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Abstract--Fox and Tabbernor [Acta metall, mater. 39, 669 (1991)] have recently measured the four lowest 
structure factors F(G) of NiA1 using highly accurate high energy electron diffraction. We present here a 
systematic comparison of their results with ab initio band theory, in the context of the local density 
formalism. We find very good agreement for the three of the four lowest measured structure factors, while 
our F(200) is ~ 0.4 e/cell higher. We tentatively attribute this difference to uncertainties in the treatment 
of the temperature factors in non-monoatomic compounds. Indeed, comparing with experiment our 
calculation for the monoatomic Si crystal (where the temperature term factors out), we find that theory 
reproduces the measured structure factors to within a very small deviations of ~0.02 e/atom. We have 
also examined the effect of high Fourier components that are not currently amenable to measurements 
on the ensuing NiAI deformation electron density distribution (DEDD) maps. We find that the truncation 
of the Fourier series after four structure factors misses the directional d-like charge lobes near the Ni sites. 
We show that static and dynamic DEDD give a similar picture of the bonding. 

R6sumg---Fox et Tabbernor [Acta metall, mater. 39, 669 (1991)] ont r6cemment mesur6 les quatre facteurs 
de structure (F(G)) les plus faibles de NiAI en utilisant la diffraction ~i haute pr6cision d'61ectrons de 
haute 6nergie. Nous pr6sentons ici une comparaison syst6matique de leurs r6sultats avec une th6orie 
des bandes ab initio, dans le contexte du formalisme de la densit6 locale. Nous trouvons un tr6s bon 
accord pour trois des quatre facteurs de structure, tandis que notre valeur de F(200) est d'environ 
0,4 e/maille plus 61ev6e. Nous avons essay6 d'attribuer cette diff6rence fi des incertitudes dans le traitement 
des facteurs de temp6rature dans les compos6s polyatomiques. En fait, quand nous comparons fi 
l'exp6rience les calculs effectu6s pour le silicium cristallin monoatomique, dans lesquels le terme du facteur 
de temp6rature n'intervient pas, nous trouvons que la th6orie reproduit les facteurs de structure mesur6s 
avec une tr6s bonne pr6cision (environ 0,02 e/atome). Nous avons 6galement examin6 l'effet de 
composantes de Fourier 61ev6es, qui ne sont g6n6ralement pas faciles fi mesurer, sur les cartes de la 
distribution de la densit6 61ectronique de d6formation (DDED) de NiAI. La troncature des s&ies de 
Fourier apr6s quatre facteurs de structure ne rend pas compte des lobes directionnels de charges du type 
d pr6s des sites de Ni. Nous montrons que les DDED statique et dynamique donnent une image similaire 
de la liaison. 

Zusammenfassung--Fox und Tabbernor [Acta metall, mater. 39, 669 (1991)] haben vor kurzem die vier 
kleinsten Strukturfaktoren F(G) von NiA1 mit hochgenauer Beugung hochenergetischer Elektronen 
gemessen. Wir legen hier einen systematischen Vergleich dieser Ergebnisse mit ab initio-Bandstruktur- 
Rechnungen im Rahmen der lokalen-Dichte-Formulierung vort. Mit drei der vier Strukturfaktoren ergibt 
sich sehr gute Obereinstimmung; unsert Wert fiir F(200) ist allerdings ~ 0,4 e/Zelle gr6Ber. Wir schreiben 
diese Differenz versuchsweise Unsicherheiten in der Behandlung der Temperaturfaktoren in nicht-mono- 
atomaren Substanzen zu. Vergleichen wir unsere Berechnungen ffir monoatomares Silizium (bei dem die 
Temperaturfaktoren sich herausheben) mit dem Experiment, dann zeigt sich nfimlich, dab die Theorie 
die gemessenen Strukturfaktoren bis auf kleinste Abweichungen v o n ~  0,02 e/Zelle beschreibt. AuBerdem 
wird der EinfluB hoher Fourierkomponenten untersucht, die augenblicklich Messungen auf den Karten 
der Verformung der Elektronendichteverteilung von NiA1 (DEDD) nicht zugfinglich sind. Wir finden, dab 
das Abbrechen der Fourierserie nach vier Strukturfaktoren die gerichteten d-artigen Verteilungen in der 
Nfihe der Ni-Pl/itze verfehlt. Wir zeigen, dab statische und dynamische DEDDS ein ~ihnliches Bild der 
Bindung entwerfen. 

1. INTRODUCTION 

The recent deve lopment  of  X-ray Pendel l6sung [1, 2], 
h igh energy electron diffraction [3, 4], G a m m a  ray 
diffraction [5, 6], and  accurate  X-ray diffraction [7] 
techniques  enable  now measurements  of  low-angle 
crystall ine s t ructure  factors with an  unprecedented  
accuracy approach ing  in some cases [8] 0.1%. Recent  
appl icat ions  to compounds ,  including the CsCl-type 
NiAI intermetal l ic  [9] and  the zinc blende semi- 

conduc to r  G a A s  [10] produced,  for the first time, a 
detailed picture of  the charge density de format ion  
maps  in these systems. At  the same time, these results 
[10] raised interest ing quest ions [11] on  the sufficiency 
of  the first few (low-angle) s t ructure  factors  in captur-  
ing the global charge redis t r ibut ion upon  the for- 
ma t ion  of  the solid f rom spherical atoms.  In this 
work we compare  the charge density in NiA! as 
extracted from the recent critical voltage electron 
diffraction measurements  of  Fox and  T a b b e r n o r  [9] 
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with the results of the self-consistent ab initio 
calculations based on the local density formalism 
[12, 13]. We focus on the following questions: 

(i) How well can ab initio band theory 
describe the first few (low-angle) structure 
factors amenable to such experiments? 

(ii) Can higher-index structure factors 
(that are difficult to measure by electron 
diffraction [9]) be neglected for the 
purpose of assessing the overall charge 
redistribution in the solid relative to free 
atoms? 

(iii) Is the overall charge redistribution 
affected by the inclusion of the 
Debye-Waller temperature factors (that 
are difficult to calculate by ab initio 
methods)? 

(iv) Can the charge redistribution in NiAI be 
characterized as predominantly "ionic", 
"covalent" or "metallic"? 

Questions (i)-(iii) were addressed previously [10, 11] 
for GaAs in the context of the electron diffraction 
measurements of Zuo et al. We extend here our 
previous study to an intermetallic system. 

2. CALCULATED AND MEASURED QUANTITIES 

2.1. Total charge densities 

We start by a summary of the measured (expt) 
[equations (1)-(5)] and calculated (calc.) [equations 
(6)-(8)] quantities that will be compared below. 

Using the "rigid atom approximation" [14], the 
dynamic structure factors for momentum G = 2~z/a 
(h, k, l) are 

M 

F~xpt(G ) = ~ p~(G)e~C"~T~(G) (1) 

where p~(G) is the Gth Fourier component of the 
charge density contributed by sublattice ~ (whose 
position vector is z~) in the unit cell, and T~(G) is the 

's site temperature coefficient 

T,(G) = e -c'p' .G (2) 

where /~, is the anisotropic temperature coefficient 
tensor at site ~t, often approximated by the 
Debye-Waller factor B,/167t z. Note that in this 
universally used approximation the existence of 
vibrational degrees of freedom is represented by the 
partitioning of the continuous three-dimensional 
charge density into sub-regions associated with ident- 
ifiable atomic scattering centers ~. The dynamic real- 
space charge density can be synthesized from the 
Fourier components (1) by summing them up to a 
maximum momentum Gm~ ~ available from diffraction 
experiments. This gives 

GmJx 

rewt(r, Gmax)= E F.,.t(G) e~'' (3) 
G 

where the result naturally depends on the highest 
momentum (Gin. x) included in this sum (as we will see 
below, current high-precision experiments are 
limited to rather small cut-off values Gmax). If the 
temperature factor can be deconvoluted from 
equation (1), one can construct the static (purely 
electronic) structure factor 

M 

pewt(G) = ~ p,(G)e 'C''' (4) 
~ t = l  

from which one can synthesize, in analogy with (3), 
the static electronic density 

Gmax 

Pexpt(r, Gmax)= ~, pewt(G)C C'' (5) 
{3 

(Note that we consistently denote dynamic and static 
quantities as F and p, respectively.) 

While diffraction experiments produce discrete 
Fourier components of the charge density, electronic 
structure calculations for periodic crystals can 
produce the total static density Pcalc(r) directly in 
coordinate space. This is obtained by summing the 
wavefunctions squares over all occupied band indices 
i and Brillouin zone wavevectors k enclosed within 
the Fermi energy EF 

CF 

Pc.It (r) = ~ N, (k )~*  (k. r)~O,(k, r) (6) 
i,k 

where Ni(k) is the occupation numbers of band i. The 
Fourier components of the static density can then be 
computed yielding 

if pcalc(G) = ~ Pcalc(r)e -iG't dr (7) 

where fl is the unit cell volume. Since only limited G 
values are accessible experimentally, to compare with 
experiment we then synthesize a truncated static 
density by filtering out all Fourier components above 
a given momentum of Gma x 

Gmax 

pcalc(r, Gmax) = ~ pcalc(G)C c'r. (8) 
G 

If the temperature factors can be deconvoluted from 
the measured structure factors, the resulting static 
density P,wt(r, Gmax) of equation (5) can be compared 
with the calculated quantity p ~  (r, Gma ×) of equation 
(8). This was accomplished, for example for the 
monoatomic Si crystal [15]. Failing to do so requires 
the introduction of temperature factors into the 
calculated charge density. The obvious difficulty 
here is that while the measured structure factors 
represented by the "rigid atom approximation" [14] 
[equation (1)] naturally represent linear contributions 
from atomiclike scattering centers ~t, there is 
no unique way of partitioning the calculated three- 
dimensional density Pcalc ( r )  into atomiclike quantities. 
Consequently, even if the temperature coefficients 
{T~ } are known, it is not obvious how to associate 
them with identifiable "scattering centers" ~ in the 
calculated density for systems having more than one 
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ct (compounds). A common simplication [16] is to 
define some sort of atom-averaged temperature factor 
(T(G))  that multiplies p(G). While this procedure 
seems reasonable for compounds whose constituent 
bonded atoms have similar vibrational properties 
(hence, similar Debye-Waller factors), it is not 
obvious how accurate it is otherwise. Given that any 
partitioning of Pcalc(r) into atomiclike quantities is 
arbitrary, we will choose a physically appealing (but 
non-unique) scheme: having calculated a unique and 
continuous density Pcal¢(r), we divide space into 
(i) "muffin-tin" (MT) spheres around each atom ct 
and (ii) the remaining, interstitial volume between 
them. Denoting as p~r(G) the Fourier transform of 
the charge density in the ct's muffin-tin sphere (minus 
the tails of the interstitial density extrapolate into 
these spheres) and by Pl (G) the Fourier transform of 
the interstitial (I) charge density (extended over whole 
space), we have the calculated dynamic structure 
factor 

F~.l~ (G) = Pl (G)e- (B)G2/I 6~2 

M 
+ ~ p~T(G)e-B~G:/'6"2 (9) 

a=l  

where B~ are the measured Debye-Waller factors 
and ( B )  is their atomic average. Here pMr (G) is 
calculated by taking an integral over 0 ~< r ~< RM~ 
while p~ (G) is calculated as an integral over all space. 
(These forms assure that only smooth functions 
are Fourier transformed, thus avoiding numerical 
high-frequency noise.) The corresponding calculated 
dynamic charge density is then 

Grnax 
fcalc(r  , a m a x ) :  ~ Fcalc(G)e iG'r (10)  

G 

which can be compared with Fexpt(r, Gmax) of 
equation (3). 

2.2. Deformation electron density distribution 

As has been recognized many times previously (e.g. 
see Ref. [9]), the Fourier series of the total density of 
equations (3), (5) and (8) converges very slowly since 
the sharp features of p(r) associated with the rapid 
variation of the wavefunctions near the core give rise 
to many short-wavelength Fourier components. To 
overcome this difficulty one is then attempting 
to Fourier transform the difference between p(r) and 
some model density Pmodel(r) chosen such that 
the high Fourier components of the latter will 
approximately match those of p(r). One is then 
focusing on the static deformation density distribution 

Ap (r) = p (r) - Pmodel (r) (1 1) 

or on its Fourier truncated form 

Gmax 
Ap(r, Gmax) = E [p(G) - Pmodel(G)le IC''. (12) 

c 

The dynamic counterpart of equation (12) is then 
AF(r, Gmax). The choices of Pmodel is obviously 

nonunique; a standard choice is to represent it as a 
superposition (sup) of spherically-symmetric neutral 
atomic ground state charge densities n~(r), yielding 
the static result 

M 
p~p(G) = ~ n~(G)e ~C'~ (13) 

~t=l 

and the dynamic result 
M 

Fsup(G ) = ~ n~(G)e~"~T~(G) (14) 
~=1 

where n~(G) is the Gth Fourier component of the free 
atom density n~(r) [not to be confused with the 
crystalline quantity p~(G) of equation (l)]. A variety 
of choices exist for n~(r), e.g. Hartree-Fock results 
[9,17], local density data [18], configuration- 
interaction, etc. The corresponding deformation 
electron density distribution (DEDD) is 

Gmax 
Apsup(r, G,,ax) = ~ [p(G) - p~o(G)]e ~c'. (15) 

c 

Including the temperature factors then yields 
Gmax 

AF~up(r, Gmax) = E [F(G) - F~p(G)le '~''. (16) 
c 

An alternative choice [19] for the model density 
Pmod¢~(r) is the charge density of the solid elemental 
constituents. For example, Fox and Tabbernor [9] 
interpolated the measured structure factors of solid 
f.c.c. A1 and Ni, comparing them to those of NiA1. 
This procedure is complicated by the fact that the 
solid elemental constituents (AI and Ni) have 
the f.c.c, structure while NiAI is a b.c.c, subgroup. 
Furthermore, the molar volumes ~1 of the 
constituents and the compound are very different. In 
what follows we will calculate the charge densities of 
Ni and AI in the hypothetical b.c.c, structure at the 
molar volume of NiAI. We will discuss the density 
deformation taken with respect to a superposition of 
free atoms [equation (15)] as well as that obtained 
with respect to the hypothetical b.c.c, elemental solids 

Pmodel (r)  = Pb.c.c. (r).  (17)  

2.3. Purposes of  the present study 

The definitions introduced in Section 2.1 and 2.2 
permit a clear statement of the issues we address in 
this paper [alluded to in the introduction, see items 
(i)-(iv) there]: 

(i) How well do the dynamic structure factors 
F ~ ( G )  [equation (9)] calculated from ab initio band 
theory reproduce the measured quantities F~xp,(G) of 
equation (1)? 

(ii) Given that Fox and Tabbernor were able to 
measure only the lowest four structure factors of 
NiA1 [i.e. up to Gmax = 2n/a(2,0,0)], one wonders 
whether the corresponding truncated deformation 
electron density distribution map Ap~p(r, Gmax) 
[equation (12)] suffices to capture the general 
features obtained with a higher cut-off momentum. 
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This question will be addressed by contrasting the 
calculated Apsup (r, Gma x) for increasing values of Gmax. 
Note that in the case of GaAs, the five available [10] 
experimental structure factors, (111), (200), (220), 
(400) and (333) were previously shown [11] to be 
insufficient to capture the important details of 
APsup(r). 

(iii) It has previously been suggested [20] that even 
when the high-index Fourier components of the static 
deformation density [ p ( G ) -  psup(G)] of equations 
(11) and (12) are non negligible, the temperature 
factors e -BG2/~6~2 will damp them. Consequently, the 
dynamic difference [F(G) - F~p(G)] of equation (16) 
may be negligible for high G's, hence they can safely 
omitted from the DEDD. To test this practice, we will 
compare the dynamic AFsup(r , Gmax) with the static 
Apsup (r, Grnax) density deformation maps. 

(iv) It has been previously shown [9] that in NiAI 
the momenta G = 2~/a(1, 0, 0) and G = 2~/a(1, 1, 1) 
contribute to the deformation density AF~up(r) 
of equations (15) and (16) an "ionic" component 
(depletion of  electron density near the A1 site and 
accumulation on the Ni site), while the 
momentum component G = 2~z /a(2, O, O) contributes 
a "covalent" charge (depletion of electron density 
from both the AI and Ni sites, and accumulation of 
density on the Ni-A1 bond). One then wonders 
whether the total deformation density Apsup(r ) or 
AF~p(r) (rather than specific G components) can be 
characterized as "ionic" or "covalent". 

In addition to the issues, we will investigate 
whether alternative definitions of model density 
Pmodel(r) of equation (11) [e.g. using for it the 
density of  solid elemental constituents, equation (17)] 
leads to different conclusions concerning charge 
redistribution. 

3. DETAILS OF CALCULATION 

The single-particle wavefunctions ~O(k,r) of 
equation (6) are obtained by self-consistently solving 
the effective Schr6dinger equation for a periodic NiA1 
solid in the CsC1 structure 

{ -  ½ V ~ + v,-~o~(r) + v~,c + Z~,x 

"b V~__e.CR}~///(k, r) = Eg(k)~O,(k, r) (18) 

where V~-io~ is the electron-ion coulomb attraction, 
V~.c is the interelectronic (mean-field) Coulomb 
repulsion, Ve_~, x is the average exchange interaction, 
V~.CR is the average correlation interaction and Ei(k) 
are the band energies of band i at momentum k. We 
use the local density description [12, 13] of  V~. x 
and V~.CR. The same conceptual framework was 
recently used to calculate electronic, magnetic 
and cohesive properties [21] of NiAI, energies of 
anti-phase boundaries in this material [22], its optical 
[23] and the photoemission properties [24], as well as 
thermodynamic and structural properties [25]. In 
this study we use the correlation functional V~,CR of 

Ceperley and Alder [26], as parameterized by Perdew 
and Zunger [27]. Equation (18) was solved self- 
consistently by the linearized augmented plane 
wave (LAPW) method [28], in which: (i) core and 
valence electrons are included simultaneously (i.e no 
pseudopotential approximation is used), (ii) no 
"shape approximations" to the potential or charge 
density are invoked (we expand the density and 
potential inside the muffin-tin spheres by lattice 
harmonics up to angular momentum of l = 12, while 
the interstitial region is described by a plane wave 
expansion with kinetic energy cutoff of 61.2 Ry), 
(iii) the electron-electron interactions are treated 
relativistically (using mass-velocity and Darwin 
terms [28]), except for spin-orbit effects which are 
neglected, and (iv) a large basis set consisting of both 
real-space orbitals (inside the muffin-tin regions) and 
plane waves is used. The total number of basis 
functions is ~ 110 per unit cell of 2 atoms. This basis 
set was found [25] to be sufficient to obtain structural 
energies to within 10meV/atom, and to describe 
accurately the temperature-composition phase 
diagram of NiAI. We find that increasing the basis set 
to ~ 500 orbitals per unit cell and increasing the 
kinetic energy cut-off of the interstitial plane wave 
representation up to 148.2 Ry changes the Fourier 
components p(100), p(ll0), p011)  and p(200) by 
less than 0.1%. Our main approximation here is 
hence the use of the local density description of 
exchange and correlation [13]. 

We have used the room-temperature cubic lattice 
constant a = 2.8864 ~ of fl' NiA1 [29]. The Brillouin 
zone sums of equation (6) were performed using 
20k-vectors in the 1/48 irreducible section of the 
Brillouin zone. Extending this to 120k-vectors 
changes p(200) by less than 0.1%. To calculate the 
dynamic structure factors in equation (9) we use the 
Debye-Waller factors BA~ = 0.470 and BN~ = 0.510 of 
Georgopoulos and Cohen [30], used also by Fox and 
Tabbernor [9]. The muffin-tin radii used in this study 
were RAI = RNi = 1.2171 A_; the fraction of the unit 
cell volume spanned by the spheres is 62.8%. 

The atomic charge densities n,(r)  for ~t = A1, Ni 
were calculated from an equation analogous to 
equation (18) but with free-atom, rather than 
periodic boundary conditions and a spin-unrestricted 
Hamiltonian (since the atoms are "open-shell"). This 
Schr6dinger equation was integrated numerically 
with high precision, so no basis functions were 
needed. In calculating the atomic densities n, of 
equation (13) we used the ground state configurations 
[Ne]2s22p 1 for Al and [Ar]3d 8 4s 2 for Ni. 

4. RESULTS 

4.1. General features o f  the calculated static electron 
density 

We first illustrate the need to cancel the high 
Fourier components of p (r) to obtain a meaningful 
Fourier representation. The solid line in Fig. l(a) 
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Fig. 1. (a) Static total electron density p (r) along the nearest 
neighbor <111 > direction. Solid line is the direct LAPW 
result [equation (6)] while the dashed line is the finite Fourier 
representation of the total electron density pca~¢(r, Gb~g ) 
[equation (8)] using a very large cut-off Gbig = 2n/a(7, 6, 5), 
i.e. 163 stars. Clearly, even when that many stars are 
included in a Fourier series, it still exhibits significant 
oscillations in the bonding region missing in the "exact" 
density. (b) Analogous results for the static density defor- 
mation Aps=p(r) [from equation (15)], showing that this 
quantity is adequately described by a Fourier representation 
outside the core regions [even though we used a smaller 

cut-off Ghig = 2r~/a(6, 3, 1)]. 

gives the directly calculated (Gma x ~ oo) total electron 
density p¢~=¢ (r) of  equation (6). It is compared  with the 
quanti ty pcalc(r, Gbig ) of  equation (8) (dashed line 
in Fig. 1) in which a very large cut-off 
Gbig = 2~z/a(7, 6, 5) [equivalent to a total of 163 stars 
or 4944 individual plane waves, excluding the (0, 0, 0) 
star] was used. Clearly, even when as many as the 
first 163 stars of  G are included in a Fourier  

2159 

representation the total density p [Fig. l(a)] still 
exhibits significant oscillations in the bonding region. 
On the other hand, the density difference Apsup (r, Gbig) 
(equation (12) and Fig. l(b)] obtained from a Fourier  
series using Gbig=2rr/a(6,3, 1) closely mimics the 
directly calculated Apsup(r) in the bonding regions [of 
course, Apsup(r, Gb~g) still fails to reproduce the nodal 
structure near the core]. Note  that the maximum 
magnitude of the static deformation density Apsup(r ) 
outside the core is only ~ 0.1 e /~  3, while the total 
density p(r)  has a magnitude of  ~ 10 eJk 3 at this 
point. Clearly, the bonding charge is tiny. 

Figure 2 shows as solid line the calculated static 
density deformation Apsup(r ) calculated without any 
Fourier  truncation, comparing it to Apsup(r, Gb~,) of 
equation (12), in which a large but finite cut-off 
Gbig = 2zr/a(6, 3, 1) (54 stars) was used. We see again 
that  while the Fourier  representation rounds off the 
nodal  structure in the core region, it does capture 
accurately the structure outside the core ( ~  0.2 
away from the center of AI and Ni) in all bonding 
directions. Figure 3 gives the same informat ion as 
Fig. 2 but as a contour  plot in the (110) plane: the 
untruncated density deformat ion Aps~p(r ) [Fig. 3(a)] 
is seen to be similar to its Fourier  representation 
Ap~p(r, Gb~g) in Fig. 3(b). Our deformat ion density is 
similar to the somewhat noisier previous calculation 
by Fu and Yoo [22(b)]. 

It is interesting to observe the general features of  
the calculated static density deformat ion Apsop(r): if 
one ignores the core regions defined above (which we 
will discuss below), one finds an accumulation of 
density on the Ni sites with depletion on the AI sites 
[Fig. l(b) and Fig. 2]. The density deformat ion on the 
nearest neighbor bond [Fig. l(b)] shows a node near 
the center of the bond, while that  on the next 
nearest neighbors (Fig. 2) is flat. Figure 3 shows 
as shaded regions the directional character  of 

t t 0.2  (o)  . . . .  exact" ( c )  

0 111- . . . . . . . . .  Fou r i e r  ~ 
• , ° , • , 

~- 0 . 2  

0 .1  

0 

- 0 . 1  

- 0 . 2  

AI AI" 

( d /  ' ' ' 

AI Al  

I I I I I I I I I I I I 
1 2 3 4 1 2 

Distance along <110> (~) Distance along <001> (]~) 

Fig. 2. Line plots of the static deformation density Ap,uv (r, Gbig) [equation (15)]. Solid line show the results 
without Fourier truncation (Gmar-,oo), while dashed lines show the results of a Fourier synthesis with 

Gbig = 2n/a(6, 3, 1) or 54 stars. 
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J 

'i. 

,) 

) 

Fig. 3. Contour plots of the static deformation density 
Apsup(r, Gbig) [equation (15)]. (a) Without Fourier trunca- 
tion; (b) with Fourier truncation at Gbis =2n/a(6, 3, 1). 
Solid (dashed) lines represent positive (negative) values of 
Ap. The thick solid lines next to a dashed line gives the 
Ap = 0 contour. Contour spacing is 0.01 e//~ 3. The shaded 
areas denote the directional covalent charge accumulation 

near Ni pointing towards the AI sites. 

the charge accumulation near Ni, discussed further 
below. 

4.2. Compar&on o f  experimental and calculated 
dynamic structure factors 

Table 1 shows a rather good agreement 
(within ~ 0.6% or 80 me/cell) between the calculated 
Fcalc(G ) and measured Foxpt(G) dynamic structure 
factors for the lowest three (100), (110) and (111) G 
values, while for the (200) beam the calculated value 
is 1.7% or ~ 400 me/cell larger than the measured 

value. Similar discrepancies were recently noted for 
GaAs [10]. 

A number of reasons could contribute to this 
discrepancy: 

(1) Uncertainties in the Debye-Waller factors 
used in our calculations [equation (9)]. 

(2) Systematic theoretical errors in the static 
density. 

(3) Systematic errors in the data analysis, 
including anharmonic factors, anomalous 
dispersion and the underlying association 
of the temperature factors T~(G) with 
particular scattering sites [the "rigid atom 
approximation" of equation (1)]. 

To investigate (1) above we examine the sensitivity of 
Fcalc(G ) to the assumed Debye-Waller factors. Indeed 
the Debye-Waller factors available in literature for 
NiAl span a considerable range, i.e. for Ni 0.34 [31], 
0.548 [32], 0.51 [30], 0.55 [33] and for Al 0.43 [31], 
1.145 [32] and 0.47 [30], 0.44 [33]. This can create an 
uncertainty in Fcalc(G ). For example, changing the 
values BNi = 0.510 and BAI = 0.470 of Georgopoulos 
and Cohen [30] used here to the extreme literature 
[32] values of BAI = 1.145 and BNi=0.548 lowers 
our calculated Fcalc(200 ) from 22.99 to 21.74, i.e. 
even below the data of Fox and Tabbernor [9]. 
Although the values of Georgopoulos and Cohen 
[30] are the most accurate, this demonstrates the 
extreme sensitivity of F~al~(G ) to the values of B~ 
used. 

In view of this possible uncertainty, it is interesting 
to treat the Debye-Waller factors BNi and Bgl (and 
their average) as adjustable parameters and least 
square fit our calculated Fca~ (G) of equation (9) to the 
measured Fexpt(G) values 

(2oo1 I f ~lpI(G)c-(B)62/16~2"-[-~IPMT(G)e-B~G2/16n2 } 

- -Fexp t (G)  2 = Min. (19) 

Table 1. Structure factors for NiAI (in units of e/cell), showing the results for the solid and for a superposition of atomic form factors, see 
text. The experimental data is from Fox and Tabbernor [9]. The superposition model F, op(G ) is shown both for the local density 

approximation (LDA) and for Hartree-Fock (HF) taken from Table 1 of Fox and Tabbernor [9] 

Dynamic, solid Dynamic, atoms Static, solid Static, atoms 
F.~=(G) F,,,:pt (G) F, ur, (G) Fsu p (G) P~l¢ (G) p~p (G) hkl [equation (9)] [equation (1)] LDA [equation (14)] H F  [equation (7)] [equation (13)] 

100 13.45 13.53 13.23 13.28 13.67 13.44 
110 28.07 28.08 28.12 28.25 28.91 28.97 
111 10.23 10.30 10.22 10.32 10.74 10.73 
200 22.99 22.60 23.00 23.12 24.40 24.42 
210 8.27 8.31 8.34 8.97 9.01 
211 19.50 19.48 19.55 21.32 21.31 
220 16.83 16.82 16.86 18.96 18.96 
300 6.06 6.10 6.06 7.02 7.06 
221 6.07 6.10 6.06 7.03 7.06 
310 14.72 14.74 14.75 17.10 17.11 
311 5.39 5.42 5.38 6.45 6.48 
222 13.06 13.07 13.07 15.62 15.63 
320 4.88 4.90 4.86 6.03 6.05 
321 11.70 11.71 11.70 14.42 14.44 
400 10.57 10.59 10.57 13.43 13.45 
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Here, BN~ and BAI are adjustable parameters while p~ 
and pMV are fixed by theory (Table 1). This yields 
rather reasonable values of BN~ = 0.56 and BA~ = 0.71. 
The fitted values are 

F~t(100 ) = 13.47, F~t(110) = 27.90, 

F~t( l l l  ) = 10.32, F~,(200) = 22.71 (20) 

while the measured data are 

Fexpt(100 ) = 13.53, F~xpt(110) = 28.08, 

F~xpt(11) = 10.30, FCxpt(200 ) = 22.60. (21) 

The root mean square (rms) deviation is 0.11 e/cell 
while the rms deviation using B~ of Georgopoulos 
and Cohen [30] is 0.20e/cell. This scatter in the 
Debye-Waller factors has only a minimal effect on 
our discussion below (Section 5.1) regarding the 
bonding properties of NiAI. This is so since in 
obtaining F~I~(G ) and F~up(G ) [equation (19)], the 
Debye-Waller factors are applied both to P~aI¢(G) 
[equation (9)] and to ps,p(G). The change in B, values 
will, however, drastically influence the discussion of 
Fox and Tabbernor since there the correction was 
applied only to find F~up(G). This point can be 
illustrated as follows: using our least square fitted 
Debye-Waller factors, we find that the dynamic 

superposition atomic structure factors (using 
Hartree-Fock data [17] as an example) are 
F~up(100)= 13.30 and Fsup(200)=22.84. Hence the 
different IFexpt(G)-Fsup(G)l for the "ionic" (100) 
component (0.23) and the "covalent" (200) 
component (0.24) are comparable. This is a rather 
different situation than what Fox and Tabbernor 
found: their difference for (200) was significantly 
larger (0.52) than the difference for (100) (0.25). This 
led them to conclude that the covalent (200) 
component of the DEDD overwhelms that of the 
ionic (100) piece. 

The second possible source of error can be 
theoretical errors in calculating the static structure 
factors Pcalc(G). To test this we have examined the 
extent to which ab initio local density theory used 
here can reproduce experimental structure factors 
when the comparison is not clouded by uncertainties 
in the treatment of the temperature factors. We 
consider the monoatomic crystal Si. Here there is a 
single, symmetry-unique species ~ in the unit cell, 
so the temperature factor T~(G)= T(G) enters 
equations (1), (4) and (9) as a simple multiplicative 
factor of the total Fourier component p(G). Table 2 
compares the dynamic Fcale(G), Fexpt(G ) and static 
PcaJc(G) results for Si. F~xpt(G) is taken from 
Cummings and Hart [8]; this set represents the most 

Table 2. Structure factors for Si in units e/cell. The difference 6F  t is Fc~¢(G) - Fexpt(G) (in units of  me/cell), while 
6F: = F~up(G ) - Fexpt(G ). The experimental  data  is f rom C u m m i n g s  and H a r t  [8] except when otherwise noted. The 

Debye Waller factor is B = 0.4632 (Ref. [36]). The root  mean  square deviation for fiF I is 10 me/cell 

Dynamic ,  solid Dynamic ,  a tom Static, solid Static, a tom 
F~l,: (G) Fc~pt (G) Fs~ p (G) Pcat¢ (G) Ps~p (G) 

hkl [equation (9)] [equation (1)] 6F  t [equation (14)] c~F 2 [equation (7)] [equation (13)] 

111 10.600 10.6025 - 3 10.455 - 148 10.726 10.579 
220 8.397 8.3881 9 8.450 62 8.665 8.720 
311 7.694 7.6814 13 7.814 133 8.033 8.159 
222 0.161 0.1820" - 21 0.000 182 0.168 0.000 
400 6.998 6.9958 2 7.033 37 7.452 7.489 
331 6.706 6.7264 - 2 0  6.646 80 %225 7.161 
422 6.094 6.1123 - 18 6.077 35 6.696 6.677 
333 5.760 5.7806 - 2 1  5.769 12 6.404 6.415 
511 5.781 5.7906 - 10 5.769 - 22 6.428 6.415 
440 5.318 5.3324 - 14 5.302 30 6.030 6.012 
531 5.054 5.0655 b - 10 5.046 - 20 5.799 5.790 
442 0.008 0.000 0.009 0.000 
620 4.662 4.6707 b - 9  4.654 17 5.455 5.446 
533 4.451 4.4552 b - 4  4.438 17 5.269 5.255 
444 4.115 4.1239 - 9  4.107 17 4.968 4.959 
551 3.931 3.9349 - 4  3.925 10 4.802 4.795 
711 3.929 3.9282 b 1 3.925 - 3 4.800 4.795 
642 3.649 3.6558 - 7 3.644 12 4.546 4.541 
553 3.494 3.5055 b --12 3.489 - 17 4.404 4.399 
731 3.493 3.4919 b 1 3.489 3 4.403 4.399 
800 3.253 3.2485 5 3.251 3 4.182 4.179 
733 3.122 3.1270 b - 5 3.119 - 8 4.062 4.057 
660 2.917 2.9143 3 2.915 1 3.870 3.867 
822 2.917 2.9111 b 6 2.915 4 3.870 3.867 
555 2.802 2.8009 1 2.802 1 3.761 3.76I 
751 2.804 2.8006 b 3 2.802 1 3.764 3.761 
840 2.628 2.6200 b 8 2.627 7 3.598 3.596 
753 2.529 2.5274 b 2 2.529 2 3.503 3.504 
911 2.530 2.5325 b - 3  2.529 - 4  3.505 3.504 
664 2.380 2.3677 b 12 2.378 10 3.362 3.360 
844 2.165 2.1506 14 2.163 12 3.155 3.154 
880 1.543 1.5325 11 1.542 10 2.551 2.549 

aThe " fo rb idden"  (222) reflection is taken f rom Alkire et al. [34]. 
bData f rom Saka and Kato  [30] f rom which we subtracted the contr ibutions 
scattering [8]. 

of  anomalous  dispersion and nuclear 
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accurate measurements of crystalline structure 
factors to date. We also include in this table the 
"forbidden" (222) reflection measured by Alkire et al. 
[34] and the structure factors of Saka and Kato [35], 
from which we subtracted the contributions of 
anomalous dispersion and nuclear scattering [8]. The 
calculated values for Si were obtained in a precisely 
parallel way as those of NiAI, solving equation (18) 
using the LAPW method with the same 
numerical approximations. The Debye-Waller factor 
B=0 .4632  is used [36]. We see that theory 
reproduces experiment to within 20 me/cell for all 
measured reflections up to (880), i.e. 4-20 times better 
than in NiAI. 

It hence appears that the larger discrepancies in 
NiAI (Table 1) could represent larger uncertainties in 
analyzing Fexpt (G) from the measurements. This point 
requires further investigation. 

4.3. Sufficiency of  low-angle structure factors to 
describe the overall deformation electron density 
distribution 

We next examine whether the four lowest structure 
factors of NiAI (Table 1) amenable to high energy 
electron diffraction are sufficient to describe the main 
features of Apsup(r ). Since our calculation treats high 
and low G values equally, and since our results 
for low G are in reasonable accord with experiment, 
we examine this issue using in Apsup(r) the 
calculated Fourier components Pcalc(G). Figure 4(a) 
shows the calculated static deformation density 
Apsup(r, Gin,x) of Table 1 including only G = (100), 
(110), (111) and (200)just as Fox and Tabbernor did, 
while Fig. 4(b) shows Ap~o~ t contributed by the 
remaining G components, i.e. those above (200) [up to 
2n/a(6, 3, 1)]. Figure 4(c) then shows the sum of 
these contribution, i.e. the total calculated static 
deformation densities Ap~( r ,  Gbig ). Solid lines 
represent positive Ap values (charge accumulation 
relative to the superposition model), while dashed 
lines represent negative Ap values. The thick solid 
lines next to a dashed line (label as "0") gives the 
Ap = 0 contour. We see that Ap~o~ t (r) has qualitatively 
different features than the truncated Ap~p(r, Gm~). 
The former shows accumulation of charge on A1 and 
"bonding" lobes near Ni pointing towards the Al 
site. Note that the magnitude of these effects is small 
near A1, so the truncated Ap~p(r, Gmax) [Fig. 4(a)] 
resembles closely the full Ap~up(r) of Fig. 4(c) in this 
region. However, the new features of Apr~st near Ni 
are large, so Ap~up(r, Gm~x) of Fig. 4(a) misses them. 
A similar situation was found previously [l l] in 
the covalently bonded GaAs crystal: limiting G to 
(111), (200), (400) and (333) reflections available to 
Zuo et al. [10] missed [l l]  significant features in 
Ap~,p(r). Here too, truncation of the Fourier series for 
Ap~up in NiA1 at Gm,~ ~< (200) [Fig. 4(a)] misses com- 
pletely the important directional covalent charge 
accumulation near Ni, shown in Fig. 3 as shaded 
areas. 

BONDING CHARGE DENSITY IN fl'YiA1 

[ $tatic Ap(r) 1 I Dynamic AF(r) [ 
(ioo)+(no)+(11 i)+(2oo) 

• , N ~ ~ I ( a )  ,,;'..-.'.-,. 

Sum of  h igher G's  

Sum of  al l  G 's  

Fig. 4. Contour plots of the static and dynamic deformation 
density in the [110].plane of NiAI. Adjacent contours are 

3 separated by 0.01 e/A-~; the zero contours are the thick solid 
contours labeled "0". (a) static Ap, including only (100), 
(110), (111) and (200). (b) static Ap including terms above 
(200) up to Gbig = 2~/a(6, 3, 1). (c) static Ap giving the sum 
of (a) + (b). Panels (c), (d) and (e) are the dynamic counter- 

part of (a), (b) and (c), respectively. 

4.4. Static vs dynamic deformation electron density 
distributions 

As discussed above, the immediate product of 
electron structure theory is the static density p(r), 
while that of the diffraction experiment is the dynamic 
density F(r); addition of temperature factors to the 
theory, or their deconvolution from experiment can 
be done only under some model assumptions. It is 
therefore of interest to compare the global features 
obtained in a static deformation density map 
Apsup(r, Gmax) and a dynamic map AFsup(r, Gma×). 
Considering the ratios Fcalc (G)/pcalc (G) and 
Fsup(G)/psup(G ) in Table 1, one notes only a very 
gradual attenuation of the structure factors due to the 
temperature effect: from 0.984 for G = (100) to 0.787 
for G = (400). It is hence not obvious that in general, 
temperature effects will "wash out" the contribution 
of the high-Fourier components to Apsup(r ). To test 
this, we show in Fig. 4(d-f) the dynamic counterpart 
AFsu p(r, Gma x) to the static deformation map 
Apsup (r, Gmax) shown in panels (a-c). We see that the 
static deformation map captures all features of the 
dynamic deformation map, in contrast with the 
expectation of Zuo et al. [20]. This means that (i) 
the current inability to measure accurately high-G 
structure factors poses a real limitation, as the Ap(r) 
map is affected by these terms [compare Fig. 4(d) with 
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(a) (100); u=lO -2 ~ (c) (111); u=lO -3  f" 

(b) (110); u=3xtO -3  (.-~(.-~ (d) (200); u=lO -3  ( 

Fig. 5. Contour plots of the static deformation density in the 
[110] plane from individual Fourier component. The label 
"u" shows the units. (a) (100), units of 10 -2 e/A 3, (b) (I I0), 
units of 3 × 10-3e//~ 3, (c) (111), units of  10-3e//~ 3, and 
(d) (200), units of l0 -3 e//~k 3. The (100) beam exhibits an 
"ionic" character, while (200) shows a "covalent" character. 
Note that the (100) component has the highest amplitude 

whereas (111) and (200) have the lowest. 

Fig. 4(f)]. (ii) For many practical purposes it suffices 
to calculate the static map Ap(r), as it captures most 
of the features of the dynamic map [compare Fig. 4(a) 
with 4(d) or 4(c) with 4(f)]. 

5. DISCUSSION OF THE GENERAL FEATURES 
OF BONDING CHARGE DENSITIES IN NiAI 

5.1. Comparison with superposition of  spherical 
neutral atoms 

Figure 5 depicts the individual contributions 
of each of four lowest structure factors to the 
deformation electron distribution density in NiAI. As 
noted previously [9], the (100) and (111) structure 
factors contribute an "ionic" character, i.e. a 

depletion of charge from the A1 region and a 
deposition of charge on the Ni region [and on the 
interstitial site for (111)]. In contrast, the (200) beam 
displays a "covalent" charge rearrangement high- 
lighted in Fig. 5(d) by the directional accumulation of 
charge along chains between the AI and Ni sites. In 
the interstitial region (Figs 2 and 3), one notes the 
charge density is rather small and uniform exhibiting 
a metallic feature. 

Note the scale of the various panels in Fig. 5: the 
calculated "ionic" contribution of the (100) beam has 
a considerably larger amplitude than the calculated 
"covalent" contribution of the (200) beam. Conse- 
quently, the total deformation density Apsup or AFs, p 
[Fig. 4(a,c,d,f)] is dominated by the "ionic" piece. We 
conclude that NiA1 exhibits both ionic and covalent 
(plus some metallic bonding components), but the 
"ionic" component dominates the total deformation 
densities measured with respect to a superposition of 
neutral atoms. 

5.2. Comparison with the density of  elemental solids 

While the choice Pmodel(r) = psuo(r) in equation (11) 
is the classic benchmark against which density 
deformation in the solid have been generally 
discussed, this choice is by no means unique. Much 
like the cohesive energy of a solid is taken with respect 
to the energy of the free atoms, while the formation 
energy is taken with respect to the energy of the solid 
elemental constituents, we can define a density 
redistribution with respect to the latter reference. 
Indeed, Fox and Tabbernor [9] found that Fexpt (G) of 
NiA1 is closer to the values obtained from 
interpolation of the data on solid Ni and A1 than it 
is to F~up(G). 

Figure 6(a) shows as a line plot the difference 
between the self-consistently calculated charge 
density of NiAI and that of the elemental solids b.c.c. 

i I i I i i I ' I i 

2 : ( a )  Apb~=(r) / - 

........... '', ; ',,, i ~L ',, ,\,\ 
• ,¢ -I -- ,' 

",, AI AI - 
- 2  "" . . . .  

, 0 1 4 .  , I , , J , t 
0 0 . 8  0 . 4  0 . 8  . 2  

Fig. 6. The difference Ap = pcal¢(r)- Pmodel(r) of equation (11) for two reference density: (a) Pmodel taken 
as the charge densities of b.c.c. AI or Ni at the molar volume of NiAI; (b) Pmoa¢l taken as a superposifion 

of ground state, spherical free atom densities. 
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Table 3. Angular decomposed charges inside muffin-tin spheres of 
radii RM. r = 1.2171 A.. The reference system is taken as elemental Ni 
and AI in the b.c.e, structure with the same molar volume as NiA1. 
ANi and AAI show the difference SORMr[pt(NiAI) -- pt(ct)] dr for ~t = Ni 

and AI. The charges outside RMX make up the difference 
s p d f Total 

Ni (CsCI) 0.435 0.438 8.397 0.010 9.281 
Ni (b.c.c.) 0.409 0.345 8.259 0.021 9.040 
ANi 0.026 0.093 0.138 --0.011 0.241 
A1 (CsCl) 0.617 0.763 0.173 0.025 1.584 
A1 (b.c.c.) 0.715 0.939 0.237 0.014 1.831 
AAI -0.098 -0.176 --0.064 0.011 -0.247 

Ni and A1 at the same molar volume as NiA1. Table 
3 shows a decomposition of this charge difference 
inside the muffin-tin spheres into angular momentum 
components. Figure 6(b) gives pcalc(r)-p~up(r) for 
comparison with Fig. 6(a). These results show the 
following trends: 

(i) Whether one uses as a reference density for 
pmoael(r) the solid state density of the constituents 
[Fig. 6(a)] or that of the superposed free atoms 
[Fig. 6(b)], Ni is seen to gain charge while A1 loses 
charge. 

(ii) Close to the muffin-tin sphere boundary, Apsup 
is smaller than Apb ..... indicating that an atomic 
reference model better describes there the crystalline 
charge density of NiA1. In contrast, closer to the 
atomic cores Apb ..... is smaller than Ap~up, indicating 
that a solid b.c.c, model better describes there the 
NiAl charge density. 

(iii) While both reference models show that overall, 

Ni gains charge and A1 loses charge, the Apsup model 
shows that within 0.2/~ [0.45/~l/Z in Fig. 6(b)] from 
the origin, Ni loses charge while Al gains charge. 

(iv) Inspection of the orbital character of the 
charge rearrangement relative to the solid elements 
(Table 3), shows that Ni in NiAl gains ~ 0.03, 0.10 
and 0.14 electrons in the s, p and d shells, respectively, 
while Al in NiAl loses - 0.10, - 0.18 and - 0.06 e in 
these respective shells. Hence, the main bonding 
effects are loss of Al sp charge ( -  0.27 e) and gain of 
Ni p d  charge (0.23 e). 

6. SUMMARY 

Our main findings can be summarized as follows 
(see list of questions articulated in the Introduction): 

1. If one uses the Debye-Waller factors used by 
Fox and Tabbernor, ab initio band theory describes 
the lowest three measured dynamic factors of NiAl 
with an accuracy of 80 me/cell while the calculated 
(200) term is ~400me/cell  higher than the 
value deduced from experiment. The scatter in the 
Debye-Waller factors leads to a higher uncertainty 
[ >  1000 me/cell in F(200)]. We tentatively attribute 
the differences between theory and experiment to 
imperfections in the data analysis, i.e. to the way that 
temperature factors are associated with individual 
scattering contributions from sites [p~(G) with T~(G) 
in equation (1)]. Treating the Debye-Waller factors 

as adjustable parameters yields Br~i=0.56 and 
BA~ = 0.71 (compare with BNi = 0.51 and B~a = 0.47 
believed to be the most accurate for NiAI used by Fox 
and Tabbernor). This reduces the error of the fitted 
theory vs experiment to 110 me/cell. The difference 
between experiment and theory regarding the (200) 
structure factor exists and awaits further study. In the 
case of a monoatomic crystal such as Si, where T~(G) 
is ~-independent, the agreement between theory and 
experiment is excellent: to within ~ 20 me/cell up to 
G = (880); see Table 2. 

2. Exclusion of the high index structure factors 
G > (200) from the Fourier series of Apsup does not 
significantly alter the qualitative picture of defor- 
mation electron density distribution near A1. In con- 
trast, important covalent features are missed by this 
truncated DEDD near the Ni sites. This is similar to 
the situation in the covalently bonded GaAs [11], 
where omission of F(G) for G=(311),  and (222) 
significantly changed the DEDD. 

3. The overall shape of the deformation electron 
density is similar in a static Apsup(r) and dynamic 
AFsup(r) maps, so either can be used to assess the 
DEDD. 

4. NiAI exhibit both "ionic" [(100) and (111)] and 
"covalent" [(200)] plus "metallic" contributions to 
bonding. The ionic piece is dominant in the total 
deformation electron density distribution. 

5. Comparing the crystalline density to the models 
of (a) superposition of neutral, spherical ground state 
atoms, and (b) solid elemental Ni and A1, we find that 
both exhibit gain of charge by Ni and loss by AI. 
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