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We use our previously reported method for solving self-consistently the local-density one-particle equations in

a numerical-basis-set linear combination of atomic orbitals expansion to study the ground-state charge density,

x-ray structure factors, directional Compton profile, total energy, cohesive energy, equilibrium lattice constant,

and behavior of one-electron properties under pressure of diamond. Good agreement is obtained with available

experiment data. The results are compared with those obtained by the restricted Hartree-Fock model: the

role of electron exchange and correlation on the binding mechanism, the charge density, and the momentum

density is discussed.

I. INTRODU(. 'TION

The local density functional (LDF) formalism
of Hohenberg, Kohn, and Sham, "and its recent
extension as a local spin-density functional formal-
ism, ' form the basis of a new approach to the study of
electronic structure in that the effects of exchange
and correlation are incorporated directly into a
charge- density- dependent potential term that is
determined self -consistently from the solution of
an effective one-particle equation. Applications of
the LDF formalism to atoms+' and molecules' have
yielded encouraging results. Similar applications
for solids are complicated by (i) the need to con
sider both the short-range and the long- range
multicenter crystal potential having nonspherical
components, (ii) the difficulties in obtaining full
self-consistency in a periodic system, and (iii)
the need to provide a basis set with sufficient
variational flexibility. Hence, theoretical. studies
of ground- state electronic properties of solids
in the LDF formalism have been mainly l.imited to
muffin-tin models for the potential, "non-self-
consistent schemes, ' treatments of simplified
jellium models'0 or spherical cellular schemes

We have recently proposed"" a general self-
consistent method for solving the LDF formalism
one-particle equation for realistic solids using a
numerical-basis-set LCAO (linear combination of
atomic orbitals) expansi. on and retaining all non-
spherical parts of the crystal potential. We have
demonstrated a rapid convergence of the self-
consistent (SC) cycle when the treatment of the
full crystal charge density is suitably apportioned
between real- space and Fourier- transformed
reciprocal-space parts and have indicated the
large degree of variational flexibility offered by
a nonlinearly optimized (exact) numerical atomic-
like basis set. We have shown that all multi-
center interactions as well as the nonconstant parts
of the crystal potential are efficiently treated by

a three- dimensional Diophantine integration
scheme.

The purpose of this paper is to illustrate the ap-
plicability of our method to real systems by
studying the ground- state electronic properties of
diamond. Diamond has been long considered as
a prototype for covalently bonded insulators" and
a great deal of experimental work has been done
on its ground-state properties, including co-
hensive energy, "lattice-constant studies, "x-ray
scattering factors, ""charge density, "and di-
rectional Compton profile. O' In addition,
theoretical studies on its ground-state properties
within the restricted Hartree-Fock (RHF) model
are available" " so comparison with the predic-
tions of the LDF formalism is possible. Although
the eigenvalue spectrum (band structure) of the
local exchange Hamiltonian for diamond has been
studied previously by a variety of first-principles
techniques [augmented planes waves (APW), '""
orthogonalized plane waves (OPW),""pseudo-
potential OPW, " LCAO, "" and cellular meth-
ods "], the ground-state observables related
to the ground-state crystal charge density have
received much less attention. While our method
was shown" to accurately reproduce the band
structure of diamond as obtained by other tech-
niques"'" (when correlation and self-consistency
is omitted so as to be compatible with the pre-
viously published band- structure models and the
full nonspherical components of the potential are
retained in both calculations), we do not consider
this as a stringent test since the LDF formalism
in its "standard" form does not make any claim
on the physical significance of the band eigen-
values nor are these eigenvalues sensitive enough
to the details of the basis set and potential. " In
what follows we present our results for the x-ray
scattering factors, charge density, directional
Compton profile, total energy, and equilibrium
lattice constant and discuss the role of exchange

5049



5Q5Q ALEX ZUNGKR AND A. J. FREEMAN

and correlation in determining these observables.
Comparisons are made with earlier Hartree-
Fock results" "and with experiment.

II. METHOD OF CALCULATION

Since the method was described at length else-
where, "we give only a brief description here in
order to place our work in proper perspective.
Basically, our aim is to solve the effective one-
particle equation in the local density functional
formalism, i.e. , the Bloch equation in which the
potential consists of a Coulomb and an exchange
and correlation potential V„(p{r))which is given
as a functional derivative of the total exchange and
correlation energy E„,( p(r)) of an interacting (in-
homogeneous) electron gas with respect to the
charge density. ' In our work, we use only the
free-electron exchange and correlation potential

terms" which are the first two terms in a general
expansion'" of E„(p(r)}. For the free-electron
correlation term we use the results of Singwi
et al. as fitted to an analytic form.

One writes the ground- state charge density p(r)
as

NQ &c
p(r) =

(2 )' n'{k
BZ

x ()(*,. (k, r) P&(k, r) dk,

where n, (k) is the Fermi occupation number of the
o„occupiedcrystal eigenfunctions (t(,.(k, F) of band

j and wave vector k; and N and 0 denote the num-
ber of unit cells and the unit cell volume, re-
spectively. The integration is performed over the
occupied part of the Brillouin zone (BZ). The total
ground-state energy is given by

&(,( = P n, (k)( 0;(k, r)
~

—2 &'
~

(t', (k, r)

~ r(rl(Q; d, d, + g " r +r„.(r(q),—Z. i p(r') Z Z

}r-R —d f Jr- r'
)

(2)

where Z is the nuclear charge of the atom
situated at site d and R denotes the position
vector of the rnth unit cell.

It is clear that, because of the functional depen-
dence of the potentials on p(r) and hence on the
wave functions {i{(,.(k, r)j, the solutions must be
obtained by some self-consistent (SC) procedure.
As our initial guess for the crystal density (which
will be subsequently refined in the SC iterative
cycle) we chose a population-dependent overlapping
atomic densities model

E
p'"'(~) = P g p. (r - R - d. , b"„'„Q )), (2)

m e

where p, (r, Q"„„„Q]) is the charge density of
atom (ion) o.'calculated numerically from an atomic
(ionic) LDF one-particle equation assuming oc-
cupation numbers f„, for the central-field quan-
tum numbers n'l' and a possible net ionic charge
Q~. In solving these equation we use the same func-
tional form of V„,(p (r)} as used for the crystal
case but replace the crystal density with p (r).
The atomic eigenfunctions (p„,(r) are used to
determine (self- consistently) the one- site density
by

P (r 9 ( Q )) = Q f (V' ( (r)(p„g(r)

and because of the assumed spherical symmetry
these are easily solved for self-consistently in
numerical form for an assumed set of atomic popu-

lations and charge tL f"„„,, Q"j (a typical accuracy of
10 ' a.u. is obtained for the eigenvalues). The
superposition density is then formed by carrying
the sum in Eq. (3) to convergence (a summation
radius of 20 a.u. is employed). The initial guess
for the crystal potential is obtained by solving
Poisson's equation for p'"'(r) and using the ex-
change and correlation functionals with this mo-
del density. The Coulomb superposition potential
is separated into short-range Vss'c(r) and a long-
range V'„"gc(r) parts. The first is simply given by
a direct lattice sum of the short-range (over-
lapping) ionic potential

R
V'„"' (r)= g V (r- R —d )+

(5)

where the quantity in large parentheses denotes
the Coulomb potential associated with the neutra-
lized charge of site e. This sum converges rapidly
due to the subtraction of the long-range ionic tails
in Eq. (5) and a summation radius of R ~
=17-22 a.u. is sufficient to achieve an accuracy
of 10 '-10 ' a.u. The remaining long-range Cou-
lomb term is calculated by the Ewald4' technique
using the effective charges

lim rV (r).
y Rmax

The exchange and correlation "superposition" po-
tentials are given by applying the respective func-
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tionals to p'"'(r) (i.e. , without linearizing these
potentials with respect to the individual"'" p» s).
Note that all aspherical contributions originating
from the overlapping tails of the one-site density

p (r), as well as those contributed by the point-
ion electrostatic crystal field, are fully retained.
However, owing to the nonlinearity of the ex-
change and correlation functionals with respect
to the individual single-site densities p„(r), the
initial superposition potential V'"'(r) is not rep-
resentable as a lattice sum of one-center terms
and hence even at this zeroth iteration stage the
one-particle equation constitutes a multicenter
problem. After convergence of the direct lattice
sums [Eqs. (3} and (5)] is obtained, V'"'(r) is
completely defined by specifying the atomic num-
bers Z, the postulated crystal structure and the
assumed populations and changes P„„Q"j. The
latter are subsequently used as free parameters
in the SC procedure to optimize the superposition
potential (see below). By changing the relative
proportions (i.e. , hybridization ratio) of the popu-
lations in the atomic LDF equations (e.g. , the car-
bon 2s to 2p populations) the superposition density
and potential can be made to better simulate the
output crystal density and potential so as to facil-
itate the convergence of the SC cycle.

The crystal wave functions {{,.(R, r) are expanded
in terms of ht) Bloch functions 4„,(k, r) in stand-
ard form:

t/r, (k, r) = g g C„„(k)4, (k, r),
n= 1 II, =1

where C (k, r) is defined in terms of the pth
basis orbital y„'(r) situated on the nth site:

(8)

4 (k, r) = N ' ' g e' '"»
y (r —d —H ) . (7)

We use as LCAO basis functions nume~icajt atomic-
like LDF orbitals. These are obtained from a
solution of an atomiclike equation, similar to that
used to generate the superpostion potential

= &, X, (r [f; ~ Q ]') (8}

Here, the one-site potentialg (r) can be taken as
a generalized atomiclike potential as long as it
generates through Eq. (8) orbitals that form an
accurate and rapidly convergent basis set for
expanding the crystal orbitals g,.(k, r). Such basis
orbitals have to maintain the correct cusps near
the nuclei (which are absent in a Gaussian basis)
as well as appropriate nodal behavior and an~lar
variation, while any long-range tail is Unwarranted
(due to the possibility of formation of linear depen-
dence between the Bloch functions). We hence

chose g„(r) in Eq. (8) to be the usual atomic po-
tential plus an additional external potential A(r)
in a form of a potential well starting from a
distance R, from the nucleus. This distance
is chosen so that the low-lying occupied solutions
of Eq. (8) will be identical with the exact atomic
solution, while the virtual orbitals (3s, 3p, and
3d in carbon} will have compressed tails. Ex-
perimentation with this type of localizing po-
tential" revealed that it is rather straightforward
to chose R, (e.g. , 17 a.u. for carbon) so that the
resulting orbitals will be sufficiently localized so
as to enhance the Bloch sums convergence
[Eq. (7)] and still possess sufficient variational
quality in the crystal calculation (e.g. , produce
a total energy that is as low as that obtained
with regular atomic orbitals). The basis set
obtained in this way (for a fixed choice of (f„„Q) )
is used to our work in direct tabular form with
no attempt to fit it to an analytic set. Extensive
studies of the basis-set problem" (i.e. , addition
of analytic Slater orbitals to a minimal basis set
to better span the virtual space) have shown that
a numerical basis set for carbon consisting of
ls, 2s, 2p, 3s, 3p orbitals (18 orbitals per unit cell
denoted here as set I) is sufficient to maintain an
accuracy of about 3 mHy in the valence and lowest
two conduction-band eigenvalues for diamond. In
the calculation of the total crystal energy it was
found that the convergence of the result due to
additional virtual numerical (or Slater) orbitals
was rather slow but that augmenting the basis set
by ion-pair charge-transfer orbitals [ i.e. , solving
Eq. (8) for a neutral carbon atom with Q» = 0 as
well as for Q = 0.8 and Q = —0.8 and using this
triple-sized set for the crystal] produced a sub-
stantial improvement in the result. We hence
use this extended set (denoted here as set II) in
this work to calculate total energies and equili-
brium lattice constants and compare the results
with the more economic set I.

Having defined the initial crystal potential and
the basis set, the usual linear variation secular
equation is given as

h

Q Q [H „s(k) —S„ s (k)e,(k)] C , (k) = 0,

where the Hamiltonian and overlap matrix ele-
ments in the Bloch representation are

H„„q(k) = ( 4»(k, r)
I
—2 +'+ V(r)

I
4 s (k, r)&,

(10a)

S „s(k) = ( C „,(k, r)
I 4„8(k, r)) . (10b)

These matrix elements, when expanded in terms
of the basis orbitals y„(r} and the projected single-
site potentials, give rise to a large number of two-
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and three- center integrals. The computational
difficulty in handling these integrations has led

many workers in both molecular and solid-state
electronic structure theory to resort to somewhat

artificial analytic basis functions (e.g. , Gaussians)
or to simply neglect a large number of these in-

tegrals. In the present work, we resolve that prob-
lem by evaluating the integrals directly from Eq.
(10) (using numerical forms for the potential and

Bloch functions) employing a three-dimensional
Diophantine integration scheme. " The details of

the application of this scheme are given else-
where. ""Here we only note that in using this
approach all the multicenter integrals are avoided
and that any general form for the potential (various
forms for correlation, non-muffin- tin corrections,
etc. ) or basis functions can be treated equally in a
direct manner. The use of an exact numerical
basis set along with a superposition potential gen-
erated from the same set Q„„Q ) offers another
advantage": the integrand appearing in Eq. (10a)
exhibits an algebraic cancellation between the
repulsive kinetic energy and the attractive Coulomb
singularity in the vicinity of the nucl. ei in the sol.id
so that the Hamiltonian elements can be calculated
to good accuracy. About 2000 Diophantine inte-
gration points are required to obtain an accuracy
of 2 mHy in the valence and first two eonduction-
band eigenvalues in diamond while some 7000
points are required for an accuracy of 0.2 eV in
the total energy calculation.

The secular equation [Eq. (9)) is solved at a
setof reciprocal- lattice vectors k, ; i = 1, . . . , p,
The resulting eigenfunctionsare used to construct
a refined crystal density p„,(~) from Eq. (1) where
the integration over the BZ is replaced by a sum-
mation over the p,. wave vectors [k,j. We chose,
for the set [kj, the first 10 (inequivalent) special
k points in the diamond BZ and their associated
weights. 4' We note that due to the low dispersion
of ti,*(k, r)i(, (k, r) in diamond across the BZ" this
approximation to the charge density does not cause
any severe problems in calculating p, (r) and the
total energy; however, the calculation of the BZ
average of the band eigenvalues (needed for the
calculation of the kinetic energy term) requires
more k points due to the substantial width of the
valence band and is calculated in the present study
by averaging 32 inequivalent k points.

Given the output crystal density, we set a self-
consistent cycle that is based on two stages. In
stage 1 (charge and configuration self-consistency),
we iterate over the population numbers [f„',) and
charge Q, solving at each stage for a new super-
position potential and numerical basis orbitals
[Eq. (8)] so as to minimize in the least-squares
sense the deviation Ap(r) between the crystal den-

sity p„„(~) and the population-dependent super-
position density p'"'(r). During these iter-
ations electronic charge is redistributed from
the occupied atomic orbitals to the formerly
virtual orbitals resulting in a radial distortion of
the ba,sis set. We thus allow our basis set to
relax to the current form of the iterated crystal
potential by varying it non/ineaxly. In carrying
stage 1 in SC to completion, the residual func-
tion Ap(r) is minimized over space and most of
its localized features (present at the first itera-
tion) are smoothed out. In other words, by varying
simultaneously the basis set (allowing for radial
distortion, shift of nodes, and rehybridization) and

crystal potential, we select among aLL possible
superposition densities the one that best simulates
the actual crystal potential. This procedure re-
quires about 4-5 iterations in diamond. The resi-
dual density Ap(r) obtained at the end of this stage
represents the "misplaced" charge that is not
amenable to a superposition representation using
one-center terms located on existing atomic sites.
It turns out that due to the substantial penetration
of charge from nearest neighbors into the inner
region of the central. atom, the fuLL site anisotropy
in diamond could not be satisfactorily represented
by an optimized superposition model (a standard
deviation of 0.09e is obtained). The inclusion of
the residual hp(r) is done in stage 2 of SC ("full
SC") by Fourier transforming numerically the
residual charge

d p(K, ) = —f e '"&'d p(r) dr,
Q

(the integration over the unit cell being performed
by the Diophantine method) and calculating the
change in the electronic Coulomb potential due
to this density using a direct Fourier series

(12)
rc, ~o I

K'
I

This change in the Coulomb potential is added to
Y~~a'c(r)+ VLgc(r) obtained in the last charge and
configuration SC iteration. The iterated exchange
and correlation potential is computed using the full
density p, (r) and the solution of the eigenvalue
problem [Eq. (9)] is repeated iteratively so as to
diminish 4p(r). Owing to the absorption of the
corelike cusps and localized features into p'"'(r)
in stage 1 in SC, the Fourier series in Eq. (12)
converges rapidly (only the first seven stars
are needed) and only 3-4 iterations are required.
It is noted that in performing full self-consistency
we go considerably beyond the "standard" degrees
of self-consistency obtained in either muffin-tin-
type treatments~ (in which the iterated redistribu-
ted charge density is spherically averaged before
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the next iteration is attempted} or conventional
local-density I.QAO schemes (in which only

charge and configuration SC is maintained using
either Mulliken populations" or spherical Gaus-
sians ' as a superposition projection set). In what
follows we will discuss the results of the treatment
described above for the ground state electronic pro-
perties of diamond using our final fully self-
consistent results.

III. RESULTS AND DISCUSSION

A. Charge density and x-ray scattering factors

In order to examine the effects of exchange and
correlation on the ground- state charge density in
diamond we have performed three fully self-con-
sistent calculations; the first employed only the
electrostatic electron- electron and electron-
nuclear potential in the one-particle equation
("electrostatic model" ), the second incorporated
also the local exchange ("exchange model" ),
while in the third calculation the correlation po-
tential was also considered ("exchange and cor-
relation model"}. All three calculations used an
extended numerica, l set (ls, 2s, 2p, 3s, and 3p
orbitals per carbon) and all lattice sums were
performed to convergence. The lattice constant
was fixed at 6.740 a.u. We arbitrarily define
"exchange charge" as the total valence (i.e. , the
two lowest Is bands are omitted) ground-state
charge-density difference between the exchange
and the electrostatic models while the "correlation
charge" is defined as the corresponding density
difference between the exchange and correlation
model and the exchange model. Figures 1 and 2
show the contribution of some high-symmetry
states in the BZ to the exchange and correlation
charge density, respectively, along the [111] bond
direction in diamond and Fig. 3 shows the cor-
responding charge-density contributions to the
total valence charge density. Figure 4 compares
the correlation charge along two directions in
the crystal.

The main conclusions to be drawn from these
comparisons are the following:

(i) The exchange charge density alters the elec-
trostatic charge density by as much as (10-40)%
in the region around the center of the bond while
the correlation charge density is responsible for
only a (0.1-0.3)% change. The exchange charge
is about two orders of magnitude larger than the
correlation in most of the bond region.

(ii) Both the exchange and correlation charge den-
sities show substantial k- space dispersion. The
relative changes in various k-space contributions
are larger than the corresponding variations in
the contributions to the total valence density. The
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220
311
222
400
331
422
511
333

3.062
1.936
1.656
0.066
1.470
1.625
1.411
1.347
1.346

3.273
1.992
1.720
0.137
1.494
1.600
1.423
1.385
1.381

3.281
1.995
1.692
0.139
1.493
1.605
1.408
1.392
1.392

3.32
1.98
1.66
0.144 b

1.48
1.58
1.42
1.42
1.42

3.29
1.93
1.69
0.08
1.57
1.55
1.42

3.005
1.964
1.760
0.0
1.585
1.519
1.432
1.387
1.387

' Reference 18.
Reference 19.

~ ReReferences 22 and 25.
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factors in diamond at the three levels of local
density approximations, together with the ex-
perimental results"'" and the canonical Hartree-
Fock results of Euwema et al. obtained using an
s and p Gaussian basis set."'" It is apparent that
exchange acts to increase the low-angle scattering
factors quite dramatically, reflecting the in-
creased localization of charge in the interatomic
region, with the correlation effect being much
smaller. In particular, the calculated (222) for-
bidden reflection (forbidden in the approximation in
which the charge density is given as a superposition
of spherically symmetric, possibly overlapping,
atomic densities, last column in Table I) is
increased by about a factor of 2 upon introducing
exchange in the potential. The value of this
scattering factor turned out to be particularly sen-
sitive to the details of the self-consistency main-
tained in the calculation and to the quality of the
basis set" (e.g. , a minimal basis set yielded
a value of 0.082 while a non-self-consistent ex-
tended basis set yielded a value of 0.089). We
note from Table I that a band model that allows
for nave-function overlap produces markedly
improved results over a spherical superposition
model (last column).

The general agreement between our calculated
results and experiment is reasonable. It is ap-
parent from the comparison of the atomic and
crystal values that, as expected, the scattering
factors constitute a sensitive test of the details
of the calculated charge density only for the first
few reflections to which the density in the outer
regions of the cell contribute. Similar conclusions
can be drawn from comparing our exchange-model
results with those obtained in the literature" "by
a number of approximations to the local exchange

problem (Table II). Although these calculations
employ various independent approximations, the
results vary only in the first few reflections.

B. Self-consistent crystal potential and the band structure

We next consider the contributions of exchange
and correlation to the self-consistent crystal po-
tential. Figure 5 shows the components of the
final SC crystal potential, as obtained in the ex-
change model and in the exchange and correlation
model, respectively, along the bond direction in
diamond. It is observed that the exchange and
correlation potentials constitute some 50 and 5/p

of the electrostatic crystal potential at the bond
center with their relative contribution to the total
potential decreasing rapidly as one moves towards
the atomic sites. To further elucidate the role of
exchange and correlation in the Hamiltonian matrix
representation, we show in Fig. 6 the spatial
behavior of some typical Bloch functions at the
I' point acted on by the kinetic-energy operator and
by the SC exchange potential operator. It is seen
that the function V, (r)C'„(0, r) is largely cancelled
near the core region due to the steep kinetic-
energy contributions and it is only in the bond
region that the exchange potential contributes
significantly to the Hamiltonian matrix elements.
The same conclusion is also valid for the correla-
tion potential which has rather small and finite
values in the core region. Thus it is the oond re-
gion where the exchange and correlation potential
are expected to be important. " When the potential
is computed along the [110], [111j, and [100]
directions in the crystal, it is observed the elec-
trostatic, exchange, and correlationpotential exhibit
maximum anisotropies of 42%, 48%, and 32%

TABLE II. Comparison of several model calculations of the x-ray scattering factors in
diamond.

SC OPW ~
Pseudopoten-
tial t matrix

Pseudopoten-
tial OPW'

Equivalent
orbi tais d

Present
study

111
220
311
222
400
331
422
511
333

3.23
1.92
1.64
0.12
1.52
1.52
1.40
1.35
1.32

3.21
1.91
1.58
0.13
1.51

3.32
1.97
1.66
0.15
1.48

3.31
1.94
1.69
0.064
1.57
1.54

3.27
1.99
1.72
0.137
1.49
1.60
1.42
1.38
1.38

Self-consistent OPW calculation, Ref. 48, for an exchange coefficient of &.
Reference 49.' References 50 and 51.
Reference 52.
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crease of the direct gap by 3.5 eV. The bottom
of the valence band changes by less than 0.2 eV.
The effects of the removal of the exchange po-
tential are manifested mainly on the states above
the lowest valence band, again reflecting the
relative insensitivity of the regions near the
atomic cores to the exchange potential. We note
that although the one-particle energies of the
occupied states are stabilized by removal of the
exchange potential, the total crystal energy is
destablilzed (i.e. , it is less attractive) on account
of the reduced charge buildup in the bond region
and the diminished charge localization at the
atomic sites (compare I'ig. 1). This is in direct
contradiction to the criteria used in the literature"
for judging the variational quality of a band cal-
culation according to the lowering of the band
eigenvalues.

F point X point L point

F25

F„,

0.0

20.437

26.771

X4

&mm, c

8.267

14.346

25.888

5.271

8.256

I „17.617

F2 34.510 X( 29.041 L 3~ 30.824

X4 37.129 L ic 30 943

L 2~ 38.957

TABLK III. Band structure of diamond at the high-
symmetry F, X, and L points, obtained at the conver-
gence limit of the SC exchange and correlation model.
Values are given in eV relative to the bottom of the
valence band (e&& = —30.94 eV). The two core bands lie
at 271.087 eV below vacuum. b ~m ~ denotes the eigen-
value at the bottom of the conduction band. v and c de-
note valence and conduction, respectively.

C. Total ground state-crystal energy

Our approach for calculating the total crystal
energy is based on a direct use of Eq. (2). We
have previously described" how the various
terms in this equation can be grouped so that the
divergencies in the individual electron- electron
and electron-nuclear energies per unit cell are
cancelled. We have also shown how the kinetic
and Coulomb terms are combined before their
integration is attempted so as to affect a sub-
stantial numerical cancellation. We are able to
obtain sufficient accuracy in the core eigenvalues
by using some 10-30 Diophantine integration points
inside the nuclear volume and about 300 integra-
tion points in the 1s orbital sphere. Table IV de-
scribes the results obtained with various local
density models for diamond at the convergence
limit of the SC cycle.

Basis seteffectswere seen to be significantly
reduced in the limit of self-consistency relative
to the noniterated results: while in the non-SC

limit the ion-pair basis (set II) yields a lowering
of 1.43 eV/atom relative to set I, the difference
in the SC limit is reduced to 0.4 eV/atom. Both
the extended numerical set and the ion-pair set
produce results that agree to within 0.4 eV
(while a minimal numerical basis set yields a
total energy that is about 1.7 eV higher). It would
thus seem that the values obtained here with the
ion-pair basis (set II) are probably close to the
basis set convergence limit of our local density
model.

The exchange and correlation energies ~„
and AE„„(defiednhere as the corresponding
total energy differences between the results ob-
tained in independent SC calculations) form
about 12 and 1%, respectively, of the total crystal
energy and somewhat smaller fractions of the
atomic total energy. It is rather difficult to esti-
mate the correlation energy from other sources.
One can obtain an estimate of the atomic "ex-
perimental" correlation energy from the work of
Clementi" in which 4E„„is defined as the dif-

TABLK IV. Total (self-consistent) ground-state energies per carbon atom (values in eV).
AE„and 4E'0OII are defined as the difference in total energies between column 1 and 2 and
2 and 3, respectively. Lattice constant: 6.7403 a.u. The values in parenthesis indicate the
virial ratio —2T/V.

Elec tros tatic
model

Exchange
model

Exchange and
correlation

model &&corr

Free atom '

Crystal extended
set (set I)

Crystal ion-pair
basis set (set II)

-895.76

—887.49

—1008.23
[1.0002]

—1015.10
[1.0036]

—1015.52
[1.0004]

—1015.72

—1027.24

-1027.64

112.47 7.49

12.12

127.61 12.14

' Values obtained from a non-spin-polarized numerical SC calculation.
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ference between the experimental total energy
(with relativistic effects removed) and the best
analytic Hartree- Fock energy. This yields some
4.3 eV for carbon in its 'P ground state. A

somewhat smaller value can be deduced by com-
paring the total energies obtained from a con-
figuration- interaction and a single- configuration
Hartree-Fock (HF) study for carbon. " Our estimate
of the atomic correlation energy is larger than the
"experimental" values by a factor of 1.75; this
discrepancy probably reflects the inadequacy of
an electron-liquid correlation model for describing
the discrete atomic excitation spectrum. " Similar
results have been obtained previously by Tong and
Sham' and Kelly" using an interpolated Wigner"
and Gell-Mann-Bruckner" correlation functional
(although their results predict somewhat poorer
agreement with experiment using the older correla-
tion functions). Clearly, the local density func-
tional is inadequate for estimating correlation en-
ergies in finite systems. Only crude estimates of
the crystal correlation energy are possible. Com-
parison of HF and configuration- interaction cal-
culations of the C, molecule " indicates a cor-
relation energy of -5.64 eV/atom. Taking the
increase over the atomic correlation energy as an
approximation to the carbon-bond correlation en-
hancement, one obtains a rough estimate of = 10
eV/atom for the crystal correlation. A limited
Heitler- London type configuration- interaction
calculation on diamond indicates a stabilization
by 21+ 8 eV of the correlated state over the un-
correlated state. ~'" lt would thus seem that our
estimate for the crystal correlation energy
( 12 eV) constitutes a substantial improvement
over the atomic value. We note that the correla-
tion energy calculated as a difference between the
total energies of the separate SC exchange and cor-
relation model and the exchange model is some
4%0 higher than that estimated from

where po(r) is the density calculated from an un-
coryelated model (i.e. , lowest-order perturba-
tive correction). This would indicate that higher-
order effects brought about by the changes in
charge density due to the incorporation of cor-
relation effects in the potential (see Fig. 2) are
as important as the direct first-order correlation
energy term. Thus, inclusion of correlation cor-
rections in a solid as simple additive terms to the
uncorreleted total energy'~" are bound to signi-
ficantly underestimate the SC value. On the other
hand, the crystal exchange energy calculated as
a total energy difference (column 5 in Table V) is
lower than that calculated by integrating

where V„(po(r)) is the exchange potentia, l.
So far, correlation corrected HF total energy

calculations on solids have not been published.
A restricted HF calculation using an s and P
Gaussian basis set yields a total crystal ground-
state energy between~~ —1027.09 and -1030.39
eV. These values are in closer agreement with
our best correlated value for the crystal than is
the HF atomic total energy (- 1025.507 eV) com-
pared with our atomic LDF result.

The accuracy of any calculation of the cohesive
energy is limited by the difficulty indetermining
both the atomic and the crystal total energies to
the same level of approximation. Since the LDF
formalism seems to overestimate the correlation
energy in finite systems having no continuum of
low-lying excited states, it is difficult to assess
the validity of the atomic total energy calculation.
In addition, spin polarization is expected to lower
substantially the atomic total energy of an open-
shell system like carbon relative to our spin-
restricted calculation. Although spin- dependent
electron- liquid correlation functionals are avail-
able, '" it is difficult to estimate the reliability of
a cohesive energy calculation based on the use of
different functionals for the atom and the solid.
Our exchange model predicts in the non-spin-
polarized atomic limit a cohesive energy of 7.29
eV while the exchange and correlation model pre-
dicts in the same limit a cohesive energy of 11.92
eV/atom. The experimental static binding energy
of diamond (calculated by adding a Debye-model
zero-point energy to the measured value~6 using
en=2230'K) is 7.62 eV/atom. Previous studies"
have indicated that spin-polarization corrections
to the atom tend to cancel the correlation en-
hancement of the crystal cohesive energy so that
the result obtained from a non-spin-polarized ex-
change model comes very close to the accurate
prediction. We have been informed by the referee
of this paper: "Ihave a number for the ground-state
energy of the free carbon atom, calculated with the
spin-polarized exchange and correlation potential
of Ref. 3 for the configuration

(1so.)' (1sp)' (2sn)' (2sp)' (2 pc.)'. —1021.9 eV,

which would give a cohesive energy of diamond equal
to 5.7 eV, much closer to the experimental result. It
should be stressed, however, that the interpolation
formulas of Befs. 3 and 39 differ slightly at r, & 1,
i.e. , in the core region. "

The restricted HF value for the cohesive energy
(with correlation and spin polarization neglected)
is substantially lower (- 5.2 eV/atom. )"'" This
is in line with the usual tendency of restricted
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HF calculations to underestimate the binding en-
ergy relative to the correlated limit (e.g. , 0.78
eV/atom is obtained for the binding of the C,
molecule in the RHF level" ~ while 5.4-6.7 eV/
atom are obtained in a CI calculation. " The ex-
perimental result is 6.36 eV/atom'8 compared
with a, local-exchange result of 5.58 eV/atom").
We note that in our model correlation acts to
stabilize the crystal over the atom by about 4.6
eV. An electrostatic-type calculation for diamond
(column 2 in Table IV) seems to produce no binding
at all.

Several calculations have been published pre-
viously on the cohesive energy of diamond. These
include the t- matrix pseudopotential calculation of
Bennemann, "thy OPW pseudopotential calculation
of Goroff and Kleinman" and the Heitler-London
calculation of Schmidt and Dermit. We note
that whereas Gorff and Kleinman have used a
small-basis OPW calculation, a later extended
basis OPW calculation' indicated very poor con-
vergence of the eigenvalues containing P-like
states before several thousands of OPW's are
included. The correlation energy used both by
Bennemann and by Goroff and Kleinman was treated
as an additive term to the total energy without
attempting to incorporate it self-consistently into
the effective potential. The core-overlap contribu-
tion was also neglected in these studies. The cal-
culation of Schmidt" based on an elegant and
rigorous formulation of the Heitler- London model
in an orthogonalized representation, involves ex-
tensive approximations in the practical evaluation
of the LCAOintegrals, resulting in large un-
certainties in the cohesive energy.

In order to examine the prediction of the LDF
formalism for the equilibrium lattice constant,
we have repeated our total energy calculation
using our extended numerical basis (set II) at
seven unit-cell parameters. Such a calculation
is free from the limitations of the cohesive energy
problem in that only crystal results are con-
sidered. Using the SC results corresponding to
the calculation with the closest lattice constant,
only a few iterations of "state 2" in SC were re-
quired for each lattice constant. The resulting
total energy curve was interpolated to yield the
equilibrium lattice constant values of a„= 3.662 A
for the exchange model and a„=3.581 A for the
exchange and correlation model. The fitting error
in each of these cases is estimated to be 0.003 A.
The experimental value is 3.567 A."

These results are consistent with our previous
conclusion that correlation acts to stabilize the
crystal, increasing its binding energy and re-
ducing the lattice constant. Similar good agree-
ment with the experimental lattice constant

(a„„/a,„„-0.SS6 1.003) was obtained in the OPW

model of Goroff and Kleinman, s' however, the
approximations made in their work make it dif-
ficult to assess the accuracy of this result. The
restricted HF value for a„ is 3.545 A." It is
expected that correlation corrections would act
to further reduce the HF value which is already
somewhat smaller than experiment. Previous
local-density SC non-muffin-tin exchange model
calculations on simple molecules like C„"N„
CO, and H, O,"and I iF, NO, O„and N„""
seem to predict equilibrium bond lengths that
are larger than experiment. Tong's" self-
consistent cellular calculation on solid Na leads to
the same conclusion. Calculations within the
muffin-tin approximation"' do not seem to reveal
any systematic behavior of the deviations from ex-
periment of the computed lattice constants. In
view of the large. non-muffin- tin corrections
found" for the cohesive energy of some covalently
bonded molecules, "it seems rather unlikely that
such calculations would lead to reliable results
for solids like diamond.

D. Behavior of one-electron properties with change in lattice
constant

In order to further elucidate the bonding mech-
anism in diamond, we have studied the changes
in crystal charge density with lattice constant.
Figure 8 reveals the charge-density changes in
some high-symmetry states in the occupied portion
of the BZ as a function of lattice constant. Upon
decreasing the lattice constant from a value larger
than the equilibrium value, charge density is
shifted towards the bond regio~ and simultaneously
the density at the core region is increased (at
the expense of depleting charge from an intermed-
iate region).

This result confirms our earlier suggestion (cf.
Figs. 1-3) that the bonding mechanism in diamond
involves a stabilization of the crystal due to both
a build up of charge density in the bond region
(mainly due to exchange and correlation effects)
and close to the core regions (due to penetration
of neighboring wave functions). Both of these
effects tend to decrease the positive kinetic en-
ergy, produced by the orthogonalization of the
(overlapping) noninteracting atomic Bloch states,
by enhancing the interaction with the attractive
electron-nuclear, exchange, and correlation po-
tentials. A minimal-basis-set description of
diamond tends to remove charge from the core
regions into the bond region thereby producing
rather realistic values for the low-angle scat-
tering factors (indicating a correct charge build-
up in the bond region), but still yielding small val-
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de~(k) deq(k)

dP dlnV ' (13)
3,5

where P is the pressure, K is the volume com-
pressibility (0.18 x 10 "dyn/cm' in diamond ')
and V is the unit-cell volume. Inspection of Fig.
9 indicates that the one-electron energy levels
can be divided into distinct groups according to
their pressure coefficients. In the valence band,
the states near the bottom of the band having

predominantly 2s character (e.g. , 1,„X,„L,'„,
etc.) have a rather large pressure coefficient
[(3-5)x 10 ' eV/bar] while those near the top of
the valence band are characterized by lower pres-
sure coefficients (1.2 x 10 8 eV/bar for F»„
and 1.6x 10 ' eV/bar for L,'„). In the conduction
bands, most states possess an antibonding charac-
ter and have a large pressure coefficient [(4-7)
x 10 ' eV/bar]. The nonbonding conduction states
however have a very low coefficient (e.g. , 0.32
x10 8 eV/bar for X„, 0.78x 10 6 eV/bar for Ls,).
Transitions from the upper valence band to the
low-lying nonbonding conduction state (e.g. , I'»,
-X„)would thus have a vanishingly small pressure
coefficient while zone- center transitions
(F»„-I'„) are predicted to have much higher
(factor of 5-8) pressure coefficients. Experi-
mental data" " indeed seem to suggest an anomal-
ously low-pressure coefficient for the I'»„-X„
transition. A similar study of the lattice-constant
dependence of the band structure was performed
at the restricted HF level by Surratt et a/. " How-

ever, owing to an error in this study, "we are
unable to compare our results directly with their
data.

The va.riation in the (kkl) scattering reflections
with lattice constant is depicted in Fig. 10. It is
seen that when we change from an atomic super-
position model (horizontal lines on the right) to
a full crystalline description, the low-angle scat-
tering factors increase substantially (in absolute
value) and ultimately start decreasing when the
solid is compressed. The high (kkl) reflections
are rather insensitive to lattice constant varia-
tion, as expected. Interestingly, the (331) and
(400) scattering factors change their relative
order in going from an atomic superposition mo-
del (f», &f„,) to the crystalline model (f», &f«o).
Solid-state effects introduced by wave-function
overlap (as opposed to spherical charge-density
overlap) are thus seen to be non-negligible.

E. Directional compton profile

Although the LDF formalism makes no definite
predictions on observables that depend on the
individual eigenfunctions of the one-particle equa-
tion solved here (since they a,re not actual one-

3.0—
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O
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O
I-o 2.0—
LLI

LLJ
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220
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33l
422
333

I 0—
440
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-01—
-0.2

222

3.50 3.55 3.60 3.65 3.70
LATTICE CONSTANT ( A)

FIG. 10. Dependence of the x-ray scattering factors
in diamond on the lattice constant. The straight lines
on the right-hand side denote the atomic scattering fac-
tors as calculated by an atomic superposition exchange
and correlation model.

particle states), its resemblance to an "ef-
fective" Hartree-Fock type equation makes it
interesting to examine the quality of these wave
functions as "pseudo"-one-particle states. Such
a test is naturally provided by comparing the cal-
culated directional brompton profile with experi-
ment. We will thus ass~me" that the momentum
density p(p) can be represented by the sum of
squares of the momentum eigenfunctions"

(14)

where the Fourier- transformed Bloch function
4 (p) is obtained by direct three-dimensional
Diophantine integration of

-its I
e 4 (k r)dr.1

Ils(P) (2 )3/2 (15)

o(p)= gs&6 (p)4&(p)
f

(16)

Since each momentum value p relates a point k;
in the BZ with a given reciprocal lattice vector
G,=p, —k„we compute the crystal wave functions
g~(k, r) at a given grid g,j in the BZ and use these
functions to obtain the momentum eigenfunctions
$J(jI) at a set of momentum points p, = k, + G, . In
all, 52 k, inequivalent points are used to obtain the
momentum density
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for P ~8 a.u. This function is then interpolated
by a fifth-order local interpolation to obtain p(p)
for arbitrary momentum a;1d is then least-squares
fitted to a Kubic harmonic expansion '

o.i &
a J [IOO]

—[III]

SCHF

PY

v(P(= g, (((&, (((( (17)
0.05

for I ~ 12. The Compton profile S(k, (d) in the im-
pulse approximation is given by

q2.0

0.05

= —S(q, k),
1

S(q k) g S(m(q) y'(~(k»
&t el

we obtain the expansion coefficients S, (q) by a
direct radial integration:

(19)

where q= k ~ p/m. Expressing the reduced profile
S (q, k) in a harmonic expansion a,s 0 IO—

005

JK J j !00]- [ I IO]

—--SCHF
PRESENT STUDY

PERIMENT

S, (q) =2n Pa, (P)P( —dP,
I ql

(20)

where P, (q/p) is the Legendre polynomial. The
Compton profiles in an arbitrary direction are
obtained using Eqs. (19) and (20).

We give in Fig. 11 our calcuI. ated Compton pro-
file differences for the [100]-[110)and [100]-[111]
directions together with the experimental results
and those yielded by the restricted HF model of
Wepfer et al." Table V gives our calculated re-
sults for the [100] direction together with the ex-
perimental results of Reed and Eisenberger"
and Weiss and Phillips" and for comparison, the
calculated results of Seth" in the non-SC local-
exchange model (with exchange coefficient of
0.70) and the restricted HF results of Wepfer
et al. 24

The main conclusions to be drawn from this com-
parison are: (i) While the RHF results for the pro-
file lack sufficient high-momentum components
(and hence produce too high a profile at low-mo-
mentum transfer), our model predicts a slight
excess of high-momentum components. The non-
self- consistent exchange model" tends to produce
a profile that is even higher than the RHF pro-
file at low q. This result is in line with previous
calculations on atomic Compton profiles using the
exchange model"" and with our results for a non-
SC superposition model. " We thus conclude that
both the inclusion of correlation and the iteration
towards self-consistency tend to redistribute the
charge so as to add some high-momentum com-
ponents to it. It was previously suggested that
the same effect can be achieved (in atomic systems)

-0.05

-O. IO

0.0
I

I.O

q
2,0

FIG. 11. Directional Compton profile in diamond as
obtained from the self-consistent exchange and cor-
relation model. (a) AJ[100]-[111];(b) AJ[100]-[110].

by either artificially increasing the exchange
parameter or by adding a loca.l correlation func-
tional to the exchange potential. " Previous super-
position-model calculations for Si similarly indi-
cate an overestimation. of the low-momentum pro-
file in this non-SC limit. " Iteration towards self-
consistency also tends to increa, se the low-angle
scattering factors" (and hence to produce charge
localization in the bond region) in accordance with
its effect on the Compton profile. The occurrence
of rather strong high momentum components in our
results partially reflects some enhanced locali-
zation of the wave functions near the core regions
(owing to nearest-neighbor penetration) relative
to the exchange model and superposition limit'4
(see also discussion in Sec. HIA). (ii) While the
RHF results agree with both experiment and with



15 GROUND-STATE ELECTRONIC PROPERTIES OF DIAMOND IN. . . 5063

TABLE V. Compton profile in diamond along the [100]
direction.

SC
Non-SC exchange and

Momentum exchange correlation
{a.u.) model ' model

SC
HF

Expt. b model c

0.0
0.4
0.8
1.2
1.6
2.0
4.0

2.230
2.075
1.575
0.890
0.455
0.300
0.080

2.05
1.93
1.52
0.96
0.48
0.33
0.11

2.09,2.08
1.91,1.94
1.46, 1.55
0.86,0.94
0.47, 0.45

0.31
o ~ ~ 0 10

2.180
2.046
1.548
0.884
0.460
0.293

~ Non-SC results of Seth {Ref. 80) using an exchange co-
efficient of 0.70 and a double-zeta Slater basis set.

The first value refers to the experimental results of
Reed and Eisenberger {Ref.20) while the second number
gives the data of Weiss and Phillips {Ref. 21).' Reference 24.

IV. SUMMARY

We have presented results obtained by applying
a self-consistent numerical basis set LCAO
treatment to the description of some ground-state

our results for the anisotropy along [100]-[110]
[Fig. 11(b)], the RHF directional profile for
[100]-[111]is considerably more anisotropic than
experiment and our data. We found that upon itera-
ting our results to self-consistency (varying our
basis set nonlinearly so as to allow more varia-
tional participation of the virtual 3s and 3P atomic
orbitals into the valence band) the calculated aniso-
tropy decreased. It would thus seem that by
allowing the formerly virtual states (having long-
range tails) to participate in the bonding mani-
fold, the localization of the valence-band states
decreases and a broader nJ'(q) is produced (along
with an increase in the binding energy —as dis-
cussed in Sec. IIIC). It is possible that incorpora-
tion of such "plane wave" character would also
diminish the anisotropy in the RHF profile.

The over-all agreement of our calculated Comp-
ton profile with experiment seems reasonable.
It would thus seem that at least for diamond, the
apparent anomaly [i.e. , J(q) too high at low q] of
the calculated Compton profile in the exchange
model for atoms (with an exchange coefficient of
&) disappears in a SC exchange and correlation
model. In such a covalently bonded system high-
momentum components are added due to correla-
tion, localization of charge in the core regions,
and enhancement of the charge buildup in the bond
center.

electronic properties of diamond in the LDF
formalism. Our study of the effects of
exchange and correlation on the ground-
state charge density indicated that these act to
increase the charge localization both in the
"bond" region and to some extent close to the
core region —correlation effects being much
smaller than the exchange effects, although still
considerably k dependent and anisotropic. The
x-ray scattering factors obtained from the SC
charge density agree quite well with experiment
and seem to account for the observed "forbidden"
(222) reflection. Our calculated Compton profile
similarly indicates good agreement with experi-
ment; the deficiency in the LDF formal. ism
in describing the atomic profile is remedied in the
solid due to correlation and the above-mentioned
charge redistribution effects.

Our total energy studies show a substantial in-
crease in stability of the solid relative to the free
atoms due to exchangeandcorrelation although the
latter is probably overestimated in the atom. The
use of an ionpair charge-transfer basis set is
shown to be rather efficient in producing a con-
verged LCAO expansion, in line with the pre-
viously established variational quality of the
orthogonalized Heitler-London scheme for mol-
ecules. '~" Our correlation model estimate for
the cohesive energy in the non- spin-polarized
atomic limit seems to overestimate the experi-
mental value considerably. Since we are not able
to assess the magnitude of the corrections re-
quired to account for the overestimation of the
correlation in the atomic limit as well as the
correct spin-polarization effects, this result is
taken as a rough estimate only. Our exchange
results for the cohesive energy in the non-spin-
polarized atomic limit agree favorably with the
experimental results and predict an equilibrium
lattice constant that is about 3 jo too high. The
full exchange and correlation model reduces the
calculated lattice constant to within 0.5% of
experiment. The HF model, on the other hand,
seems to produce a lattice constant that is
smaller than the experimental value even in the
uncorrelated limit. Our study of the lattice-constant
dependence of the band eigenvalues reveals an
anomalously small pressure coefficient for the
indirect I'»„-&,~, transition together with a
large pressure coefficient of the low-lying 2s-like
valence states (but in opposite senses) and the
conduction bands. All in all, it seems that the dif-
ferences between the predictions of a HF nonlocal
exchange model and a proper self-consistent LDF
model for the ground state properties of diamond
might be rather small compared with the differen-
ces induced by an improperly balanced basis set
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expansion, muffin- tin approximations and lack of
self-consistency. Further studies on other systems
like BN, LiF, and TiS, are under way and wiQ

hopefully further elucidate the role of local versus
nonlocal exchange in determining ground-state in

properties of solids.
Note added in proof. We have been informed by

Dr. O. Gunnarsson that a total energy calculation
of the carbon atom in the spin-polarized local-spin
density formalism (using the functional of Refs. 3

and 66) yields the value of -1019.83 eV. Using
this value and our best result for the total energy

of the solid (-1027.64 eV/atom, Table 1V), gives
a binding energy of 7.81 eV/atom, which is in

remarkable agreement with the observed value of
7.62 eV/atom .We are grateful to Dr. Gunnarsson
for this communication.
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