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We demonstrate a cluster expansion technique that is capable of accurately predicting formation
energies in binary substitutional systems "ven for those with large atomic relaxations. Conventional
cluster expansions converge rapidly only in the absence of atomic relaxations, and they fail for 1ong-
period lattice-mismatched superlattices. When combined with first-principles total-energy methods,
our method allows for very fast calculations for structures containing hundreds or thousands of
atoms. The convergence and effectiveness of the cluster expansion are enhanced in two ways. First,
the expansion is recast into reciprocal space, which allows for the inclusion of all important pair
interactions. Second, a reciprocal-space formulation for elastic strain energy is introduced, allowing
accurate predictions for both long- and short-period superlattices. We illustrate the power of the
method by performing a cluster expansion that requires total-energy calculations for only 12 simple
input structures, with at most eight atoms per unit cell. We then correctly predict the formation
energies of relaxed long-period superlattices, low-symmetry intermixed superlattices, structures with
varied compositions, substitutional impurities, and a ~ 1000 atom/cell simulation of the random
alloy.

I. INTRODUCTION

Many important solid-state structures can be de-
scribed as substitutional A/B systems, in which the sites
of a crystal lattice are occupied by A and B atoms in dif-
ferent patterns. These include abrupt and intermixed su-
perlattices, substitutional impurities and impurity aggre-
gates, ordered A&Bq superlattices, and random Ai eBe
alloys. In theoretical studies of the energetics of substitu-
tional systems it is often necessary to find ground-state
configurations for a given lattice type, or to calculate
finite-temperature thermodynamic averages. These ap-
plications require, in principle, sampling of the 2N possi-
ble configurations for placing A and B atoms on N lattice
sites. A unified, first-principles theoretical study of sub-
stitutional systems presents a major challenge since (i)
the number of possible configurations increases exponen-
tially with the number of lattice sites N and (ii) it may
be necessary to calculate the energy of configurations
with many atoms. Since the computational efFort for
quantum-mechanical total-energy calculations increases
rapidly with the number of atoms in the unit cell, direct
first-principles studies are usually limited to a small sub-
set of the configuration space, i.e. , about 10—20 structures
with & 50 atoms out of a total of 2N structures. These
limitations make it dificult to use direct first-principles
total-energy calculations to determine the ground-state
configuration, the energy of the random alloy, or the
temperature-composition phase diagram. Indeed, in pre-
vious studies of substitutional systems, s the energy was
parametrized empirically —an approach that has limited
accuracy and only works for certain systems.

The most promising general approach to the ener-
getics of substitutional systems is the cluster expansion
(CE), s in which the energies of the difFerent structures
are described by an Ising Hamiltonian. In the cluster

expansion, the alloy is treated as a lattice problem: the
lattice sites are fixed at those of the underlying lattice
(fcc, bcc, etc.) and a configuration cr is defined by speci-
fying the occupation of each of the N lattice sites by an A
atom or a B atom. (This procedure must be modified for
certain compounds where the underlying lattice changes
as x changes. ) For each configuration, one assigns a set
of "spin" variables S; (i = 1,2, . . . , N) to each of the N
sites of the lattice, with S; = —1 if site i is occupied by
an A atom, and S, = +1 if it is occupied by a B atom.
For a lattice with N sites, the problem of finding the en-
ergies of the 2+ possible configurations can be exactly
mapped into a Ising Hamiltonian:

E(o) = Jp+ ) J;S,(o) + ) J;,S;(o)S~(cr)
j&i

+ ) J,,I,S,(rr)S, (o)SI,(o) +

for configuration o, where the J's are "interaction en-
ergies, " and the first summation is over all sites in the
lattice, the second over all pairs of sites, the third over
all triplets, and so on. The primary advantage of the
cluster expansion is that the interaction energies J are
the same for all configurations o. Thus, once the J's
are known, the energy E(o) of any configuration can be
calculated almost immediately by simply calculating the
spin products and summing Eq. (1). Because the Ising
representation of the energy can be calculated rapidly,
and is also a linear function of the spin products, one can
readily (i) apply linear programming techniques to find
ground-state structures P, (ii) use statistical-mechanics
techniques (Monte Carlo and cluster variation methods)
to calculate phase diagrams, ii i~ and (iii) calculate the
energy of an arbitrarily complex configuration.

The Hamiltonian of Eq. (1) contains 2 interaction
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energies J, which are used to describe the energies of
the 2 configurations o.. Consequently, Eq. (1) can be
viewed as defining a set of linear equations, in which a
2+ x 2+ matrix of spin products multiplies a 2N vector
of J's, giving a vector of the energies of the 2+ config-
urations. Viewed this way, it is obvious that the J s of
Eq. (1) can be solved for exactly if the matrix of spin
products is nonsingular. Actually, Sanchez, Ducastelle,
and Gratias have proven that the matrix is orthogonal,
which guarantees that Eq. (1) is always solvable.

Were we to stop here, the cluster expansion would be
completely worthless; calculating the 2+ J's is as hard as
calculating the energies of the 2~ configurations. How-
ever, intuition suggests that interactions between distant
sites are less important than those between near sites,
and that interactions that involve many sites are less im-
portant than those that involve fewer sites. Thus the
number of J's needed in practice may be much smaller
than 2~. If this is the case, then one can determine the
J's from the energies of a small set of configurations (cr')
whose energies are calculated directly (independently of
the CE, e.g. , by first-principles total-energy methods or
embedded atom schemes). These J's can then be used in
Eq. (1) to predict the energies of new configurations (cr"}.
The quality of the CE is determined by comparing the en-
ergies for configurations (o"jdetermined by the CE with
the energies determined by a direct calculation. s ii s If
necessary, one can repeat this procedure by adding extra
J's until the predicted energies for (cr") are smaller than
some prescribed tolerance. Two recent examples of such
tests were performed for the Madelung energies on a fcc
lattice (using the Ewald summation technique for the di-
rect calculations) i4 and for the energies of A1As/GaAs on
a zinc-blende lattice (where the direct calculations were
done using local-density total-energy calculations). i In
both cases, direct calculations for a few ( 10) simple,
ordered structures defined a CE that can predict the re-
maining configurations with a precision comparable to
that of the direct calculations. When the CE converges
rapidly, the energies of the 2~ configurations are approx-
imately linearly dependent, so that knowing a few of the
energies allows us to determine the rest. Thus the ad-
vantage of the cluster expansion is that it uses the infor-
mation for a small set of structures to make predictions
for the energies of all other structures; by contrast, direct
electronic structure calculations treat each configuration
independently, and fail to take advantage of the under-
lying similarities among different substitutional configu-
rations of the system.

The utility of the CE is largely determined by its
rate of convergence. For systems with inherently short-
ranged interactions, such as chemical interactions in size-
matched alloys or magnetic exchange interactions in
spin alloys, ' the CE can be applied easily —requiring
& 10 interactions. But when A and B have difFerent sizes,
then changing the occupancy of some sites of a given con-
figuration will cause the atoms to relax from their original
lattice positions. For example, replacing a small atom by
a larger one will cause its immediate neighbors to relax
outwards. The relaxation of the nearest neighbors can,
in turn, cause a relaxation of their neighbors. This effect

is cumulative: if several consecutive atoms are replaced
by larger atoms, then the relaxation of their neighbors
will be even greater. This does not pose a formal prob-
lem for the CE because Eq. (1) can be applied to any
quantity that is a unique property of the configurations
of the system. (Different properties will, of course, have
difFerent J's. ) This includes the energy of any relaxed
configurations, since this energy is a unique function of
the unrelaxed configuration. is is (The relaxed configura-
tion is the local minimum-energy configuration, which is
reached by relaxing all atoms simultaneously from the
starting configuration. This exlcudes spin Hips from the
relaxation process. Were spin Hips allowed, all starting
configurations would relax to the ground-state configura-
tion, which is the global energy minimum. We examine
only coherent structures which do not contain misfit dis-
locations. )

Unfortunately, cluster expansions for systems with lat-
tice relaxation converge much more slowly than cluster
expansions for unrelaxed systems. This can be seen from
the contribution of the relaxations to the pair interaction
energies:

6J, ~
= —) F(R; —Rg) 4 (Ri, —Ri) F(R~ —R(),

(2)

where F(R~ —Ri) is the force on site Ri induced by
the atom at site R~ ("Kanzaki force") (Refs. 17 and 18)
and 4(Rg —Ri) is the force constant matrix. In many
systems the force constants decay slowly along particu-
lar directions so the relaxations will propagate for long
distances; such is the case for zinc-blende semiconduc-
tors, where the force constants decay slowly along the

011 ) bond chains. This is related to the long-

range components of the force constant matrix, a phe-
nomenon well known in phonon theory (Ref. 17 and ref-
erences therein). Indeed, previous cluster expansions for
relaxed fcc transition-metal alloys, is SiGe, i~ and zinc-
blende semiconductorsii converged much more slowly
than the cluster expansions for the same system with-
out relaxation. The effects of atomic relaxations are,
however, too important to neglect. For example, re-
laxation lowers the miscibility-gap temperature in semi-
conductor alloys by several hundred degrees, ii alters
the relative stability of different ordered transition-metal
compounds, is and causes large ( 1 eV) shifts in the
density-of-states peaks for transition-metal alloys.

In direct calculations, the relaxed energy is calculated
by minimizing the total energy of the system with re-
spect to atomic positions, where the relaxations are re-

quired to maintain the space-group symmetry of the un-

relaxed structure. The minimization requires calcula-
tions of forces and must be repeated for each configura-
tion. In a CE that incorporates the effects of relaxation
in the J's, by contrast, the energy of any relaxed configu-
ration is calculated simply by summing over Eq. (4); cal-
culations of forces and relaxed geometries are not needed.

We describe an efficient, general way to incorporate
relaxations into the CE. The method is based on a
reciprocal-space version of Eq. (1), the concentration
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wave method of Khachaturyan. is Unlike Ref. 18, we do
not use the concentration wave formalism to calculate in-
teraction energies from small amplitude waves. Instead,
we fit first-principles total energies to the concentration
wave equations. Also, unlike previous implementations
of the concentration wave method in which the chemi-
cal interaction energies are derived from perturbations
on the coherent potential approximation and relaxations
are neglected, 2i s we determine the interaction energies
from direct first-principles calculations of relaxed struc-
tures. We use the reciprocal-space representation J(k) of
the interaction energy to introduce two major improve-
ments to the conventional CE. First, we apply a "smooth-
ness" condition to J(k), which corresponds to the condi-
tion that the real-space interaction energies decay with
distance. With this condition, we can use a set of in-
teractions in the CE that is much larger than the set of
input structures, and the CE will naturally choose the
important interactions with the smallest possible range
from the set. A conventional CE, by contrast, is limited
to a set of interaction energies that is no greater than the
number of input structures used to fit the interactions, r

and therefore requires identification in advance of the
important interactions. Second, we use the reciprocal-
space description to identify the cause of the slow decay
of the real-space interactions in size-matched systems:
the strain energy of these systems leads to a singular-
ity in J(k) at k = 0, which corresponds to an infinite
set of real-space interactions. We will show that with-
out a correct treatment of this strain term, the CE pre-
dicts the wrong energies for long-period superlattices in
all directions —and the failure begins for periods p & 3.
We isolate this singularity and add it as a separate term
to the reciprocal-space CE. This allows us to correctly
predict the formation energies of strongly relaxing struc-
tures, including the long-period superlattices.

Our CE requires the direct calculation of the formation
energies of an input set of 10—20 ordered structures with
small unit cells (& eight atoms). We demonstrate the re-
liability of the CE by performing direct calculations for
a set of "new" structures (structures that are not mem-
bers of the input set), and comparing the directly calcu-
lated energies with those predicted by the CE for these
structures. We use a large set of new structures —more
than 100, including long-period superlattices, superlat-
tices with intermixed interfaces, substitutional impuri-
ties, and 1000-atom simulation of the random alloy. This
set includes structures with low symmetry and large re-
laxations. Our CE makes accurate predictions for all of
these cases. This approach offers a useful alternative to
direct simulation methods for substitutional systems in
that the energies of relaxed systems can be determined
without knowing the relaxed geometry of each structure.

II. REAL-SPACE CLUSTER EXPANSIONS

The lattice symmetry reduces the number of interac-
tion energies that must be determined. Since the J's are
independent of configuration, it follows that they have
the symmetry of the underlying empty lattice, which is
generally higher than the symmetry of any of the configu-

rations (other than pure A and pure 8) For example, all
lattice sites of the most common lattices (simple cubic,
fcc, bcc, diamond, and hexagonal lattices) are equiva-
lent. It follows immediately that the point interaction
J; = Ji for all sites i, and the sum over single sites in
Eq. (1) reduces to N Ji Q, 8; = N Ji(2x —1). Similarly,
the interaction energies are the same for all pairs of the
same type; for the common lattices, this reduces to one
interaction energy for all nearest-neighbor pairs, one in-
teraction energy for second-neighbor pairs, and so forth.
In general, a set of lattice sites, called a "figure, " has
the same interaction energy as any other figure that is
related to it by the space-group symmetry of the under-
lying lattice. (Note that, as in the ease of a Ge-Si alloy,
the underlying lattice here is not necessarily a Bravais
lattice. ) We can define a correlation function II for each
class of symmetry-equivalent figures F as the average for
each configuration of the spin products over all figures
that make up J'

IIF(~) = ):~',(~)4,(~)" ~' (~), (3)
F

where f runs over the OF figures in class F, and the spin
indices run over the rn sites of figure f We ca. n now
rewrite Eq. (1) as

EcK(o) = N ) DFJ~II~(cr),
F

where DF is the number of figures of class F per site. In
the remainder of this paper, we will use the term "fig-
ure" for a class of equivalent figures, as in "the nearest-
neighbor pair figure. "

As mentioned, the challenge of the cluster expansion
method is how to determine the interaction energies J.
There are three general approaches to this problem.

The first approach is to do a purely empirical fit of
the J's to known features of the phase diagram for the
alloy systemzs zs. For example, information about the
values of the J's may be extracted from experimental
critical temperatures. This approach is the simplest,
but it provides little new information about the prop-
erties of the alloy. Furthermore, it was shownzs that for
size-mismatched systems the J's extracted from fitting
experimental critical temperatures fail to reproduce the
observed mixing enthalpies.

The second approach is to determine the J's by treat-
ing ordered structures as perturbations of the random
alloy. The random alloy is treated using either the
virtual crystal approximation~" or the coherent poten-
tial approximation, and the electronic band struc-
ture is treated with the tight-binding method or the
Korringa-Kohn-Rostoker method. zi zs Methods based on
these approaches include the generalized perturbation
method of Ducastelle which was applied to many
transition-metal alloys, and the linear response theory
method, which was applied to the Ge-Si alloy system.
Here, the random alloy is treated by applying vir-
tual crystal approximation within the pseudopotential
method. The interaction energies are then calculated us-
ing first-order perturbation theory, where the difference
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between the Ge and Si pseudopotentials is the pertur-
bation. This method provides accurate, first-principles
results, but it is limited to alloys in which the atomic
species are similar enough for low-order perturbation the-
ory to work, and is only practical for calculating pair
interaction energies.

The third approach is the direct inversion method of
Connolly and Williams. 's' s In this method, N con-
figurations are selected for direct electronic structure cal-
culations. The excess energy of a structure cr with com-
position Ai ~B~ at volume V is defined by

AE(o, V) = E(a, V) —[(1 —x)E(A, V~) + xE(B, Vgy)],

where E(A, V~) and E(B,V~) are the energies of pure
A and B at their equilibrium volumes V~ and V~. The
directly calculated formation enthalpy is defined by

Edirect(o) = &&(o) = AE(o, V ) = min AE(o, V), (6)

where V is the equilibrium volume of configuration o.

and all structural degrees of freedom are relaxed. One
also chooses NF figures, with NF & N, such that the
cluster expansion of Eq. (4) is converged when the sum is
restricted to these NF figures. The correlation functions
and the calculated energies for these configurations are
then used to fit the interaction energies of Eq. (4), by
minimizing

N ( Np

r
) tU Ed;„,t(o) —N ) DFJFIIF(o) (7)

DF JF = ) IIF(o ) Edirect(o ) ~ (8)

This equation highlights the differences between the CE
and the conventional interatomic potentials. In the lat-
ter, Ed;„,t is written as a sum of two-body (V~&), three-
body (V~g), and higher potentials, so that Eq. (8) be-
comes

DFJF = ) IIF(o ) ) V~~ + ) V~~i, +.
a' U ijk

Thus each J in the inversion method renormalizes in
it all interatomic potentials (two-body, three-body, etc. ,
summed over all interatomic distances), so that even the

with respect to the NF values of JF, where to are
weights. In this work we will choose the weights accord-
ing to the formula tU = 48/Nc(o), where N, (a) is the
number of operations in the point group of configura-
tion cr. (This scheme gives the highest weights to the
least symmetric configurations, since these should con-
tain more distinct environments than the high-symmetry
configurations. ) Equation (7) can be minimized using the
singular value decomposition technique. s4 For the special
case of N = NF (which is the case used by Connolly and
Williams, ") we can solve explicitly for the J's in terms of
the E's:

nearest-neighbor pair interaction of the CE contains in-
formation from al/ interatomic potentials.

The advantages of the inversion approach are that it
can be applied to a wide class of alloy systems, including
both intermetallic and semiconductor alloys, and —when
combined with ab initio total-energy methods —can pro-
vide accurate first-principles results. This method can
also be used for cluster expansions of other calculated
properties beside total energies, such as band gapsss or
bond lengths. ii We will use the direct inversion method
in our discussion of relaxation problems.

III. RELAXATION PROBLEMS % ITH THE
CLUSTER EXPANSION

We will apply the CE to the GaP/InP system. Since
GaP and InP have a lattice mismatch of about 7%, this
will provide us with a good test of CE's in systems with
large atomic relaxations. Although the underlying lat-
tice for both GaP and InP is zinc-blende, in the CE we
treat the system as a fcc lattice where each GaP unit is
treated as an A "atom, " and each InP unit is treated as a
B atom. within this definition, the A and B "atoms" are
no longer spherically symmetric; as a result the appropri-
ate symmetry for the GaP/InP CE is the T2d space group
of the zinc-blende structure, not the Osi, space group of
the fcc structure. Since the goal of this work is to test
the abilities of the CE to describe relaxation accurately,
any method can be used for the direct total-energy calcu-
lations, so long as it includes realistic atomic relaxations.
To this end we will calculate the energies Ed;„,q using
the valence force field (VFF) model of Keating, with
the force constants determined by Martin, which allows
for rapid calculation of the energies of hundreds of struc-
tures, including structures with many atoms. All of the
atomic positions are fully relaxed in the VFF calculation
(with the condition that the relaxations preserve the sym-
metry of the structure). We can then compare the CE
predictions for a structure with direct VFF calculations
for the same structure to assess the quality of different
approaches to the CE. For future applications, the direct
total-energy calculations can be performed with more ac-
curate first-principles total-energy methods, such as the
linearized augmented plane-wave methodss or the pseu-
dopotential method.

To illustrate the effects of relaxation we have used
X = 20 ordered structures for A=GaP and B=InP,
calculated their fully relaxed formation energies AH(o)
[Eq. (6)] with the VFF model, and obtained the interac-
tion energies from Eq. (7). The N ordered structures
are all superlattices of the form A„B~,with p, q & 2 and
the superlattice directions [001], [011], [111], [201], and
[311]. The compositions of these structures were x = 0,
1/4, 1/3, 1/2, 2/3, 3/4, and 1. The interaction energies
used in CE are Jo, Jq, the first seven pair interactions,
and the first three-body and four-body interactions. Fig-
ure 1 contrasts the predictions [Eq. (4)] of this CE (dot-
ted lines) with the results of d.irect calculations [Eq. (6),
solid lines) for the formation energies of (GaP)„(InP)„
with 1 & p & 20. The VFF results for p = 1, 2 (cir-
cles) were used to fit the J's of the CE; the CE energies
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FIG. 1. Formation energies for GaP jlnP superlattices as
a function of repeat period y and of superlattice direction.
Solid lines are results calculated with the VFF model. Dashed
lines are results of a real-space cluster expansion of the VFF
energies using a set of input structures with p C 2, and inter-
action energies Jo, Jy, J3, J4, and the 6rst seven pair interac-
tions. The correct formation energy for long periods tends to
a constant strain energy that is a function of direction, but
the cluster expansion results tend to zero for all directions.

for p & 3 are pure predictions. Note that the CE be-
gins to fail even for p = 3. Including structures with
periods 3 and 4 in the fit delays the failure of the CE
to somewhat longer periods, but direct calculations for
longer-period superlattices can be very expensive. Also,
including superlattices with periods 3 or higher makes
the CE much worse at predicting the energies of shorter-
period structures. The most disturbing feature of Fig. 1
is that it fails completely for the long-period superlattice
limit. The true long-period limit for the formation en-
ergy of a coherent superlattice in the direction G is the
constituent strain (CS) energy P of the two components:
b,H(p = oo, G) = b,Ecs(G). The constituent strain en-
ergy is associated with a coherent relaxation of the atoms.
Since InP has a larger lattice constant than GaP, the InP
region of the superlattice expands, compared to the ideal
cubic lattice, while the GaP region contracts, producing
a large shift of the interface position. The constituent
strain energy is the combined epitaxial strain energies of
the InP and GaP regions, both of which are distorted to
fit a common substrate lattice constant a~ in the direc-
tion perpendicular to G, but are free to relax along the
G direction. 4 Because the extent of the expansion and
contraction is determined by the elastic constants of GaP
and InP, which vary with direction, the constituent strain
energy is also a function of the superlattice direction. A
finite-ranged CE is completely incapable of capturing ei-
ther the concerted relaxation that determines the strain
energy or the directional dependence that it causes; it

predicts b,H ~ 0 as p ~ oo.
The long-period superlattice problem is intrinsic to the

CE in that any finite cluster expansion will predict that
the superlattice formation energy goes to zero in the long-
period limit. The reason for this failure is simple: the CE
sees all A atoms that are far from the interface as if they
were in a bulk A crystal, since the figures of a finite CE
connect them exclusively to other A atoms. Similarly, the
CE treats almost all B atoms as bulk B. As a result, the
formation energy per atom in the long-period superlattice
limit of the CE is zero—the formation energy of both
bulk A and bulk B—and the CE completely misses the
constituent strain present in coherent superlattices.

IV. ANALYSIS OF RELAXATION AND OF ITS
PREVIOUS TREATMENTS

We may gain insight into how relaxations slow down
the convergence of the CE and how relaxations were
treated in previous approaches to the CE, by decompos-
ing the excess energy at fixed volume of an AC/BC sys-
tem. The purpose of this decomposition is to help us
understand the role of relaxation in CE's. Our method
of calculation, however, does not depend on this decom-
position. We use the following decomposition:

bE(o', V) = b EvD (x, V) + b'EUR(o, V) + bE'g (O', V)

+bE~'~ (o, V) + bE'"'(o, V). (10)

The first term is the "volume deformation" (VD) energy
required to change the volume of AC from V~~ to V,
and that of BC from Vjy~ to V:

bEvD(x~ V) = (1 —x) [E(AC, V) —E(AC, Vgc)]

+x[E(BC,V) —E(BC,Vjy~)].

This term can simply be pulled out of the CE, calculated
directly as a function of x, and added back to the re-
sults of the CE of b,E(o, V) —b,EvD.s"' Since b,EvD
depends primarily on x and not on the individual configu-
ration (the dependence of V on o for a fixed x is so small
that it can be ignored), it affects neither the ordering
temperature nor relative energies of configurations at a
fixed composition. It could, however, determine whether
or not an homogeneous ordered phase will decompose
into its constituents. Neglect of bEvD (Ref. 41) can
lead to the wrong sign for the formation energy and the
wrong conclusions about ordering, as shown in Ref. 19.
A simple way to deal with the volume dependence is to
treat the J's as functions of volume, rather than con-
stants, and to fit J(V) from bE(o, V) [Eq. (5)] rather
than from bH(o') [Eq. (6)]; the equilibrium volume will
depend on the composition if A and B have difFerent
sizes. An approximate version of this approach is to
perform the cluster expansion on E(o) —E«f(o), where
E„gis a single, concentration-dependent term that repre-
sents the volume dependence. ss A simple approximation
for the b,EvD term is E,ef = Ax(1 —x), where the con-
stant 0 may either be treated as a fitting parameter, or
the result of direct calculations for the volume deforma-
tion energies of A and B.
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The second term bEUR is the energy difference between
the unrelaxed (UR) structure (all atoms at ideal lattice
sites) and b,EvD. This is often termed the "chemical"
or "spin-flip" energy, and is the only term that does not
vanish for size-matched systems. Classic Ising models4
treat only this energy.

The third term 6Ec'is the energy gained when the
common C atoms (P for GaP/InP) are relaxed, but the
A and B atoms are held in their ideal positions. In bi-
nary Aq ~B systems, where there are no common C
atoms, there is, of course, no BEo. The importance of
SEE was first highlighted by EXAFS measurements on
Aq, B C alloys42 that showed that the A—C and B C—

bond lengths were closer to the bond lengths in pure AC
and pure BC than to the average bond length of the alloy.
Subsequent calculations showed that bE~ is the
dominant relaxation in AC/BC semiconductor alloys.

bE& B is the energy gained when all atoms are relaxed,
but the unit cell is kept cubic. This relaxation is zero in
certain high-symmetry structures, such as the AzB& [001]
superlattice (the Llo structure), the AqBs [201] super-
lattice (D022), and the Luzonite A&Bs structures (Llg).
New EXAFS measurements on binary systems4s reveal
large cell-internal A-B relaxations. Calculations by Lu
and co-workers~s'so show that these relaxations have a
significant effect on the density of states and the mixing

TABLE I. Direct VFF energies and cluster expansion (CE) predictions for (GaP)„(InP)„su-
perlattices for components of Eq. (10), in meV/atom Th. e last line gives the root-mean-square
prediction error for each CE. For GaP/InP at 2: = 1/2, AEvD = 73.84 meV/atom.
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~EvR
Direct
-1.438
-0.719
-0.479
-0.359
-0.287
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-0.143
-0.072
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CE
-1.438
-0.719
-0.479
-0.360
-0.288
-0.240
-0.144
-0.072
-0.029

bZ
Direct

-50.754
-27.205
-18.184
-13.639
-10.911
-9.093
-5.456
-2.728
-1.091

CE
-50.819
-27.271
-18.321
-13.844
-11.103
-9.294
-5.611
-2.839
-1.175

&&~',a
Direct
0.000

-23.389
-32.352
-36.868
-39.578
-41.385
-44.998
-47.709
-49.335

CE
0.057

-23.332
-20.548
-16.156
-13.428
-11.495
-7.012
-3.484
-1.359

011]
011]
011]
011]
011]
011]
011]
011]
011]

111]
111]
111]
111]
111]
111]
111]
111]
111]

[201]
[201]
[201]
[201]
[201]
[201]
[201]
[201]
[201]

1
2
3
4
5
6

10
20
50

1
2
3
4
5
6

10
20
50

1
2
3
4
5
6

10
20
50

-1.438
-1.078
-0.719
-0.539
-0.431
-0.359
-0.215
-0.107
-0.043

-1.078
-0.539
-0.359
-0.269
-0.215
-0.179
-0.107
-0.054
-0.021

-1.438
-1.438
-1.198
-0.898
-0.719
-0.599
-0.359
-0.179
-0.072

-1.438
-1.079
-0.719
-0.539
-0.431
-0.360
-0.216
-0.108
-0.043

-1.079
-0.539
-0.360
-0.270
-0.216
-0.180
-0.108
-0.054
-0.022

-1.438
-1.438
-1.198
-0.899
-0.719
-0.599
-0.360
-0.180
-0.072

-50.754
-43.492
-27.714
-21.337
-17.080
-14.237
-8.542
-4.271
-1.708

-39.426
-20.795
-13.885
-10.414
-8.331
-6.943
-4.166
-2.083
-0.833

-50.754
-58.659
-46.615
-35.336
-28.117
-23.804
-14.295
-7.147
-2.859

-50.819
-43.179
-27.683
-21.470
-17.236
-14.446
-8.729
-4.402
-1.800

-39.113
-20.672
-13.980
-10.582
-8.490
-7.100
-4.292
-2.179
-0.911

-50.819
-58.724
-46.494
-35.179
-28.101
-23.925
-14.491
-?.306
-2.963

0.000
-10.445
-21.406
-26.700
-29.961
-32.245
-36.727
-40.093
-42.112

-0.799
-20.059
-27.179
-30.754
-32.899
-34.329
-37.189
-39.334
-40.621

0.000
0.000

-7.907
-17.163
-22.770
-26.694
-34.575
-40.582
-44.182

0.057
-10.765
-18.555
-18.710
-16.679
-14.612
-9.213
-4.646
-1.824

-1.119
-20.190
-17.401
-13.403
-11.020
-9.380
-5.675
-2.810
-1.090

0.05?
0.057

-7.704
-16.187
-19.054
-19.092
-13.882
-?.336
-2.914

rms prediction error 0.001 0.150 24.002
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enthalpy of binary alloys. Finally, the cell-external re-
laxation energy bE'"~ is the energy gained when the unit
cell vectors are allowed to relax. This term vanishes by
symmetry for the Luzonite structure, and is small (~ 1
meV/atom) for the GaP/InP structures studied here.

This decomposition of the relaxation will serve as a
basis for a brief review of previous treatments of relax-
ation within the CE. (i) In some work, i 47 relax-
ation was neglected altogether. (ii) In previous Connolly-
Williams cluster expansions~ is si s2 only high-symmetry
short-period structures were used as input, so the im-

portant effects of bE&'z and 6E'"t went unnoticed. (iii)
Others just include the volume relaxation, either by us-

ing volume-dependent interaction energies7 is swiss or by
adding an Ax(l —x) term to the CE.ss None of these tech-
niques, however, captures the eifects of bEc and bE&'z,
which are cell-interna/ relaxations. (iv) A number of cal-
culations on semiconductor alloysss 4s included bEc, but
neglected all or part of bE&'z. (v) A recent calculation
on Cui, Au~ included b'E'"~, but neglected cell-internal
relaxations. 4s Finally, (vi) calculations that incorporate
all terms of Eq. (10) (Refs. 8, 11, 16, 17, 19, and 20) did
not include an orientation-dependent E„g,so the results
are not valid for long-period superlattices.

Table I compares the values of 6EUR, bEc, and 6E&ts
obtained from direct calculation and from a cluster ex-
pansion. The cluster expansion works perfectly well for
the unrelaxed lattic" 6'EUn is captured exactly by a sin-

gle nearest-neighbor pair interaction. bEc is the domi-
nant relaxation for short-period superlattices, where it
leads to very large energy lowerings, but vanishes as
p ~ oo. It too is very accurately represented by a short-
ranged CE with four pair interactions. This is illustrated
in Fig. 2(a), which shows direct and CE energies for
b,EvD(x, V) + PEUR(o, V) +bEc (a, V) for superlattices
as a function of p. The figure also shows that the CE cap-
tures this energy almost exactly. The long-period limit
of this quantity is b,EvD for all superlattice directions.
The dominant form of relaxation for medium- and long-
period superlattices is ATE&

"z but, as shown in Fig. 2(b),
this term is not properly represented by the CE, which
predicts 6E&'z ——0 as p -+ oo. (Note, however, that the
difference between the behavior of the C relaxation and
the A Br-elaxation in the long-period limit does not arise
from any chemical difference between the A, 8 vs the C
atoms, but rather from the order in which the atoms are
allowed to relax. ) The relaxations in the long-period su-
perlattice can only occur if all of the atoms are allowed
to move in tandem; it is therefore absent when we relax
only the C atoms, but present when we relax the A and
8 atoms as well as the C atoms. Were we to reverse the
order of relaxation, and first relax the A and 8 atoms,
then we would have bE&'z ——0 in the long-period limit,
rather than bEc.

V. RECIPROCAL-SPACE CLUSTER EXPANSION

70
65
60
55
50

o 45
40
35

g 30
25
20

I4

o -10
e —15
~ -20
~ —250

-30
-35
—40
—45
—50

Real space CE, E„~=O

yE|nt
A,B

[Ooi]
I I I I I I I I

4 6 8 10 12 14 16 18
Repeat period p

FIG. 2. (s) Formation energies for GsP/InP superlsttices
as a function of repeat period p when only the common P
atoms sre allowed to relax. (b) Energy gained when the Gs
snd In atoms sre also allowed to relax (cell-internal AB re-
laxation energy). The cell basis vectors are not relaxed. Solid
lines are results calculated with the VFF model. Dashed lines
are results of a cluster expansion of the VFF results for a set
of input structures with p & 2, and interaction energies Jo,
Jq, J3, J4, and the Brst seven pair interactions.

A. Mathematical formalism

To recast the CE in reciprocal space, we first Fourier
transform the spin products:

1 ikRS(k, (x) = —) S)(0)e'"R'
l

the inverse transform is

S)(a) = ) S(k, o)e '"'
k

(12)

(13)

where the sum over k in Eq. (13) runs over the first Bril-
louin zone. The S(k, 0) functions have a very useful fea-
ture: for an ordered configuration 0, S(k, 0) will only be

In this section we will show that a reciprocal-space CE
provides an efFective way to deal with systems that have
slowly converging cluster expansions. The basic idea of
the reciprocal-space expansion is to replace the individ-
ual real-space interaction energies J~, where the inter-
action energy of one figure has no relationship with the
interaction energy of any other, with a single reciprocal-
space function J(k) on which we impose a smoothness
condition, which minimizes the gradient of J(k). Using
this smoothness condition we will find a set of J's that
converges rapidly and, at the same time, correctly pre-
dicts the energies of arbitrary configurations. We will
first describe the mathematical formalism of the recip-
rocal space expansion, and then show how the method
works in practice.
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nonzero for a finite set of points k. The set of points for
which S(k, ~) is nonzero is the "Lifshitz points" of the
structure. In particular, the only k points that can have
S(k, cr) g 0 are k = 0 and the k point that are reciprocal
lattice vectors of the unit cell of 0 In the following, we

choose the coordinate system such that one of the lattice
sites is at the origin, and we label that site Ro ——0. We
will use the definition of S(k, o) to transform the part of
the CE energy due to the pair interactions [third term
on the right-hand side of Eq. (1)]:

E2(p) =
2 ) Ji,mSl(p)S~(u) =

2 ) ) Ji ~S*(k', ~)S(k, cr)e'" e
l m l,m k,k'

i ) ) J Se(ks )S(k )
ik' R —i(k-k') Rt

k,k' l,n

N N
i ) ) Jp Se(k ~)S(k ~)elk' R~ ) e

—i(k —k') R(

k,k'

N N
= —) ) Jp,„S'(k', o) S( k~)e'" "b'kk = —) . ).Jp, ne' ' " IS(k &)I,

k,k' k
(14)

we arrive at

Ez(o) = N) J(k)iS(k, o)i . (16)

We have replaced the sum over an infinite set of pair in-
teractions with a sum over a few k points. While three-
body and higher figures could also be described by a
reciprocal-space expansion, the formulas are too compli-
cated for practical use. Instead three-body and four-body
figures will be added as explicit real-space figures:

EcE(o) = N) DF JFIIF(cr) + N ) J(k)iS(k, cr)i,
F k

(17)

where the primed sum runs over the set of nonpair figures
included in the expansion.

The functions J(k) and S(k, o) obey some simple sum
rules:

) J(k) = 0, ) i J(k)i = —) Jp2i

k k
(18)

) S(k, 0) = +1, ) iS(k, o) i
= l.

The values of S(k, a) have a nonunique phase factor that
depends on the choice of origin for the unit cell. Since the
pair energies depend only on the magnitude of 8, they are
uniquely determined. Also, if the conjugate configuration
o. of configuration o is formed by reversing the identity of

where n is defined such that R = Ri + R„,and the
translational symmetry of the lattice was used to reduce
Ji,i~„to Jp,„.By defining

N

J(k) 1 ) ~ J eik'R„

all of the A and B atoms, then we have Si(o') = —Si(e)
and S(k, o) = —S(k, cr). Thus the pair energy will be the
same for both cr and o. This is actually a special case of
the general rule that for a figure I' with an even number
of sites IIF(o) = IIF (o), while for a figure with an odd
number of sites IIF(0) = —IIF(o). As a consequence of
this, if we want to describe a system in which we allow
the composition x of Ai ~B~ to change, we must include
odd figures in the expansion. For if we try to use a CE
with only even figures, we will find the same energy for
a configuration 0 with composition x as we will find for
o.

, which has composition 1 —x.

B. Determining J(k)

J(k) =
2 ) Jp, i&'" ' = ) Dr JrHr(k)

Ri &RM

(20)

Here I runs over classes of pairs (0, l) that are equiva-
lent by the symmetry of the lattice (all of which have
the same Jp i = Jr), e.g. , the nearest-neighbor pair fig-

The calculation of S(k, a) can be done very quickly
and simply, as can the sum of Eq. (17). To calculate
J(k) we will again follow the procedure of calculating the
total energy directly for a small set s of input structures
(o: cr c s), and use the results to fit the function J(k),
just as in the Eq. (7) for the standard real-space CE.

Practicality requires that we use a small set of input
structures (cr'}, and that each structure have ( 10 atoms.
In Table II, we present iS(k, o) i

for a set of 2? ordered
structures from which we will choose all of the input
structures that are used in this work. The largest of
these structures contains eight atoms for a zinc-blende
lattice, or four for a fcc lattice. Thus each of these struc-
tures is small enough to allow accurate, first-principles
calculations as a basis for future CE's.

For practical applications, we will write J(k) as a sum-
mation over a finite set of plane waves:
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TABLE II. ]S(k,o)] for 27 ordered structures cr. All of these structures, except pure GaP and InP (A and B) and the
two Luzonite structures (Ll and L3), are (GaP)„(inP)~ superlattices along direction G. For p g q structures the symbol
of conjugate structure, which is a (GaP)~(lnP)„superlattice, is listed beneath. The values of ]S(k, o)~ are the same for a
structure and its conjugate. All k points are in units of 2n /a.

us
A

k B
[000]

4i [111]

3 [111)

—,'[111]

2 [001)

—,'[001]

[001]

—,'[011]
s2 [011]

~~ [201]

4 [311]

1, 1
CP

[111]

1,2 1,3 2, 2
o.l V1 V2
e2 V3

1/9 1/4

1/2

8/9

8/9

1/2 1

1/4

[001]

1, 1 1, 2 1,3 2, 2
CA Pl Zl Z2

P2 Z3

1/9 1/4

8/9

1/4

1/2

[011]

12 13 22
pl Y1 Y2
p2 Y3

1/9 1/4

[201]

1,3 2, 2
F1 CH
F3

1/4

1/4

1/2 1

[311]

1,3 2, 2
Wl W2
W3

1/4

14

1/2

Ll
L3

1/4

3/4

ure, and the sum runs over the first Nr inequivalent pair
figures. Dr is the number of equivalent pairs per lattice
site. (Since each pair is shared by two sites, there are
2Dr pairs connected to each site. ) The function Hr is a
symmetrized plane wave:

figures included in Eq. (4) or Eq. (17) must be less than
the number of structures in the set s, whose energies are
used to fit JF and J(k). To overcome this problem, we
require that J(k) be a smooth function of k. To this end
we define a "smoothness value" M as

) ikR~1

2DI (21) M = —) J(k) —V'i2 J(k) = ) .R~rDr Jr2~
A

k
2A I

where the sum is over the 2Dr pairs in class I that con-
nect to the site Rc = 0. By combining Eqs. (4), (16),
and (20), the pair energy is

(24)

where the exponent A is a free parameter, and o. is a
normalization constant:

Eg(cr) = N) Dr JrlIr(o)
I

= N ) J(k)]S(k, cr)]2
k

= N ).Dr Jr ).&r (k)
~
S(k, &) [

I k

which implies that

(22)

(25)

The smoothness condition is therefore equivalent to re-
quiring that the pair interactions fall off rapidly for large
distances. Our use of this smoothness condition will be
tested when we examine the quality of predictions made
using the function J(k).

Our new fitting procedure will be to minimize

IIr(o) = ) Hr(k)iS(k, o)i . (23) ) ur i';„,i(o) —EcE(o)i + tM
nEs

(26)

We now have an exact equivalence between a real-space
expansion using N~ pair figures and a reciprocal-space
expansion. By using Eqs. (20) and (23), we can easily
convert from the reciprocal-space form to the real-space
form and back.

Since the reciprocal-space expansion up to this point is
equivalent to a real-space expansion, the two forms share
the same problems. In particular, the total number of

by varying (J» j (for the nonpair figures included in
the expansion) and (Jr) (for the pair figures). Here
Ed;„,q(o) is the directly calculated energy [Eq. (6)],
ECE(o) is defined in Eq. (17), and t is a scaling factor.
The scaling factor is a matter of choice, but we have found
in tests that any value in the range 1 & t & 100 produces
almost identical results. Similarly, the CE shows only a
slight dependence on A in the range 4 & A & 10. Un-
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less otherwise indicated, we will use t = 1. Note that
using t = 0 completely eliminates the smoothness con-
dition, and results in a plain real-space fit of Eq. (7).
If we fit with a large number of figures and t = 0, the
fitting procedure has no way of knowing which interac-
tions are short-ranged and which are long-ranged. As a
result, the long-ranged interactions will be as strong as
the short-ranged interactions, which is unphysical. The
chief advantage of the reciprocal-space method is that
it lets the fitting procedure choose which pairs are im-
portant. Because of the smoothness criterion, any pair
figure that is not strictly necessary for a good fit will
have an interaction energy of zero. Also, the smoothness
criterion naturally favors short-ranged over long-ranged
interactions, which is physically sensible.

C. Tests of reciprocal-space cluster expansion

Sp

Sy

82

S3

(A, I3, CA, Ll, L3)
so U {CH, CP, Z2)
si U (V2, Y2, Wl, W3)
all structures in Table II

(5 elements),
(8 elements),
(12 elements),
(27 elements).

The set so is the standard Connolly-Williams set, 7 while
the set si was previously used in real-space fits for many
semiconductor alloys. Set ss was previously used in a
real-space CE of semiconductor band gaps. s

To test the reciprocal-space versus real-space CE, we
will first minimize Eq. (26) to determine the interaction
energies, using each of sets so, si, sz, and ss. For each
fit, we then predict the total energies of a large set of
new structures, none of which are used in the fit. The
predictions are performed for four types of structures:
(i) long-period superlattices: (GaP)z(lnP)„superlattices
with 3 & p ( 6 and p = 10 (20 structures); (ii) in-
termixed superlattices: superlattices with p = 1,2 in

We are now ready to apply the reciprocal-space CE. As
before, we will use the VFF model to calculate the en-
ergies Ed;««(cT) of different structures for the GaP/InP
system. To examine the convergence of the CE we will
use four different sets, so C si c s2 c ss, of input struc-
tures for the calculations, all of which are taken from
the structures listed in Table II, which also defines the
symbol used for each structure. These sets are

which some of the atoms on each side of the interface
have been swapped —thereby lowering the symmetry (24
structures); (iii) z g 1/2 structures: structures in which
z g 1/2, consisting of (GaP)„(lnP)~ superlattices, with

p+g = 5, (GaP)i(InP)s and (GaP)s(InP)i superlattices,
and GaP (InP) supercells with 8, 16, 32, and 64 atoms,
containing a single In~ {or Gai„)substitutional impu-
rity (43 structures); and (iv) large supercell simulations
of random alloys: the energy of a random GaP/InP alloy
is determined by averaging over different configurations
of a fully relaxed 1000-atom supercell. For each of the
new structures in (i)—(iv), we independently calculate the
VFF formation energy and compare it with the CE pre-
diction. The calculated formation energies for sets (i)—
(iii) cover a wide range: 17.7 —+ 30.6, 14.9 —+ 32.2, and
2.2 —+ 31.0 meV/atom, respectively.

We perform the CE in three diferent ways, shown in
panels (a)—(c) of Fig. 3. In all cases, we use the follow-
ing real-space interactions in the first term of Eq. (17):
Jo, the empty figure (i.e. , a constant term that is inde-
pendent of cr); Ji, a single-site term; Js, the nearest-
neighbor three-body interaction; and J4, the nearest-
neighbor tetrahedron interaction. Our first calculation
[Fig. 3(a)] is a simple real-space CE using the first 1
through 7 pair figures, where the number of pair figures is
adjusted to assure that N & NF. In our second calcula-
tion [Fig. 3(b)], we repeat the same real-space expansion,
but expand E —F„g,in place of E. We use the volume-
deformation energy Az(l —z) for Epef ~ The value of A
is treated as a fitting parameter, and we find 0 = 147.1
meV/atom, using input set sq. Finally [Fig. 3(c)], we
repeat the latter CE, but this time using the reciprocal-
space formalism, i.e. , we set t = 1 instead of t = 0 in
Eq. (26), which allows us to include the first 20 pair in-
teractions. The fitted value of A is 129.5 meV/atom,
using 8g.

In Figs. 3(a)—3(c), we present the root-mean-square
(rms) prediction error of the CE's for each of the three
sets of new structures. Note that the interaction ener-
gies were fitted without any knowledge of the energies of
these new structures. The predictions for the formation
energy of the random alloy, using input set 82, are 19.90,
20.95, and 20.77 meV/atom for the three fitting proce-
dures [Figs.3(a)—3(c)]. Bernard has calculated the VFF
energy of the random alloy by averaging over many ran-

TABLE III. Root-mean-square (rms) and maximum (max) prediction errors for different clus-

ter expansions. Errors are reported separately for long-period (p & 3) superlattices, intermixed
short-period (p ( 3) superlattices, and for structures with composition z g 1/2. The input set s2

was used for each CE. Real-space figures Jo, Ji, Js, and J4 were included in each CE. Lines (a),
(b), (c), and (d) refer to the CE's described in panels (a), (b), (c), and (d), respectively, of Fig. 3.
All energies are in meV/atom.

(a)
(b)
(c)
(d)

Cluster expansion
Space
Real 0
Real Az(1 —z)

Reciprocal Az(1 —z)
Reciprocal AE~s

Long-period SL's
rms IIlax
10.24 21.93
6.51 13.36
3.94 8.78
1.08 2.33

rms
1.09
1.03
0.74
0.70

max
2.95
3.05
1.80
1.42

Intermixed SL's z g 1/2 structures
rms max
2.14 5.44
1.77 4.40
1.29 2.67
0.82 2.22
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(c)

Reciprocal space fit
CS

(d)

FIG. 4. Real-space pair interaction energies from the
reciprocal-space fit (c) using input set sz snd E„t= Ax(1—x).

domly generated configurations of Gas sino sP in a 1000-
atom supercell, with all atomic positions relaxed. The di-
rectly calculated formation energy for the random alloy is
20.45 meV/atom. Hence, both the real-space [3(b)] and
the reciprocal-space methods [3(c)]with E„t= Ax(1 —x)
predict well the energy of the random alloy. As discussed
above, all three CE's [3(a)—3(c)] fail to predict the ener-
gies of the longer-period superlattices. We will return to
this issue in the next section.

For the intermixed structures, we see that using set sq
of 12 input structures is adequate for making accurate
predictions for all three methods. We also see that using
E„t= Ax(1 —x) works better than using E„f= 0, and
that the reciprocal-space expansion works better than the
real-space expansion. Another indication of the superi-
ority of the reciprocal-space expansion is the maximum
error made in the CE predictions —which is a measure
of how well CE predictions can be trusted. (A CE that
predicts the energy 95%%up of structures exactly, but has a
large prediction error for the remaining 5 jc, will have a
small rms prediction error, but is not worth much be-
cause we can never be sure whether the prediction for a
new structure belongs to the 95Fo or the 5%.) Table III

so $1 $2 $3

FIG. 3. Prediction errors for different CE's, in meV/atom.
The CE is applied to E —E„ffor four dMerent fitting pro-
cedures: (s) Real-space fit with E„t= 0 snd NJ ( 7. Np is
adjusted such that the number of figures is always less than
or equal to the number of input structures. (b) Real-space fit
with E„t= Ox(1—x) where 0 is treated ss s fitting parameter
snd Np ( 7. (c) Reciprocal-space fit with E„t= Ox(1 —x)
snd Ny = 20. (d) Reciprocal-space fit with E„t= b Ecs snd
Nz = 20. Root-mean-square prediction errors (root-mesn-
square average of Ea;rect —EcE) sre shown separately for su-
perlsttices with p ) 3 (open rectangles), superlsttices with
p = 1, 2 snd atoms swapped across the interface (shaded rect-
angles), snd structures with x g 1/2 (solid rectangles). Each
CE is repeated using the input sets so, si, s2, snd ss (defined
in Sec. V C). Real-space fits have the scaling parameter t = 0,
while reciprocal-space fits have t = 1 [Eq. (26)j.

12
10-
8-
6-

E0
2.

I 0-
E

-6-
-8-

-10- Reciprocal space CE
E„,= Qx(1-x)

K I F X W

FIG. 5. J(k) along the principal directions in the Brillouin
zone for the same CE described in Fig. 4. Circles are placed
on values of k for which S(k, cr) g 0 for one or more structures
in the input set sq.



12 598 I.AKS, FERREIRA, FROYEN, AND ZUNGER

shows both the rms and the maximum prediction error
of the three fitting procedures using the input set s2.
The reciprocal-space fit [Fig. 3(c)], having much smaller
maximum errors, is clearly superior to the real-space fit.
In Figs. 4 and 5, we show the pair interaction energies
(transformed into real space) and J(k) of the CE for the
reciprocal space fit [Fig. 3(c)] using the input set s2 and
E„r= Ax(1 —x).

VI. LONG-PERIOD SUPERLATTICES

A. The long-period superlattice problem
and singular J(k)

As shown in Figs. 1 and 3, the CE fails to predict
the energies of lattice-mismatched superlattices —even
for periods as short as p = 3. We explained in See. III
that the cause of this problem is the long-range coher-
ent relaxation of the atoms that occurs to relieve that
lattice-mismatch strain. We will now demonstrate that
the superlattice problem is caused by a singularity in

J(k) at k = 0, so that no finite real-space or continuous
reciprocal-space expansion will predict the correct limit.
In the next subsection, we will show how this problem
can be solved.

For the A„B„superlattice in direction G, the only k
points for which S(k, cr) g 0 are those that satisfy

directions. Thus the true J(k) function must approach
different limits at the origin along different directions.
This means that J(k) is singular at the origin tv—hich
corresponds to an infinite real spa-ce CE.

B. Dealing with the singularity

We will show how it is possible to get the correct long-
period superlattice limit using a cluster expansion. The
basic idea is to write the reciprocal-space interaction en-
ergies as

J(k) = Jcs(k) + JsR(k), (31)

= N) Jsn(k) ~S(k, o)~ +N) DF JFIIs(o) .

where the first term on the right-hand side is singu-
lar at k = 0 and contains the correct long-period su-
perlattice limit, i.e. , the constituent-strain energy. The
continuous part JsR describes the short-ranged (SR) in-
teractions that are ignored by Jcs. We will subtract
the constituent-strain energy from Ed;,«t, and determine
Js~ by fitting the remainder:

Edir«t(~) —N ) Jcs(k) IS(k ~) I'

27m

2jxlQ
(27)

where dG is the distance between two adjacent layers
in the superlattice direction, and n is any odd integer.
Placing the B atoms in the first p layers and the A atoms
in the next p layers, we have

p

S(k, o) = —) e '~ —e ~~ (—1)"
2u =

1 . /i7rln&
exp )

1 sin( 2" ) ex (pin. n~+„)

p sin( 2„")

We then have

lim ~S(k, cr)[ = lim —
z

1 1 4
~ p2 2(mn) &2n2

2p

(»)

Thus for the long-period superlattice, the dominant con-
tribution to the pair energy N Pk J(k) ~S(k, cr)

~

eornes
from the k points with n = +1, which contain 8/vr

81' of the weight of ~S(k, o')
[

. In fact,

lim ) J(k) ~S(k, o)~ = lim J(k) .
k

(3o)

Therefore, in the long-period limit of the CE, the super-
lattice energy goes to J(k = 0), for all superlattice direc-
tions. But, as can be seen from Fig. 1, the correct, coher-
ent long-period superlattice limit is different in different

The division of these parts is somewhat arbitrary; the
essential feature is that the Jcs contain the singularity
at the origin, leaving a smooth function JsR, that can be
fitted using the techniques of the preceding section. Since

J~s (k) is singular at k = 0, the corresponding real-space
pair expansion has an infinite number of nonzero pair
interactions. This property is to be expected, since we
have shown that the constituent-strain energy cannot be
represented by a finite CE.

The remainder of this section is organized as follows.
First, we will explain why it is necessary to represent
the constituent-strain energy by a reciprocal-space ex-
pansion. Next we give the basic form of the function

Jcs(k) in terms of AEcs. We will then discuss the form
of the constituent-strain expansion for short-period struc-
tures, and its properties as a function of x. We will also
present a formula for GEcs derived from elastic theory,
and describe how this formula can be used to provide a
practical implementation of Jgs. The section ends with
a synopsis of the working equations and a step-by-step
guide of how to use this method.

An accurate CE can be constructed by expanding
Ed g E f and using the long-period superlattice en-

ergy for E„r.The constituent-strain energy AEgs(G) is
defined as the long-period superlattice energy limit in the
direction C, which is the formation energy of pure A and
pure B, each constrained to the equilibrium substrate lat-
tice constant of the long-period superlattice limit. This
would automatically include the directional dependence
of the superlattice energies, but still allow a finite CE. Us-

ing E„r= EEcs(G) is not as easy as it looks, because
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EEcs is only well defined for long-period superlattices.
In particular, the value of G in b,Ecs(G) for nonsuper-
lattice structures is undefined. For certain short-period
superlattices, G is not well defined either. For example,
the monolayer superlattices in the [001], [011],and [201]
directions are all identical. For this structure, which di-
rection do we use to evaluate EEcs(G)'?

We solve this problem by performing a reciprocal-space
cluster expansion of EEcs(G). We write

dlEcs(cr) = N) Jcs(k) IS(k, cr)l
k

(33)

Since the constituent-strain energy is defined as the p ~
oo limit of the superlattice energy, it must be independent
of p. This condition is met if Jcs depends only on the
direction of k, not its magnitude. We therefore set

Jcs(k) = Jcs(A') = &Ecs(A') «» P 0
(34)

Jc,(O) = 0.

This form is the one used by Khachaturyan. is For an
A&B„usperlatti ecin direction G, the k points for which

S(k, o) g 0 all lie along the G direction [Eq. (27)]. Using

the sum rule Qz IS(k, o) I
= 1, we have

):Jcs(A') IS(»&)I'= Jcs(G) ) .IS(»&)I'
k k

= Jcs(G) = AEcs(G), (35)

which shows that Eq. (34) produces the correct
constituent-strain energy for the superlattices.

For some short-period superlattices the k points for
which S(k, o) g 0 will fall outside the first Brillouin zone.
Since Jcs must have the full translational symmetry of
the reciprocal lattice, any k point outside the first Bril-
louin zone must be translated to a k point interior to
the zone by a reciprocal lattice vector. Once the k point
is translated to the interior of the zone, it may lie in a
direction other than G. Thus the constituent-strain en-

ergy is different for some short-period superlattices than
for long-period superlattices along the same direction.
This will not affect the strain energy of the long-period
superlattices because the weight of the k points that fall
outside the zone goes to zero as p increases. It is precisely
this feature of the constituent-strain expansion that re-
solves the ambiguity described above for the monolayer
superlattices. As mentioned, the monolayer superlattices
in the [001] and [011] directions are actually the same
structure. If we treat this structure as a superlattice
in the [011] direction, we will find that S(k, o) = 1 for
k = [011]. (All k points are in units of 2z ja.) Since this
point lies outside the zone, we must translate it by the
reciprocal-lattice vector [111] to the point [001], which
is equivalent to [001] by the rotational symmetry of the
fcc lattice. Similarly, if we view the structure as a [201]
superlattice, we must translate k = [201] to k = [001]
by the reciprocal lattice vector [200]. Thus, no mat-
ter how we choose to view the structure, the reciprocal-
space expansion automatically gives EEcs([001])for the
constituent-strain energy.

) IS(k, cr)
I

= 1 —(2x —1) = 4x(1 —x),
kgO

and therefore

) IS(k, cr) I Jcs(G) = 4x(1 —x)Jcs(G).
kgO

(37)

Since b,Ecs(cr) = 0 for x = 0 or 1, an expansion of
rXEcs(n) —= b,Ecs(G, x) in powers of x must have the
form

AEcs(G, z) = 4x(1 —x)Cz(G)

+4(2x —1)x(1 —x)Cs (G) + (39)

Thus, if we choose Jcs(G) independent of x, we can iden-

tify it with the first coefficient Cz(G) of the x expansion
of b,Ecs. The higher powers of x correspond to higher-
order figures in the expansion. Shortly, we will show that
by choosing an x-dependent form for Jcs, we can include
all orders of the x expansion with pair figures alone.

C. F&rmul for DEALS

It remains to find a practical implementation of
EEcs(G) for any direction. To do this we will use har-
monic continuum elasticity theory, which is appro-
priate for the long-period limit. To begin, picture two
large slabs of A and B. Initially both slabs are at their
respective equilibrium volumes, and the formation en-

ergy of each slab is zero. We now deform each slab to a
common substrate lattice constant in the direction per-

Equations (33) and (34) define a constituent-strain en-

ergy that gives the correct limit for the long-period su-
perlattices and is well defined for nonsuperlattice struc-
tures and short-period superlattices. The only remaining
ambiguity is for points on the Brillouin zone boundary,
where points that lie along different directions may be
related to one another by reciprocal lattice vectors. For
such cases, one must either arbitrarily choose the value
of Jgs of one of these directions, or else take the average
value of Jcs for all equivalent zone boundary points. We
use the second of these two approaches. This situation
rarely arises in practice, however, because the only zone
boundary points that occur for common structures are
high-symmetry points such as [001] or [111],which can
only be translated to zone boundary points in symmetry-
equivalent directions. As a result the two methods give
identical results in almost all cases.

We can view Jcs as the pair contribution to the full
cluster expansion of b.Ecs, which can also contain three-
site, four-site, and higher interactions. From this view-

point, Jcs has exactly the correct 2; dependence. For a
superlattice in the G direction with x g 1/2 we have

1= IS(o ~)l'+ ) IS(»&)l'
k+0

= (2x —1)'+) IS(k, ~)I',
kgO
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and similarly for qB. For cubic materials, the general
form for q issi is

Elastic Theory for Constituent Strain

q(k) = 1—
Cii + p(k)6

(44)

I I I I

[111]

p(k) = p(P, 8) = sin (28) + sin (8) sin (2P), (45)

where P and 8 are spherical polar coordinates defined
by r = [r sin(8) cos(P), r sin(8) sin(P), r cos(8)]. For the
principal directions we have p[001] = 0, p[011] = 1, and
p[lll] = 4/3, which is its maximum value. A parametric
plot of p(P, 8) is presented in Fig. 6. The minimum value
of p lies along the [001] direction and the maximum along
the [111]direction.

where B is the bulk modulus, 6 = C44 —(Cii —Ciq)/2
is the elastic anisotropy, and p is a purely geometrical
factor given by

o 24

21

18

15

12
IA 9

6

0
0.0 0.2 0.4

x

0.6 0.8 1.0

D. Calculating LLEPs(G, x)

From Eq. (42) we see that, if the elastic constants are
known, only two calculations are needed [for AEA(aB)
and DEB(aA)] to determine b,Ep&(k, x) for any binary
system. We fit the form of Eq. (44) to calculations
of AEG,'p(k, ai„p) and b,EG,p(ai„p) for k = [001] and
[011],using B/Cii and 6,/Cii as two fitting parameters.
We do the same for InP. Note that in this procedure we do
not use any values of b,EP& (k, x) as input. In particular,
we need never perform calculations to find the minimum-

energy substrate lattice constant a&~, which would be an
arduous task. Nonetheless, the elastic energy formula
makes excellent predictions for the values of AEP&. This
is demonstrated in Fig. 7, where we plot the elastic energy
predicted by Eq. (42), and the elastic energy calculated
directly within the VFF model. (For the direct VFF cal-
culations, the value of a~ is found by calculating the elas-
tic energies for ten different values of the substrate lat-
tice constant, performing a polynomial interpolation the
elastic energy as a function of substrate lattice constant,
and then minimizing the polynomial. This procedure is
repeated for each direction and each value of x.) Equa-
tion (42) is seen to predict both the k dependence and
the x dependence correctly; the largest prediction error
is ( 0.25 meV/atom. This is an impressive performance
when one considers that none of the constituent-strain
energies shown in Fig. 7 were used to fit Eq. (42). Fig-
ure 8 shows a parametric plot of AEP&(k, x = 1/2). The
general features are the same as those of p(k), but less
pronounced.

To use h.E&s for our reciprocal-space strain expansion,
we identify [see Eqs. (38) and (39))

&Ec's(» x)
4x(1 —x)

qA(k)qB(k) +EA(aB)+EB(aA)
4 (1 x)qA(k)+EA(aB) +—xqB(k)+EB(aA)

(46)

FIG. 7. Comparison of the elastic energy DEcs pre-
dicted by Eq. (42) with b,EP& calculated directly by VFF
for GaP/InP. The VFF results for the [001], [011), and [111]
directions are indicated by squares, circles, and triangles, re-

spectively. The elastic theory predictions for these three di-
rections are indicated by dash-dotted, solid, and dashed lines,
respectively.

where we now allow Jcs to depend on x. Equation (38)
guarantees that this Jcs has the correct x dependence.

E. Working equations

We now summarize the practical use of this method
with a set of step-by-step instructions for implementing
the CE.

1. Calculate b,Ecqs and Jcs.

(a) Calculate the energies of cubic A at the lat-
tice constant of cubic B [GAEA(aB)] and of B
at the lattice constant . f A [b,EB(aA)]. This
can be done using first-principles total-energy
methods.

(b) Determine qA(k) and qB(k). This is done
by calculating the energies of A constrained
epitaxially to a~ in the plane perpendicu-
lar to k and relaxed along the k direction

[CHEAP'(k, aB)], and similarly for B on A

[DEA~'(k, aB)]. This is repeated for two di-

rections k, and the values can then be used
to solve for B/Cii and 6/Cii for A using

qA(k) = b,EA (k, a)/AEA(a), and similarly

for B. q(k) = 1 —B/[Cii + p(k)A]. The
added work required to calculate SEA(aB),
b,EAP'(k, aB), and the like is quite small since
each calculation is for the basic unit cell of the
lattice, containing only one or two atoms.
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20

(mev/atom)

FIG. 8. Parametric plot of DEoqs(k, x = 1/2) from Eq. (42) for GaP/InP over the unit sphere. The surface shown is defined

by the spherical polar coordinates [DEoqs(k, 1/2), P, 8), in units of meV/atom.

(c) The working formula for «cs is ) to Edjr«g (o' ) ) Jcs (k x) l
S(k o' ) l

1

«c's(k
1

(1 —x)q~ (k)AE~(aB)
1

xq~ (k)«B(a~)

(d) The working formula for Jcs is Jcs(k, x) =
«cqs(k, x)/[x(1 —x)]. See Eq. (46).

2. Choose a set of input structures (o') and calculate
the formation energies Ed;,«q(cr'), using the same
direct calculation technique that was used in step
1.

cr' ps

2

—EcE(o') + tM, (48)

where M is given by Eq. (24), and t and A are
free parameters, with typical values t = 1 and
A = 4. EcE is defined by

~/E' (o') = N) DFJFfI (cr')

+N) Jsn(k)lS(k, o')l', (49)

3. Find the interaction energies.

(a) Calculate S(k, o') for all of the structures in
the input set.

(b) Calculate
E'(o') = Ed;r«t(o') —Q~ Jcs(k) lS(k, o')

l

(c) Choose a set of NF nonpair interactions (F)
and a maximum number of pair interactions
Np.

(d) Vary (J~j F = 1, NF and (Jl) I = 1, NI to
minimize

4. The CE prediction for the Ed;„,t, (o) is

E«(o) = EcE(o) + N ):Jcs(k, x) IS(k o)I

(50)

VII. RESULTS

We now present the results for the procedure outlined
above. This CE differs from that of Fig. 3(c) only in the
use of E„f= Ecs(k, x) in place of E„f= Qx(l —x). The
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the elastic strain energy also make more accurate pre-
dictions for short-period structures than those that do
not. The method can predict the relaxed energies of
arbitrary configurations, without having to calculate re-
laxed geometries or forces.
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APPENDIX A: ELASTIC STRAIN ENERGY

and minimizing LEcs with respect to a~, the superlat-
tice lattice constant parallel to the interfaces, we obtain
the equilibrium value

(1 —x)qA(k) V&BACA + xqa(k) VaBaaa
(1 —x)qA(k)V~BAaA + xqa(k)VaBaaa

Inserting this value for a~ in Eq. (A3) gives the equilib-
rium constituent strains

zqa(k) VaBaaa(a& —aa)
A =

A

2 (1 —*)qA(k) VABAaA + xqa(k) VaBaaa

(A5)

for A, and

We now derive the expression used for the constituent-
strain energy [Eq. (42)]. Using harmonic elasticity
theory, s~ ss the energies of deforming A and B are

AEA(a) = s VABA[eA(a)]

( —x)qA(k) VABAaA(aA aa)—
2 (1 —x)qA(k) VABAa„+xqa(k) VaBaaa

for B, which inserted into Eq. (A2) gives

&@c's(»x)

(A6)

and (A1)

+@a(a) = ', VaBa-[ea(a)]

where AEA(a) and b,Ea(a) are the energies of cubic A
and B at the lattice constant a, respectively, VA and Va
are the equilibrium volumes of A and B, B is the bulk
modulus, and e is the strain. Inserting this into Eqs. (40)
and (43) the elastic energy of an Aq ~/Bz superlattice
in the direction k is

= sx(1 —x)qA(k)qa(k) VABAVaBa

(&A —&a)'
(1 —*)qA(k) VABAaA + xqa(k) VaBaaa

(A7)

Equation (A7) makes the x(l —x) dependence of AEPs
explicit and shows that Jz [see Eq. (38)] is approximately
x independent. Equation (A7) can be rewritten as

+@cs(k,x) = (1 —x)qA(k) sVABAeA

+xqa(k) s VaBa&a (A2)

1 2 I 2
eA, a = 2(1 aA, a/a j) (A3)

where q is an epitaxial relaxation parameter [Eq. (44)],
and e is the individual layer strain perpendicular to k
(which for simplicity we assume isotropic). Using Eule-
rian strain,

1

d Ecqs(k, x)

j.

(1 —x)qA (k)AEA (aa)

xqa (k)b,Ea (aA)
(A8)

It turns out the Eq. (A8) is valid independently of
the particular choice that was made for the strain in
Eq. (A3).
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