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Recent refinement studies of a consolidated set of Si structure factors have produced information
on the Si charge density with an unprecedented level of accuracy, unmatched by any other crystal-
lographic study to date. In this work we examine the extent to which an accurate implementation
of the local-density formalism can describe the charge distribution in silicon, as well as that of the
experimentally less-refined data on diamond and germanium. Results of a refinement study of recent
germanium and diamond measurements are presented and compared. with the ab initio calculations.
Our ab initio calculated structure factors for Si show a twofold to fivefold improvement in the R
factor over previous local-density calculations. We describe in detail, total, valence, and deformation
charge-density maps for C, Si, and Ge. We analyze the effects of high-momentum components (cur-
rently outside the range of the high-precision measurements) as well as dynamic structure factors
on the ensuing charge-density maps.

I. INTRODUCTION

Recent advances in measurements and analyses have
now produced extremely accurate data on the charge dis-
tribution in crystalline silicon: 7 Cummings and Harti
have recently consolidated Ave data sets of high-precision
Si structure factors obtained in three independent exper-
iments by Aldred and Hart, z Teworte and Bonse, s and
Saka and Kato. The data were corrected for anoma-
lous dispersion (using measured, wavelength-dependent
dispersion factors) and nuclear scattering, and care-
ful consistency checks and error estimates were con-
ducted. More recently, Deutsch s fitted this consoli-
dated and corrected data set of silicon structure factors to
a parametrized model in which the harmonic and anhar-
monic thermal effects were deconvoluted from the static
charge density. As a result of these recent developments,
(i) the structure factors of Si are now known to a milli
electron level of accuracy, better by one order of magni-
tude or more than any other crystal studied to dates and
(ii) the static charge-density map of Si (Refs. 5 and 6) is
now known with an unprecedented level of detail. In view
of these developments we have decided to (i) examine
the extent to which the local-density formalism, im-
plemented with the highest computational precision pos-
sible to date, is able to capture the details of the highly
accurate measured Si structure factors and charge den-
sity, and (ii) perform a similar data refinement as done
for Si by Deutsch for the (far less complete and accurate)
data sets on diamond and germanium, so that chemical
trends along the C~Si—+Ge sequence can be assessed.

There are many previous calculations of the Si charge
density. These include the empirical pseudopoten-
tial calculations by Walter and Cohen, Chelikowsky
and Cohen, Bertoni et al. , and Balderschi et ajI,'. ;

the local semiempirical pseudopotential calculation of
Hamann; and the Erst-principles nonlocal pseudopo-
tential calculations by Zunger and Cohen, is Zunger, s

Ihm and Cohen, Yin and Cohen, is and Nielsen and
Martin. is All-electron calculations of the Si charge den-
sity include the orthogonalized-plane-waves (OPW) cal-
culation by Stukel and Euwemazo and by Raccah et
al. ,

i the linear combination of Gauss orbital (LCGO)
by Wang and Klein, zz and Heaton and Lafon, 2s and
the linear muffin-tin orbital (LMTO) calculations by
Weyrich, 2 Methfessel, Rodriguez, and Andersen, zs and
Polatoglou and Methfessel. In addition to the calcula-
tions that use the local-density approximation, there
exists the Hartree-Fock calculation by Dovesi, Causa, and
Angonoa 7 and by Pisani, Dovesi, and Orlando. Fur-
thermore, Balbas et aI,. have calculated the structure
factors of Si using model bond-charge density examin-
ing the role of different approximations to the exchange-
correlation potential. The reasons that we undertook a
recalculation of the Si charge density despite these many
previous works are fourfold.

First, all of the previous calculations were published
before the completion of the analysis of the high-precision
Si data by Cummings and Harti and by Deutsch, s s so
none includes a comparison with these data. Further-
more, none of the previous authors have published both
structure factors, as well as valence and deformation
charge-density maps.

Second, many of the previous calculations have in-
corporated computational approximations whose effects
on the charge density remain, in many cases, untested.
These include the pseudopotential approximation,
use of limited basis sets, 2z s'z7 or perturbation theory. i
Spackmans has recently compared the predictions of
many of these calculations with a few measured (pre-
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Cummings and Hart) structure factors, finding signif-
icant discrepancies for all except the OPW results of
Stukel and Euwema. We wish to perform an analogous
comparison with the current data, using calculated re-
sults in which the convergence parameters of the theory
are controllably pushed to the limit where the results
reHect as much as possible the predictions of the under-
lying (local-density) Hamiltonian, unobscured by compu-
tational uncertainties.

Third, we wish to examine a number of assumptions
that have traditionally been made in the transformation
of structure factors to charge-density plots. These in-
clude (i) the assumption that high-momentum Fourier
components (which are difficult to measure with high pre-
cision) refiect merely core contributions and are therefore
inconsequential for describing the valence charge den-
sity or the solid versus atom density differences. There
are, however, indications ' that the nodal structure
in the latter quantities may also require high-momentum
components, currently outside the reach of high-precision
measurements. Also (ii), it is often assumed (e.g. , Zuo,
Spence, and O'Keefess) that even if the high-Fourier
components in the Static charge-density difference are
non-negligible, the Debye-Wal. ler factor will attenuate
them, so that the dynamic density difference map will
not require high-momentum components. We wish to ex-
amine this hypothesis by comparing static and dynamic
charge-density difference maps for a range of increasing
momentum cutoff values.

Finally, while the measured x-ray structure factors
of diamond and germanium 3 are significantly
less accurate ' s than those available now for Si, global
trends in the measurement and model-refined structure
factors can nevertheless be established. We note that
previous analysis of the Si data s revealed a vanishing
anharmonic temperature term (P = 0) and a different
Debye-Wailer factor for core and valence electrons. It
would be interesting to examine these points also for di-
amond and germanium. We will hence subject the ex-
perimental data to the same analysis done for Si and
to examine the trends in the ensuing charge densities in
the C+Si—+Ge series. Comparison with previous calcu-
lations on C and Ge will then be discussed.

The plan for the balance of this paper is as follows.
Section II defines the measured quantities to be discussed
below and analyzes these quantities for C and Ge thus
producing a separation of static versus dynamic densi-
ties. Section III describes the calculated counterparts.
Section IV defines the core, valence, and total charge den-
sities and their respective deformation charge densities.
Section V examines the convergence of the current cal-
culations. Section VI presents the comparison of theory
with experiment. Finally, Sec. VII provides a summary
of the findings of the present study.

respectively, and label Fourier transforms for a momen-
tum G = —(h, A:, l) as F(G) or p(C), while real-space
densities will be denoted as F(r) and p(r).

A. Dynamic structure factors and densities

Dawson has shown that if the "rigid-atom ap-
proximation" is invoked, the dynamic structure factors
F,„pt(G) can be represented as a convolution of the nth
site static structure factor p (C) and the dynamic tem-
perature "smearing function" T (C) as

M

F- t(G) = ).p (G)e' '-T-(G),

where p (C) is the Gth Fourier component of the static
charge density contributed by atomic site n (whose posi-
tion vector in the unit cell is ~ ), and T (G) is the a' s
site dynamic (temperature) smearing function containing
harmonic and anharmonic terms. T (G) is often approx-
irnated by the Debye-Wailer factor exp( —G2B /167r ).
Note that the approximation of Eq. (1) implies a linear
partitioning of the continuous three-dimensional charge
density into subregions associated with identifiable scat-
tering centers o, . This partitioning is referred to as
the rigid-atom approximation. Within this approxima-
tion, it is possible to fit the data either with a single
Debye-Wailer factor or by assigning different B's to dif-
ferent atomic shells ("the independent shell vibrational
model" ).

The dynamic real-space charge density can be syn-
thesized from the Fourier components of Eq. (1) by
summing them (after subtracting anomalous scattering
corrections) to a maximum momentum G ~„accessible
from diffraction experiments. This gives

&max

Fexpt(r~ Gmax) = ) Fexpt(G)e
G

where the result naturally depends on the highest mo-
mentum (C „)included in this sum. Fourier truncation
effects underlying Eq. (2) could affect the shape of the
ensuing charge-density map.

B. Static structure factors and Dawson's madel

For purposes of comparison with the results of
quantum-mechanical calculations it is often desirable to
deconvolute Eq. (1) thus finding the static (purely elec-
tronic) structure factor

p- (G) = ).p-(G) e' '-

II. MEASURED QUANTITIES AND THEIR.
MODELING

In this section we define all of the quantities shown
later in our tables and figures. We will consistently de-
note dynamic and static charge densities as E and p,

pexpt (G) = Fexpt (G )e (4a)

The resulting p,„pt(G) are then summed giving the static

For monatomic crystals in the harmonic rigid-atom ap-
proximation, this deconvolution could be done by multi-
plying F,„pt(G) by the inverse Debye-Wailer factor
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Fourier-synthesized total density map

G'max

pexpt(&~ Gmax) = ) pexpt(G)e
G,

(4b)

approach used originally by Dawson and subsequently
by other practitioners of this model, ' ' one super-

poses the real spa-ce atomic model density p d,&(r) over
all lattice sites R~,

The precision of this map is naturally limited by
the largest momentum component accessible to high-
precision measurements as well as the validity of the
aforementioned rigid-atom approximation. An alterna-
tive method whose precision depends to a lesser extent on
the explicit convergence of Eq. (4b) (still using the rigid-
atom approximation) was outlined by Dawson4s and re-
fined by Stewart, Coppens et al. , and Deutsch.
The approach is based on the fact that any ground-state
crystalline properties such as p (r) of Eq. (1) can be rig-
orously expanded in an infinite set of orthonormal Kubic
harmonics KP (r) of angular momentum l belonging to
the totally symmetric (ai) representation of the ath site
group

p ~de~(r) = ) ) @(r—R&)K~(r —"R&)
l=0,3,4

This density contains a contribution corresponding
to arbitrary large momentum components despite the
fact that only a limited set of structure factors
(F, pt(G); G & G „)are used to fit the model param-
eters. This approach is hence e2;trapolative: the nonzero
values of p ~~,~(G ) C „) are implicitly determined
by the choice of the form and number of model functions
R~(r). The second alternative is to construct a trun-
cated Fourier series from the model density, analogous to
Eq. (4b)

p~,l~„(r) = ) R((r)KP'(r)
I,=O

(5)

&max

pmodel(+~ Gmax) = ) ) p~~de](G)e«™
o,=1

Here r and v" are the modulus and direction, respectively,
of r and R~ (r) are the ctth site radial functions defined by
the convolution of the exact p (r) with KP (r). For the
Td, site symmetry of the diamond lattice, the symmetry-
allowed l values are l = 0, 3, 4, 6, 7, 8, ... . The l = 0
term is the spherical contribution whereas l = odd and
l = even are antisymmetric and centrosymmetric con-
tributions, respectively. Conventional x-rsy refinement
techniquesso retain but the spherical term in Eq. (5) (us-
ing the superposition of spherical atom densities). Daw-
son's method consists of truncating Eq. (5) to include
only the leading terms l = 0, 3, and 4 and suggesting
convenient analytic guesses for the atom-localized radial
functions Ri(r). Deutschs and Spackman44 used

R~ 0(r) = 4~) r„&n„i(K„~r)
nl

R(,,4(r) = Air"'e i", (6b)

where K„~, A~, A~, and ( are adjustable parameters and
n„~ are the fixed ground-state atomic (usually Hartree-
Fock) charge densities i s2 for orbitals nl The para. m-
eters z„~ are intended to model monopole expansion or
contraction of the spherical atomic charge densities due
to bonding. One further parametrizes T (G) in terms of
the Debye-Wailer factor B„~ for orbital nl and a small an-
harmonic potential of magnitude P. Inserting into Eq. (1)
the Fourier transform p ~,i(G) of the model density of
Eqs. (5) and (6) and the model dynamic temperature
factors T (G) then gives an analytic Fourier-space rep-
resentation of F,d,~(G) in terms of the parameter set
(r~t, A~, A&, (, B„i,p). These parameters are then deter-
mined by a least-squares fit of the fF ~d,~(G)j to the set
iFe„pt(C)). Using Eqs. (5) and (6) this gives the nth site
real-space model density p &,&(r) and its Fourier trans-

form p ld &(G). One can then proceed and obtain the
total crystalline model density in two ways. In the first

(7b)

In this approach all unmeasured structure factors (G )
G „) are taken to be zero.

Finally, in addition to the adjustable parameters in
Dawson's model, one has to choose the "fixed" quantities,
e.g. , the orbital densities n„~(r). These could be atomic
Hartree-Fock orbitals or local-density orbitals, relativis-
tic or nonrelativistic orbitals, as well as "canonical" ver-
sus rotated orbitals. We wil1 examine below the implica-
tions and consequences of these choices.

C. Fitting Damson's model to experiment

The consolidated data set of Cummings and Hart for
Si was fit to Dawson's model by Deutsch. His best fit
("model p" in Ref. 6) produces a remarkably low R factor
of 0.036%%uo and a goodness of fit (GoF) of 1.20. This rep-
resents the most accurately determined crystalline struc-
ture to date. Table I gives the model parameters obtained
in this fit (the error in the exponent ( of Ref. 6 is cor-
rected in Table I and the remainder of this paper. The
correct value is g = 2.285 a.u. i). The results show an
expansion of 6%%uo of the 3sp valence shell and of 0.5%%uo

of the core 2' shell. The best fit is obtained when the
crystal-bound silicon atom is permitted to have a shell-
dependent Debye-Wailer parameters B ~

& 0.11 A. and
B, „=0.4585 A2. No evidence is found for an anhar-
monic term in the e8'ective potential of the atom, i.e. ,

P = 0. Further details are given in Refs. 5 and 6. We
next describe our analogous fits for diamond and germa-
nium.

Fits for diamond

Two data sets are available here: the nine single-crystal
structure factors of Takama, Tsuchiya, Kobayashi, and
Sato [(TTKS), Ref. 39] measured by the Pendellosung
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TABLE I. Parameters obtained by fitting Dawson's model [Eqs. (5) and (6)] to the observed structure factors of C, Si,
and Ge. For C and Si we use Clementi s (Ref. 51) nonrelativistic orbital densities n„I, , while for Ge we use both Clementi s
nonrelativistic (NR) orbital densities as well as the relativistic LDA results. In all cases we use A~ = 4 for all l values. An
asterisk indicates that quantity was held fixed during the fit. The value ( = 2.435 for Si in Ref. 6 was in error; the correct value
is given here. We also give R value and goodness of fit (GoF) for the fit.

Diamond
TTKS data
GW datab
Silicon'
Germanium
NR, Clementi
Rela, tivistic'

Core

1'
1'

0.9949

Valence

1
0.99
0.9382

1*
0.9553

(a.u. ')

3.541
3.259
2.285

1.877
1.913

A3
(e)

0.334
0.343
0.4484

0.591
0.583

A4

(e)

0+

—0.275
—0.1270

—0.571
—0.510

Bcore

0.1379
0.2303
0.4585

0.5474
0.5654

B

0.1379
0.2303
0.0

0.5474
0.5654

(eV/A )

p+

p+

p+

1.8'
0.9*

0.706
0.793
0.036

0.188
0.189

GoF

4.25
3.03
1.20

1.03
1.07

9 G values from Ref. 39, plus F222 taken from Ref. 37.
24 C values from Ref. 36. We use Eq. (8) where the scale factor is S = 1.021 and Ebs ——0.039.

'18 G values from the CH data of Ref. 6; note that for the core states, K =q ——1.0 and e„—q
——0.9949.

12 C values from MK (Ref. 40) and DHC (Ref. 43). We use Eq. (8) where the scale factors are Si = 1.015 for MK and
Sq ——1.003 for DHC and Fb~ = 0.
'l2 C values from MK (Ref. 40) and DHC (Ref. 43). We use Eq. (8) where the scale factors are Si = 1.010 for MK and
S2 ——0.999 for DHC, and Fb~ = 0.

method, and the older (1959) powder data of Gottlicher
and Wolfel [(GW), Ref. 36] obtained for 24 reflections.
Dispersion corrections and nuclear scattering are negli-
gible for both data sets. Both data sets have problems:
possible crystal imperfections observable in topography
of the crystal used (TTKS), and a powder technique re-
quiring many corrections (GW). The structure factors
measured by TTKS are consistently larger than those
of GW except for the (111) reflection. The measured
F(311) structure factor of TTKS of 1.648e/atom com-
pares well with a previous single-crystal measurement of
Lang and Mai giving 1.630e/atom, while GW found a
considerably lower F(311)= 1.592e/atom.

Spackman44 fitted the TTKS data [adding to these the
(222) reflection from Ref. 37] to Dawson's model, finding
R = 0.85% and the goodness of fit equal to 4.26. We have
refitted these data for two reasons. First, Spackman used
the rotated atomic-orbital densities n„i(r) [Eq. (6a)] of
Stewart rather than the canonical Clementi results.
While these sets are related by a unitary transforma-
tion (hence, they produce the same total density), the
valence-only results differ significantly: Stewart's orbitals
produce a local minimum on the atomic sites, while
Clementi's orbitals produce a maximum on the atomic
sites (see below) outside the atomic regions; the two
representations are similar. Since the Si data were fit-
ted with Clementi orbitals, for reasons of consistency we
will use these also for diamond and germanium. Sec-
ond, Spackman used in Eq. (6b) the exponents As = 3
and A4 ——4 for diamond and A3 ——6 for germanium.
Since A3 ——A4 ——4 gave the best results for Si, we will
use these fixed values also for diamond and germanium.
While other choices for A~ were also tried, these seem to
yield the best overall fits.

Our best-fit results for the ten points TTKS set for
diamond are given in Table I. The quality of the fit (R

factor) is similar to that obtained by Spackman. Table I
also gives the results of the fit to the 24 points GW data
set. In this case, it is necessary to introduce a fixed scal-
ing factor (S) and a constant background contribution
(Fbs) to the measured data F,b, (G), i.e. ,

F pt (G):SF b (Gr) Fbg (8)

Table I shows that while both data sets give the best fit
for a zero anharmonic factor P = 0 and a single Debye-
Waller factor, they differ in detail: the fit to the TTKS
set produces a 50Fo smaller Debye-Wailer factor and gives
no indication of the l = 4 contribution to the density. In
contrast, the fit to the GW data set gives a significant
l = 4 component and a small expansion of the valence
shell. We will compare below both results to ab initio
calculations.

8. Fits for ges=ir1anium

Three recent data sets are available here: Takama
and Sato [(TS), Ref. 42], Matsushita and Kohra [(MK),
Ref. 40], and Deutsch, Hart, and Cummings [(DHC),
Ref. 43]. All other available structure factors were mea-
sured on powders and have lower accuracies. Here, un-
fortunately, there is no consolidated set of structure fac-
tors. Furthermore, all data sets were measured at dif-
ferent wavelengths, so dispersion corrections f' need to
be applied before comparison or averaging can be done.
There are no measured f' values for any of the three sets.
The Cromer-Liberman calculated valuesss's4 are highly
uncertain, e.g. , in Si, they were off by 30—40Fo from di-
rectly measured f' values using Mo and Ag radiations. ss

For Ge with Cu radiation (MK measurements), which is
very close to the edge, the f' value is large, and any error
in it represents a large error in the striped F value. We
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find that when the f' values are subtracted, using the
best estimate of the Debye-Wailer factor, there are fairly
large deviations between the three sets for the common
(hkt) 's.

One approach to the problem taken by Brown and
Spackman4s is to combine the sets in a somewhat ar-
bitrary fashion. They use the MK set but replace the
(111)and add the (511) values by those of TS, scaled by
the average ratios of the common reflections in the two
sets. The analysis of Brown and Spackman did not con-
sider the DHC set, which was not yet published at that
time.

We have adopted a different approach. We fit the
structure factors of TS and MK separately with the same
"standard" model (B,(, As, A4, Sj, where S is a scale
factor [Eq. (8)t, common to all I" 's of a set as in Ref. 45.
The residuals for MK were 1.5—2 times smaller than for
TS. Consequently, we adopted the set of MK as it is with
no replacement or additions from scaled values of TS.
However, we added to this set the DHC set, which has
a few (hkt) in common with MK and a few higher-order
reflections, which are important for the determination of
B. Where common (hkl) exist, both were included in
the set. The fit of the standard model to this combined
set (using of course two S's; one for MK and one for
DHC) did not show any systematic trends in the resid-
uals, which remained all of the same average magnitude
as for the MK set alone.

The number of I' 's in the measured set is 14, with some
hkt having two measured values. The f' values used are
those of Creaghss for the MK data (f' = —1.089), and
those of DHC (Ref. 43) for their data (f' = 0.09). These

were fixed in all fits.
Since Ge is a rather heavy element (Z = 32), one might

expect relativistic effects to be non-negligible in the cal-
culated charge densities and structure factors. This is
indeed born out by the comparison of the local-density-
approximation (LDA) nonrelativistic (NR) atomic struc-
ture factors with their relativistic (R) counterparts shown
in Table II. Both sets of structure factors were calculated
from numerical integration of the local-density equa-
tions using the spin-polarized Ceperley-Alder e~change-
correlations and the s p2 configuration. The corre-
sponding relativistic corrections for carbon and silicon
are negligible. Table II shows also the Hartree-Fock (HF)
atomic results. s~ si We see that whereas the relativistic
correction n~(q) —nNR(q) is similar in the LDA and HF
results, there are differences between the absolute values
of n(q) as calculated by HF and the LDA. These reflect
the absence of correlation in the HF calculation and the
different nature of the exchange potential (local versus
nonlocal in the LDA and HF results, respectively). Since
there are no tabulations of orbital-by-orbital Hartree-
Fock relativistic densities n„i(r) for Ge, the relativistic
fits were done using LDA orbitals.

Table I gives the results of the fit to the Ge data us-
ing relativistic LDA orbitals. The table also gives the
results obtained with the conventional (nonrelativistic)
Clementi Hartree-Fock orbitals. We see that the statis-
tical quality of both Bts are nearly the same. However,
as shown below, the relativistic fit produces much bet-
ter agreement with (i) the measured forbidden (442) and
(622) reflections and (ii) the calculated crystal structure
factors. Thus, we will use below mostly the results of

TABLE II. Calculated free-atom germanium structure factors n(q) for momentum q = sine/A
as obtained in the local-density approximation (LDA) and the Hartree-Fock (HF) approximation.
We list the nonrelativistic (NR) values, as well as the relativistic (R) correction np(q) —nNp, (q).

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

LDA
nNR(q)

31.278
29.540
27.498
25.532
23.722
22.040
20.450
18.934
16.130
13.699
11.695
10.114
8.906
7.997
7.313
6.789
6.371
6.020
5.710

HF
nNR(q)

31.278
29.527
27.477
25.532
23.759
22.109
20.536
19.021
16.188
13.716
11.681
10.083
8.870
7.963
7.286
6.770
6.361
6.018
5.714

LDA
n~ (q) —nNR (q)

0.006
0.019
0.029
0.031
0.028
0.024
0.023
0.026
0.040
0.054
0.064
0.068
0.067
0.065
0.062
0.059
0.059
0.060
0.061

HF
nR (q) —nNR(q)

—0.002
0.007
0.027
0.035
0.032
0.027
0.024
0.026
0.039
0.054
0.064
0.068
0.067
0.065
0.062
0.060
0.058
0.058
0.060

Reference 51.
Reference 57.
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relativistic fits, although we will comment on the com-
parison with the nonrelativistic fits.

We find that Ge exhibits a clear anharmonic term P;
its value (0.9) is comparable to the measured values of
Tischler and Batterman of (1.27+0.25) (Ref. 58) and
Roberto, Batterman, and Keating of (1.50+0.22).ss The
nonrelativistic fit also indicates a nonzero P, which, al-
though twice as large, is still in reasonable accord with
experiment. The relativistic fit shows a 4.5%%uo expansion
of the valence shell compared with the 6%%uc expansion
found for silicon. No evidence was found in either fit for
a shell-dependent Debye-Wailer factor of the sort found
for silicon. However, as these conclusions are based on a
set of measured structure factors of germanium which is
both smaller and less accurate than that of silicon, fur-
ther higher accuracy measurements are needed to confirm
the validity of this conclusion.

III. CALCULATED QUANTITIES

A. Static structure factors and densities

While diffraction experiments produce discrete Fourier
components of the charge density, electronic structure
calculations produce the total static electron charge den-
sity p,«, (r) directly in coordinate space. This is ob-
tained by summing the squares of the one-electron crys-
talline wave function over all occupied band indices i and
Brillouin-zone wave vectors k enclosed within the Fermi
energy e~

culcted three-dimensional density pca~c(r) of Eq. (9) into
atomic-centered quantities. One common practice is
to replace T (G) by some average (T(G)) over the dif-
ferent atomic species o. in the unit cell, then [in analogy
with Eq. (4a)] factor (T) out of Eq. (1). While this proce-
dure seems reasonable when the bonded atoms have sim-
ilar vibrational properties (hence, similar Debye-Wailer
factors), it is not obvious how accurate it is otherwise.
Given that any partitioning of p(r) into atomically cen-
tered quantities is arbitrary, we will choose a physically
appealing but, much like Eq. (1), nonunique scheme: hav-
ing calculated a unique and continuous density p, ~,(r)
from Eq. (9), we decompose it into (i) "mufBn-tin" (MT)
spheres around each atom n and (ii) the remaining, inter-
stitial volume between them. Denoting as pMT(G) the
Fourier transform of the MT charge density in the n's
muffin-tin sphere (minus the extrapolation of the inter-
stitial charge density into this sphere) and by pI(G) the
Fourier transform of the interstitial (I) charge density
over all space, the calculated dynamic structure factor
becomes

(G)&
—(HlG /isa.

M

+ ) pMT(G)e BG —1/Ger (12 )

where B are the measured Debye-Wailer factors and (B)
is their atomic average. The terms of Eq. (12a) are cal-
culated in a way that avoids taking Fourier transforms of
abruptly truncated functions. Note that for a monatomic
crystal such as C, Si, and Ge we have (B) = B and
M=1, so

p, (,(r) = ) N, (k)g;(k, r)g, (k, r)
i,k

(9) F. .(G) = p.«.(G) (12b)

where N, (k) is the occupation numbers of band i at mo-
mentum k. The Fourier components of the static charge
density can then be computed from

j-
pc«c(G) = — pcalc(r)e ' 'dr,0

where 0 is the unit-cell volume. To compare with
the experimental static charge density p,„~i(r, G „) of
Eq. (4b) one can then filter out all Fourier components
above a given momentum value of G „, finding

Gmax

pcalc(r& Gmax) = ) pcalc(G)&
G

Note that Eqs. (9) and (11) differ by Fourier truncation
effects, which will be examined below.

B. Dynamic structure factors and densities

Comparison of calculated quantities with the measured
F,„~t,(G) of Eq. (1) requires the introduction of the dy-
namic factor T (G) into the calculation. The obvious
difEculty here is that while the measured structure factors
analyzed through the rigid-atom approximation [Eq. (1)]
represent linear contributions from discrete scattering
centers o. , there is no unique way of partitioning the cal-

which can be compared with F, pi(r, G a„) of Eq. (2).

IV. PARTITIONING THE CHARGE DENSITY

In order to assess bonding effects, it has been
customaryso to subtract from p(r) a superposition (sup)
of calculated ground-state spherical charge densities of
the neutral free atoms. The Fourier components of this
reference charge density are

M

p,„p(G) = ) n (G)e' (14)

where n (G) is the Fourier transform of the o.th free-
atom charge density [not to be confused with the crys-
talline quantity p (G) of Eq. (1) which pertains to
bonded atoms]. The dynamic superposition structure
factors are then

F,„p(G) = ) n (G)e' -T (G)

and the partitioning of Eq. (12a) is not needed. The
corresponding calculated dynamic charge-density map is
then

Gmax
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Pcalc(r) = Pcore(r) + Pval(r) r (i6)

where

Note that if bonding effects modify the core density rela-
tive to that in the free atom, even the high Fourier com-
ponents of p,„~(G) will difFer from pcalc(G). In order to
isolate such efFects it is further customary to decompose
p into "core" and "valence" terms. The sum over states
(i, k) in Eq. (9) can be partitioned into

&P-d.l(r) = P .d.l(r) —P. .(r)
= ) AP(r —R,,), (20)

(21)

&&(r) = ) .[K'.l p l(K «) —p l(r)]+ Rs(r)Ks(r)
nl,

+R4(r) K4(r)

p l(r) = ) ) N;(k)@;(k, r)g;(k, r)
i+core k

(17a) V. DETAILS OF AB INITIO CALCULATIONS
AND CONVERGENCE

and core is 1s for diamond, ls, 2s, 2p for Si, and 1s, 2s,
2p, 3s, 3p, 3d for Ge. This partitioning is based on the
fact that there is a significant energy separation in the
band structure between core and valence states. Using
this partitioning, it is possible to assign different Debye-
Waller factors to pco„(C) and p al(G), thus facilitating
the comparison with the model structure factors. The
truncated form of Eq. (17a) reads

Gmsx

pval(r~ Gmax) = ) pval(G)e
G

(17b)

Gmax

+p~(r G ~ ) = ).[p~(G) —p ~,~(G)]e' '
G

where p stands for "total, " "core," or "valence. "
The corresponding dynamic deformation density maps
AF(r, C „)are obtained by using the dynamic form of
F,„p(G) [Eq. (15)] and of F„l,(G) [Eq. (12a)].

Equations (17b) and (18) depict p„al and b,p in a
Fourier truncated form. One can use instead the model-
density approach of Eq. (7a) to calculate a different ap-
proximation to these quantities. 5 s M For the valence den-
sity one calculates

Pmodel, v(r) —) W(r Rj) (i9a)

where

p(r) = ) r.„&p„l(~„lr)+ Rs(r)Ks(r) + R4(r)K4(r)

where pval(G) is the Fourier transform of p al(r) of
Eq. (16).

In analogy with Eq. (16) one can partition the free-
atom charge densities n (r) into core and valence, so that
pe„~(G) in Eq. (14) can be separated accordingly. The
difFerence between the crystalline charge density p, l, (r)
and the reference charge density p,„~(r) then yields the
static deformation density maps

We use the all-electron linearized augmented-plane-
wavess (LAPW) implementation of the local-density
formalism. No shape approximation is used in describ-
ing the potential and valence charge density, while the
core wave functions are obtained self-consistently from
the j = 0 (spherical) piece of the crystalline potential.
We use the Ceperley-Alder5s exchange correlation func-
tional as parametrized by Perdew and Zunger. The lat-
tice constants used are taken from experiment at the
temperature where the x-ray structure-factor measure-
ments were done. They are 3.5670 A (T = 298 K), 4

5.4307 A. (T = 295 K),so and 5.6579 A. (T = 298 K)
(Ref. 45) for C, Si, and Ge, respectively. All calcula-
tions are carried out relativistically except for the omis-
sion of spin-orbit effects. The latter approximation is
rather good: comparison of fully relativistic (with spin
orbit) and scalar relativistic (retaining mass-velocity and
Darwin effects but omitting spin orbit) calculations for
Ge show that the structure factor changed by less than
1 millielectron (me) per atom [or 0.003% for the (ill)
reHection] in Ge. However, mass-velocity and Darwin
effects are important for Ge, as illustrated in Table II.

The great care with which the F,„~t(G) have been
previously measured and analyzed calls for an equiva-
lent assessment of the errors in the calculated counter-
parts. There are Bve convergence parameters that con-
trol the precision of the LAPW solutionss to the local-
density Hamiltonian: (i) the number Nb „,of basis func-
tions in which g;(r) are expanded, (ii) the number of
Nl, of special k points used in the Brillouin-zone sum-
mation of Eq. (9), (iii) the maximum angular momentum
l „used in the Kubic harmonic expansion [analogous to
Eq. (5)], (iv) the radius RMT of the atomic spheres inside
which the Kubic harmonic expansion is taken, and (v) the
number Ng, „ofFourier components used to expand the
charge density in the interstitial region. We have varied
these parameters until an internal convergence to better
than a millielectron was obtained.

VI. COMPARISON OF THEORY'
WITH EXPERIMENT

nl=val

(19b)
A. Dynamic and static structure factors

of C, Si, and Ge
and the sum over j in Eq. (19a) extends over unit-cell
vectors R~, while the sum over nt in Eq. (19b) includes
only valence orbitals. For the model deformation density
map6~

Dynamic structure factors for silicon

Table III gives the measured dynamic Si structure fac-
tors Fe„~q(G) and their estimated standard deviation o..
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TABLE III. Dynamic (F) structure factors for Si in units of e/atom corresponding to the most converged set (column 1) in
Table I. The experimental data (corrected for anomalous dispersion and nuclear scattering), including the estimated standard
deviations o (in me/atom), are taken from Cummings and Hart (Ref. 1), except the (222) result taken from Alkire, Yelon, and
Schneider (Ref. 7). The difference bFr is F,~~, (G) —Fe»t(G) (me/atom), while bF2 = F,„r(G) —F,„~t(C) (me/atom). The
root-mean-square deviation for hF& is 12 me/atom and an unweighted R factor is 0.21%%uo. The dynamic F, &,(G) is obtained
from the static p, ~, (G) using B = 0.4632 (Ref. 30).

111
220
311
222
400
331
422
333
511
440
444
551
642
800
660
555
844
880

(G)
[Eq. (12a)]

10.600
8.397
7.694
0.161
6,998
6.706
6.094
5,760
5.781
5.318
4.115
3.931
3.649
3.253
2.917
2.802
2.165
1.543

Dynamic, solid
Fe&cpt (&)
[Eq (1)]
10.6025
8.3881
7,6814
0.1820
6.9958
6.7264
6.1123
5.7806
5.7906
5.3324
4.1239
3.9349
3.6558
3.2485
2.9143
2.8009
2.1506
1.5325

2.9
2.2
1.9
1.0
1.2
2.0
2.2
2.1
2.7
2.0
1.8
3.4
5,4
3.4
1.6
2.1
2.4
2.6

—3
9

13
—21

2
—20
—18
—21
—10
—14

9
—4
—7

5
3
1

14
11

10.455
8.450
7.814
0.000
7.033
6.646
6.077
5.769
5.769
5.302
4.107
3.925
3.644
3.251
2.915
2.802
2.163
1.542

—148
62

133
—182

37
—80
—35
—12
—22
—30
—17
—10
—12

3
1
1

12
10

Dynamic, atoms
F-,(G)
[Eq. (15)]

This is compared with the local-density calculated struc-
ture factors F, &, (G) from Eqs. 10) and (12b) [using the
best single B value B = 0.4632 ~ (Ref. 30)]. The differ-
ence bFr = F, ~, (G) F,„~&(G) is—also given. We see that
while

I
hFr

I

exceeds a, the largest ]6Fr
I

is 21 me/atom and
the root-mean-square (rms) deviation over 18 reflections
is only 12 me/atom. For some reflections [e.g. , (311),
(222), (331), and (333)] the difference 6Fr exceeds both
calculated and the experimental errors. We suspect that
this might reflect a combination of imperfect knowledge
of the exchange-correlation functional and uncertainties
in the deconvolution of p(G) from F(G) [the rigid-atom
approximation of Eq. (1)]. The extent of agreement with
the data can be measured by the (unweighted) R factor

).Ilp. ~~(G) I

—
I p. ~.(G) II

B= ).Ip. ~(G)I
(22)

The present calculation gives for 1'F(G)} R = 0.21%.
This represents the best agreement achieved to date be-
tween ab initio LDA calculated structure factors and ex-
periment. For comparison, Table III also shows the dy-
namic superposition structure factors F,„~(G) [Eq. (15)],
where the free-atom densities n~ are calculated also from
the local-density formalism using the same exchange cor-
relation as in the crystalline calculation. The deviation
from experiment SF' = F,„~(G) —F«'~q(G) is signifi-
cantly larger than IbFr] for G ( (440), hence, solid-state
effects are important in this momentum range. While the
individual deviations at high C are small, the difference

F,' &, (G) —F,„~(G) contributed collectively by all high-
momentum components does add up to affect the shape
of AF(r) and Ap(r), as will be shown below.

We have also calculated F, t, (G) using different B val-
ues for core and valence densities obtained in the model
analysis [Table I (Ref. 6)]. For the first ll reflections the
use of two B values gives an R factor of 0.16'%%uo, slightly
better than R = 0.21% obtained with a single B value
(Table III). However, there is a systematic deviation as
C increases. The B factor for the full set of 18 refIections
is 0.35%, larger than that obtained with a single B value,
which remains 0.21%. We conclude that using more than
a single B value does not improve the agreement of the-
ory with experiment.

8. Static structure factors for silicon

Table IU compares the experimentally deduced static
structure factors with theory. We use two different ex-
perimentally deduced static structure factors: (a) p, (G),
obtained from Eq. (4a) by dividing F,„~t,(G) by a sin
gle Debye-Wailer factor with B = 0.4632 A2 of Ref. 30
and (b) the model structure factors p (G) which is the
Fourier transform of Eq. (7a) (using two B values ob-
tained in the model fits in Table I). The results are
compared to different calculations using various forms of
exchange and correlation: the Xo, , Wigner, 7 Hedin-
Lunqvist, 8 Singwi et al. , Ceperley and Alder, and
the weighted-density approximation. 7 7 The table also
gives the unweighted R factors of Eq. (22). We see
that the agreement between the various theories and
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p, (G) is similar to the agreement with p (C) for the
first ll G values, for which theoretical results are avail-
able. Hence, the use of two diferent Debye-Wailer factors
in the model does not significantly affect this compari-
son. There are, however, systematic deviations between

p (G) and p, (G) for higher G values: while our R,

value remains 0.21'%%uo using either the first ll G or all 18
G values, our R increase from 0.16%%uo (11 G values) to
0.35% (18 C values).

Our values R, = 0.2l%%uo and R = 0.16'%%uo show im-
provement over all previous LDA calculations. Note in
particular the improvement over the pseudopotential re-

TABLE IV. Comparison between calculated and experimentally deduced static structure factors p(C) for Si in units of
e/atom. We give two sets of experimental p(G): (i) The value p, (G) is extracted from F,„~t(G) using in Eq. (4a) a single
B = 0.4632 from Spackman (Ref. 30). The experimental F „„t(G) (corrected for anomalous dispersion and nuclear scattering)
are taken from Cummings and Hart (Ref. 1) except the (222) result taken from Alkire, Yelon, and Schneider (Ref. 7). (ii) The
values p~(G) are the Fourier transforms of the static model-density fit by Deutsch (Ref. 6) to the same set of F,„~t,(G). This
uses difFerent B values for core and valence (Table I). In the theoretical values we include only those pseudopotential results in
which the core contribution has been added by the authors. We also give the R factors [Eq. (22)] and the number of data points
(N) used in comparison. The calculations shown use a variety of approximations for the exchange-correlation potential, i.e. , the
local-density approximation (LDA) (including the Xn), the Hartree-Fock (HF) approximation, or the nonlocal weighted-density
approximation (WDA). These Hamiltonians were approximately solved by a variety of band-structure methods: LAPW is the
linearized augmented plane wave, OPW is the orthogonalized plane wave, LCAO is the linear combination of atomic orbitals,
LCGO is the linear combination of Gaussian orbital, and PP is pseudopotential.

111
220
311
222
400
331
422
333
511
440
444
551
642
800
660
555
844
880
R, 'Fp

&m~0
N

Expt,
pe(G)
10.728
8.656
8.020
0.191
7.449
7.247
6.716
6.427
6.438
6.046
4.979
4.807
4.555
4.176
3.866
3.760
3.135
2.533

Expt.
pm(G)

10.713
8.655
8.027
0.181
7.454
7.246
6.712
6.420
6.432
6.033
4,952
4.783
4.521
4.149
3.834
3.728
3.114
2,509

LAPW
(LDA)

10.726
8.665
8.033
0.168
7.452
7.225
6.696
6.404
6.428
6.030
4.968
4.802
4.546
4.182
3.870
3.761
3.155
2.551
0.21
0.16

11

LCAOb
(HF)

10.755
8.640
8.004
0.217
7.465
7.269
6.730
6.426
6.459
6.060
4.983
4.815
4.556
4.187
3.871
3.758
3.147
2.536
0.24
0.36

11

OPW'
(Xn)

10.70
8.67
8.05
0.17
7.49
7.26
6.73
6.41
6.45
6.07
5.04

0.38
0,39

11

LCAO~
(LDA)

10.659
8.656
8.068

7.460
7.180
6.683
6.416
6.417

0.42
0.35
8

LCGO'
(LDA)

10.684
8.630
8.040
0.125
7,460
7.191
6.685
6.413
6.421
6.020

0.46
0.36

10

PP'
(LDA)

10.691
8.630
7.997
0.171
7.415
7.191
6.655
6.357
6.385

0.62
0.56
9

PP~
(LDA)

10.699
8.615
7.976
0.170
7.380
7.149
6.610
6.307
6.336
5.940

1,09
1,02

10

PPh
(LDA)

10.70
8.57
7.79
0.19
7.35
7.03
6.65
6.31
6.35
6.00

1.44
1.40
9

LCAO'
(WDA)

10.522
8.445
8, 188
0.175
7.505
7.304
6.760
6.534

5.970

1.53
1.47

Present LAPW results, using the Perdew-Zunger parametrized Ceperley-Alder LDA exchange-correlation (XC) potential and
60 special k points in the Brillouin-zone integrations.

Reference 28, using the self-consistent LCAO Hartree-Fock method and a Gaussian-type of orbitals. The results quoted here
were calculated using an 8—41G * basis set, which yields the lowest total energy.
'References 20 and 21, using a six k points nonrelativistic self-consistent OPW calculated valence charge density with the Xe
(n = s) potential (Ref. 66), to which a core charge density was added from relativistic free-atom Hartree-Fock data.
Reference 23, using the self-consistent LCAO method and the Xn (o. = 3) potential, with 19 k points in the Brillouin-zone

integrations.
'Reference 22, using the self-consistent LCGO method and the Wigner XC potential (Ref. 67) with ten special k points in the
Brillouin-zone integrations.
Reference 19, using the self-consistent plane-wave pseudopotential method with a basis-set cutofF of 24 Ry and the Wigner

potential with ten special k points in the Brillouin-zone summation.
Reference 18, using the plane-wave pseudopotential method with a basis-set cutofF of 11.5 Ry and Wigner XC potential with

ten special k points in the Brillouin-zone summation.
Reference 15, using the mixed-basis pseudopotential method and exchange (n = s) plus the Singwi et aL correlation potential

(Ref. 69), with ten special k points in the Brillouin-zone integrations.
'Reference 29, using a LCAO description of the bond charge and a nonlocal weighted-density approximation (WDA) (Ref. 70)
to exchange correlation (Ref. 71), with six high-symmetry k points in the Brillouin-zone integrations.
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suits, e.g. , Yin and Cohen~s giving R, = 1.09% and
R~ = 1.02%, Zunger~s yielding R, = 1.44% and R
1.40%, and the improvement over the recent weighted-
density calculation of Balbas et aL s R, = 1.53% and
R~ = 1.47%. The recent Hartree-Fock calculation
of Pisani, Dovesi, and Orlando2s yields a rather good
R, = 0.24% and R~ = 0.36%.

The improvement in the present calculation over pre-
vious pseudopotentiat results reflects our use of an all-
electron representation whereby core and valence states
are treated self-consistently as solid-state wave functions
on equal footing. The improvement in the present cal-
culation over previous aitl-electron results stems primar-
ily from a better formulation of the expansions of wave
functions and potentials, permitting more effective con-
vergence. That the improvement is not due to the choice
of the correlation functional can be seen by repeating
our LAPW calculations with different correlation func-
tionals. We find for the 11 reHections of Table IV
the (R„R ) error factors of (0.21,0.16); (0.22, 0.17);
(0.26,0.17), and (0.27,0.18) using the Ceperley-Alder, ss

Hedin-Lunqvist, ss Wigner, s7 and the Xo. (with o. = s)

(Ref. 66) exchange correlation, respectively. Also, the
improvement of the present calculation over the older
calculation cannot be attributed to the increased speed
and storage of present-day computers, since a complete
Si calculation with better than 1 millielectron error takes
only 3 min on a GRAY YMP; even with a 20-fold slower
machine this calculation is still affordable.

8. Dynamic structure factors for diamond

Table V compares the calculated dynamic F,~~, (G)
with the experimental F,»t(G) values. We have cal-
culated F«~, (G) from Eq. (12b) using the appropriate
Debye-Wailer factors (Table I: B = 0.1379 A.2 for the
TTKS data and B = 0.2303 ~ for comparing with the
GW data. The differences bFq = F«~, (G) —Fe»t(G)
are larger than those seen in Si: the rms deviation is 17
me/atom and the R factor for (F(G)j is 0.94% for the
TTKS data. For the GW data, the rms deviation for bFq
is 31 me/atom and R = 2.25%. Clearly, ab initio theory
agrees with the TTKS data much better than with the

TABLE V. Dynamic (F) structure factors for diamond in units of e/atom. We show two sets of experimental data: the
single-crystal results of Takama et al. (TTKS) (Ref. 39) except the (222) reflection which are taken from Weiss and Middleton
(Ref. 37), and the powder data of Gottlicher and Wolfel (GW) (Ref. 36). o denotes the estimated standard deviation in the
data (in me/atom). The calculated values F, ~,(G) are obtained from Eq. (4a) using the Debye-Wailer factor B appropriate
to each experimental data set: B = 0.1379 A for TTKS and B = 0.2303 A for GW (see Table I). The difFerence bFq is

F, ~, (G) —F „pt(G) (me/atom). The root-mean-square deviation for 6' of TTKS is 17 me/atom and the unweighted R factor
is 0.94%. For GW, we find the rms for 6' is 31 me/atom and R = 2.25%.

ill
220
311
222
400
331
422
333
511
440
531
620
533
444
551
711
642
553
731
800
733
660
822
555
751
753
911

F. ).(G)
3.256
1.934
1.650
0.108
1.498
1.480
1.344
1.268
1.286
1.207
1.155
1.086
1.053
0.984
0.950
0.946
0.892
0.858
0.861
0.810
0.782
0.739
0.738
0.715
0.713
0.653
0.652

TTKS data
Fexpt (&)

3.247
1.920
1.648
0.144
1.491
1.483
1.363
1.287
1.310
1.198

11
5
4

10
6
7

10
5
2
3

9
14
2

—36
7

—3
—19
—19
—24

9

F. (,(G)
3.238
1.906
1.618
0.105
1.455
1.429
1.286
1.208
1.225
1.139
1.084
1.010
0.974
0.902
0.866
0.863
0.806
0.771
0.773
0.721
0.692
0.648
0.648
0.624
0.623
0.562
0.561

GW data
F- (&)

3,311
1.912
1.586
0.108
1.379
1.456
1.301
1.263
1.263
1.120
1.090
1.027
0.989

0.876
0.876
0.824
0.788
0.788

0.674
0.674
0.639
0.639
0.582
0.582

7
9
7

10
9
5
2

9
3
5
5

—73
—6
32
—3
76

—27
—15
—55
—38

19
—6

—17
—15

—10
—13
—18
—17
—15

—26
—26
—15
—16
—20
—21
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GW data. We also notice that the scaled GW structure
factors are systematically larger than the calculated val-
ues by an average of 17 me/atom for C & (531).

Static structure factors for diamond

There are many previous calculations of the static
structure factors 7 and charge-density maps
of diamond. Table VI compares the experimental static
p,»r, (G) deduced from the TTKS and the GW data with
various previous theoretical calculated values.
Since for diamond B«„= B ~~,„«(Table I), there is
no ambiguity in the choice of p, (G) vs p (G) as dis-
cussed for Si. Hence, the experimental p,»r, (G) were
obtained from Eq. (4a) by using a single Debye-Wailer
factor from Table I. As was the case for the dynamic
structure factors, we find that all calculations agree much
better with the TTKS data than with the GW data.
The Xn calculation of Ivey"2 produces the best R fac-
tor (Rq = 0.80%%uo and R2 = 1.91%), while our calculation
yields Rq = 0 95%%uo and R2 = 2.36%%uo. Our R factor for
the static structure factors in diamond is 5 times larger
than our R factor for Si (0.21%%uo). This is partly due to
the fact that the denominator of B for diamond is only

s that of Si, even though the rms value of bFq is only
slightly larger than that of Si (for the TTKS data).

$. Dynamic structure factors for germanium

Table VII compares the experimental F,»r, (G) of Ge
with the calculated values using B = 0.5654 A2 obtained
in the relativistic fit (Table I). The rms error between
theory and experiment is 170 me/atom and the R factor
is 0.85%%uo. Solid-state effects are apparent by noting that
the R factor of F,»t(G) relative to the superposition of
free atom density is 1.10%%uo.

6. Static structure factors for germanium

Table VIII compares various theoretically calculated
static p,~~, (G) with experiment. We use two experi-
mental sets of p,„~t,. one derived from a model fit using
Clementi's nonretativistic Hartree-Pock free-atom struc-
ture factors, and one using retatinistic LDA orbitals in
the fit (see Table I). We see that the relativistic model
fit produces consistently better R values: R~ = 0.43'%%up

and RNR = 0.58%. Both values are relatively small, ow-
ing to the larger denominator [P ~p,»t(G) ~] for Ge and
the two scaling factors in the fit (Table I), even though
the rms of ~AFq

~
(170 meV/atom) is more than 14 times

larger than that of Si (12 rneV/atom). Our results and
the OPW calculation of Raccah et at. produce the low-
est B factors.

TABLE VI. Comparison between calculated and experimentally deduced static structure factors p(G) for diamond in units
of e/atom. We show two sets of experimental p(C): The value pq(G) is extracted from F,„~t(C) of TTKS using in Eq. (4a)
B = 0.1379 A . The value p2 (G) is extracted from Fe„~t(G) of GW using in Eq. (4a) B = 0.2303 A . We show the corresponding
R factors of two data sets relative to different calculations. N is the number of rejections used to calculate R. See the caption
to Table IV for the definitions of the calculation methods used.

111
220
311
222
400
331
422
333
511
440

&a%
R2%

N

Expt.
c~(G)
3.274
1.962
1.697
0.149
1.557
1.562
1.454
1.385
1.409
1.306

3.357
1.982
1.667
0.114
1.483
1.587
1.451
1.427
1.427
1.294

LAPW
LDA

3.282
1.976
1.700
0.111
1.564
1.558
1.434
1.364
1.384
1.316
0.95
2.36

10

SCPWG
Xe
3.290
1.966
1.690
0.117
1.570
1,570
1.451
1.398
1.398
1.325
0.80
1.91

10

LCAO'
Xn
3.273
1.992
1.720
0.137
1.494
1.600
1.423
1.381
1.385

1.56
2.14
9

LCGO
HF

3.249
1.960
1.693
0.070
1.543
1.526
1.427
1.376
1.381

1.55
3.05
9

LCAO'
HF

3.274
1.925
1.659
0.088
1.535
1.533
1.443
1.382
1.386

1.55
2.58
9

OPW'
Xa
3.33
1.97
1.66
0.14
1.53
1.55
1.42
1.34
1.37
1.31
1.72
2.20

10

LCAO~
Xa
3.349
2.023
1.748
0.075
1.590
1.564
1.452
1.394
1.401

2.18
2.48
9

'Present LAPW results, using the Perdew-Zunger parametrized Ceperley-Alder exchange-correlation (XC) potential with ten
special k points in the Brillouin-zone integrations.

Reference 72, using the self-consistent mixed-basis plane wave plus Gaussian (SCPWG) method and the An (n = 0.75847)
potential, with six high-symmetry points in the Brillouin-zone integrations.
Reference 74, using a self-consistent LCAO method and exchange-only potential with ten special k points in the Brillouin-zone

integrations.
Reference 75, using a minimum basis-set Gaussian-orbital Hartree-Fock method.
Reference 76, using the self-consistent LCAO Hartree-Fock method with a minimum basis set of Slater-type orbitals.
Reference 21, using a self-consistent OPW method and the An (n = 1) potential with four k points in the Brillouin-zone

integrations.
sReference 77, the results were obtained using a self-consistent LCAO method and An (n = 1) potential with 19 k points in
the Brillouin-zone integrations.
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7. "Forbidden" reflections in C, Si, and Ge

The model of superposition of spherically symmetric
atomic charge densities [Eq. (15)] produces F,„p(G) = 0
for the reflections G for which 6+A:+ l = 4n +2, where n
is an integer. This defines the (pseudo) "forbidden" reBec-
tions, e.g. , (222) and (442) and (622), (644), and (842).
(Note, however, that if h+ A:+ l = 4n + 2 and any one of
the three indices 6, k, or l is zero, then the reHection is
strictly forbidden for the diamond structure. ) Of course,
the actual charge density is deformed from spherically
symmetric densities due to bonding effects, so, in reality,
the pseudoforbidden reflections carry a finite (although
weak) intensity. Within the multipole expansion frame-
work of our model, the finite structure factors for the
quasiforbidden reflections are due to two effects. The first
is due to the existence of an antisymmetric, odd-l, bond-
ing component in the static charge density in Eq. (5).
The second is due to anharmonic thermal motion (finite
P), which exists in the centrosymmetric charge density

[all even l components in Eq. (5)].
Since the intensities of the forbidden reflections are

smaller by two orders of magnitude or more than the al-
lowed ones their accurate measurement is an extremely
demanding task. Thus, only the lowest-order reflections,
(222), (442), and (622), were ever measured. ss ss The
importance of these reflections stems from the fact that
their intensity is determined solely by the small effects of
anharmonicity and bond deformation, whereas for the
allowed reflections these small contributions are com-
pletely masked by the much larger spherical charge con-
tributions. Furthermore, since the deformation densities
are part of the valence shell, they can provide informa-
tion on postulated nonrigid thermal motion of the atom,
where the valence shell moves with a different Debye-
Waller factor than the core. ' Their measured values
have been therefore employed repeatedly to test the qual-
ity of model fits and ab initio calculations of the crys-
talline charge distribution. In particular, they provide
stringent tests for the derived values of P, valence-shell

TABLE VII. Dynamic (F) structure factors for Ge in units of e/atom. The experimental data Fe„pq(G) (corrected for the
thermal motion and anomalous dispersion) are from the MK (Ref. 40) and DHC (Ref. 43) data sets. The dynamic F, ~, (G)
are obtained from static p, ~, (G) by using B = 0.5654 (see Table I). The difference 6Fi is F„&,'(G) —F,„pq(G) (me/atom),
while OF2 = F,„'p(G) —F,„pq(G) (me/atom). The root-mean-square deviation for bFi is 170 me/atom and the unweighted R
factor is 0.86%.

111
111
220
311
222
400
331
422
333
333
511
440
531
620
533
444
551
711
642
553
731
800
733
660
822
555
751
777

F-~ (G)
[Eq. (12a)]

27.156
27.156
22.861
21.121
0.114

18.932
17.868
16.204
15.333
15.333
15.332
14.054
13.363
12.325
11.761
10.916
10.451
10.453
9.749
9.366
9,362
8.773
8.449
7.949
7.949
7.672
7.673
3.942

Dynamic, solid
+expt(G)
[Eq (1)]
27.292
27.541
22.688
20.919
0.131

18.667
17.823
16.041
15.192
15.383

13,855

10.977

7.695

3.930

60
52
50
60
10
53
71
53
90
15

53

10

bFy

—136
—385

173
202
—17
265

45
163
141
—50

—61

12

Dynamic, atoms
F. p(G)
[Eq (»)]

27.042
27.042
22.927
21.234

0
18.976
17.839
16.194
15.327
15.327
15.327
14.041
13.352
12.317
11.757
10.910
10.448
10.448
9.745
9.360
9.360
8.771
8.447
7.948
7.948
7.672
7.672
3.946

—250
—499

239
315

—131
309

16
153
135
—56

186

Reference 40.
Reference 43.
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TABLE VIII. Comparison between calculated and the experimentally deduced static structure factors p(C) for Ge in units
of e/atom. The experimental data p,„i,t(C) (corrected for the thermal motion and the anomalous dispersion) are the Fourier
transforms of the static model-density fit to the observed MK and DHC data sets. We give both the fit to the scalar-relativistic
LDA (SR-LDA) atomic data and to the nonrelativistic Hartree-Fock (NR-HF) atomic data. The R factor for the LAPW (for
all 12 measured data) are RsR = 0.37% and RNR = 0.62'%%uo.

111
220
311
222
400
331
422
333
511
440
444
555
777

Rsa, %
RNR%

N

SR-LDA

27.894
23.766
22.142
0.152

20.235
19.482
18.040
17.300

16.198
13.498
10.680
7.547

Expt.
NR-HF

28.009
23.839
22.208
0.143

20.286
19.531
18.072
17.323

16.199
13.450
10.593
7.461

LAPW
LDA

27.519
23.683
22.172
0.120

20.318
19.432
18.016
17.275
17.273
16.187
13.493
10.684
7.543
0.43
0.58
9

OPWb
2Co,

27.54
23.63
22.07
0.24

20.27
19.47
18.00
17.21
17.24
16.16

0.52
0.73
9

LCGO'
LDA

27.457
23.615
22.125
0.110

20.280
19.368
17.955
17.218
17.218
16.115

0.64
0.83
9

LCAO
WDA

27.181
23.615
22.189
0.185

20.395
19.622
18.145
17.352

16.155

0.87
0.88
9

Present LAPW results, using the Perdew-Zunger parametrized Ceperley-Alder exchange-correlation (XC) potential with ten
special k points in the Brillouin-zone integration.

Reference 21, using a self-consistent OPW method and the Xn (n = 3) potential with four k points in the Brillouin-zone
integration.
'Reference 22, using the LCGO method and Wigner potential with ten special k points in the Brillouin-zone integration.

Reference 29, using a LCAO description of the bond-charge model and weighted-density approximation (WDA) potential with
six high-symmetry k points in the Brillouin-zone. integration.

Debye-Wailer parameter, and, to a lesser extent, the de-
formation density.

The measured, model-fitted, and LDA-calculated
structure factors for the first three forbidden refiections
are given in Table IX. Note that while the measured F222
were included in the model fits (so their model value
is not a prediction), F442 and Fager were not, and are
used only to test the accuracy of the model and the
ab initio calculations. The table shows a good over-
all agreement of both model and LDA values with the
measurements. The model values are
all within 10 me at most of the measured ones. The ab
initio values deviate somewhat more, the maximal devia-
tion being ~ 35 me for F2sz of diamond. The deviations
for most reflections, however, are similar to those of the
model. The LDA results are consistently smaller than
the model fitted values. For germanium, the only case
for which the fit yields p p 0, this is not surprising, since
the LDA calculations, unlike the model, use P = 0. To
examine these effects we calculate the forbidden reflec-
tions of Ge assuming in the fit P = 0. The P = 0 model
values listed in Table IX for germanium indeed show a
much better agreement with the LDA results, although,
as expected, they deviate more from the measured re-
sults, thus indicating that anharmonic effects are signifi-
cant in this case. For germanium, relativistic eKects may
be expected to be large enough to be observed. Indeed,

the use of relativistic free-atom scattering amplitudes in
the model fits improves the agreement with experiment
significantly. However, an accurate assessment of these
relativistic efFects will have to await a more accurate, and
more complete body of measured structure factors than
available now.

Finally, the good agreement of the model and mea-
sured forbidden structure factors lends credence to the
conclusions drawn from the model fits here and in Ref. 6,
i.e. , (i) P —0 and 1 eV/A. for silicon and germanium,
respectively, (ii) shell-dependent thermal motion in sili-
con having Bo», g B„~i,„«, (iii) the 2sp and 3' shell
expansion in silicon, and (iv) the valence-shell expansion
in germanium.

B. Untruncated core, valence, and total static
charge densities

Having established the level of accuracy of the calcu-
lated F(G) and p(C) over the limited set of mornenta
accessible to high-precision measurements, we next con-
sider the calculated real-space charge densities urith-
out any Fourier truncation. Recall that the basis set
used in our LAPW calculation includes real-space or-
bitals that contain arbitrarily large momentum compo-
nents. Figure 1 depicts the calculated p„ i(r) [Eq. (9)j,
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while Figs. 2—4 show the deformation charge densities
Ep«„(r), Ap ~(r), and Ap«(r), respectively [Eq. (18)
for G —+ oo]. In this and in the subsequent figures we
show side-by-side line plots in the (ill) direction and
contour plots in the (110)plane. The solid squares denote
atomic positions, empty triangles denote the (empty)
tetrahedral interstitial sites, while the empty half dia-
mond symbols at the left and right margins denote the
(empty) hexagonal interstitial sites. Distances are given
in terms of the fraction of ~3a, where a is the lattice
constant. The origin is on the left atom. The bond cen-
ter is at 2: = 0.125. Contour step values are given in the
insets. The basic features are as follows.

(i) As expected intuitively, the core charge density
p, „,(r) is localized around the nuclei. However, the
core is not entirely inert: the core deformation density
Ap, „(r) (Fig. 2) is slightly negative in the core region.

This effect is naturally missed by all "frozen-core" and
by pseudopotential calculations.

(ii) The valence charge density p ~(r) [Fig. 1] exhibits
the following features: (a) maxima on the atomic sites,
(b) the lobes on the bonds are oriented parallel to the
(111)bond direction, (c) there is a local minimum at the
bond center [point 6' in Fig. 1(a)], flanked by two local
maxima (point p), and (d) there is charge accumulation
in the the back-band region (point a). These characteris-
tics are reversed when one considers the valence deforma
tion charge density Ap ~(r) for Si and Ge (Fig. 3): Now
there are minima on the atomic sites, the lobes on the
bonds are oriented perpendicular to the bond direction
(in Si and Ge but not in C), there is a maximum at the
bond center [point b in Fig. 3(a)], and charge depletion
in the back-bond region o, . Table X gives the positions
R, (in units of ~3a with origin on the leftmost atom)

TABLE IX. Measured, model, and LAPW-calculated F(C) values for the "forbidden" reflec-
tions h, + k+ l = 4n + 2. All values are in millielectron units. The model fits are defined in Table I.
The LAPW results assume P = 0.

Model:
TTKS fit
GW fit
LAPW
B = 0.1379
B = 0.2303
Expt.

0.0
0.0

0.0
0.0
0.0

Diamond

136.8
107.9

107.6
105.3
143.8

F442

8.3
7.7

F622

2.7
2.5

Model:
LAPW:
Expt. :
AYsb
TB1'
MB
TB2'

0.0
0.0

3.45
3.38
3.38

Silicon
180.8
160.5

182.0

11.2
7.9

4.38
5.25
4.63

3.1
1.7

0.63
1.10

Model:
NR fit'
NRfit P=0
R fit~

RfitP=O
LAPW: B = 0.5654
Expt. :

MB
TB2

1.81
0.0
0.88
0.0
0.0

1.32
1,27

Germanium

141.3
136.1
146.6
143.8
113.5

133.0

17.1
4.2

11.6
4.8
2.6

7.88
12.29

9.4
1.0
5.6
1.2
2.0

6.98
8.25

Reference 37.
Reference 7.

'Reference 88.
Reference 89.

'Reference 58. For P see Ref. 45.
Using nonrelativistic free-atom form factors of Ref. 51.

~Using relativistic LDA free-atom form factors calculated by us.
"Reference 40.
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FIG. 2. Calculated untruncated (G ~ oo) static core de-
formation charge densities Ap, „(r) [Eq. (18)] for (a) C (di-
amond), (b) Si, and (c) Ge. Note that the core is not fully
inert but that the fluctuation Ap, „is localized.

0./' s s-0.25 0 0.25 0.50
Distance along (111) (d/dc)

FIG. 1. Calculated untruncated (G —s oo) valence charge
densities p,~(r) [Eq. (17a)] for (a) diamond, (b) Si, and (c)
Ge. In this and in the subsequent figures we show side-by-side
line plots in the (111)direction and contour plots in the (110)
plane. The solid squares denote atomic positions, empty tri-
angles denote the (empty) tetrahedral interstitial sites, while
the empty half-diamond symbols at the left and right margins
denote the (empty) hexagonal interstitial sites. Distances are
given in terms of the fraction of v 3a, where a is the lattice
constant. The origin is on the leftmost atom. The bond center
is at 2: = 0.125. The insets denote contour steps e/A . The
outmost contour has the same values as the contour steps.
The values of the prominent features (the points a, P, p, 6,
and e) are listed in Table X.

s s I s s s s i I s s s s I-0.25 0 0.25 0.50
Distance along (111) (d/dc)

FIG. 3. Calculated untruncated (C —s oo) static valence
deformation charge densities &p &(r) [Eq. (18)] for (a) di-
amond, (b) Si, and (c) Ge. The thick outer solid contour
next to the dashed line denotes Ap = 0. Dashed contours
denote negative Ap. The insets denote contour steps in units

3of e/A . The Dp values of the prominent features (the points
o. , P, and 6) are listed in Table XI. Note that the bond charge
is elongated parallel to the bond direction in diamond while
in Si and Ge it is perpendicular to the bond direction.

and amplitude p I(R,) of these features i = a. , p, p, b,
and c for C, Si, and Ge, while Table XI gives similar re-
sults for the deformation valence density Ap s„I(R;). Both
tables compare the ab initio values with those deduced
through our model from experiments. We see that the
amplitude of the local extremum of p ~I and Ap ~I at the
bond-center point (6) decreases rapidly in the sequence
C~Si sGe (largely a volume efFect), as does the charge
density at the tetrahedral interstitial site (point s). There
are interesting differences between diamond on the one
hand and Si and Ge on the other: both p,~I and Ap, I

are bond oriented in C, whereas Apv I in Si and Ge are
oriented perpendicular to the bond direction. Further-
more, Si and Ge exhibit deep minima on either side of
the "camel's back" bond charge [point P in Fig. 1(a)],
whereas these minima are considerably shallower in dia-
mond (Table X). The significant difference between pv I

and Ap ~I (including a factor of 3 reduction in overall
amplitude) suggests that many of the features of p ~I are
dominated by contributions from the free atoms.

(iii) Since most of the peaked amplitude of pcc„(r) is
localized inside the core region, Ap„~I (Fig. 3) and Epact
(Fig. 4) are similar over most of the unit-cell space. This
is seen also from the last four lines of Table X, where the
locations and amplitudes of the main features of Lp ~~

and Epact are compared.
(iv) The total charge density pt, t is dominated by the

core contribution and, as is expected, lacks structure.
The amplitude pt t(Rp) at the bond-center point b is
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TABLE X. Values of the valence and total charge density [p,~(R) and pq, q(R) in e/A ] and ~R~ (in units of v 3a, origin on
the left atom) at various points (o., P, p, 6, and e) along the (ill) direction as indicated in Figs. 2 and 3. The second line
for each entry lists the corresponding value obtained from the model fits to the measured structure factors. The negative p„~
value obtained for Ge from the model at point e gives an idea of the uncertainty in the model fit. We only list the model fit of
TTKS data for diamond.

Calc.
Expt.

Calc.
Expt.

Calc.
Expt.

Calc.
Expt.

Calc.
Expt.

Calc.
Expt.

1.55
1.47

1.38
1.08

1.94
1.93

1.59
1.61

0.09
0.10

1.59
1.61

iRi

0.056
0.060

0.029
0.030

0.064
0.069

0.125
0.125

0.50
0.50

0.125
0.125

P

p, )(R )
0.31
0.30

p- ~(Rs)
0.01
0.13

p-~(R~)
0.57
0.58

p-~(R~)
0.56
0.58

p~a(R. )
0.02
0.02

pgog(Rp)
0.56
0.58

Si
[Rf

0.081
0.083

0.040
0.042

0.096
0.103

0.125
0.125

0.50
0.50

0.125
0.125

0.36
0.40

0.02
0.16

0.49
0.60

0.46
0.58

0.02
—0.01

0.49
0.61

Ge
fRf

0.077
0.079

0.044
0.042

0.091
0.092

0.125
0.125

0.50
0.50

0.125
0.125

TABLE XI. Values of the b, p ~~(R) and Dpq, q(R) (e/A. ) and ~R~ (in units of v 3a, origin on the left atom) at various points
(n, P, and 6) along the (111)direction as indicated in Figs. 5 and 6. The second line for each entry lists the corresponding values
obtained from the model fits to the measured structure factors. Entries left blank indicate the absence of the corresponding
features in the model. We use the TTKS data for the diamond model.

Si

Calc.
Expt.

Calc.
Expt.

Calc.
Expt.

Gale.
Expt.

Calc.
Expt.

Calc.
Expt.

Calc.
Expt.

Calc.
Expt.

—0.13
—0.21

—0.13
—0.21

0.32

0.32

0.45
0.45

0.45
0.45

—0.10
—0.07

—0.10
—0.07

/Rf

0.097
0.098

0.097
0.098

0.062

0.063

0.125
0.125

0.125
0.125

0.50
0.50

0.50
0.50

Ap

ap..((R )—0.10
—0.10

&pro~(R~)
—0.10
—0.10

&p .~(Rs)
—0,06

0.05
&p~o~(Rp)
—0.09

0.06
ap..)(Rp)

0.18
0.20

&p~.~ (Ra)
0.18
0.20

Ap, )(R,)—0.02
—0.02

&p~o~(R )—0.02
—0.02

0.071
0.071

0.072
0.075

0.027
0.056

0.024
0.061

0.125
0.125

0.125
0.125

0.50
0.50

0.50
0.50

—0.05
—0.01

—0.05
—0.01

—0.05
0.09

—0.06
0.09

0.13
0.25

0.13
0.25

—0.02
—0.05

—0.02
—0.05

IRI

0.077
0.068

0.076
0.068

0.053
0.057

0.051
0.057

0.125
0.125

0.125
0.125

0.50
0.50

0.50
0.50
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close to the amplitude of p»i(R~), indicating that the
core contribution is negligible there.

(v) The deformation density maps Epics (Fig. 4) and
&Fi . 3~ have sharp nodal features near the core

)& /and sharp minima in the "inner-bond region point ~~ in
Figs. 3 and 4), both reflecting the fact that upon forma-
tion of the solid from the atoms the nodes in the crysta
valence wave functions are shifted with respect to those
in the free-atom valence orbitals. As will be shown be-
low, the representation of these sharp features will require
relatively high-momentum components in a Fourier de-
scription.

C. Comparison of all-electron and pseudopotential
valence charge density
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FIG. 4. Calculated untruncated (C —+ oo) static total
deformation charge densities Aptot(r) [Eq. (18)] for (a) dia-
mond, (b) Si, and (c) Ge. The thick outer solid contour next
to the dashed line denotes Ap = 0. Dashed contours denote
negative Dp. The insets denote contour steps in units of e/
The values at the prominent features (the points o. , P, an
b) are listed in Table XI. Note that like in Fig. 3 the bond
charge is e onga e paral t d arallel to the bond direction in diamond
while in Si and Ge it is perpendicular to the bond direction.

The pseudopotential approximation has proven to be
extremely successful in many solid-state calculations as
it enables the replacement of the quantum-mechanical
interference e6'ects of core wave functions with an ef-
fective, semiclassical external potential, which is com-

utationally far more expedient. The resulting pseudo-pu a ion
wave-functions can be made nodeless and smoot y
an appropriate choice of this external (pseudo)potential.
Comparison with measured structure factors requires,
however, the reintroduction of (i) core orbitals and (ii)
core-valence orthogonality corrections. Current proce-
dures for implementing this are often based on adding to

FIG. 5. Pseudopotential valence charge densities of (a)
diamond, (b) silicon, and (c) germanium from Martins and
Zunger (Ref. Ql). The density is given in units of e/cell (not
e/A ). Contour steps is 2e/cell. Note the close similarity to
the all-electron results (contour plots in Fig. 1) outside the
core regions.

the calculated solid-state valence charge density the free
atom core densities (hence, neglecting Ap„„of Fig. 2).
This includes approximately effect (i) but neglects effect
(ii) (although core orthogonalization is possible for cer-
tain classes of pseudopotentials, see Ref. 15 for details).
Table IV indeed shows that the agreement of the cor-
rected pseudopotential p, ~, (G) values with experiment
is mediocre. However, the valence pseudo-charge-density
is generally very close to the valence density component
f ll-electron calculations. This is illustrated in Fig. 5,

ndwhich shows the pseudopotential results of Martins an
Zunger and can be compared to the current all-electron
results shown in Fig. 1. There is a remarkable agreement
between the two sets of calculations outside the core re-
gion. Of course, the maxima on the atoms and the dip P
are absent in the pseudopotential description.

D. Fourier-truncated charge-density maps for Si

Given that even deformation charge-density maps ex-
hibit rather sharp features in r space, we next ex-
amine the convergence of their Fourier representation.
Figure 6 shows the calculated Si deformation density
Api q(r, G „) of Eq. (18) for three sets of t vectors.
First [Fig. 6(a)] we use calculated p«ic(C) at the se
of G vectors of Cummings and Hart (Table III), em-
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eluded in the Fourier series of the type of Eq. (11).
One sees a transition from a smooth behavior at low

Gm» [Fig. 7(a)] to an oscillatory function at intermedi-
ate G „values [Figs. 7(c)—7(e)] and finally to a smooth
function at high C» values [Fig. 7(f)]. The latter
Fourier-synthesized function is nearly indistinguishable
from the real-space representation p I(r, oo) of Fig. 1(b).
Liki e Fig. 6, Fig. 7 also shows the insuKciency of the
Cummings-Hart-Deutsch set in capturing the full struc-
ture of the converged charge density if it is described by
a Fourier series. Hence, despite the high precision of the
individual structure factors of Cummings and Hart, the
set of C vectors included in them is insuKcient to repre-
sent the full details of p I(r) or Ap, „(r) when used to
Fourier synthesize the electron density.

-0.1—
-2 0 2 4

Distance along (111) (A)

FIG. 6. Convergence of the ab initio calculated static de-
formation charge density Ap(r, G „) [Eq. (18)] of Si with
respect to the maximum momentum C included in the
Fourier series (denoted in the inset): (a) The Cummings-Hart-
Deutsch set of C vectors (Table III); (b) all reflections up to
Cm» = (880), and (c) all reflections up to CbIs ——(12, 12, 12)
(288 G components). Contour step = 0.025e/A. . Dashed
contours denote negative Ap. Note that (c) is practically
identical to the untruncated Ap(r, oo) of Fig. 4(b). Note fur-
ther that the set of reflections used in (a) is able to capture the
details of the converged charge in the bond region but misses
the localized features P and the amplitude of the charge den-
sity on the atomic sites.

ployed also by Deutsch in his analysis. While this set ex-
tends to G ( (880), it includes only 18 of the 52 allowed
refiections contained in this range. Second [Fig. 6(b)]
we show Apt t calculated from all 52 reflections t

m» = (880). Finally [Fig. 6(c)] we depict Ap«t for
Gb;s = (12, 12, 12) (288 G components), outside the
range of current high-precision measurements. The latter
Lp plot closely resembles the untruncated Lp ~~r j f

ig. ( ) (except for the inner-core region). The evolu-
tion of 4 ( G )ptot yr& m»g with Gmax seen in Fig. 6 clearly

~ ~

exhibits robustness of the amplitude near the bond cen-
ter. At the same time, the amplitudes on the (a) atomic
site, (b) inner-bond minima P, (c) back-bond minima
n, and (d) the tetrahedral interstitial sites are far from
convergence using Deutsch's set of 18 C vectors. This
slow convergence of Ap(r, C „) with G „reflects the
modification of the core of bonded atoms relative to free
atoms [see Eq. (18)]. Interestingly, Fig. 6 shows that
Ap(r, Gm») does not contain noisy undulation for any
level of truncation Gm». This disproves the assertion
of Zuo, Spence, and O'Keefe33 that adding terms in a
Fourier series for Lp beyond about the first ten only adds
noise.

Figure 7 shows similar information for the valence
density: it depicts the evolution of p ~r G ~j'th
the h' he ig est value of G» (indicated in the insets) in-

I
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FIG, 7. Convergence of the ab initio calculated static va-
lence density p»I(r Gm») [Eq. (17b)] of Si with respect to
the highest momentum included in the Fourier sum (denoted
in the insets). Note that (f) is practically identical to the un-
truncated p»I(r, oo) of Fig. 1(b). Note further that as Gm~„
increases p I changes from a smooth function [in (a)] to an
oscillatory function [(c)—(e)] and finally to a smooth function
(f). Even the set G ( (880) (the best that can be mea-
sured to date) is insufficient to produce a smooth p„ I.
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E. Comparison of ab initio and model
charge densities: p„~ & -(a) p„(cate)-

The text surrounding Eqs. (4b)—(7a) highlights the
fundamental difFerence between a Fourier-synthesis ap-
proach [Eq. (4b), illustrated in Figs. 6 and 7) and the
model-density approach [Eqs. (5)—(7a)] of Dawson,
Stewart, 4 Coppens, Spackman, 4 and Deutsch:
the latter method is guaranteed, by construction, to yield
a smooth function despite the use of a limited set of struc-
ture factors. We will next compare the results of the
model density to our fully converged results.

0

Q. p

I I I

-(b)

I I

p„(Madel')—

p~~] 2n silicon

Figure 8 compares our calculated p i(r, oo) [Eq. (17a)]
for silicon with Deutsch's model valence density
[Eq. (19a), see parameters in Table I (Ref. 92)]. The
agreement between theory and the experimentally de-
rived function is excellent. Table X gives a quantitative
comparison of p„(calc) and p„(model) at locations n, P,
p, 6, and e of Fig. 8. The only significant discrepancy
exists in the inner-bond minima (point P), where our re-
sult shows a significantly lower amplitude than Deutsch's
fit. Figure 6 demonstrated, however, that this feature
is highly dependent on Fourier truncation. Our results
and those of Deutsch are very difFerent from the elliptic,
single-peaked density obtained by Yang and Coppens
using a truncated Fourier series.

0+,
-2 0 2
Distance along (111) (A)

FIG. 9. Comparison of the ab initio calculated static va-
lence charge density (a) p i [Eq. (17a)] of diamond with (b)
the model density from fitting the TTKS data (solid line) and
GW data (dashed line). The corresponding contour plot is for
the TTKS data. Part (c) shows Spackman's results (Ref. 44)
in which Stewart's orbital for 28 and Clementi's orbital for
2p are used. The contour step is 0.20e/A . See the text for
quantitative comparisons.

8. p ~ in diamond
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FIG. 8. Comparison of the ab initio calculated static va-
lence charge density p„ i of Si [Eq. (17a)] with Deutsch's fit
to the data of Cummings and Hart (b). The contour step is
0.05e/A. . See text for quantitative comparisons.

Figure 9 compares the ab initio calculated valence
density map [part (a)] with the model-density result
[Eq. (19)] using the fits to the TTKS and the GW data
[solid and dashed lines in part (b)]. The agreement of
theory with experiment is fair. Table X gives a quanti-
tative comparison at some points. Our ab initio p~~~ at
points n, p, and b [Fig. 9(a)] are 1.55, 1.94, and 1.59e/A,

which are close to the values 1.47, 1.93, and 1.61, respec-
tively obtained from fitting the TTKS data and values
1.66, 2.06, and 1.61, respectively, obtained from fitting
the GW data.

It can be seen from Eq. (19) that the shape of p
at the nuclear sites depends sensitively on the choice of
atomic-orbital densities n„i since Ri~o(r = 0) = 0, see
Eq. (6). We have consistently used for these quantities
Clementi'ssi Hartree-Fock data. Spackman used for nz,
Stewart's density-localized valuesz while for nz„he used
Clementi's values. The quality of the fit of F,„~t(C) is
the same whether one uses Clementi's orbitals or Stew-
art's unitarily rotated orbitals. However, the compo-
nents of the charge density depend on the choice of or-
bital basis in the fit. Figure 9(c) shows the model den-
sity p'

&
using Stewarts orbitals in the fit. Comparison

vrith Fig. 9(b) shovrs significant difFerences betvreen these
model valence densities near the atomic sites: Spack-
man's fit [Fig. 9(c)] gives local minima at the atomic sites,
while ours [Fig. 9(b)] produces maxima on the atomic
sites. Except at the atomic sites, which are expected to
depend strongly on the nature of the orbitals employed,
the two models are in fairly good agreement. The theo-
retical calculations in Fig. 9(a) clearly agree better vrith

our model in Fig. 9(b).

pval $n gcpfAafw'lcm

Figure 10 compares our ab initio valence density of Ge
[part (a)] with the result from the model fit using rela-
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the local minima in the valence density, e.g. , Martins
and Zunger (see Fig. 5), Yin and Cohen, van18{b)

Camp, van Doren, and Devreese, and Nielsen and
Martin. All-electron calculations have also observed

28the local minimum, e.g. , Pisani, Dovesi, and Orlan o,
Methfessel, Rodriguez, and Andersen, Polatoglou and
Methfessel and Weyrich. None of the previous cal-

r91culation on Ge, except that of Martins and Zunger
(Fig. 5), seem to have found a local minimum in the
valence density.
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F. Comparison of ab initio and model charge
densities: b ptot.

1. Deformation maps for silicon
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FIG. 10. Comparison of the ab initio calculated static va-
lence charge density (a) p» [Eq. (17a)] of germanium with
the (b) and (c) model density. Part (b) shows the model fit
using relativistic (R) orbital, while part (c) shows the model
fit using nonrelativistic (NR) orbitals. The contour step is
0.05e/A. .

The bond-centered local minimum in p„~~

Figures 8, 9, and 10 show that the valence charge
densities of Si, C, and Ge all exhibit local minimum
along the (ill) bond axes. This feature is very pro-
nounced in diamond; however, its subtlety in Si and
Ge led to much debate in the theoretical literature.
We now know from experiment that this feature is
real. Many early pseudopotential calculations on sili-
con seem to have missed this feature, e.g. , Walter and
Cohen, 10 Chelikowsky and Cohen, 1 Ihm and Cohen, 7

Yin and Cohen, { ) Hamann, Zunger and Cohen,
81and Denteneer and van Haeringen. More recent pseu-

dopotential calculations (using more accurate pseudopo-
tential and better converged calculations) have predicted

tivistic [part (b)] and nonrelativistic orbitals [part (c)] in
the fit. Table X shows a quantitative comparison at some
points. The overall shapes of p„(calc) and p„(model) are
very similar. The small negative portions of p„(model)
near the interstitial sites (see also Table X) are unp ys-
ical. They probably reflect a too high F, p&(ill) value.
These negative regions have, however, a much smaller
amplitude (by a factor of 2) in the relativistic fit when
compared with the nonrelativistic fit. As a result of the
negative segments of p„(model) in the interstitial sites,
the normalization of p, (model) in the other regions must
be too high. Indeed, the model values are higher than
the ab initio value at the bond regions (points p and
b, see Table X). Clearly, better experimental data are
needed for Ge before a definitive model can be adopted
and compared with theory.
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FIG. 11. Comparison of the experimentally deduced static
d nsity deformation plots Ap~ ~(r) [Eq. (18)] of Si (b) withensi y
our ab initio calculation (a). The contour step is 0.025e
Dashed contours denote negative Ap.

Figure ll(a) compares our ab initio calculated defor-
mation charge density of Ap«[Eq. (18) for G —+ oo] for
Si with the model density. Table XI gives a quantitative
comparison at some points. The overall shapes are simi-
lar: pt q is perpendicular to the bond, has a bond-center
maximum (point b) and a minimum at the back-bond

osition o. and a shallow negative value in the intersti-
tial sites. The shape near the atoms (point P) [best seen
in the line plot of Fig. 11(b)] are, however, significantly
different. The model shows sharp peaks at the P points
with pronounced minima on the atomic sites. These fea-
tures are unmatched by any Fourier synthesis (Fig. 6) and
may reHect the difhculty in reproducing the complexity
of a realistic Apt & within the arbitrary restricted rep-
resentation for RI(r) used in Dawson's model [Eqs. (6a)
and (6b)]. It is remarkable, however, that despite the
clear insuKciency of the Cummings-Hart-Deutsch set of
rnomenta to describe p I or Apr, q in a Fourier represen
tation (see Figs. 6 and 7), the model density -approach
of Eqs. (5)—(7a) mimics very well the overall results ob-
tained from a highly converged Fourier series.
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8. Deformation mays for diamond

Figure 12 compares the ab initio calculated static den-
sity deformation map Apq t(r) [Eq. (18)] of diamond
(a) with two experimentally deduced static density de-
formation plots: that obtained from the TTKS data
[Fig. 12(b)] and from the GW data [Fig. 12(c)]. Ta-
ble XI gives a quantitative comparison between the ab
initio result and model Ap extracted from the TTKS
data. The overall agreement is considerably better with
the TTKS data, as noticed also in comparing calculated
and measured structure factors (Sec. VI A3). Notice in
particular that the amplitude of the GW results are too
high at the bond center, and that Ap in this model has
the wrong slope in the interstitial region. The shapes
near the atomic sites are very different in the two model
densities. This deserves further comment: we see from
Eq. (21) that if the orbital deformation parameter r„I is
1, AP is given just by the t g 0 terms RsK3 + B4K4.
The conventional functional choice of AI(r) is such that
BIyp(r = 0) = 0 [Eq. (6)]. Hence, this choice forces
AIb(r) to have zero amplitude on the nuclei. On super-
posing AP over unit cells [Eq. (20)) one finds some am-
plitude on the atomic sites. These amplitudes result only
from the penetration of the tails of RI(r) from sites i g j
onto site j. This choice of a restrictive functional fIexi-
bility of RIgp(r) limits its ability to capture fiuctuations
at the nuclear sites. Figure 6 further illustrates that the
amplitude of Ap(r) on the nuclear sites develops only
when high G components are included. The GW data
set, having higher G components than the TTKS set,
shows indeed more structure near the atomic sites. We

conclude that the currently used model-density approach
[with r„I = 1 and RIyp(r = 0) = 0] lacks sufficient func-
tional fIexibility to resolve the structure of Lp near the
nuclei.

8. Deformation mays for germanium

Figure 13 compares our ab initio calculated Ap(r) of
Ge with the results of the model fit using relativistic [part
(b)] and nonrelativistic [part (c)] orbitals in the fit. We
see that relativistic effects change the bond-elongated
Ap [Fig. 13(c)] to a more spherically shaped bond Ap
[Fig. 13(b)] in much better agreement with the theory
[Fig. 13(a)]. Furthermore, the dips denoted by n and P in
the theoretical density plot along the bond in Fig. 13(a)
show up only in the relativistic model fit, but not in the
nonrelativistic one. Their positions also agree rather well
with those of the model. All these indicate that relativis-
tic effects have significant contributions to the electronic
density of crystalline germanium.

G. Subjecting the Si ab initio results to model fits

Another way of comparing the ab initio results with
the experimentally deduced model values is to subject
both sets of structure factors to the same model analysis.
One then fits the set of calculated static structure factors
(p, I,(G)) by the model (naturally, with p = B = 0) and
obtains the fit parameters (r„I,AI, () of Eqs. (5) and (6),
which can be compared with those obtained by Btting the
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FIG. 12. Comparison of the ab initio calculated static
density deformation plots b pt, t(r) [Eq. (18)] of diamond (a)
and the experimentally deduced static density deformation
plots of TTKS (b) and GW (c). The contour step is 0.05e/A. .
Dashed contours denote negative Ap.
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I IG. 13. Comparison of the ab initio calculated static de-
formation charge density (a) p & [Eq. (17a)] of germanium
with the (b) and (c) model density. Part (b) shows the model
fit using the relativistic (R) orbital, while part (c) shows the
model fit using nonrelativistic (NR) orbitals. The contour
step is 0.025e/A .
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(Fe„&t(C)) to the same model. The interest in this pro-
cedure stems from the fact that it subjects both sets of
structure factors —calculated and measured —to the same
analysis. Any restriction in the model (e.g. , limited func-
tional flexibility near the nuclei) will be equally reflected
in both fits. Note that p, I,(C) has no C-dependent sys-
tematic deviations from the measured values where those
are available. We will assume that the p«Ic(G) continue
to be accurate also for the high-order structure factors
which are at present outside the reach of accurate exper-
iment. (This is reasonable since the higher-order terms
increasingly reflect core contributions. ) One can, there-
fore, monitor the results of the fit of p«Ic (C) as a function
of C „. This allows one to separate model-dependent
features from those depending on the accuracy of the
"measured" set of structure factors.

Figure 14 shows how the parameters g, As, A4, and
[Eq. (6)], deduced from fitting p„I,(G) of Si to

the model, depend on the number of calculated struc-
ture factors used in the fit. The curves in Fig. 14 con-
verge after about 120 terms to their limiting values of
( = 2.806 a.u. , As = 0.266e, and A4 = —0.062e. We
see that as Gme„ is increased (i) the exponent g increases
(i.e. , the radial charge density becomes more localized),
(ii) the coefficient As decreases (i.e. , the antisymmet-
ric component of the charge density diminishes), and
(iii) A4 becomes less negative (i.e. , a lower centrosym-
metric charge component). Similarly, (iv) r,I, starting
out at small Gme„as rveI ( 1 (orbital expansion) in-
CreaSeS, and turnS tO r„eI ) 1 (Orbital COntraCtiOn) at
higher G~~„values. The converged orbital deforma-
tion parameters using a large number of p, I,(G) val-

ues are nco«(n = 2) = 1.0003, and v ei = 1.0124, as
compared to the experimental values deduced from the
18 known structure factors r, „(n = 2) = 0.9949, and

~
——0.9382. It is possible, therefore, that a model Bt

to a more complete set of measured structure factors will
yield a vanishing expansion of the 2sp shell, and a small

( 1%) contraction of the valence shell, rather than the
values found in the model, fits to a set of 18 reflections.
(v) Limiting the fit to the 11 structure factors for which
theory versus experiment comparison exists (Table IV),
we find an R factor of 0.079 jo, i.e., about half of what
was found for LAPW versus the experimental model fit.

(vi) Finally, we made also a series of fits to the calcu-
lated structure factors including in the model two more
terms of the multipole expansion, i.e. , l = 0, 3, 4, 6, 7 in
Eq. (7a). No improvement was observed in the statisti-
cal indices of the fits, and no significant variations were
detected in the derived parameter values, as compared
with the t = 0, 3, 4 term fits. This is in good agreement
with identical observations for fits to the canonical set of
the 18 measured structure factors.

Figure 15 shows the model static valence density along
the (ill) direction for (a) the fit to the 18 experimen-
taL F,„~t(G) values, (b) the fit to the set of 18 calcu-
lated p«Ic(G) values, and (c) the fit to the 288 caLcuLated

pceI, (G) values. In all three cases, one first fits p(G) to
the model, then uses the fitted model parameters to con-
struct the crystal density [Eq. (7) and Fig. 15]. One sees
remarkable agreement between Figs. 15(a) and 15(b) as
well as with the density shown in Fig. 7(f) obtained with
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FIG. 14. The variation of the Si model fitting parameters:
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A.3 and A4 mith the number of C values included in the fit.
The structure factors fitted are static LAP' values.
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FIG. 15. This figure gives the model valence charge den-
sity along the (111) direction by subjecting both the experi-
mental and LAPW structure factors to the same model. (a)
The fit to the 18 experimental F oq(G), (b) the fit to a
set of 18 calculated p, l, (G) values, and (c) the fit to the
Gb;g ——(12, 12, 12) (288 G components) calculated p,», (G)
values.
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a Fourier series (but no fit). In contrast, Fig. 15(c) is
significantly difFerent. This means that: (i) if one uses
a large Set of structure factors, the accurate result ob-
tained by Fourier summation [Fig. 7(f)] is difFerent from
that obtained from the model fit [Fig. 15(c)]. In other
words, there is a loss of information in fitting a structure
factor set with high-C components to Dawson's model.
This is related to the limited functional flexibility of the
model near the core, discussed above, and is evidenced
by the large fitting error we find in Fig. 15(c). (ii) If one
uses a stnaller set of structure factors, a direct Fourier
series produces noise [Fig. 7(e)], while fitting it to the
model [Fig. 15(b)] filters out the noise. This reflects the
fact that Dawson's model extrapolates the high-G com-
ponents using a spatially smooth form. (iii) It follows
from (i) and (ii) above that when a limited set of struc-
ture factors is available experimentally, the best strategy
is to fit it to Dawson's model (rather than Fourier sum
it directly). To compare the resulting p„(r) with the-
ory, one should either subject an equivalently small set of
p, I,(G) to a model fit [Figs. 15(a) and 15(b)) or Fourier
sum a converged set of p«i, (C) [Fig. 7(f)]. Subjecting a
large set of p(C) to a model fit or subjecting a small set
of p(G) to Fourier summation both produce significant
errors.

H. Static versus dynamic deformation densities
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The difFerences near the nuclei between the model-
density approach and ah initio calculations for the
static deformation maps (Figs. 11—13) suggest that per-
haps dynarni c effects need to be considered. Zuo,
Spence, and O'Keeffes conjectured that while high-
momentum Fourier components could affect the shape
of the static deformation densities Apt~t, (r, G~~„), they
would be inconsequential for the dynamic deformation
density AFi,q(r, G „), since the Debye-Wailer factors
would efFectively attenuate such high-G components.
This suggested to them the pessimistic conclusion 3

that one cannot recover any information on high-
order p,„~t(G) terms from a deconvolution [Eq. (4a)]
of F,„~i(C). To test this hypothesis we plotted in
Fig. 16 the static Apt i(r, C „) [Eq. (18)] and the dy-
namic AFt~t(r, G „) [from Eq. (13)] for two trunca-
tions: G „=(331) [Figs. 16(a) and 16(b)] and Gb;s ——

(12, 12, 12) (288 G components) [Figs. 16(c) and 16(d)).
This shows that (i) the shapes of Ap(r, C~~„) depend on
G „ in this range. Both Ap(r) and EF(r) are affected
by this truncation, and (ii) Api i = AFt t at any of these
truncations except that a reduction of the amplitude on
the nuclei is evident. This invalidates the conjecture of
Zuo, Spence, and O'Keefe. 3 Clearly, the Debye-Wailer
factor exp( —GzB) does not decay fast enough to render
a high-order contribution to Ap(C) negligible.

The similarity of Ap«I, (r, G~~„) to KF«I, (r, G~~„)
over much of the unit-cell volume implies that (i) the
difficulty in calculating ab initio dynamic charge densi-
ties can be efFectively circumvented for many purposes
by using the far simpler static densities. (ii) Since high-
momentum Fourier components F(Gb;s) clearly affect

FIG. 16. Comparison of static (b.p) and dynamic (DF)
total deformation density maps of Si for two Fourier trunca-
tions: G = (331) in (a) and (b), and Gb;s ——(12, 12, 12)
(288 G components) in (c) and (d). The contour step is
0.025e/A3. Dashed contours denote negative values. Note the
similarity of the static and dynamic maps for the same C
and the lack of convergence of Ep and AF for G „((330).

charge-density deformation plots (viz. , Fig. 6) and va-
lence charge-density plots (viz. , Fig. 7), the current in-
ability to measure F(Gb;s) with high precision poses a
real limitation to our ability to accurately characterize
&pi.i(r)

VII. SUMMARY AND CONCLUSIONS

(i) Model fits. The multipole expansion formalism
with the lowest-order centrosymmetric and antisymmet-
ric terms (I = 0, 3, 4) accounts well for the measured
structure factors. Fits of the model to both silicon and
germanium yield a goodness of fit of 1, exhausting the
accuracy of the available data. For diamond, the only
high-accuracy set available to date yields a goodness of
fit of 4. Further progress awaits more accurate mea-
surements for germanium, and the extension of the small
set of structure factors available for both diamond and
germanium. The much better and more complete set
of structure factors available for silicon could neverthe-
less be improved by accurate measurements of high-order
structure factors.

(ii) Features observed in the fits. The charge distribu-
tion in silicon and germanium are similar in general, and
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differ from that of diamond. The following features are
observed. (a) A valence-shell expansion of a few percent
is found in silicon and germanium, but not in diamond.
(b) An 0.5% expansion of the core 2sp shell of sili-
con. (c) Both the octupole (l = 3) and hexadecapole
(l = 4) terms are populated in silicon and germanium,
but only the octupole is populated in diamond. (d) Non-
rigid thermal motion with different Debye-Wailer factors
was found in silicon, but not in the other two crystals.
The silicon valence charge exhibits a much reduced ther-
mal vibrational amplitude, as compared to the core. (e)
Relativistic effects are noticeable for germanium even at
the present 20—30-millielectron level of experimental ac-
curacy. (f) No evidence for an anharmonic term in the
effective potential was found for silicon and diamond. For
germanium, by contrast, the fits indicate the existence of
a small but non-negligible anharmonic term.

(iii) Structure factors. Precise implementation of the
local-density theory is able to reproduce all accurately
measured Si structure factors with a maximum error of

20 me/atom and often considerably better. R factors
for 18 reflections are as small as 0.21% and the rms devi-
ation is 12 me/atom. The agreement with the currently
available data for C and Ge is poorer (an R factor of
0.94% for C and 1.05% for Ge, respectively, and the rms
deviations are 17 me/atom and 170 me/atom for C and
Ge, respectively). This reflects largely the inferior qual-
ity of the C and Ge data relative to the Si data.

(iv) Valence and deformation densities. The valence
charge density p ~i(r) extracted from experiment are ac-
curately reproduced by the local-density theory (Figs. 8—
10 and Table X). While the features of the deforma-
tion densities are well reproduced in the bond regions
(Figs. 11—13 and Table XI), the shapes near the atomic
sites are not. We suspect that this refl.ects a limitation
in the choice of a simple radial function [Eqs. (6a) and
(6b)] in the model fit to experiment.

(v) Trends in calculated p i and Aptot. Valence den-
sity maps p„(r) (Fig. 1) exhibit a camel's back double-
maximum structure on the bond in C, Si, and Ge. It
is more pronounced in C and Ge than in Si (note the
nonmonotonic trend here relative to the position in the
Periodic Table). The bond charge in p i is oriented par
atlel to the borid direction. In contrast, the deformation
charge density maps Aptot(r) and Ap»i(r) (Figs. 3 and
4) are parallel to the bond direction in C but per@en
dicular in Si and Ge. p ~i(r) and Bpt~t(r) exhibit lo-
calized features reHecting changes in the atomic nodal
structures by the crystalline environment (Figs. 4). This
leads to a slow convergence of the respective Fourier se-
ries (Figs. 6 and 7). Even the state-of-art set of reflections
of Cummings and Hart is insufhcient for capturing such
features in a Fourier synthesis. A similar situation exists
for GaAs, where the measured reHections are insuK-

cient to capture many of the features of Lp.
(vi) Dazuson's modeL versus Fourier summation. When

a limited set of p(G) is available, a fit to Dawson's model
produces a smooth density. This reflects the fact that
the model extrapolates smoothly the high-G components
outside the set. A direct Fourier summation of a limited
set of p(G) can produce noisy p(G). On the other hand,
when a large set of p(G) is available, Dawson's model
produces a poor flt due to its limited flexibility to rep-
resent rapidly varying densities near the core. A direct
Fourier summation of a large (converged) set of p(G)
produces a smooth p(r).

(vii) Static versus dynamic densities. The conjecture of
Zuo, Spence, and O'Keeffe that high-momentum com-
ponents will not significantly modify dynamic maps is
not supported by our calculations. We find that high-
momentum components afFect significantly both static
and dynamic deformation maps (Fig. 16, although dy-
namic maps show some broadening of the localized fea-
tures near the nuclei). In view of the fact that 4p do
exhibit localized features, this implies that the current
inability to accurately measure high Fourier components
does affect the accuracy of the ensuing density maps.

(viii) Relativistic effects in Ge Usi.ng relativistic free-
atom structure factors in the Ge fits improves the agree-
ment between the model and experimental forbidden
structure factors (Table IX), reduces the unphysical neg-
ative valence density in the model (Fig. 10), and improves
the comparison of structure factors with the ab initio
results (Table VIII). Our predictions of the structure
factors and density maps of Ge await more accurate ex-
perimental testing.

(ix) "Forbidden" reflections Contrib. uted solely by the
deformations and anharmonic thermal motion, the mag-
nitudes of these structure factors are sensitive measures
for the quality of any calculation or model fit. Here,
the LDA-calculated and, in particular, the model values
are in very good agreement with experiment. For the
highest-order measured reflections, (442) and (622), the
agreement is within a few millielectrons. This lends fur-
ther support and credibility to both the model and the
LDA calculations.
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