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First-principles calculation of the order-disorder transition in chalcopyrite semiconductors
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We describe the polymorphic order-disorder transition in the chalcopyrite-type semiconductor

Cuo. slnosSe through a Monte Carlo simulation of a generalized Ising Hamiltonian whose interaction

energies are determined from ab initio total-energy calculations. The calculated transition tempera-
ture (T, =1 l25+'20 K) compares well with experiment (T, =1083 K). Unlike the analogous ordering

in isovalent III-V alloys, we find that the transition is dominated by electronic compensation between

donor and acceptor states, leading to strong correlations in the disordered phase, and a decrease in the

optical band gap upon disordering.

Recent theory' and observations of spontaneous
long-range order in isovalent III-V semiconductor alloys
created interest in the theoretical implications on self-
organization in random systems and in the technological-
ly attractive possibility of changing the optical band gaps
of random alloys at frxed composition through ordering. '

The relatively weak interactions between the isovalent
atoms in such III-V alloys lead, however, to a small

enthalpy difference between the disordered and ordered
bulk phases (bH (0.5 kcal/mole), so the driving force
for the transition is dominated by surface energetics.
This leads to imperfect ordering and irreversibility
that complicates the study of the transitions. There is,
however, a large class of tetrahedrally bonded semi-
conductors —the A 'B "'C '2 chalcopyrites" —where the
stronger interactions between the nonisovalent A'-B"'
atoms (reflected in much larger latent heat BH of 2-3
kcal/mole) leads to reversible order-disorder transitions
observable at conveniently higher temperatures even in

bulk crystals. These ternary A'B"'C"'2 chalcopyrites
(e.g. , CuInSe2) undergo as a function of temperature a
first-order phase transition between the high-temperature
disordered zinc-blende-like (ZB) phase and the ordered
chalcopyrite (CH) structure. Depending on the system,
the disordering transition occurs in the temperature
range" ' T, -800-1300 K, is accompanied by an abrupt
disappearance of the zinc-blende-forbidden x-ray-
diffraction peaks, " a large (0.1-0.5 eV) reduction in the
semiconducting band gaps' ' and marked changes in

the short-range order seen in NMR studies. ' Since the
disordered phase contains cross substitutions between
nonisovalent A '-B"' atoms, it manifests donor-acceptor
electronic compensation. It then appears that experimen-
tal and theoretical studies of the physical factors control-
ling the polymorphic order-disorder transition in chal-
copyrites can be used to gain insights into (i) the analo-
gous (but weaker) transformations in isovalent alloys, and

(ii) the physics of compensation in highly concentrated
donor-acceptor systems.

In this work we describe an ab initio theoretical study
of the microscopic origins of the order-disorder transitions
in the prototype chalcopyrite system CUD 5Inp 5Se. Similar
but less detailed results are also presented for the "III-V
analog" Zn05Snoqp. Despite the fact that the transition
temperature in these systems is high (relative to the melt-
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then yields a set of NJ ~ N, effective interaction energies
jJr, j. The practical completeness of the expansion is

then examined by the ability of this set lJI, j to predict
through Eq. (2) the energies AELpA(s ) of other struc-
tures s'&s, not used in Eq. (3). Sufficient long-range in-

ing temperature), the energy differences involved are
rather fine (on the scale of ah initio calculations). Indeed,
while the measured' cohesive energy of CuInSe2 is 13.5
eV and its formation enthalpy is 2.8 eV, the enthalpy
difference between the disordered and ordered phases at
T, is" only .0.02 eV/atom. This subtlety of the energy bal-
ance had focused previous theories on studying the quali-
tatii. e relations between the transition temperature and
structural' ' ' or optical'" parameters. In the present
study we combine suSciently precise ab initio total-
energy calculations with statistical mechanics calculations
of the phase transition. This provides a quantitative mi-

croscopic description of this order-disorder transformation
in terms of the electronic structure, permitting compar-
isons with the isovalent case.

Our calculations consists of three steps. First ("ener-
getics") we conduct T =0 quantum-mechanical total-
energy calculations on a variety of ordered superstruc-
tures of CuSe/InSe, mapping the results onto a general-
ized Ising Hamiltonian. The excess energy of a con-
figuration o of A and 8 atoms on the fcc lattice

ZELDA(o', V,x) =ELDA((x, V,x) ELDA(V, x) (1)
is computed at constant volume (V) and composition (x)
in the local-density approximation (LDA) with respect to
a reference energy E . This calculation is repeated for N,
ordered superstructures. Independently, we construct a
cluster expansion (CE) of the excess energy of arbitrary
configurations in terms of a series of effective interactions
Jl, „,(V,x) within clusters consisting of k atoms separated
by up to m neighbors:

AEcE(o, V,x) =g g Dl, , IIk, „,(rr) Jq (V,x) . (2)
1I. m

Here, IIt (o) are lattice-averaged spin products of clus-
ter (k,m) in configuration o, and Dl, , are appropriate
degeneracy factors. Mapping the LDA calculations for
iV, configurations jsj onto the Ising model (2)
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TABLE I. LAPW calculated relaxed excess energies [Eq.
(I)] of Cuo~lno~Se in various structures defined in the text. Fit-
ting these io Eq. (3) using six interaction energies (see text)
gives the results shown in parentheses. All results are in meV/(4
utoms) and are given relative to equivalent amounts of CuSe
and InSe in the zinc-blende structure at the molar volume of
Cu(). sin(). sSe. The last column gives the type of tetrahedra in

each of the structures.

Structure

CA
CH
CP
Z2
Y2
V2
8'2

—2318(—2318)
—2326( —2326)
—2II3( —2II3)
—l774( —1774)
—2113(—2113)
—I6SS(—16SS)
—2220( —2220)

Tetrahedra type

A2B2
A28p

2 A3B+ 2 AB3
A4+ 2 A2B2+ 4 B4

2 A3B+ 2 AB3
4 A4+ 4 AB3+ 4 A3B+ 4 B4

4 A3B+ 2 A2B2+ 4 AB3

teraction terms are included in (2) to assure a 'prediction
error" of less than a given tolerance.

In the second step ("ground-state search") the con-
verged set of interaction energies [Ji, „,j are used to find
through Eq. (2) the lowest-energy T=O structure among
the many (»N, )con. figurations attainable by different
occupations of the fcc lattice by As' and as'. This exam-
ines the ability of the LDA-derived cluster expansion to
identify the correct ground-state phase.

In the third step (finite-temperature statistics) we use
the set [Ji j to solve the generalized Ising Hamiltonian
(2) using the Monte Carlo method, finding as a function
of temperature the various thermodynamic quantities of
the ground state and other phases, and, hence, the transi-
tion temperature. The basic difference between this ap-
proach and the more traditional phenomenological Ising
models' is that we define the type of interactions (two-,
three-, four-body), their range (first, second, etc. , neigh-
bors), and their absolute magnitudes directly in terms of
the quantum-mechanical electronic structure. This en-
ables analysis of the statistical and thermodynamic quan-
tities obtained in step three (T„, BH, short-range order,
correlations) in terms of the electronic structure formulat-
ed in step one (e.g. , atomic relaxations, charge compensa-
tion, band structures).

The ordered structures used in step one are
(AC)„(BC)„superlattices of repeat periods p =1,2 and
various orientations G. We sample a range of superlattice
layer orientations, i.e., G = [001] (p =1,2 are termed CA
and Z2, respectively), G = [111](p =1,2 are termed CP
and V2, respectively), G = [110] (p =1 is again CA while
p=2 is termed Y2), 6=[201] (p=1 is CA and p=2 is
CH), and G = [113] (p =1,2 are termed CP and W2, re-
spectively). These structures contain all possible C-
centered A„B4 „cation tetr—ahedra (0~ n ~ 4), as shown
in Table I. The LDA equations are solved scalar rela-
tivistically throu h the linear-augmented plane-wave
(LAPW) method using the Ceperley-Alder exchange-
correlation potential, as parametrized by Perdew and
Zunger. ' To assure a high precision of 5 meV/atom, we
use a large basis set consisting of 110 LAPWs per atom

and a set of Brillouin zone k points that samples all struc-
tures equivalently (folded from ten special k points in the
fcc lattice). All calculations are done at a fixed (experi-
mental) molar volume of the ordered phase, neglecting
the' ~ 0.08% volume expansion upon disordering and
(unless otherwise mentioned) the & 1% noncubic axial de-
formation. " The total energy of each ordered structure is
minimized at constant volume with respect to all of the
cell-internal structural degrees of freedom. Initial guesses
for the geometry obtained by a LAPW-parametrized
valence force field model are subsequently refined itera-
tively using the recently developed all-electron quantum-
mechanical force minimization. - To examine the effect
of the neglected external deformation, we have calculated
it for a single structure (the CH phase), finding
c/a =1.008, compared with the observed value of 1.004.
The energy lowering [(3 meV/(4 atoms)] was, however,
negligible. For the chalcopyrite phase of CulnSe2 we ob-
tain the equilibrium lattice constant a =5.736 A (ob-
served:" 5.784 A) and the internal distortion parameter
0.214 (observed:" 0.224). We find that cell-internal
structural relaxations lower the total energies enormously
(e.g. , by 440 and 610 meV per four atoms in chalcopyrite
and the Y2 structures, respectively). Table 1 gives the re-
laxed excess energies AELo~(o, V, —,

' ) for seven ordered
superstructures; the arbitrary reference energy FLD~
(which does not affect T, ) is taken as the energy of an
equivalent amount of hypothetical zinc blende AC +BC.

The mapping of the LDA energies onto a cluster expan-
sion [Eqs. (2) and (3)] is done using an extended set of
cluster interactions [JI, „,j. These include (i) the "empty
figure" (k, m) =(0,0), (ii) the first four pair (k=2) in-
teractions (2, 1), (2,2), (2,3), and (2,4) between first
through fourth fcc neighbors, and (iii) the lowest-order
four-body interaction (k, m) =(4, 1). Note that because
of the symmetry of the x =

2 structures studied here the
coefficients Hq „, vanish for all odd-body k =1,3, . . .
terms, so T„at x=

2 is unaffected by them. Table I

shows that mapping N, =7 structures to these six interac-
tion parameters gives a perfect fit (shown in parentheses).
Omission of any of the structures from the basis set and a
subsequent prediction of its energy from the cluster ex-
pansion produces a "prediction error" bELo~(s') of less
than the underlying error of the LAPW itself. Hence we
can use this cluster expansion to predict the energies of ar-
bitrary lattice configurations and their thermodynamic
properties.

Using the converged interaction energies [JI, j, we
solved in step-three the spin- —,

' fcc generalized Ising mod-
el using Monte Carlo simulations with single-spin flip ki-
netics and a periodic supercell. Five hundred spin-flip at-
tempts per site are used to reach steady state before start-
ing to collect data at a chemical potential p =0. The data
are averaged in each block of 40 flips per site; this is re-
peated 60 times to calculate the global averages and stan-
dard deviations. Size effects were investigated by increas-
ing the number of fcc sites from 8 =512 to 12 =1728
and to 16 =4096. We found that the cell with 1728 fcc
sites is generally sufficient. In order to reduce hysteresis
effects near T, we used a starting sample that is half chal-
copyrite and half random. Vibrational degrees of freedom
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are neglected.
Our results are summarized as follows:
a. Electront'c compensation W. hile the ordered chal-

copyrite ABC2 structure contains but the C-centered
A282 tetrahedra, the disordered Ap sBp sC phase contains
also a statistical mix of AB3+A38, as well as the A4+84
tetrahedra. To assess the effective interactions between
these complimentary clusters, we consider the total-
energy difference 8~,3 =E(CP) —1/2[E (L 1)+E (L 3)]
between the periodic A282C4 CP structure that contains
both A83 and A 38 tetrahedra (Table I), and the average
energies of the Luzonite structures AiBC4 (L I) and
A83C4 (L 3), each containing a single type of tetrahed-
ron. In isovalent alloys all cation tetrahedra are electron-
ically closed shell so the (constant volume) interaction
8) 3 is very weak [e.g. , b~ i = 17 meV/(4 atoms) in

Cdp 5Znp sTe and 8 meV/(4 atoms) in Gap sInp sP]. In
contrast, in nonisovalent systems such as Cup 5Inp 5Se the
Se-centered Cumin cluster is electron deficient while the
Cuini cluster has excess electrons. Indeed, we find that
the periodic Luzonite structures Cu3InSe4 and CuIniSe4
are both metallic, exhibiting, respectively, holes in the
valence band and electrons in the conduction band. Con-
sequently, these uncompensated clusters have a very high
electronic energy. When they are allowed to couple, they
form an insulating donor-acceptor complex (e.g., the CP
structure) with a significant energy stabilization [8] 3= —670 meV/(4 atoms)] attendant upon charge transfer.
Similar results are found when the Cu4 and In4 clusters
condense into the Z2 structure. The existence of such a
strong electronic compensation is the main distinguishing
feature between the order-disorder transition in noniso-
valent versus isovalent ternary semiconductors. Indeed,
when the electronic compensation is neglected (using in

step one periodic structures containing isolated, uncom
pensated clusters) we find (in step three) a very high tran-
sition temperature of T, )3000 K, compared with the ob-
served value for Cup 5Inp 5Se of T, =1083 K.

b. Ground state structu-res. The mapping of the LDA
energies of the compensated structures onto the cluster ex-
pansion yields the interaction energies (in meV)

J2, ) =70.6, J2,2=2.6,
J2,3 0.8, J2,4 =0.7, J4, ) =6.6 . (4)

They show that (i) all pair interactions are antiferromag-
netic (attractive) so, unlike the isovalent case, the ensu-
ing low-temperature bulk ground state will be ordered,
(ii) while the nearest-neighbor pair interaction J2 ~

is
dominant, the remaining interactions in (4) are non-
negligible (see the effect on T, discussed below). We find,
however, that the higher pair interactions are an order of
magnitude smaller than the fourth pair energy, and that
their eN'ect on T, is negligible.

A global ground-state search of the Hamiltonian (2)
with the interaction energies of (4) reveals that the chal-
copyrite structure has the lowest T=O energy of all possi-
ble fcc configurations. The result remains unchanged even

if the chalcopyrite structure is excluded from the set of
structures used to determine [Jt, j. Note, however, that
the energy of CuAu-I-like structure (CA) is only slightly
above that of the chalcopyrite. We found that the small
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FIG. I. Monte Carlo calculation of (a) tetrahedron probabil-
ity p(A2B2) and (b) excess enthalpy hH as a function of tem-
perature at x= 2. The dots or bars have sizes equal or larger
than the standard deviations. AH(T=O) =AH(CH) is also
given (solid triangle) for reference.

tetragonal distortion in the CA and CH structures does
not change this result. This has an interesting implication
on the finite-temperature correlation functions (see
below).

c. Transition temperatures and latent heats F.igure 1

shows the probability p(A28q) of finding an A282
tetrahedron [Fig. 1(a)] and the mixing enthalpy hH(T)
[Fig. 1(b)] for Cup sino sSe. We see that the phase transi-
tion is first order. The calculated order-disorder transition
temperatures T, is 1125 K, with a Monte Carlo error of
+' 20 K. Due to the uncertainty in our T =0 LDA total-

energy calculations, we estimate that the total uncertainty
in the calculated T, is about 100 K. Our calculated T, is
in very good agreement with the experimentally observed
value T, =1083 K, considering that the calculation is
parameter-free. Note the role of interactions beyond first
neighbors: In an fcc lattice with only nearest-neighbor
antiferromagnetic pair interaction the exact transition
temperature ' is ktt T,. = 1.766J2, ~

where ktt is the
Boltzmann constant. For Cup5Inp5Se, the neglect of the
interactions beyond the nearest-neighbor pair gives
T, =1447 K. The calculated latent heats of transition BH
is 1.2 kcal/mole [Fig. 1(b)]. This is too small compared
with the measured differential thermal analysis value of
—1.9 kcal/mole. We cannot explain this discrepancy.
We suspect that it may arise in part from the neglect of
the excess vibrational entropy and from the fact that in

the measurement 8H was not obtained at T„but rather
integrated in a temperature range around it.

d. Spatial correlations. We find that the disordered
phase exhibits significant short-range order. For a per-
fectly random alloy at composition Ap 58p 5C the probabil-
ity to find AB pairs p(AB) is 0.5. The calculated values
just above T, are 0.61, 0.38, 0.47, and 0.47, respectively,
for first- to fourth-nearest-neighbor pairs, showing CH-
like fingerprints [the respective p(AB) for CH structure
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are 0.66, 0.33, 0.33, and 0.66]. Furthermore, the elec-
tronic compensation between donor and acceptor clusters
also lead to strong spatial correlations, as follows: A ran-
dom Ao qBoqC alloy contains the clusters A4, A38, A282,
AB3, and A4 in the percentage ratios 6.25:25:37.5:25:6.25;
we find for disordered Cuo qIno qSe the tetrahedron proba-
bilities 0:17:66:17:0.This strong suppression of all n&2
clusters is qualitatively analogous to what was found for
size-mismatched isovalent alloys, except that there the
driving force was the lowering in elastic strain energy in
A 282, while here it is the greater degree of electronic com-
pensation in Aq82. Consequently, the clustering effect is
several fold stronger in the nonisovalent systems. This is
consistent with the complete absence of the A4 and B4
clusters noted in NMR chemical shift' experiments on
the related alloy ZnosSnosP, and with the absence of
Se(Cu4) or Se(ln4) signatures in diffused scattering mea-
surements on Cu05Ino qSe. Our calculated probabilities
do not support the hypothesis of Garbato, Ledda, and
Rucci that CH disorders into a phase built exclusively
from differently oriented pure A2Bp tetrahedra. The la-
tent heat for a transition into such a disordered phase will
be very small; we further calculate T, & 100 K for this
model.

e. Metastable phases The. similarity in the T=0 total
energies of CH and CA (Table I) persists to finite temper-
atures. We find at low temperature a mix of CA-like and
CH-like correlation functions. This suggests that growth
below T„(e.g. , vapor phase epitaxy) could result in "trap-
ping" into metastable mixture of CH-like and CA-like
modifications, hence to a different short-range order than
that obtained in growth above T, (e.g. , melt growth).

f. Ordering induced -band-gap increase Acluster . ex-

pansion of the direct band gap, [analogous to the total-
energy expansion of Eq. (2)] reveals that upon ordering
the direct band gap increases by 0.35+ 0.1 eV. We find
two contributing factors: (i) All ordered or disordered
adamantine alloys exhibit a reduction in the band gaps
relative to a linear average of the band gaps of the constit-
uents ("bowing" ). This level repulsion effect ' increases
in the series CH random CP. Since most isovalent
semiconductor alloys exhibit CP ordering, they show
ordering-induced band-gap narrowing ' relative to the
random alloy. The CH phase shows instead an increase of
the gap relative to the random alloy. (ii) In nonisovalent
systems, the disordered phase exhibits donorlike (Culn3)
and acceptorlike (Cusln) bands inside the parent band
gap. Ordering the alloy into the chalcopyrite structure
eliminates these states, hence it further increases the band
gap. This effect is absent in isovalent alloys.

To examine the generality of our method we have car-
ried out analogous calculations for the Zn05SnoqP alloy.
The results are very similar except that the cutoff error in

the cluster expansion is slightly larger. We find a transi-
tion temperature of 1080+ 20 K, compared with the mea-
sured value" of 993 K, and a latent heat of 1.3 kca[/mole
(we are unaware of experimental values f'or this system).
The band gap increases upon ordering by 0.4~0. 1 eV,
close to the measured value of 0.39 eV.

We conclude that the LDA, in conjunction with the
Monte Carlo simulation is able to provide a detailed
description of "strong" order-disorder transitions in ter-
nary chalcopyrites. The calculation reveals the dominant
effect of electronic compensation and the ensuing strong
correlations and band-gap reduction in the disordered
phase.
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