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A new approach to the fully self-consistent solution of the one-particle equations in a periodic solid within the
Hohenberg-Kohn-Sham local-density-functional formalism is presented. The method is based on systematic
extensions of non-self-consistent real-space techniques of Ellis, Painter, and collaborators and the self-

consistent reciprocal-space methodologies of Chancy, Lin, Lafon, and co-workers. Specifically, our approach
combines a discrete variational treatment of all potential terms (Coulomb, exchange, and correlation) arising
from the superposition of spherical atomiclike overlapping charge densities, with a rapidly convergent three-

dimensional Fourier series representation of all the multicenter potential terms that are not expressible by a
superposition model. The basis set consists of the exact numerical valence orbitals obtained from a direct
solution of the local-density atomic one-particle equations and (for increased variational freedom) virtual

numerical atomic orbitals, charge-transfer (ion-pair) orbitals, and "free" Slater one-site functions. The initial

crystal potential consists of a non-muffin-tin superposition potential, including nongradient free-electron
correlation terms calculated beyond the random-phase approximation. The usual multicenter integrations
encountered in the linear-combination-of-atomic-orbitals tight-binding formalism are avoided by calculating all

the Hamiltonian and other matrix elements between Bloch states by three-dimensional numerical Diophantine
integration. In the first stage of self-consistency, the atomic superposition potential and the corresponding
numerical basis orbitals are modified simultaneously and nonlinearly by varying (iteratively) the atomic
occupation numbers (on the basis of computed Brillouin-zone averaged band populations) so as to minimize
the deviation, hp(r), between the band charge density and the superposition charge density. This step
produces the "best" atomic configuration within the superposition model for the crystal charge density and
tends to remove all the sharp "localized" features in the function hp(r) by allowing for intra-atomic charge
redistribution to take place. In the second stage, the three-dimensional multicenter Poisson equation associated
with Ap(r) through a Fourier series representation of b, p(r) is solved and solutions of the band problem are
found using a self-consistent criterion on the Fourier coefficients of d p(r). The calculated observables include
the total crystal ground-state energy, equilibrium lattice constants, electronic pressure, x-ray scattering factors,
and directional Compton profile. The efficiency and reliability of the method is illustrated by means of results
obtained for some ground-state properties of diamond; comparisons are made with the predictions of other
methods.

I. INTRODUCTION

The current popularity of energy-band theory
stems from its successful application to the study
of increasingly diverse problems in solid-state
physics. Recent new sophisticated experiments
on both tra, ditional materials and those having
complex crystallographic structures have de-
manded, however, not only theoretical descrip-
tions of phenomena related to the one-electron
eigenvalue but also detailed and precise uave
functions with which to determine the expectation
values of different observable operators. Such a
demanding test of the predictions of one-electron
theory has the additional virtue in permitting, by
their comparison with experiment, accurate de-
terminations of the relative magnitude and impor-
tance of many-body effects in real solids. Thus,
there has developed considerable interest in ap-
plying the Hohenberg- Kohn- Sham" local- density-
functional (LDF) formalism to the investigation of
various ground- state properties of solids, despite
the usual difficulties of solving the associated one-

particle equation characterized by a multicenter
nonspherical potential. A variety of well-known
approximations have been introduced in order to
reduce the complexity of the problem. For exam-
ple, the various forms of orthogonalized-plane-
wave (OPW) techniques3'~ suffer from serious con-
vergence difficulties when applied to solids con-
taining first-row atoms with no P states in the
atomic cores. Recent studies with extended sets
of orthogonalized plane waves' have indicated er-
rors in the eigenvalues of the order of up to a few
volts due to poor convergence in calculations em-
ploying several hundreds of OPW's. The muffin-
tin approximations applied to augmented-plane-
wave (APW) calculations" have been recently
criticized as introducing errors of up to a rydberg
in the potential in diamond' and other covalent
structures, ' and overestimating the binding ener-
gy in some covalently bonded molecules by as
much as (100-300)/~. " Recent LCAO (linear orbit-
als)-type calculations" "have overcome the diff i-
culty of treating non-muffin-tin potentials and have
demonstrated that efficient convergence with respect
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to the size of the basis set" can be obtained. How-

ever, the problem of carrying this type of calculation
towards self-consistency still remains a formid-
able task within the framework of present tech-
niques. It thus seems that although it is possible
to obtain reasonable results for the eigenvalues
of the local-density one-particle equations within
the above-mentioned approximations both for
some molecules"" and solids (i.e. , band
structures), and accurate evaluation of the pre-
dictions of this theory for ground-state functionals
of the electron density is still a nontrivial task
for state- of- the- art methods in one- electron theo-
ry.

In this paper, we describe a new approach to the
fully self-consistent (SC) solutions of the one-
particle equations in a periodic solid within the
local- density- functional formalism. It is designed
and developed to incorporate special features
with which to overcome difficulties encountered by
other methods. Specifically, as will be shown in

detail, the method combines a discrete variational
treatment of all potential terms (Coulomb, ex-
change, and correlation) arising from the super-
position of spherical atomiclike overlapping
charge densities, with a rapidly convergent three-
dimensional Fourier-series representation of all
the multicenter potential terms that are not ex-
pressible by a superposition model. The basis
set consists of the accurate numerical valence
orbitals obtained from a direct solution of the
local-density atomic one-particle equations. To
obtain increased va, riational freedom, this basis
set is then augmented by virtual (numerical)
atomic orbitals, charge-transfer (ion pair) or-
bitals, and "free" Slater one- site functions. The
initial crystal potential consists of a non-muffin-
tin superposition potential, including nongradient
free-electron correlation terms ca1.culated beyond
the random-phase approximation. The Hamilton-
ian matrix elements between Bloch states a,re
calculated by the three- dimensional Diophantine
integration scheme of Haselgrove, "and Ellis and
Painter, ' thereby avoiding the usual multicenter
integrations encountered in the LCAO tight-binding
formalism. Self-consistency is obtained in two
stages: in the first state ("charge and configura-
tion self-consistency" ), the atomic superposition
potential and the corresponding numerical basis
orbitals are modified simultaneously and non-
linearly by varying (iteratively) the atomic occupa-
tion numbers (on the basis of the computed
Brillouin-zone averaged band population) so as to
minimize the deviation Ap(r) between the band
charge density and the superposition charge den-
sity. This step produces the "best" atomic con-
figuration (for the employed numerical basis

orbitals) within the superposition model for the

crystal charge density and tends to remove all
the sharp "localized" features in the function 4p(r)
by allowing for intra-atomic charge redistribu-
tion to take place. Having obtained a low- ampli-
tude smooth function 4p(r) that contains zero
charge, we proceed in the second state of self-
consistency to solve the three-dimensiona, l multi-
center Poisson equation associated with &p(r)
through a Fourier- series representation of &p(r ).
The solution of the band problem is repeated until
the changes in the Fourier coefficients of 4p(r) in
successive iterations are lower than a prescribed
tolerance. The calculated quantities include the
total crystal ground-state energy, equilibrium
lattice constants, electronic pressure, x- ray
scattering factors, and directional Compton pro-
file in addition to the one-electron band structure.

Section II reviews those elements of the local-
density-functional formalism which are the basis
of this work. Section III describes some basic
elements (crystal potential, basis functions, and
Hamiltonian matrix elements) needed to obtain
fully self-consistent solutions by the method dis-
cussed in Sec. IV. Of particular concern to us
is the question of the role of the usual approxima-
tions used to solve the LDF problem —muffin-tin
potential, ' ' non-self-consistency' on the ground-
state properties of solids. In Sec. V, we pre-
sent illustrative results of energy-band studies
of diamond which are compared with the predict-
ions of other theoretical calculations.

II. LOCALDENSITY-FUNCTIONAL FORMALISM

The Hohenberg- Kohn- Sham" local- density
formalism is based on the fundamental theorem
that the ground-state properties of an inhomogen-
eous interacting electron system are functionals
of the electron density p(r) and that in the presence
of an external potential V,„,(r) the total ground-
state energy in its lowest variational state can be
written

Z(p(v))= f V.„())(t(v)dV+G(p(v)),

where G(p(r)) is a universal functional of p(r) and
is independent of the external potential V,„,(r).
This theorem forms the basis of our approach
to the electronic structure problem in that it pro-
vides an effective one-particle equation relating
self- consistently the ground- state wave functions
to the energy functionals (i.e. , potential) of the
electronic system. Identifying the external po-
tential for a polyatomic system as the electron-
nuclear and internuclear interactions and varying
E(t)(r)) with respect to p(r), one obtains an
effective one-particle equation of the form
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where the exact quantum-mechanical Laplacian operator replaces the noninteracting kinetic energy. Here
Z denotes the nuclear charge of the particle at site R and E„(p(r))the total exchange and correlation
energy of the interacting (inhomogeneous) electron system (bold-face parentheses are used to denote func-
tional dependence). The eigenfunctions )I&~(r} are simply related to the total ground-state charge density
of the o occupied one-particle states by

p(r) = Q y,. (r)iI,.(r}, (2)

which, in turn, determines self-consistently the local-density functional in E&l. (2). The total ground-
state energy is then given by

+ Q»» + E~~( p(r)),m

n, m R„—R
(4)

where the first term represents the kinetic en-
ergy, the second and third terms are the total
electrostatic potential energy, and the last term
is the exchange and correlation energy.

No satisfactory formulation of E„(p(r))has been
obtained so far for a general p(r). In the limit
of slowly varying density, gradient expansions of
E„,(p(r)) have been suggested '" A. lthough there
seem to be no compelling evidence for the possible
suitability of such expansions to realistic models
of polyatomic systems (nor is there any convincing
argument as to the convergence rate of this ex-
pansion}, there still seems to be some interest in

applying the LDF formalism with the presently
available first-term expansion of E„(pgr))as a
first step towards a more complete electronic
structure theory based on accurate local-density
functionals. Note that the LDF formalism in the
form described above makes no claim on the
physical significance of the eigenvalues && in Eq.
(2); hence we concentrate only on ground-state
crystal properties.

Retaining only the nongradient terms in the
expansion of E„,(p(r)), the exchange and correla-
tion potential becomes

5E„(p(r))/5P(r) —=F,„(p(r))+F„„(p(r)),(5)

where the exchange potential has the well-known
form

F..(P(r)) = '- «.(P(r))=- —[(2/v)p(r)]"', (6)

where «, (p(r)) is the free-electron exchange po-
tential for the local density p(r). The correlation
energy of a uniform electron gas with local den-
sity p(r) has been calculated by many authors using
different techniques. ' ~ The agreement between
the most recent results lies within 5-8 mRy in the

metallic density range. Here we use the results
of Singwi eI; al. ' fitted to a convenient analytical
form"

F„„(p(r)=-A ln[1+Bp'~'(r}],

where A = 0.0899 and B= 33.8518, in a.u. and
similarly

«,(p(r})=—C[(1+x ) ln(1+1/x)+ 2 x —x2 —,
' ],

(8)
where «,( p(r)) is the free-electron correlation po-
tential for local density p(r), with

x=r, /A, ~4vr', = p '(r), C=0.045.

The total exchange and correlation energy is
given at this level of approximation by

EG&& ))=f.&")&~.,&~&~)) +—~.&p&))&&~.

The LDF formalism has been used in the past with
the functionals F,„(p(r))and F„„(p($)) to calcu-
late charge densities, total ground- state energies,
and ionization potentials for some atoms" and
molecules" and has yielded reasonably good re-
sults. The situation in the area of applying the
LDF formalism to realistic solid-state models
is rather different. Most of the existing local-
exchange one-electron band-structure calculations
on solids are based on retaining only the first term
in the gradient expansion"'" [namely, the free-
electron exchange «„(p(r))]. Also, due to addition-
al approximations invoked in order to simplify the
solution of the one-particle equation, '" a mean-
ingful comparison of the predictions of the LDF
determined ground-state observables (i.e. , total
energy, lattice constants, brompton profiles,
Fermi-surface data, structure factors, etc.) with
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experiment has been hindered. Recent work in

the field has demonstrated some dramatic changes
in the calculated cohensive energy, "Fermi
surface '""band structure, '"'" and charge den-
sity when the simplifying muffin- tin approxima-
tion or the lack of self-consistency are relaxed.
Of particular interest to us also in the comparison
of the predictions of LDF formalism results on

some ground-state observables with those ob-
tained by the restricted Hartree-Fock model by
Euwema and co-workers. "" In view of this
situation, we have undertaken the problem of de-
vising an efficient and reliable method for solving
the local-density one-particle equation [Eq. (2)]
using the restricted form of the exchange and cor-
relation functional [Eqs. (5)-(8)].

III. BASIC METHODOLOGY

In this section we describe the main features of
our method for solving self-consistently the LDF
one-particle equation (2) with the functional defined
in Eqs. (5)-(9). We will hence discuss the methods
used to generate the initial crystal potential, the
basis functions, and outline the procedure used
to construct the Hamiltonian matrix elements
needed to obtain fully self-consistent solutions in
Sec. IV.

A. Crystal potential

To construct an initial crystal potential for an
iterative SC solution of Eq. (2), one has to guess
a charge density p(r). The most convenient choice
seems to be the conventional overlapping-atom
model in which a superposition density p,„,(r)
is constructed from one-center (spherical) charge
densities p (r, Q„,Q }) in the form

N h

p'"'(r) = g g p (r- R —d, Q„,Q }), (10)

where R and d denote the position vector of the
mth unit cell and nth atomic sublattice site, re-
spectively. N is the number of unit cells and h is
the number of atoms in each cell. p (r, {f„„Q"})
is the charge density of atom o calculated from
some independent theory (Hartree-Fock, LDF
formalism, Thomas-Fermi, etc. ) assuming the
(generally noninteger) atomic occupation numbers
f„,for the central field quantum numbers n and
l and a possible net ionic charge of Q .

Several possibilities exist as to the choice of the
one-site charge densities p (r) to be used as an
initial guess for p'"'(r). Because of the SC re-
quirement, the choice is rather arbitrary and
should be made by considering the convergence
rate of the SC cycles. We tried a series of pro-
cedures for selecting p„(r)before choosing the one

that seems to work best; we choose p„(r)as the
density obtained from the SC solution of the LDF
one-particle equation [Eq. (2)] for an isolated
atom:

(
~p

r )r- r'I

+&,.„(p,(r)) V'„,((~) = &„',rV.', r(&&

VP„'c(r)= P P v (r- R„d),

where the Coulomb potential associated with site
a is given by

(13a)

v (r)=, dr'p.(r'), Z, Q
I r- r'l r (13b)

Q denotes the residual charge that remains un-
screened by the electronic one- site charge den-
sity p (r) when the summation in Eq. (13a) is
carried out to a finite range 8 ~; its magnitude
is defined as limrv (r) = Q' as r R~-

In homopolar systems, where the discrete
lattice sum in Eq. (13a) is carried out to about
20-25 a.u. , Q' becomes very small (due to the
rapid fall-off of the local-density atomic wave
functions) and V~s~~ (r) becomes the only signifi-
cant contribution to the crystal Coulomb potential.
When Q is larger than some prescribed toler-
ance (- 10 'e), the long-range Coulomb potential
V~"„'c(r)is calculated using standard Ewald sum-
mation techniques. '"" Note that all aspherical
contributions originating from the overlapping
tails of the one-site potentials v (r), as well as
those contributed by the point-ion electrostatic

where E,„(p(r)) and F„,„(p(r)) are the exchange
and correlation functionals, respectively [Eqs.
(6)-(7)], acting on the one-center density p (r).
Omitting the indices f„,and Q from p (r), the
latter quantity is simply given by

Noc

p.(r)= g f:, , IV., ,(~)l', (12)
ny l

where the sum extends to all assumed occupied
(core + valence) atomic levels N Equ.ations (11)
and (12) are solved self-consistently (using a
Herman-Skillman" type program) for each type
of atom appearing in the crystal unit cell assuming
a given set of atomic-orbital occupation numbers

f„,(generally nonintegers) and ionic charge Q .
With this choice of p'"'(r), the initial electro-
static potential [second and third terms in Eq.
(2)] can be written as a sum of a short-range
Coulomb Vsgc(r) and a long-range Coulomb
Vz"„'gr) pa.rts. Because of the linearity of Pois-
son's equation, the short-range Coulomb crystal
potential is expressible as a linear superposition



4720 ALEX ZUNGKR AND A. J. FREEMAN 15

crystal field VLa'c(r), are not approximated by
their spherically projected part in our initial
crystal potential. The superposition exchange and
correlation potentials V„'"'(r)and V'"gQr, re-
spectively, are defined by applying the functionals
given in Eqs. (6) and (7) to p'"'(r). Owing to the
nonlinearity of the local exchange and correlation
functional with respect to the individual single-site
densities p, (r), the initial "superposition" po
tential V'"'(r) given by

V'"'(r) = Vs~'„(r)+Vf,"gc (r)+ V„'"'(r)+ V,'"„',(r)
(14)

is not representable as a lattice sum of one-center
atomic potentials and hence even at this "zeroth
iteration" stage, Eq. (2) constitutes a multicenter
problem. Many LCAO techniques"" as well as
the multiple-scattering Xa (MS Xa) method" are
possible only if the potential is representable as
a sum of single-site terms, in which case either
functionals like E„(p(r)}are arbitrarily linear-
ized'" [e.g. , V„(r)is set to Z Z, E,

„

x(p, (r- R„-Z }]or the superposition potential is
spherically averaged around each atomic site. "'
The consequences of these rather drastic approxi-
mations on some calculated observables have been
discussed previously. '' ' ' As an alternative to
these approximations, one might project numeri-
cally each of the term in V'"' and p'"'(r) onto an
analytic single- site basis"" using least- squares
techniques. Although possible, such an approach
requires a separate auxi11iary basis set to be de-
vised for fitting each of the terms in V'"', and
this becomes almost intractable when the function
to be fitted contains high central-field l compo-
nents. In previous attempts, " it was also demon-
strated that when complicated quantities like the
total energy are to be calculated, small fitting er-
rors [mainly in the steep part of V„'"'(r)]produce
large numerical instabilities in the calculated ob-
servables. Since no use is made in this work of
a potential function that is linear in the one-site
contributions, none of these approximations is
necessary. In particular, the potential is allowed
to have the full site symmetry required by the
crystal structure in question [i.e. , in the language
of perturbative corrections to muffin-tin meth-
od,"V'"'(r) includes both "exact" warping and
allows for nonspherical components inside "atom-
ic spheres"]. After the convergence of the direct
lattice sums [Eqs. (10) and (13a)] is maintained
(to a tolerance of 10 8 a.u. in the potential), our
initial V'"'(r} is fully defined by specifying &,
the postulated crystal structure, and the assumed
[f„,) and charges [Q ) used to construct p (r).
The latter two will be treated as essentially free

parameters in the SC procedure to produce the
"best" superposition potential.

Figure 1 displays three-dimensional plots of the
superposition Coulomb, exchange, and correlation
potentials for diamond in the (1TO) plane4', they
all follow the essential pattern of the input charge
density. Nonconstant regions in the "intersphere"
Coulomb, exchange and correlation parts are
easily visible (especially in the exchange and
correlation parts). A lattice constant of 6.742
a.u. was used and an input 1s 2s 2P2 electronic
configuration is assumed. The exchange potential
constitutes some 55% of the Coulomb potential in
the interstitial region while the correlation poten-
tial has smaller values (5%) in that region.

B. Basis functions

As is usual in Roothaan-type variational treat-
ments, the crystal eigenfunction P&(k, r)(band index

j and translational representation k) is expanded
in terms of h7) Bloch functions, C „(k,r), in a
standard fashion:

g~(k, r) = g P C„J(k)4„(k,r) .
of=1 g=l

(15)
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FIG. 1. Three-dimensional plots of the various com-
ponents of the superposition potential in the (1TO) plane.
Singular potentials are denoted by vertical dashed lines
at the atomic site.

Here 4„(k,r), defined in terms of the pth basis
function on the nth sublattice, y„(r)is given by

N

C„(k,r) =N ' ' g e""~y~(r- R —Z ), (16)

and [)f„(r),p=1, . . . , q; a= 1, . . . , h] constitutes
the elementary basis set. A central problem is
the choice of an optimum basis. Qne desires a
large l.inearly independent basis set so as to main-



SELF-CONSISTENT N UMERICAL-BASIS-SET LCAO. . . 4721

tain sufficient varia. tional freedom throughout the
Brillouin zone (BZ). A minimal basis set could
lead to the expansion coefficients C„&(k)being
completely determined by symmetry for some
high-symmetry states in the BZ. However, since
the number of Hamiltonian matrix elements in-
creases rapidly with the size of the basis set, an

unduly large set is to be avoided. Obviously, the
basis set convergence rate of calculated observ-
ables can be made to be rapid when the basis func-
tions are carefully chosen to be compatible with
the type of Hamiltonian to be solved. One would

require that the basis set be flexible enough to
adequately describe the various regions in the
real space unit cell (oscillatory nodal behavior
near the atomic sites with the appropriate Coulomb
cusps at the position of the nuclei and spatially
smooth in the bonding interatomic region) and

various energy eigenvalue ranges (deep core
states, valence, and excited states). [Note that
while in nonperiodic polyatomic systems one may
need both short and long-range basis functions to
describe the various regions in the molecule, in
periodic systems the latter are both numerically
inconvenient (due to the need to perform long-
range lattice sums), and, in many cases, varia-
tionally unimportant (since Bloch functions formed
from short- or medium-range basis functions al-
ready span an arbitrarily long range). ]

While band structure methods (e.g. , "conven-
tional" APW, Korringa-Kohn-Rostoker and cellu-
lar schemes) that rely heavily on approximating
the multicenter crystal potential with its aspheri-
cal site symmetry by sums of one-center terms
having a one-dimensional radial site symmetry
can utilize a conveniently convergent representa-
tion for the eigenfunctions (one-site partial waves,
plane waves, etc.}, band methods that do not re-
strict the form of the crystal Hamiltonian are
usually forced to resort to somewhat artificial
analytic functions to ease the difficulty of com-
puting multicenter integrals. Past experience
with these basis functions (Slater orbitals,
Gaussians, etc. ) in quantum chemical molecular
computations" has frequently revealed, along
with a reasonable conveT'gence of one-electron
eigenvalues with respect to basis set size, a
rather slow convergence of calculated many-elec-
tron observables like the total energy. Since no
use is made in the method described in this paper
of any analytical or semianalytical algorithm for
calculating the Hamiltonian matrix elements, we
are free to choose I general basis set with which
to meet the considerations for an optimum set dis-
cussed above. The criteria used for selecting a
given expansion set were its compactness and
variational efficiency in lowering the ground- state

total energy. Our basis set contains functions
that are convently classified into three types:
(a) "Exact" self-consistent LDF numerical orbi-
tals for the occupied and lowest virtual levels of
the atoms appearing in the crystal unit cell. (b)
Additional "free" uncontracted Slater-type orbi-
tals spanning the virtual space. (c) "ion-pair"
charge transfer functions, e.g. , numerical atomic
orbitals associated with a negatively and with a
postively charged atom.

The "exact" self-consistent (LDF) numerical
orbitals are directly calculated by numerical in-
tegration of the central-field atomic one-particle
equation in the LDF formalism:

[-aV'+g (r)]X., g(r(f:( Q ))

=&.'gX., ((r(f. &, Q™)).(17)

In this equation, E„,are the atomiclike eigen-
values and g, (r, (f„,,„Qj) denote the atomiclike
radial orbitals for level n, l (for atom of type a)
that depend parametrically on the prescribed pop-
ulation numbers f„,of all N occupied levels in
the atom (the m degeneracy in central fields being
averaged) and on the net atomic charge Q'. The
net atomic charge is simply related to the nuclea, r
charge Z and the electronic populations f„,by

Noc

(18)

g, (r) = V c,„,(r)+ V,„(r}+V„„(r)+A(r), (19)

where Vc,„,(r), V,„(r),and V„„(r)are derived
from the total single-site ground-state charge
density

Noc

~.(.&= g f:, ,h:, ,(., (f:.,„Q.))]' (20)

f., )*
ny

The one-site potential g (r) can be any generalized
atomiclike potential, as long as it generates via
Eq. (17) eigenfunctions that form a convenient and

rapidly convergent basis set for expanding the
crystal orbitals. We mould like them to be atomic-
like near the atomic site, so as to be compatible
with the crystal potential in these regions; how-
ever, the long-range nature of the free-atom
eigenfunctions should be controlled in order to
avoid linear dependence between the Bloch func-
tions generated from them. The oscillations gen-
erated by the nodal character of the full (core+
valence) atomic functions a.s well as the charac-
teristic cusp of an exact atomic solution at the
nucleus are desirable in order to partially cancel
the Coulomb singularity in the crystal potential by
the appropriate repulsive kinetic- energy terms.
The one-site potential g (r) is accordingly chosen
as a slightly modified atomic local-density poten-
tial:
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through the usual eth-site Poisson equation and
the local density exchange and correlation func-
tionals [Eqs. (6) and (7)].

The additional term A(r) is a prescribed exter-
nal potential chosen to tailor the y„,for their use
as basis functions in the crystalline variational
calculation. Again, several choices are reason-
able: in order to obtain basis functions that are
less diffuse than are "free" atomic orbitals, one
might choose for A(r) a Latter tail correction4~
with a suitable coefficient that has the effect of
compressing the long-range orbitals tails, an ex-
ternal potential well "' ' or to adopt the Adams-
Gilbert term, "modified for local potentials, to
generate more localized (and self-consistent) cen-
tral-field single-site orbitals. Note that we attach
no physical meaning to the c'„,and that Eq. (17),
which is used only to generate basis functions, is
solved numerically in a SC manner after pre-
scribing a fixed set of (noninteger) f„,and Q .
Thus, the single site potential g, (r) used to gen-
erate the numerical basis orbitals is not re-
stricted to be equal to the potential used to gener-
ate the model superposition density [Eqs. (11) and
(12)]. No attempt is made to fit the resulting or-
bitals to any analytical form (e.g. , Slater or
Gaussian orbitals); instead, they are used directly
in tabular form in the crystalline variational cal-
culation. Such fittings (of double-zeta quality, or
so) frequently fail to accurately reproduce the
cusps of the exact wave functions and result in
considerable errors in the calculation of the large
kinetic-energy terms near the nuclei.

It is perhaps worth noting that the initial super-
position potential employed in our scheme is al-
ready approximately self-consistent with respect
to the variational numerical basis set used in the
crystal calculation, since the latter solves the
one- site eigenvalue equation. In other LCAO- type
calculations" " ' the superposition potential is
generally unrelated to the basis set, but rather
to an independent atomic model (e.g. , Hartree-
Fock model for the basis functions and a local-
density potential).

The numerical basis set is subsequently opti-
mized nonlinearly in the variational calculation in
the solid, by recomputing these orbitals from Eq.
(17) on the basis of a different {f„„Q) set chosen
from a charge analysis of the crystalline wave
functions throughout the BZ. The basis functions
are thus allowed to relax nonlinearly (and itera-
tively) to the crystal potential, thereby increasing
their variational flexibility. Formerly virtual at-
omic states are thus allowed to become fractional-
ly populated according to their variational partici-
pation in the ground-state crystal eigenfunctions
and subsequently become much more localized.

The minimal numerical atomiclike basis set forms
a very compact and flexible basis, whose quality,
as estimated from previous molecular calcula-
tions" and from our own experience, is com-
parable at least to that of a double-zeta Slater set.
In this paper, we use both a minimal (ls, 2s, 2P
numerical orbital for second-row atoms) and an
extended numerical set (with the addition of 3s,
3P, and 3d numerical orbitals). In each case, the
Bloch functions formed from the basis functions
are Lowdin orthogonalized4'; linearly dependent
functions that result in eigenvalues of the overlap
matrix (in the Bloch representation) which are
smaller than a prescribed tolerance of 10 ', are
automatically discarded (i.e. , a canonically
orthogonalized set" is used). Whenever inclusion
of higher virtual stat;es seems desirable, but be-
comes impossible due to linear dependence, the
numerical set is augmented by type-(1) basis
functions whose exponents are adjusted so that the
maximum of each orbital falls within the Wigner-
Seitz cell. These orbitals are then treated in an
identical manner as the numerical orbitals except
for the analytic evaluation of the kinetic-energy
matrix elements.

The combination of basis functions of type (a)
a.nd (b) seems to constitute an excellent set as far
as one-electron eigenvalues are concerned. Es-
sentially no further changes are observed in the
valence and low-lying conduction-state eigen-
values (only states below Ez+ 15 eV are examined)
in the materials studied so far (diamond, BN,
LiF, Ne, TiS,) after a minimal numeric set is
augmented by the first two or three virtual states.
The situation is, however, different when the total
energy is considered where, e.g. , for diamond,
a major improvement is obtained by adding an
ion-pair basis set [type (c)] to the usual numeri-
cal set. In this case we solve the atomiclike one-
site equation [Eq. (17)] not only for neutral carbon
(Q' = 0) but also for the ionic configurations
1s'2s'2p ' having a net charge of Q and -Q, and
use this triple-size set to construct our Bloch
functions. Experimentation with this type of set
revealed that the results are not too sensitive to
the value of ~Q ~

around 0.8 —1.0 and that the best
total energy seems to occur for Q =+0.85.

Figure 2 displays three-dimensional plots of the
optimized numeric Bloch functions in the (ITO)
plane in diamond [converged to within one part in
104 with respect to the lattice sums and the ac-
curacy in the solution of Eq. (17) is 1 part in 10'].
These are obtained by generating the numerical
one- site functions from a self- consistent solution
of Eq. (17) with a Latter tail taken as A(r) and
using an electronic configuration of
1s'2s'2P'3s 3P 3d and superposing the contri-
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FIG. 2. Three-dimensional plots of the numerical
Bloch functions at the I' point in the BZ (110).

butions from various unit cells to yield 4 (%, r)
as indicated in Eq. (16).

h

Q Q [H„~„~(k)—S„~„q(k)e;(k)]C„~~(k)= 0
a=1

(21)

is solved, where the Hamiltonian matrix elements
are

H „q(k)=(4 (karl —&+'+V(r) I@ s(" r))

(22)

and the overlap matrix elements

S„„~(k)= (4„(k,r) l 4„~(kr)).

The eigenvalue spectrum e&(k) yields the band
structure defined throughout the BZ; however,
since they are found strictly from ground-state
local-density operators defining V(r), they bear
no rigorous relation to elementary excitations in
the system.

In order to achieve maximum flexibility in the
construction of V(r) [e.g. , by including a.rbitrary

(23)

C. Matrix elements

Once the model initial potential V'"'(r) and the
expansion basis set are defined, the usual linear-
variation secular matrix

forms for the correlation part and avoiding linear-
ization of F„(p'"'(r))and F„„(p'"'(r)),etc. ] and

the 4 (k, r) (e.g. , by allowing for nonanalytic and

possible off-center basis functions) one has to
have a general form-independent algorithm for
calculating the three- dimensional multicenter in-

tegra. ls appearing in Eqs. (22) and (23).
Figures (1) and (2), showing the shapes of V(r)

and 4, (k, r), reveal the fact that any integration
scheme with this type of integrands must be able
to cope with the Coulomb singularities in V(j) the

nodal character of 4„(k,r) near the nuclei and

their diffuse shape in the interstitial region. Con-

trary to the situation met in problems of inte-
grating the three-dimensional corrections to the
muffin-tin charge density, ' the integrands en-
countered in our problem are continuous through-
out the integration space. Also, unlike the situa-
tion occuring in molecular three-dimensional in-

tegrations, '~'" we do not have to treat both the in-

teratomic and the "outer-molecular" tails of the

integrands, since our integration is confined to a
single unit cell and the integrands do not fall off
to very small numerical values. Guided by these
considerations we have adopted the three-dimen-
sional Diophantine numerical integration scheme,
developed by Haselgrove" and Conroy" and

adapted to molecular'~ and solid state" problems
by Ellis and co-workers. The method defines a
set of pseudorandom integration sampling points
{r,j inside a unit cell and an associated set of
weight function {w(r,.)j together with a tabular form
of the integrand, to yield

-=g w;(r, )4 (k, r, ) V(r, )4„&(k,r, ) .

(24)

The convergence properties of this scheme has
been subject to numerous discussions in the liter-
ature" and will not be repeated here. With nu-
merical Bloch functions and a multicenter crystal
potential, the sampling that seems to work best
is based on a linear superposition of functions of
the form

(25)

centered on each atomic site a, a Gaussian dis-
tribution of sampling points centered at the middle
of each bond, and a constant density of points
everywhere else. This importance sampling
treats the Coulomb singularities efficiently by
making the function w(r,.)H(r, ) relatively smooth
even at the position of the nuclei and takes care
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of the buildup of charge in the bond region. The
method is very simple and straightforward to use
and provides a typical convergence, using 2000
sampling points, of 1 mRy or less for the valence-
band structure in diamond and 2 mRy for the first
four conduction bands. (Similar convergence rates
have been obtained .or Li. cubic boron nitride,
I.iF, and Ne. ) For a typical transition-metal
compound like TiS„around 5000 integration points
were required to achieve an over-all 1-3-mRy
convergence in the region below eF+ 15 eV. The
convergence of the total energy and the Compton
profile is somewhat slower. and will be discussed
later.

The direct integration of Eqs. (22) and (23)
avoids the difficult multicenter integrals appearing
in Roothaan- type LCAO expansions ii-z3

a carefully chosen m, (r, ) in Eq. (24) to smooth out
the Coulomb singularities, all energy integrals
are treated accurately in a real-space represen-
tation and the usual difficulties in treating the
slowly convergent Fourier expansion of such po-
tentials in reciprocal-space techniques'~52 (where
some 20000 reciprocal-lattice vectors were typi-
cally needed to obtain reasonable convergence")

are avoided. We note that the method is capable
of treating general terms in V(r) (i.e. , various
functional forms of local exchange and correlation)
without having to introduce additional fit functions
(such as are used in Gaussian-transform tech-
niques""" to project the multicenter potential
into a form that is linear in the contributions orig-
inating from each center) —procedures which not
only require a different projection set for each
density functional appearing in the Hamiltonian,
but a.iso tend to require a large auxiliary fitting
basis set when the ground-state density includes
large l components.

The calculation of both the Hamiltonian matrix
elements and the total crystal energy in models
that consider the full (core + valence) electron
contribution to the Hamiltonian is fraught with the
well-known difficulty of having to deal with small
differences between the large repulsive kinetic-
energy terms and attractive potential terms in
the neighborhood of the atomic cores. The use of
exact numerical atomic orbitals provides a
straightforward simplification of that problem.

The (initial) crystal Hamiltonian operating on

4, ,(k, r) yields [using Eqs. (16) and (17)]

HC„(k,r) = V(F)C„„(k,r)+ T4 (k, r) = [Ve'"gc(P)+ V,'"'(r)+ V'„"gc(r)+V'„"'„(r)]4„,(k, r)

+ g e'" "~)(„(r—R d )[c', -g (r- R —d )] . (26)

If TC, (k, r) is combined numerically with
-,
'

V(r)C „(k,r) (the factor of ~ originates from the
detailed consideration of the real and imaginary
parts of the appropriate functions) before integra
tion of 4„~(k, r) [HC, (k, r)] is attempted, the
attractive Coulomb singularity in Ve"„'c(P)near
the nth core is effectively cancelled by the kinetic-
energy term having a repulsive —g (r —R —d )
dependence. Thus, to the extent that the charge
density arising from orbital y„contributes to the
ground-state Coulomb potential in V'"'(~) [Eqs. (12)
and (13)], it would act to cancel the positive
kinetic energy arising from the same center.
This cancellation is expected to be effective only
if the 4 (k, r) are formed from exact eigen-
vectors of the operator [g (P) —~ '7'] and if the
Coulomb singularities in V'"'(r) are formed from
the superimposed Coulomb parts in g (r)."'
This is so both at the initial step in our SC cycle,
where V'"'(r) contains a superposition of the
Coulomb part of g (r), and at an arbitrary SC
iteration where the basis orbitals g~™(r)are non-
linearly optimized along with identical changes
being carried for g (r) and V»c(r). Obviously,

I

orbitals which are used to construct Bloch states
that are not related to the one-site potential g„(r)
(e.g. , Slater orbitals, virtual states of g (r),
etc. ) do not contribute to the cancellation between
V(r)4 (k, r) and TC (k, r). It is usually suf-
ficient, however, to have the low-lying core
states (Is, 2s) participate ing, (r) and V(r) and
to use the appropriate exact orbitals in the
Bloch basis to obtain a satisfactory cancellation
in the integrands. The numerical Diophantine
integration is then applied to integrate
4 (k, r, )[ 4H„(ek,r)] after the cancellation in
the integrand was allowed to occur algebraically.

Figure 3 shows three-dimensional plots of the
functions TC „(k,r), and V'"'(r)C (k, r) in the
(110) plane of diamon at the I' point (k=0) for
some representative Bloch functions. The large
cancellation between the kinetic and potential
terms near the cores (note the different scales),
especially for the 1s Bloch state, is apparent.
Note that a similar, but usually arbitrary, cancella-
tion in the basis of the pseudopotential method and
is the cause of its success.
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FIG. 3. Three-dimensional plots of T @„(0,r) and
V ~(r)@„(0,r) for the Blooh states 1s and zp, in the
(1TO) plane. Singular functions are denoted by the verti-
cal dashed lines at the atomic site.

IV. SELF-CONSISTENCY

A. General coasiderations

The solution of the LDF problem for an assumed
model p'"s(r) [Eq. (10)] provides us with (r(~(k, F)
that define the crystal density p,~(r) as

ty

p. (e =((
2 ~ 2 f ( g(&) p; (k, et(, (& e 1d(,

os z

when the sum extends over all 0 bands spanning
the occupied volume of the Brillouin zone (OBZ)
and 0 denotes the unit-cell volume. The occupa-
tion numbers nz(k) are chosen according to
the Fermi statistics (for states lying on the Fermi
surface, a fractional population is possible). The
integration in Eq. (27) is performed by choosing a
discrete number of points in k space and an as-
sociated set of weight functions &o&(k) chosen ac-
cording to the nearest volume algorithm. We have
used 4, 6, and 19 points inthe ~—,' irreducible sec-
tion of the BZ (or 14, 32, and 256 in the full zone,
respectively) and have examined the convergence
of some of the calculated observables with respect
to the number of sampling points. The results
presented in Sec. V 8 indicate the contrary to ob-
jections raised'+" previously, the dispersion of
the bracket terms in Eq. (27) is usually small
enough for good results to be obtained even with
the six nearest-volume points. Hence, we use

0

p {r)=N, g (((&(k )nj
=1jf~

x(k ){{(j'(k,r) {{(z(k,r),
(28)

where (d~(k ) are weights that become j indepen-

r(p(~) = p, (r) —po(r) (3o)

that is not amenable to fitting by single-site basis
functions located on atomic sites. Although the
form of Eq. (29) makes the problem of calculating
the refined crystal potential rather trivial [e.g. ,
when the Poisson equation associated with the
individual p;(r) is solvable analytically of semi-
analytically], a SC cycle based on the restriction
Eq. (29) may lead in the general case to conver-

dent in systems having no Fermi surface and are
chosen according to the Chadi and Cohen" algo-
rithm as generalized by Monkhorst and Pack."
In this way p„,(r) is calculated in tabular form
for 2000-3000 points in the unit cell.

Since Eq. (2) yields variational solutions only
if the eigenvectors g& are consistent with the
charge density determining the value of the func-
tional in this equation, one has obviously to per-
form a SC calculation in order to obtain meaning-
ful results. Since the term "self- consistency"
has been used rather loosely in some previous
band-structure calculations (in that severe re-
strictions were imposed on the SC path) we dis-
cuss various possible degrees of SC along with
our particular method for obtaining "full" SC.
We will thereby distinguish between charge and
configuration self-consistency (CCSC is stage
1 in SC) and full self-consistency (FSC is stage
2 in SC).

The major difficulty in obtaining FSC with p, (r)
given in Eq. (28) is related to the problem of
having to obtain the Coulomb part of the potential
by solving the Poisson equation and to generate
the refined exchange and correlation potentials
for the next iteration. While the model density
p'"'(r) is expressed as a lattice sum of one-
center contributions for which the associated
Coulomb potential is readily found, the output
crystal density p, ~(r) is a multicenter function
which is not expressible in terms of one-center
atomic densities located on atomic sites.

In what follows, we define CCSC as a consistent
relation between V„„(r)and p„(r)in which we
limit the crystal density to sums of one center-
terms located on existing atomic sites. In this
approach

p, (r)= p, (r)=—g g g a,.p,.(r —0 —B.)
m=1 e =1

(29)

at each iteration step where a; and p; denote the
expansion coefficients and the fitting functions, re-
spectively. It is to be understood that depending
on the degree of approximation involved in simula-
ting p,~(r) by p, (r), there will always exist a
residual density
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gence to an arbitrary limit, depending on the
approximations inherent in Eq. (29).

Since a direct real- space point-by-point numer-
ical integration of the multicenter three-dimension-
al Poisson equation related to p,~(~) is too labor-
ious to be of practical use, various methods have
been devised to circumvent this problem. These
are broadly divided into LCAO techniques treating
the potential in a reciprocal space' "or in a real-
space representation i4, i5. 58-60 The real- space
techniques are usually based on various model
assumption for po(r) in Eq. (29) [and analogous ex-
pressions for p,'~'(r)]. Thus, in the multiple-
scattering Xn (MS Xn) method" (and associated
Korringa- Kohn- Ro stoker techniques) one pro-
jects p, (r) onto a nonoverlapping muffin-tin
single-site spherical basis. Although the non-
spherical components can be later restored to dif-
ferent degrees of accuracy by using various
warping techniques, "perturbative multipole ex-
pansion corrections, "~point-ion corrections~ or
by applying a direct perturbation in terms of the
non-muffin-tin charge, '+" these procedures tend
to become intractable, especially when iterated
towards SC. Various choices of single-site (over-
lapping) p, (r) functions have been made in LCAO-
Xn types of calculations, e.g. , contracted Gaus-
sians, "single Slater orbitals, "angular-depen-
dent functions of the form C, (r)F, (8, 4)," regular
power series in r,"etc. In the molecular dis-
crete variational method of Ellis et al ."and in
various forms of the iterative-extended Huckel
method~ the a,. 's are chosen as Mulliken gross
populations, "or Lowdin charges, "and the p, (P)
are simply the atomic densities. Since in all
these methods &p(r) is neglected and the con-
vergence to SC is judged by an internal criterion
within the specific superposition model (e.g. ,
convergence of the Mulliken charges between
iterations) it seems difficult to estimate the true
degree of SC in these methods.

In the reciprocal space representations, '~"
one expands p,~(r) in a Fourier series and ob-
tains the Coulomb potential in real space as a sum
of reciprocal-lattice vectors (RLV) of the plane-
wave modulated Fourier components of p, (r).
Thus, the difficulties of solving the Poisson equa-
tion in a real-space representation are replaced
by the problems of having (a) to Fourier transform
p,~(r) [and similarly p,'~'(r)], and (b) to converge
the reciprocal-lattice sum on p„„(r).In the first
task, one is again faced with the difficulty of
having to perform integrations on the three-dimen-
sional multicenter function p, (r) and is resolved
either by resorting to a one-center superposition
model for "b'~

p, (r) or by restricting the basis
functions to Gaussians'~" [in which case the three-

center integrals associated with the Fourier
transform of p, (r) are computed semianalytically].
In the latter case, the iterated exchange potential
is either expanded in a (highly truncated) geo-
metrical series, ' or the lattice sum of one-site
densities p, gr) is spherically averaged over the
unit cell to reduce the Fourier transform of
p', ~'(r) to a. one-dimensional integral. "~ The
validity of these approximations is difficult to
assess, especially in systems such as covalently
bonded solids which maintain a considerable
charge buildup in the interatomic region. All the
methods that use reciprocal-space techniques to
calculate the iterated crystal potential and in-
corporate directly both the core and the valence
electron contributions on the same footing'~"
face the common difficulty (b) of having to treat a
slowly convergent Fourier sum. Owing to the
Coulomb singularities in the potential and the
sharp features of the core charge density, the con-
vergence of such sums is known to be extremely
poor and, unless special procedures are used to
accelerate the convergence, "some 10000-30000
RLV have been required for reasonable conver-
gence. "

In view of these considerations, it seems reason-
able to construct a SC scheme in which the ad-
vantages offered by a real-space superposition ap
proach (in avoiding the slowly convergent Fourier
sums and facilitating the solution of the Poisson
equation for the crystal density) are coupled with
the efficiency in which three-dimensional multi-
center contributions to the potential (that are not
expressible within the superposition model) are
treated by reciprocal space techniques.

B. Charge and configuration self-consistency

Since there exist an unlimited number of ways
of partitioning p, (r) into lattice sums of single-
site terms [the goal of CCSC being to minimize
4p(r) over space], the relevant criteria for choos-
ing a particular partitioning set are efficient in
representing p, (r), a possible physical signifi-
cance of the projection set and the degree to which
the particular choice facilitates the following stage
of "full" SC. Our choice of the partitioning scheme
is the superposition model in which the projection
set is simply the one-site population-dependent
charge densities

We thus vary iteratively the "population numbers"
f 7 to minimize, in the least- squares sense, the
deviation
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along with a structure near the nuclei due to in-
terpenetration of charges from neighboring atomic
sites. This value of 0 „andthe deviations of the
residual &p(r) from zero probably indicate the
"best" level of SC attainable within a superposition
model (CCSC) of a minimal numeric set.

Although the minimal value of 0 at the conver-
gence limit of CCSC is still quite large, it is
remarkable that &p(r) becomes a rather smooth
spatial function. Thus, while one can effectively
account for all the "bonding" effects that are de-
scribable by in' a-atomic charge redistribution in

a linear superposition overlapping densities mod-

el, the inter-atomic rearrangement of charge re-
mains largely undescribable by a simple superposi-
tion of (nonlinearly varied) spherical atomic densi-
ties. In systems in which ground- state charge redis-
tribution effects are very small, one might expect to
do rather well with a one-center superposition
model, in which case, the results of CCSC are
presumably already very close to FSC results.
For example, when a minimal numerical basis
set ca1.culation is done for solid neon in the usual
1s'2s'2p configuration [lattice constant of 4.52

A, 2000 integration points and neglecting the
correlation functional in Eqs. (3) and (6)] the first
iteration already produces a cr value as low as
0.003e (compared with a total of 10 electrons per
ceH)and no further changes are observed during
successive iterations. On, the other hand, how-

ever, for strongly covalent systems like diamond
CCSC alone is not satisfactory and one should also
incorporate the residual np(r) in a more complete
treatment. Before proceeding to the next stage

3.2—
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—28—
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O
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in SC, some illustrative examples of the possible
arbitrariness in stage 1 need to be discussed.

A rather popular choice for a superposition
model to be used in a CCSC procedure is one
based on identifying the expansion coefficients a,
in Eq. (29) with either Mulliken or Lowdin

atomic charge populations. "'" One constructs
at each iteration step a new set of populations
along with the resulting superposition density and

repeats the process until the populations obtained
in successive iterations agree to within a pre-
scribed tolerance. The degree to which the final

po(r) simulates the charge density derived di-
rectly from the wave functions remains unspecified
throughout the calculation. It is thus not surpris-
ing that in previous investigations in molecular
systems, different prescriptions (e.g. , Mulliken
or Lowdin) for partitioning the charge density into
sums of atomic densities were found to lead to
different convergence limits, as indicated by
wildly different dipole moments, eigenvalues,
etc. ' ' It is still of some interest to find whether
one can effectively approach the limit of a free
minimization of o [Eq. (32)] by using one of the
commonly accepted population analysis tech-
niques.

%e have performed two independent CCSC
calculations for diamond using Mulliken and
Lowdin population analysis with a minimal numeric
basis set, 3000 integration points, and carrying
all lattice sums to eight shells of atomic neigh-
bors. The Mulliken population~ amounts to
arbitrarily dividing equally between the relevant
sites all the cross terms in the charge-density
expression between basis functions located on dif-
ferent inequivalent sites. In the Lowdin pro-
cedure" one orthogonalizes the Bloch function
basis first. In this case the populations are de-
fined to be proportional to the squares of the
transformed expansion coefficients. The Mulliken
and Lowdin populations are calculated at a set of
points in the BZ and averaged to yield the total
ground-state population of each of the 1s, 2s,
and 2 p orbitals in the crystal. To illustrate the
type and range of possible errors made by sampl-
ing only a few points in the BZ, we plot on an
enlarged scale in Fig. 5 the dispersion of the
Mulliken and Lowdin charges throughout the zone,

TABLE I. Brillouin-zone averages of the orbital
charges in diamond (Lowdin's definition).

I h, X W K Z l' L Q 'lN

FIG. 5. Dispersion of the Mulliken (full lines) and
Lowdin (dashed lines) 2s and 2P charges in diamond
across the Brillouin zone. Upper figure: 2p charges.
Lower figure: 2s charges. The 1s charge, not shown
in the figure, has a dispersion of less than 10 e around
2.0e

Orbital

1s
2$
2p

6-k 10-k 19-k Exact

1.9910 1.9792 1.9793 1.9793 1.9801
0.9452 0.9427 0.9426 0.9425 0.9420
3.0638 3.0781 3.0782 3.0782 3.0779
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Property
Mulliken

SC
Lowdin

SC
Free

minimization

Final deviation cr

Eigenvalue s
r25, vr„„
r~, c
1-2,v

L3, v

L3,c
X), „

X4
„

X) c
X4, c

Hybridization
Ratio (2p/2s)

Total energy
per atom (eV)

Form factors
f i'll.

f»2
fr2o

0.1595 0.1714 0.098

20.419
26.819
34.547
5.268

17.635
30.800
8.276

14.350
29.127
37.222

20.426
26.838
34.562
5.282

17.648
30.819
8.276

14.362
29.138
37.184

20.403
26.776
34.530
5.264

17.624
30.767
8.269

14.329
29.086
37.179

2.773 3.265 1.701

-1013.113 -1011.235 -1013.3990

3.206
0.1140
1.986

3.201
0.1110
1.975

3.210
O. 1170
1.990

as computed at 24 points in the ~ irreducible BZ
section. It is seen that the charge dispersion is
quite low (typically of the order of 0.15e for both
2s and 2P states), and that the Lowdin 2s(2P)
charge is systematically lower (higher) than the
corresponding Mulliken charges. The disper-
sion of the 1s charges in both schemes is smaller
than 1 part in 10' and is not shown in Fig. 5. Table
I shows the BZ averaged cha.rges, using 4, 6, 10,
and 19 nearest-volume points in the irreducible
BZ section. It is seen that the 6-tt sampling pro-
duces charges that are accurate to within 0.005e.
At the end of each iteration, p, ('Fl is used to con-
struct a new potential, and the iteration cycle is
repeated until SC in populations is better than
0.005e. A nonlinear va, riation of the basis set is
performed at each iteration. A simple damping
technique of the iteration cycle'~ (with a damp-
ing coefficient of 0.3) combined with the use of
the "Pratt improvement scheme"" near conver-
gence enables self-consistency to be obtained
typically in three to six iterations. The final wave
functions are used to compute the total energy per
atom and the x ray form factors (Appendix A).

Table II summarizes the results obtained at a

TABLE II. Comparison between some calculated prop-
erties obtained in three different CCSC models. Mulliken

SC and Lowdin SC refer to iterative calculations based on

the Mulliken and Lowdin charges, respectively; "free
minimization" refers to an iterative least-squares mini-
mization of the charge deviation a. Energies are given
in eV and populations in electron units. Eigenvalues are
given with reference to the r& „point at the bottom of the
valence band.

convergence limit of these two calculations, along
with those obtained in a calculation in which the
arbitra. ry f„,f„,and f» populations were varied
iteratively so as to minimize the deviation cr be-
tween p, (r) and p, (r). It is evident that although
the internal consistency in the populations is con-
strained to be good, the Lowdin and Mulliken popu-
lation schemes tend to converge the result to
distinctly different limits. Whereas the band
structure obtained from the Mulliken schemes
agrees with that obtained by the Lowdin scheme to
within 0.01-0.04 eV over the valence and first
conduction bands, the wave- function- dependent
quantities like charges and total energy are
markedly different. The difference in the Fourier-
transformed total density (form factors) are quite
low, while the difference in the individual orbital
densities (as reflected by the 2P 2s hybridiza-
tion ratio) and total energies (which depend on
higher orders of the charge density) are substan-
tial. It is also to be noted thatalthough neither the
Lowdin nor the Mulliken schemes seem to reduce
substantially 4p(r) towards the limit obtained in
the exact CCSC procedure ("full minimization"),
the Mulliken prescription does a little better than
the Lowdin scheme. It is expected that in hetero-
polar systems, where the difference in the charges
obtained by the various definitions is much
larger, "' the observables calculated from the
first- order density matrices within these schemes
would differ even more than in diamond. Although
0'M

y y
seems to offer only a small improvement

over a»„,properties that are sensitive to the de-
tails of the charge density (e.g. , those nonlinear
in the density like the total energy) can come out
substantially different. Thus, due to the fact that
the Mulliken &p(r) happened to be much smoother
near the core regions than the Lowdin &p(r) (al-
though they are rather similar in the valence re-
gion), the total energy obtained in the former
procedure is closer to that obtained in the "full
minimization. " By contrast, the x- ray form fac-
tors that sample mainly the interatomic region
(e.g. , the "forbidden" [222] reflection) are quite
similar in all three calculations. Note that since
the "exact" np(r) has a null zeroth moment (by
construction) and is rather smooth throughout
space, the errors associated with using this
superposition model would probably be distributed
rather uniformly in space and not cause too severe
a problem for such properties as atomic scatter-
ing factors. We conclude that although SC schemes
within a superposition model can be useful in ob-
taining "simple" quantities such a,s eigenvalues,
they should be treated with great care as to the
behavior of the residual densities when more
complicated properties are investigated. In parti-
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TABLE III. Comparison of basis-set effects in different non-self-consistent calculations in

diamond with exchange coefficient e =1 and a lattice constant a=6.728 a.u. Energies are given

in eV. The number of plane waves (PW) or atomic orbitals used in each case, is indicated.

Level
OP%
90-P%

OPW'
331-PW

LCAO
20 Slater
orbitals

LCBO"
10 Slater
orbitals

Present work'
minimal set

Present work
extended set

r,
„

~~sv

~isc
~~', c

Li, u

L3', v

L3', c
L~c
L2c
X)

„

X4„
X(~
X4c

0.0
22.97
28.60
36.57
5.80
8.52

17.69
27.91
31.27

8.86
15.84
27.10

0.0
22, 3
28.8
34.3
5.5
8.9

19.7
31.7
30.4
39.7
8.8

16.2
27.4
41.1

0.0
20.22
26.45
33.58
5.17
7.92

17.50
30.23
30.23
37.98
8.08

14.58
28.27
36.46

0.0
20.15

8.66
17.56

8.49
14.59

0.0
20.47
27.65
33.52
5.19
8.41

17.76
30.28
30.31
37.62
8.26

14.51
28.38
36.84

0.0
20.12
27.33
33.42
5.19
8.39

17.74
30.20
30.28
37.51
8.26

14.49
28.31
36.72

~Reference (3).
Reference (73).

'Reference (11).

Reference (12a).
'Minimal numeric set of is, 2s, and 2p.

Same as e plus 3s, 3p, and 3d Slater orbitals.

cular, when &p(r) is non-negligible the SC cycle
can converge to an arbitra. ry limit. "

C. Full self-consistency

The procedure used to obtain FSC is based on the
properties of the residual density b p(F) as obtained
at the convergence limit of the CCS, namely: (i) 4p(r)
is constructed to integrate exactly to zero over the
unit-ceil volume; (ii) ithasa rather smallnumerical
value over the unit cell space due to the use of a least-
squares minimization in the CCSC; (iii) It is a rather
smooth function of space. More specifically,
both the characteristic cusps at the position
of the nuclei and the steep variation near the
core regions characterizing the full charge density
[and the unoptimized 4p(r)] are completely elim-
inated by carrying stage 1 in SC successfully to
convergence. (iv) It has the full symmetry of the
crystal These .properties suggest that 4p(r)
would lend itself to a rapidly convergent Fourier-
series representation.

Fourier components of 4p(r) are determined
for a list of RLV (K, 's) shorter than some pre-
scribed length, using a, direct three-dimensional
integration over the unit cell (uc):

The sum over the RLV is expected to converge
rapidly due both to the smooth form of np(r) and

to the K,' fa,ctor. The exchange and correla-
tion potentials used in the iteration cycle are sim-

ply constructed in real sPace using the full den-

sity p,~(r) and the functional in Eqs. (8) and (7)
thus avoiding the difficulties encountered in

Fourier expanding these nonlinear functions. ""
The solution to the band problem is now repeated
with the refined potential using the fixed numeri-
cal basis set and Va"„'c+V~ac(r) obtained in the
last step of the CCSC. The resulting crystal
eigenfunctions are used to construct a refined
crystal density via Eq. (28) and a new 4p(r) and

hp(K, ). The calculation is repeated iteratively
until the relative change in the most sensitive
Fourier components between successive iterations
is lower than 10 '. If stage 1 in SC is carried pro-
perly to convergence, only a few iterations (two
to six in diamond) are required in stage 2 and only
the first few stars of the RLV (five to ten in dia
mond) are required. The hp(K, ) values for large
K, reflect the core contribution to &p(r) and are,
hence, negligibly small since they have been ab-
sorbed in p, (r) in the CCSC stage.

1
np(K, )=— e ' ~ 4p(r)dr.

Q (33)
V. ENERGY-BAND STUDIES

(34)

They are employed to construct the iterated cor-
rection to the electronic Coulomb potential,

nV (r)=g —4v ' ' e'".'~!K)
&s

A. Basis-set convergence

Although a meaningful study of basis-set effects
in a variational theory should be based preferably
on considerations of the total energy, none of the
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previously published calculations have attempted
such a task. Thus, we are forced to refer mainly
to the resulting eigenvalues and use the total en-
ergy only as an internal criterion for examining
the quality of our various basis functions. Since
previously published LCAO studies on diamond
were not carried out to SC nor calculated with the
correlation functional [Eq. (7)], we will make
comparisons with our calculations obtained at
this level of approximation. Whenever a different
lattice constant or exchange parameter was used
in the literature, we have repeated our calculation
to match these values as closely as possible.
Since one object of this particular study is to com-
pare the accuracy of various basis sets in realis-
tic ab initio studies, no reference is made to em-
pirical pseudopotential results, empirical tight
binding, empirically adjusted ab initio results or
muffin- tin calculations.

Among the previously published ab initio LDF
models for diamond in the LCAO representation
we refer to the Slater basis set calculation of
Chancy, Lin, and Lafon, " the discrete vari3tional
study of Painter, Ellis, and Lubinsky, ' the
Gaussian basis calculation of Simmons et al. ,

"
and the linear-combination of bond orbitals (LCBO)
of Kervin and Lafon. "' Several first-principles
OPW studies have been made in the past on dia-
mond, e.g. , the plane-wave calculation of Herman"
and Bassani and Yoshimine, ' the 302-331 plane-
wave calculation of Budge" and the 965 plane-wave
study of Euwema and Stukel. ' These calculations
are non-self-consistent, and slightly different ad
hoc potentials have been assumed by the various
authors.

Table III compares our results with energy
eigenvalues of the four valence and two lowest
conduction bands at the high-symmetry points, I',
X, and L in diamond obtained by various OP% and
LCAO methods with an exchange coefficient of 1.0
("Slater exchange") and a lattice constant of 6.728
a.u. Our non- self- consistent results are presented
using a minimal numerical basis set of 1s, 2s, and
2P orbitals and the extended set in which 3s, 3P
Slater-type orbitals (with exponents of 1.4 and
2.64, respectively) were added. In the states that
contain no P character the internal consistency be-
tween the various OPW studies is about -1 eV and
a similar agreement is obtained with our minimal
basis-set calculations. For states that contain P
character, our results are some 2-3 eV lower
than the best OPW result signaling serious con-
vergence errors in the OPW results. "

Qur minimal nuznerical basis-set results and
the minimal LCAQ basis-set results of Chancy et
al." (and Kervin and Lafon"') agree to within 0.15
eV/state (i.e. , a simple average on the four va-

TABLE lV. Comparison of basis-set effects between
various LCAO expansion sets. 0. =0.75829; a=6.720
a.u. Energy in eV.

LCAO
18 Slater Present work Present work

Level orbitals minimal numeric extended set

I"
1, v

~2S, vr„
12',c
~2, v

Li, v

L3', v

L3', c
Li, c
L~,c
X(

„

X4, v

X~,c
L4, c

0.0
20.89
26.83
35.24
5.65
7.38

17.91
30.75
31.81
38.79

8 ~ 33
14.36
28.51
37.81

0.0
20.47
26.54
34.76
5.35
7.21

17.68
30.41
31.17
38.15
8.32

14.36
28.21
37.34

0.0
20.38
26.45
34.68
5.34
7.20

17.65
30.38
31.15
38.09
8.31

14.32
28.20
37.30

lence and two conduction bands at the I', X, and
I points), and to within 0.10 eV/state for their
extended basis set. Part of the remaining dis-
crepancy can well be due to the linearization of
the exchange functional in the LCAO studies" and
to the slightly different superposition potentials
used.

Qur extended basis set produces eigenvalues
that are on the average 0.05 eV lower than those
obtained with the minimal numerical set. We have
studied a series of extended basis sets, aug-
menting the minimal set by nunzerical 3s, 3P, and
3d states and various Slater-type 3d and 3P states.
(In neither case do the eigenvalues presented in

Table III change by more than an average of 0.07
eV relative to the minimal numerical set results. )
We thus conclude that a minimal numerical set
produces eigenvalues for the valence and lowest
two conduction bands that are roughly equivalent
to those obtained by an extended analytical Slater
set. As a further check, we have compared these
eigenvalues to those obtained by Painter et al. '
with a double-zeta set, a lattice constant of 6.720
a.u. and an exchange parameter a = 0.758
("Schwarz value'"'). Since only a few of their
eigenvalues are quoted in their paper, we repeated
their calculation with their Slater basis set and
parameters. These results are compared in
Table IV with our minimal and extended basis-set
results. The agreement with our minimal numeric
set is again 0.10 eV/state on the average, our
(relative) eigenvalues lying consistently below
those obtained with the double-zeta set.

In a comparative study, Painter et al. ' have
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TABLE V. Total ground-state energies per atom (in
eV) for diamond as obtained in a non-self-consistent cal-
culation, for various choices of basis sets. An exchange
parameter of 3 was used and a lattice constant of 6.74032

a.u. Correlation is omitted throughout and 6 k points are
used to sample the charge density in the BZ.

Basis set Total energy

Minimal numer ical
Extended set I"
Extended set II'
Ion-pair d

Chopped extended set I'

—i Oi 2.728
—10i3.4i8
—i Oi 3.792
—iOi5.2i8
—i Oi 3.028

is, 2s, 2p numerical local density orbitals.
Set a plus Slater orbitals 3s, 3P (see text).

'Set a plus numerical 3s, 3p orbitals.
Set a plus two comparable sets for a positively and a

negatively charged carbon atoms (see text).
'Set a plus truncated 3s, 3p Slater orbitals.

used their double-zeta Slater basis set to compute
the band structure of diamond using the muffin-tin
potential previously employed by Keown in his
highly converged APW study. ' Painter et al. found

an average agreement of -0.05 eV/state with the
"exact" muffin-tin results, their values being
usually above the APW results. This tends to in-
dicate that our minimal basis set results are as
good as, or slightly better than, the APW results
and of roughly the same quality as an extended
Slater basis set. We believe our extended set to
be superio~ to all other basis sets discussed.

In order to study the variational quality of some
of the basis sets employed, we have calculated
the total ground-state energy per atom using the
experimental lattice constant" of 6.7403 a.u. and
n = 3 (neglecting correlation) (see Appendix A for
a description of the total energy-calculation
scheme). The results are presented in Table V
along with those obtained by augmenting a minimal
numerical. set with two sets of identical sizes,
corresponding to positively and negatively charged
carbon atoms (consisting of a charge-transfer ion-
pair basis set)."

A further test of the variational quality of the
I CAO basis set was performed by examining
truncated analytical orbitals. It has been previ-
ously suggested" that one may significantly reduce
the computational effort associated with perform-
ing lattice sums over the rather long-range atom-
iclike analytical orbitals with little loss in the ac-
curacy of the eigenvalues, by projecting out these
long-range tails. Following Simmons et al."we
have curve fitted the 3s and 3P Slater orbitals
with several short-range Slater orbitals, and have
discarded the long- range components. The re-
sulting 3s and 3P orbitals were then virtually iden-

tical to the original ones up to a distance of 1.8
a.u. from the nucleus and then decayed almost
twice as fast as the original orbitals. The results
for this basis set are shown in the last line of
Table V.

The following conclusions may be drawn from
this study:

(i) Augmenting the minimal numerical set by
3s- and 3P-type orbitals has the effect of stabili-
zing the crystal. ground-state energy by about
0.9-1.1 eV/atom. This stabilization is similar
for both atomic (untruncated) Slater-type or nu-

merical orbitals. The addition of these orbitals
changes the valence-band eigenvalue spectrum
only an average of by 0.02 eV/state. The details
of the two lowest conduction bands are changed
on the average by as much as 0.06 eV/state.
Hence, even a rather small mixing of the virtual
atomic states into the occupied manifold in the
solid, produces a substantial total energy stabili-
zation, although the accompanying change in the
eigenvalues is small.

(ii) A very significant lowering of the total ener-
gy, by 2.5 eV/atom, is produced by adding the
ion-pair basis set to the initial minimal numerical
set. Again, the average change in the eigenvalues
is rather small (0.03 eV/state in the valence bands
and 0.05 eV/state in the two lowest conduction
bands). Examination of the crystal density shows
that the ion-pair basis set changes only negligibly
the charge in the interatomic bonding region and
that the substantial penetration of the ion-pair
orbitals into the core region of the neighboring
sites is responsible for most of the variational
stabilization. We were unable as yet to optimize
the total energy as a function of the assumed
ionicity of the ion-pair set, due to the substantial
cost of such calculations. We have instead per-
formed the calculation using three discrete values
for the ionicity, namely +0.50e, +0.80e, and
+1.00e. The results indicate that the choice of
+0.80e for the ionicity (a "best" value of +0.85e
was obtained by interpolation) produces the best
total energy, while the results obtained with a
choice of +0.50e are poorer by 0.25 eV/atom.
The results obtained for the choice of +1.0e are
substantially worse than those obtained with no
ion-pair set (this is probably due to the high in-
terelectronic repulsion in the neighboring core
region caused by the tails of the Q = + 1.0e basis
functions).

(iii) The use of truncated Slater orbitals along
with the minimal numeric set introduces a serious
destabilization of the system so that over 60k of
the improvement in energy offered by the Slater
orbitals is lost. This result is probably quite
sensitive to the exact form of the truncation pro-
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cedure and no general statement can be made
about the "optimum" truncation without extensive
experimentation. It seems, however, that the rela-
tive insensitivity of the band structure to a parti-
cular truncation (0.09 eV/state on the average, in
our case) could hardly be used as an indication of
its adequacy, especially in covalently bonded sys-
tems in which penetration of the tails coming from
neighboring atoms into the core region of the cen-
tral atom contribute significantly to the stability
of the system.

8. Convergence of reciprocal and direct lattice sums

As stated in Sec. IV, we use a special k-point
algorithm"" to calculate the iterated crystal
density [Eq. (28)]. Several objections have been
raised recently as to the adequacy of a small k
sampling set in SC band calculations. ' '" Nat-
urally, the key problem in obtaining a good BZ
average of a wave-vector-dependent property is
its degree of dispersion. Figure 5 showed that
the Mulliken and Lowdin orbital populations de-
rived from the charge density have a remarkably
low dispersion even in a wide-band material like
diamond. Table I shows the BZ average of these
orbital charges as calculated by the 4, 6, 10, and
19 special k points used in our SC cycle to deter-
mine the crystal density, together with an accurate
determination of those quantities calculated by
using a numerical integration of the orbital charge
dispersion curves of Fig. 5. It is seen that a
6-k-point integration scheme is already capable of
producing extremely accurate results for these
averages. Figure 6 shows the total ground-state

0.8

0.6—

D

)-
U) 04—
LLf
C3

& 02-

charge density along the bonding [111]direction
as calculated by the 6-k averaging schemes. The
19-k scheme produced results that are indistin-
guishable from the 10-k results on the scale of
Fig. 6. It is to be noted that although the band-
by-band charge density shows non-negligible dis-
persion, the total ground-state density of the
closed-shell system is quite constant throughout
the BZ. We also note that the BZ averages of the
band eigenvalues needed for the total energy cal-
culation (Appendix A) cannot be estimated accu-
rately by a special k-point algorithm (with a. few

sampling points, as used for the charge density)
due to the substantial width of the occupied bands
in diamond, and that this quantity is calculated by
numerically integrating the occupied part of the
one-electron band structure (Appendix A).

In examining the effect of the BZ sampling
scheme on the calculated x-ray scattering factors,
the results of the 4-, 6-, and 19-k-point samplings
(Table VI) demonstrate the small dispersion of the
Fourier-transformed charge density throughout
the BZ. However, we have found" that in hetero-
Polax III-V compounds such as boron nitride,
where hybridization between the orbitals of the
different atoms in the unit cell is important, the
charge density exhibits much larger variations in
the BZ due to the change of hybridization ratio
and degree of interatomic charge transfer with the
symmetry of the state in the zone. In such cases,
BZ averages needed for the SC cycle should be
done with more sampling points.

Since space lattice sums are encountered in
constructing the superposition charge density [Eq.
(10)], the short-range potential [Eq. (18a)] and the
basis Bloch functions [Eq. (16)], we have examined
the convergence of various calculated properties.
When only a minimal numeric basis set was used,
a cutoff distance of 14 a.u. produced energy bands
that are stable to within 0.15 eV towards any fur-
ther increase in the summation range, while in-
clusion of long-range virtual (numerical) orbitals
necessitates a much longer range. We have found,
however, that if one obtains these orbitals from
the solution of Eq. (19) with a localizing potential
A(r) in the form of an external potential well, 4'"

0
0

I

0.5 I.O

TABLE VI. Brillouin-zone averages of the x-ray
scattering factors in diamond, as obtained by different
k-point sampling schemes.

DISTANCE ALONG [I I IJ (UNITS OF ~3/4 p)
FIG. 6. Average of the valence charge along the [111]

direction in diamond; full line: 6-nearest-volume k
points; dashed lines: 10-nearest-volume k points. The
results for 19-nearest-volume k points are indistin-
guishable from the 10-points density, on this scale.

heal

iii
220
3ii
222

3.28i
i.995
i.692
0.i 39

3.273
i.992
i.720
O. i 37

i9 k

3.27 i
i.990
i.720
O. i 35
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it is possible to reduce the long-range character
of these orbitals without any significant loss in
the accuracy of the resulting eigenvalues and total
energy. The distance from the atomic origin at
which this well was constructed was fixed by the
requirement that this external potential will not
change the spatial behavior of the low-lying core
plus valence atomic orbitals. With this choice, it
was possible to converge the lattice sums of the
Bloch orbitals [Eq. (16)] by using a cutoff distance
of 18 a.u. ; an accurate total-energy evaluation
required a larger cutoff distance of about 23 a.u.
It thus seems that the numerical basis set in this
work offers a natural and convenient way of local-
izing the long-range free space atomic orbitals,
thereby avoiding the difficulties associated with
slowly convergent lattice sums. """

VI. SUMMARY

We have presented a combined Fourier-trans-
form and discrete variational approach to the
problem of obtaining self-consistent solutions to
the local-density one-particle equations for solids.
The method is based on systematic extensions of
non- self- consistent real- space techniques of
Ellis, Painter, and co-workers" as well as SC
reciprocal space methodologies of Chancy, Lin,
Lafon, and co-workers. "' Qur method over-
comes the usual difficulties in "standard" APW or
Korringa- Kohn- Rostoker techniques by avoiding
completely the muffin-tin approximation to the po-
tential and charge density and greatly simplifies
the problems of basis- set convergence encountered
in tight-binding Gaussian expansion techniques.
Complete self-consistency is conveniently ob-
tained by combining the treatment of the iterated
superposition potential (with its large nonconstant
spatial terms in a real-space numerical integra-
tion approach) with a Fourier decomposition and
reciprocal space sums of the smooth cha.rge-
density difference that are not amenable to a
CCSC analysis. All the many-center integrations
appearing in standard tight-binding approaches
are avoided by the use of a direct Diophantine
numerical integration scheme. We believe that
with the use of an efficient numerical basis and
the techniques outlines above for obtaining self-
consistent solutions, we have come quite close to

the point where the predictions of the local density
formalism for real solids can be critically com-
pared with other theoretical approaches to the
electronic structure problem.
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APPENDIX A: CALCULATION OF OBSERVABLES

+ V„„(r)]dr,
(Al)

where the various potential terms are
z

V((e(r) = Q
(

p(r')
V„(r)=, d r',

f r- r'I

(A2)

and V„(r)and V„„(r)are given by Eqs. (6) and
('1). The total potential energy is given by

Eps= p,~( )[~V, (r)+2 V„(r)

+ V„(r)+V„„)]dr, v

where V„„is the internuclear repulsion term.
Since V,„/N, V„/N, and V„„/Nare divergent as
N goes to infinity, we rearrange the terms in the
potential energy to yield

The wave functions, charge density, and poten-
tial are used at the end of the SC cycles to com-
pute the total ground-state energy and the x-ray
scattering factors. We outline here briefly the
computational schemes used to calculate these
observable s.

1. Total energy. The total ground- state energy
is computed for a fixed set of nuclear coordinates
and lattice vectors from Eq. (4). Using the fact
that the band eigenvectors t/r(k, r), are solutions of
our one-particle equation, the kinetic energy is
given by

z„,= F ~, (%) - f p,„(l I('„.td+ ('..((~ —', (', ( (

pE=& p,~ r V„,r +V„r dr+ & p, r V„,r dr+V„„+ p, r V„r+V„„rdr. (A4)

In this form, the divergences in the individual terms are grouped to yield the three finite terms in (A4),
each linear in N, so that a total energy per unit cell can be defined. The first two terms in (A4) repre-
sent the total electrostatic energy while the last term is the total exchange and correlation energy. When
the total electrostatic energy in Eq. (A4) is rearranged, one obtains the expression
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E„„=zp,~ r V„,r +V„r dr+g Z V„,a +V„a
a=1

(A5)

where the "vacancy potential" V,~(n) is defined
as the total electrostatic potential at the 0.th site
due to all charges except those of the ath site
itself, and V„(a)is the value of the electronic
potential energy at this site. To calculate the
total energy we thus need to perform three in-
tegrals over the unit cell volume, namely, over
p, (r)[V„,(r) + V„(r)],p, (r) V,(r), and p, (r)V

„
(r)

and two sums [in Eqs. (A1) and (A5)]. The ex-
change and correlation integrals were found to
converge readily using about 2000 Diophantine
sample points, while the Coulomb integration was
found to converge more slowly. The terms
p, (r)V„,(r) and p, (r)V,„(r)are combined before
integration is attempted. It was found, however,
that no further simplications of the Coulomb in-
tegral are required in order to obtain good ac-
curacy in its evaluation; about 4000-7000 integra-
tion points, combined with a highly peaked sam-
ple point distribution in the core region, were
sufficient to obtain good accuracy in the cohesive
energy.

The sum over the band eigenvalues in Eq. (Al)
was performed using 32 equally spaced points inthe

,—,irreducible BZ section. Sufficient accuracy in
the crystal core eigenvalues is assured by employ-
ing some 10-30 integration points inside the
nuclear volume and about 300 points within the is
orbital sphere.

The total energy of the free atom is computed
from a spin-polarized version of the Herman-
Skillman program using the correlation functional
from Eq. (l).

2. X ray scattering factors. The x-ray scat-
tering factors f (K) are computed from the SC

p,~(r) by a direct three-dimensional Diophantive
integration

(A6)

for a, set of (h, k, l) reflections K. Although the
convergence of this integral as a function of the
number of sampling points is rather good (0.270
error for 2000 points in diamond), it was found
somewhat advantageous to combine a radial (one
dimensional) integration of the spherical com-
ponents of p, (r) [Eq. (31)] with a Diophantine in-
tegration of [p„,(F) —p, (r)]e'"'.
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