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Evolution of Alloy Properties with Long-Range Order
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We present a general theory of compounds with partial long-range order. We derive a simple
formula that determines the properties of a partially ordered compound from those of the perfectly
random alloy and the fully ordered compound. The formula makes accurate predictions of both
formation energies and electronic band structures. We also use the formula to predict the band gaps
of Ali Ga As/GaAs superiattices.
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Most alloys are neither perfectly ordered nor perfectly
random. Deviations from perfect randomness show up
as either short-range order (SRO) or long-range order
(LRO). In short-range order [1] atoms are preferentially
surrounded either by like atoms ("clustering" ) or unlike
atoms ("anticlustering" ), but there are no long-range cor-
relations among atoms. Long-range order is manifested
by extra crystallographic diffraction spots ("superlattice
spots"); in metals it causes changes in resistivity and
specific heat, while in semiconductors it alters the op-
tical properties [2, 3]. Compound-forming alloys exhibit
perfect LRO, with LRO parameter ri = 1, only at very
low temperatures and under careful growth conditions;
imperfect LRO, with 0 ( rl ( 1, is far more common.
While electronic structure theories are well developed for
perfectly ordered crystals and for random alloys, very
little theoretical work has been done for partial LRO [4,
5].

We develop here a general formalism for describing
alloy properties as a function of the long-range order
parameter ri. It can be used in conjunction with first-
principles electronic-structure methods, bridging the gap
between prior ab initio theories for perfectly random al-

loys (rl = 0) and fully ordered compounds (rl = 1). We
derive from this theory a simple formula that describes
the properties of a compound with 0 & g & 1 in terms of
the properties of the random rl = 0 and perfectly ordered

q = 1 compounds. This allows for a simple interpolation
of experimental or calculated data for ri = 0 and ri = l.
We illustrate the accuracy of this formula by reproduc-
ing the results of direct 2000-atom supercell calculations,
and of first-principles band structure calculations for par-
tial LRO. Since all alloy superlattices can be viewed as
instances of I RO, we can also use our formula to pre-
dict their band gaps from data on bulk alloys and pure
superlattices.

We describe the substitutional A~ B system by way
of a generalized Ising model. A particular ordered con-
figuration o. is determined by the occupation of each of
the X sites of the lattice with either an A atom or a B
atom, assigning an Ising spin variable of S, = —1 to sites
occupied by A atoms, and 8, = +1 to those occupied by

B atoms. The lattice sites can be grouped into a set of
figures with k vertices, where k = 1, 2, 3 are single site,
pair, and triangle figures. For each class F of symmetry-
equivalent figures (e.g. , all nearest-neighbor pairs) and
for each configuration o, we define a "correlation func-
tion" as the average of the spin products of all figures in
the class:

IIF(o) = (1/G~) ) S,, (o)S,, (a) 8;,(o),
f

where f runs over the GF figures of class F, and the
spin product is taken over the k sites of f Any lat. tice
property P(rr) can be rigorously expanded as a series of
the complete orthonormal functions 11~(o):

(2)

where pF is the contribution of F to property P. The
dominant values of pF may be deduced from electronic
structure calculations for a small set of ordered struc-
tures. This set of pF may then be used to calculate P(a),
e.g. , total energies [6] and band gaps [7], for any other
structure.

The random Ai ~B, alloy (rl = 0) is treated by averag-

ing over all possible configurations of Ai, B . The spins
of the random alloy must be completely uncorrelated, so
the average of the spin products is (S,S1) = (S,), where

the site average of the spins is (S;) = —1 x (1—x) +1x x =
2x —1. Thus for a figure with k vertices,

(3)

The physical properties of the random alloy are given

by using Eq. (3) in Eq. (2). Even though the site occu-
pations of the random alloy are uncorrelated, this does
not imply that the physical properties, such as charge
transfer [8] and magnetic moments [9], of individual sites
are independent of their local environment [8]. The site-
only coherent potential approximation (S-CPA) neglects
these correlations, leading to unphysical results, such as
Madelung energy of zero for the random alloy (as dis-

cussed in Ref. [8]). These local effects in the random alloy
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can be included in two ways: (a) Construct a giant su-

percell whose sites are occupied randomly [10, 11],or (b)
construct a smaller "special" structure 0., whose correla-
tion functions IIp (a, ) match those of Eq. (3) for the first
few, physically important figures [12]. In either approach
properties can be calculated using electronic-structure
methods. The first approach is statistically accurate
but is feasible only when a simplified electronic struc-
ture method is used. The second approach, the "special
quasirandom structure" (SQS) method [12], results in

supercells containing + 20 atoms —small enough to be
easily treated using first-principles electronic-structure
methods. It closely reproduces the results of 2000 atom
supercell calculations where both the supercell and the
SQS calculations were performed with the tight-binding

[10] or the valence force-field (VFF) methods [ll]. We
now extend these methods to 0 ( g ( 1.

A system with partial LRO is defined with respect to
a particular fully ordered structure. For example, an

Ap sBp s alloy may have partial ordering of the CuAu-
I (Llp) type. In the perfect Llp structure, layers of
pure A and pure 8 are stacked alternately along the
[001] direction of an fcc lattice. An Ap sBp s alloy with
partial Llp ordering has two distinct types of sites: A-

rich and 8-rich sites which, in the perfect Llp struc-
ture, would be occupied by A atoms and 8 atoms, re-
spectively. Assuming that the atoms on the A-rich sites
are randomly distributed (and similarly for the 8-rich
sites), the properties of the partially ordered ApsBp s
structure are determined by the average spin over all
of the A-rich sites (S~) = —g, and the average spin
over all of the 8-rich sites (S~) = q; more compactly,
(S,(rI)) = gS, (Llp), where the index i runs over the two
sites of the perfect Llp unit cell. It follows that the cor-
relation functions for the partially ordered Llp structure
are II+(g) = g"IIF(Lip). These results will apply to
any type of ordering so long as both the alloy and the
perfectly ordered structure have composition x = 1/2.

To generalize to the case of composition x g 1/2, we

write the spin average as

(S'(x n)) =(2x-I)+n). S(k ~)e'" ' (4)
k+0

where o is the ordered reference structure. Here the sum
runs over the Brillouin zone (BZ) of the underlying lattice
and S(k, 0) is the Fourier transform of the spin variables
of the perfectly ordered structure; it is nonzero only at
a small set of points. To simplify Eq. (4), note that for
the ordered reference structure of composition X (which
may difFer from x)

S,(o) = (2X —1) + ) S(k, cr)e'"' *, (5)
k+0

using S(0,o) = 2X —1. Combining Eqs. (4) and (5)
gives

(S,(x, q)) = (2x —1) + g[S;(o') —(2X —1)] . (6)

The degree of ordering is limited by the requirement that

~
(S,(x, rI)) ~

& 1, which by use of Eq. (6) implies that (for
q&0)

g & x/X and rl & (1 —x)/(1 —X ) . (7)

Perfect ordering (g = 1) is possible only when x = X .
We can use Eq. (6) to derive the correlation function for
any pair figure F
II (x, q) = (2x —1) + rl II~(o) —(2X —1) . (8)

In deriving this equation, we assume that the distri-
bution of atoms over the A-rich sublattice, and sepa-
rately, the distribution of atoms over the 8-rich sublat-
tice, are random. This assumption, however, does not
imply that we neglect short-range order. Because of
the different concentrations of atoms on the two types
of sites, the Cowley SRO parameters, defined [1] as
n~ = IIF —(2x —1) / [4x(1 —x)], are related [13] by
Eq. (8) to the SRO parameters of the perfectly ordered
structure: otF(x, g) = o.~(cr)g X (1 —X )/[x(1 —x)].

Our results permit a straightforward generalization of
methods (a) and (b) described above for the random alloy
to the case of alloys with any degree of LRO. We can per-
form direct calculations on a giant supercell whose sites
are occupied randomly, but in accordance with Eq. (6).
The SQS method may be generalized by finding a special
structure o, whose correlation functions match those of
Eq. (8) for the first few figures. A third method is ob-
tained by combining Eqs. (2), (3), and (8) to the descrip-
tion of property P:

P(x, ri) = P(x, 0) + rP [P(X,1) —P(X,O)], (9)

provided that the property can be expressed in terms
of single site and pair interactions only. Here P(X, 1)
is the property of the perfectly ordered structure, and
P(x, 0) and P(X, O) are the properties of the random
alloy at compositions x and X . A similar equation was
noted empirically [4, 5] in the context of the S-CPA. For
the common X = 1/2 reference structures, which are
symmetric with respect to A ~ 8 atom interchanges,
any ground-state physical property of the x = 1/2 alloy
must be symmetric with respect to the transformation

g ~ —rI, so that corrections to Eq. (9) must be O(g4);
these corrections are due to four-body and higher fig-
ures. A simple analysis shows that the maximum error
caused by dropping the g4 contribution is ~a4]/4 where

a4, the coefficient of g, is a sum of four-body terms from
Eq. (2); since experience with the cluster expansion [6—8]
shows that four-body interactions are much weaker than
the pair interactions, we expect Eq. (9) to be an excel-
lent approximation. Certain electronic energy difFerences
(such as the Xi-Xs energy difference in the zinc-blende
BZ), however, are antisymmetric with respect to A +-+ 8
interchange; these should be odd functions of g. When
applying Eq. (9) to these energy difFerences, g must be
replaced by q [14], and the corrections, due to three-
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FIG. 1. (a) VFF elastic energies for Gao 51no 5P with Lli
LRO as a function of order parameter g. The circles are
calculations on large supercells, the asterisk is the result for

SQS (ri = 1/2), and the solid curve is the prediction of the
simple formula of Eq. (9). (b) Elastic energies for Gai, In P
with Lli LRO parameter g = 1/2 as a function of composi-
tion 2:.

body interactions, are 0(rP) For allo.ys with x g 1/2,
the inversion symmetry is lost and the leading-order cor-
rections are due to either three-body interactions (for
symmetric properties) or pair interactions (for antisym-
metric properties); in these cases we expect the formula
to be less accurate than at x = 1/2 [15].

We illustrate the application of these three methods in
a calculation of the elastic energy of a Gao 5Ino 5P alloy
with Lli (CuPt) LRO, using the VFF model [16]. The
giant supercell method is executed in a 2048-atom cell
(1920 atoms for rl = 1/3 and 2/3) where the cation sites
are occupied randomly in a way consistent with Eq. (6),
using a series of different values of i7(Lli). The elastic
energy is minimized by relaxing all of the atomic posi-
tions; relaxation is substantial, lowering the energy of the
ordered Lli structure by 57'%%uo. The results are averaged
over 20—30 configurations for each value of g; the stan-
dard error of the energy estimate is ( 0.05 meV/atom.
Figure 1(a) shows these results, along with the predic-
tions of Eq. (9), using only the VFF results for i7 = 0
and g = 1. The simple formula is seen to work ex-
tremely well. Figure 1(b) shows that the formula works
equally well as the composition is varied. The generalized
SQS method is executed by finding the periodic structure
with eight cations whose pair correlation functions most
closely match those of Eq. (8) for 71=1/2; this structure
is an A2BABABq superlattice in the [133] direction. Its
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FIG. 2. Pseudopotential electron energy diA'erences for an
Ali Ga As for x = 1/2 and x = 1/4 with Lla LRO and
order parameter g. Points are pseudopotential results (circles
for x = 1/2 and squares for x = 1/4), and the solid curves
(which are independent of x) are predictions of Eq. (9), using
an q dependence for I'4,-M5, and an g dependence for R4,-
Rg, .

formation energy is shown as an asterisk in Fig. 1(a).
As a second illustration, we calculate the direct

band gap of the imperfectly ordered Lli structure of
Gap sino 5P using the linearized-augmented-plane-wave
method (LAPW) and the local-density approximation
(LDA). We find Eg = 0.86 eV for the SQS (g = 0),
and Fg = 0.55 eV for the ordered rI = 1 Lli structure.
Using the i7 = 0 and i7 = 1 results as input to Eq. (9), our
formula predicts a band gap of 0.78 eV for rl = 1/2. This
compares well with the calculated band gap of 0.76 eV for
the 8-cation SQS (q = 1/2) cell. We also calculated the
mixing enthalpies AH at x = 1/2 using LAPW. We find

AH(ri = 0) = 79 and AH(7I = 1) = 144 meV/4-atoms.
Using these values in Eq. (9) predicts AH(7I = 1/2) = 86,
in close agreement with the direct SQS (tl =1/2) result
of 89 rneV/4-atom.

We have also applied the formula to the band struc-
ture of Alo 5Gao 5As and Alo 25Gao. 75As with partial Llo
LRO. Calculations are performed using the pseudopoten-
tial plane-wave method and the LDA; we use the virtual
crystal approximation for each layer of the partially or-
dered structures and for the random alloy. Since the
splittings are zero for the random alloy, they are pre-
dicted by the formula to be independent of x. Figure 2

shows the results for two energy band differences in the
L lp structure. The first, I'4,-Ms„belongs to the sym-
metric representation of the space group, and therefore
is well represented by Eq. (9). The second, R4;Ri„is
odd with respect to Al+-+Ca atom interchanges and, as
a result, 71 must be replaced by q in Eq. (9). In either
case, our simple formula makes excellent predictions; as
expected the formula is more accurate for x = 1/2 than
for x = 1/4.

Any alloy superlattice can be viewed as a special case
of partial LRO. For example, we can apply Eq. (9) to
an (Ali „Ga&As)„j(Ali„Ga„As)„superlattice,where
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& = (y + y')/2, q = y' —y, and the ordered reference
structure is o =(AIAs)„/(GaAs)„,with X = I/2. Such
alloy superlattices are often grown intentionally, but may
also occur unintentionally in the gro~h of monolayer
A1As/GaAs superlattices, if the layers are intermixed.
Figure 3 shows the predicted minimum-energy band gsp
for the monolayer [001] superlattice, over the entire range
of compositions {y,y'}. These predictions are made by
combining Eq. (9) with the experimental dependence of
the I', X, and I gaps of the Alq GazAs random al-

loy [17] and LDA-band-gap-corrected (using the aver-

age difference between the LDA and experimental gaps
for GaAs and A1As) pseudopotential calculations for the
gaps of the perfect (AIAs) q/(GaAs) q superlattice. The
line marked rl = 0 in the figure corresponds to the random
alloy as the composition is changed from AlAs to GaAs.
Along this line we have the well-known I'-X crossover
of the conduction-band minimum (CBM). The z = 0.5
line represents equal concentrations of Al and Ga for dif-

ferent values of the order parameter —ranging from the
random alloy (g = 0) at the center to the perfect mono-
layer superlattice (rl = 1) at opposite corners. Along this
line, the CBM changes from the I point in the random
alloy to the L point, with the crossover occurring near

q = 0.7. This X-I crossover has important experimen-

'-o
FIG. 3. Predictions for the minimum-energy band gap {in

eV) of a (Aiq „GasAs)q/(Alq „IGa„As)qsuperlattice using
Eq. (9).

tal consequences, since it will lead to an X-like CBM
in (A1As) z/(GaAs) & if the interfaces are not sufficiently
abrupt [18].
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