 
wish to propagate surface effects into the interior of the 
film. Likewise, surface reconstruction is not included. This 
approach avoids the effective-mass approximation in that 
(i) the potential Vfilm(r> includes both the periodic part 
inside the fhm and the confining vacuum potential outside 

( 1) Even-odd oscillations: Figure 1 depicts the directly 
calculated [Eq. (l)] film eigenvalues at the VBM [not in- 
cluding the zero co~nfinement state (ZCS), see below] and 
the conduction band minimum (CBM) as a function of the 
number Nf of Si monolayers. The dashed line depicts the 
predictions of the EMA. Note the marked even-odd oscil- 
lations in the direct calculation. These reflect the changing 
film symmetries with Nf; for Nf=even the symmetry is 
D2h while for iVf=odd the symmetry is Ddti Since the 
EMA renormalizes away the periodic potential, replacing 
its effects by m*, it misses this symmetry-mandated effect. 

(2) Cosine-type envelope functions: Figure 2(a) depicts 
the directly calculated film wave function for valence band 
f=20 of a 12-layer Si(OO1) film at the center of the film’s 
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FIG. 1. Size dependence of the highest valence-band and lowest 
conduction-band states. 
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Directly calculated film state: f = 20 

i TC boundaries i 

FIG. 2. Wave function for a cosine-type film state. Solid (dashed) lines 
are positive (negative) contours. 

Brillouin zone. To find its underlying envelope function we 
have independently constructed the function 

XT(r) = Jz[utk (r)sin(kr) +ufi,,(r>cos(kr) I, (2) 

where z&(r) and uik(r), shown in Figs. 2(c) and 2(d), 
are the real and imaginary parts of the bulk periodic func- 
tion ujk(r) for the n=3 band at k=2?r/a(0,0,2/Nf). 
Note that frc(r), shown in Fig. 2(b), is essentially 
& uf, k( r>cos( kr). Since XfTC(r> is nearly identical with 

the directly calculated wave function shown in Fig. 2(a), 
this film state has a cosine-type envelope function absent in 
the EMA formalism. 

(3). Zero confinement state (ZCS): Figure 3 (a) shows 
the directly calculated highest occupied film eigenvalues as 
a function of Nf, for even Nr values. Note that the energy 
of this state does not depend on film thickness, in apparent 
defiance of the concept of quantum confinement. The 

(b) Planar averaged wavefunction squared (124ayer film) 

(a) Size dependence of the ZCS energy level 
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FIG. 3. The zero-confinement state. Solid dots in (b) indicate the posi- 
tions of atomic planes. 

dashed line in Fig. 3 (a) shows the thickness dependence 
expected from EMA. Part (b) of this figure shows the 
planar-averaged ZCS wave function squared. Note the con- 
stant peak heights which imply a constant envelope func- 
tion. 

Figures l-3 establish significant qualitative discrepan- 
cies between the “exact” diagonalization approach and the 
EMA for Si(OO1) quantum films. 

What is wrong with the EMA and how can it be fixed? 
The EMA replaces the exact bulk dispersion eb,ik by the 
pure kinetic energy form 

gy=en,&+p~m;b)2 I 
nkl 

(3) 

taken with respect to the energy E,,~ of the band edge state 
&‘$(r). .Furthermore, ~‘A(r>=f~-kg(r)u,ko(r> is ap- 
proximated by a product of an envelope function 
fk-%(r) and the cellular function u,,kg(r) of the band 
edge state &$ r) . The external potential is permitted in 
the EMA to modify the envelope function and its energy 
#(k-ko)2/2m~Q, but not u,,~ and E”,~ These approxi- 
mations remove the coupling between the band structure 
effects of the periodic potential inside the film and the con- 
finement effects of the external potential. Instead, we will 
use here the “exact” { ~~~“3 and { $ Fk(r)) without ap- 
proximating them by a k independent cellular part and an 
envelope part. Furthermore, -we permit variational cou- 
pling of n and k through Vfi’“(r). We will thus construct a 
truncated crystal (TC) basis set representing a destructive 
interference between two degenerate Bloch waves with op- 
posing k. For zone center (I?> film states where 
k= (O,O,k,), this leads to 

xz$r) = I 
&J$r) -$~~!$(r) if O<z<L 

, (4) 
0 if z<O or’z> L 

where k,* is quantized kz such that xl::(r) is zero at z=O 
and z= L. This gives 

k$=: j 
I 

j=1,2,3 ,..., j max for n=l 

j=O,1,2 ,..., j,, for n#l’ 
(5) 

Note that the solution j =0 for nf 1 is allowed, while 
conventional EMA solutions start at j= 1. Since 
$zyFk*(r)= [@r:(r)]*, Eq. (5) can be written for O<z 

< L In the form of Eq. (2). This shows that a cosine 
envelope function is possible in this generalized descrip- 
tion. Using the TC basis of Eq. (4)) a film eigenstate (f ) 
at the zone center can be expanded as 

$?=%-I = c 5 a,,f(k3xl$(r). n s 
One can now proceed and directly diagonalize the film 
Hamiltonian of Eq. (1) using the representation of Eq. 
(6). This will produce the exact filmb;:genvalues given as a 
sum of the bulk eigenvalues E, k* with coefficients 

’ E 
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FIG. 4. Mapping of the directly calculated film eigenvalues onto those 
given by the TC approach. 

] a& kz) 1 2. Our central observation (verified in Fig. 4 
below) is that the matrix representation of Eq. (6) is es- 
sentially diagonal in the band index n and wave vector k,X. 
The truncated crystal approximation thus consists of re- 
taining in Eq. (6) just a single dominant term with 
f= hj), so 

and 

Thus, the TC approach predicts a one-to-one mapping be- 
tween the jZm energy eigenvalues eFft and those of the 
periodic bulk crystal IS:: 

* I 
at some special k points k,*. This 

is precisely the procedure followed empirically in earlier 
TC approach,4 where it was demonstrated that the eigen- 
values of hnite clusters form a subset of the eigenvalues of 
the periodic crystal. 

To test the TC approximation, we compare its results 
with those obtained in direct diagonalization. Figure 1 
shows such a comparison for valence- and conduction- 
band eigenvalues, whereas Fig. 2 shows that the TC wave 
function [Rqs. (4) and (7)] constructed from the bulk 
states u:,(r) and z&(r) agrees closely with that calcu- 
lated directly. Note that for this state the boundary condi- 
tions are satisfied by the nodal planes of u&(r) rather than 
by the envelope function. 
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The ZCS of Fig. 3 is a particular case of the cosine 
envelope function discussed above. Equation (5) shows 
that for nf 1 the solution j =0 (i.e., k,* =0) is allowed. 
Hence a film state for which z&(r) ~0 with k,* =0 gives 
from Eq. (2) x;&(r) z ui,k(r) having a constant envelope 
function. Indeed, the directly calculated ZCS wave func- 
tion depicted in Fig. 3(b) can be described quantitatively 
in this fashion. 

The TC representation lead to another useful result: 
To within a good approximation one can guess the (non- 
surface state) eigenvalues of a film from the bulk disper- 
sion relation at the special kg= (2?r/L)jE points where E is 
the film’s orientation. For (001) films, for example, 
L=Np/4, where a is the cubic lattice constant, so the 
special k points are 

; o<j<j,,,=Nf/2. (9) 

Thus .$“lk[2?r/a( 0,0,2j/Nf )] approximates the zone- 
centei eigenvalues of an nflayer (001) film. Similarly, 
$tk[2r/a ( i/lvf ,j/Nf ,O>] approximates those of a ( 1 lO)- 
oriented film. This establishes a simple relation between the 
energy levels of a quantum film and its orientation. Results 
for an Nf = 12 (001) tilm is shown in Fig. 4. The dotted 
vertical lines give the quantized TC wave vectors k&,1,,). 
Their intersections with the bulk bands give the TC pre- 
dictions for the film energies. The amount by which these 
intersections miss the directly calculated energies (solid 
dots) gives the error in the TC approximation. The errors 
are small; hence, Eqs. (8) and (9) provide a natural clas- 
sification of (00 1) film eigenvalues in terms of bulk disper- 
sion relations. When the real e”,“ik has a parabolic disper- 
sion [Eq. (3)], the EMA result E,“” a (k2g/L2m*)j 
coincides with the TC result [Eq. (S)]. In summary, Eqs. 
(7) and (8) provide a simple alternative to the EMA for 
quantum films. 
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