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First-principles total-energy pseudopotential calculations are carried out for Si, Ge, zinc-blende-
structure SiGe, (Si2)~/(Ge2)~ superlattices in various layer orientations G and with various choices of
substrate lattice parameter a„and for the Sio,Geo, random alloy. A subset of the results is used to con-
struct an energy model, incorporating both strain (via an anharmonic valence force field) and chemical
interactions (via a rapidly convergent cluster expansion) that closely reproduces the first-principles re-
sults, including those not used as input to the model. The model is applied to the study of larger super-
lattices than are amenable to first-principles treatment, revealing trends in (i) constituent strain energies,
(ii) interfacial strain-relief' relaxation energies, and (iii) interfacial chemical energies. The analysis re-
veals the major regularities in the dependence of superlattice stability on Ip, G, a, I, and permits investi-

gation of the nature of interactions at interfaces, including the substrate-film interface.

I. INTRQDUCTION

Ultrathin (Siz )~/(Ge2 )~ superlattices (SL's) and
Si Ge, films can be grown epitaxially in a variety of
layer orientations, including (001),' (100), and (111).
Provided that the films are thin enough, they can be
made coherent with substrates of different lattice con-
stants, ranging from that of Si (Refs. 1, 3, and 6) (a =5.43
A), through Si„Ge, „alloys, ' ' to that of Ge (Refs. 1,
5, and 7) (a=5.66 A). Recent theoretical ' and experi-
mental' work has demonstrated how the choice of (i)
superlattice-layer orientation G, (ii) superlattice repeat
period 4p, and (iii) substrate lattice parameter a, sensi-
tively affect the electronic properties: (i) and (ii) decide
the number and symmetries of folded states, and (iii) con-
trols strain-induced level shifts and splittings. Little is
known. ' '" ' however, about the way in which Cx, p,
and a, affect the thermodynamic stability of these binary
SL's. While these parameters (along with growth condi-
tions, surface steps, substrate misorientation, and surface
reconstruction) can clearly affect growth kinetics and sur-
face thermodynamics, we address here the complementa-

ry question of the relative bulk thermodynamic stabilities
of already-grown binary SL's, e.g. , short versus long,
(001) versus (110) versus (111), and strained versus un-
strained. Most previous systematic studies of thermo-
dynamic stability of SL's (Refs. 16 and 17) treated pseu-
dobinary (AC)~/(BC) systems with a common sublat-
tice C. However, the binary (A2)z/(B2)~ system of dia-
mondlike constituents studied here manifests new
structural possibilities. For example, while there is a sin-

gle type of (111)SL in the case of pseudobinary SL's, for
binary SL's we distinguish two geometrical rhom-
bohedral (RH) arrangements' ' [Figs. 1(a) and 1(b)]: the
RH1 form, in which the interfaces occur within bilayers
along (111)containing one layer each of Si and Ge (in-

trabilayer or mixed-bilayer interfaces), and the RH2
form, in which the interfaces occur between bilayers (in-
terbilayer or pure-bilayer interfaces). ' For p =1 the bi-
layer sequence in RH1 is (SiGe)/(GeSi) . , while in
RH2 it is (SiSi)/(GeGe)

In this paper we address the questions of the thermo-
dynamic stability of coherent binary SL's versus Ip, GI,
grown on different substrates. Total energies of SL's with
given Ip, G, a, I values can be obtained, for modestly
small p values, from first-principles total-energy calcula-
tions, e.g. , within the local-density formalism. The
advantage of such approaches lies in the reliability with
which these energies can be obtained. At the same time,
the disadvantage is that the mere knowledge of the values
of the total energies does not readily suggest the physical
origins of stability or instability. Our main aim in this
work is to use such first-principles calculations to con-
struct simple models of SL stability that are both numeri-
cally reliable and physically transparent. In addition to
general features of SL energetics, we calculate the forma-
tion enthalpy of the random alloy, compare it to that of
various ordered structures, and consider the implications
of our results regarding the interpretation of recent ex-
periments in which spontaneous ordering of SiGe has
been observed. ' '

The organization of the remainder of the paper is as
follows. Section II introduces a simple physical model
used to partition the SL formation enthalpy into strain
and chemical components, which are analyzed in terms
of bulklike and interfacelike contributions. Also intro-
duced in Sec. II is the general approach to the calculation
of the various contributions to the formation enthalpy
and our model for calculating the formation enthalpy of a
random SiGe alloy. Section III describes in detail the
method used for calculating the strain energy of the SL's,
including the first-principles calculations upon which it is
based. Section IV presents the strain-energy results for
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The (a) RH1 p = &, (b) RH2 p =1, and (c) SQS-8 structures. Solid circles denote Si atoms, and open circles denote Ge
atoms.

SL's and random 50%-50% alloys. Section V gives the
model and results for chemical energies. Section VI adds
up the strain and chemical contributions and discusses
the emerging trends in the total formation energies as
well as comparing the model results to analogous directly
calculated first-principles results. Section VII discusses
substrate-film interactions generally omitted from epitaxi-
al calculations and considers under what circumstances
they may be important. The energetics of some other in-
terfaces are also considered. Section VIII considers the
issue of abruptness of Si/Ge interfaces. Section IX sum-
marizes our main results and discusses several issues re-
garding spontaneous ordering of SiGe alloys.

II. METHODOLOGY: A SIMPLE PHYSICAL MODEL
AND ITS EVALUATION

A central quantity surrounding bulk thermodynamic
stability is the formation enthalpy. We define the zero
pressure formation enthalpy of a (Siz)„/(Ge2)~ SL, with
repeat period 4p, parallel (substrate) lattice constant a„
and orientation Cx, as its energy per atom taken with
respect to the energies of equivalent amounts of its crys-
talline constituents Si and Ge at their bulk equilibrium
lattice constants:

bH(p, G, a, ) =EsL(p, G, a, ) ——,
' [Es;(as; )+Eo,(ao, )],

where as; and az, are the equilibrium cubic lattice con-
stants of Si and Ge, and the energies are all per atom.
While our calculations of AH are based directly on this
definition, the general form of b.H(p, G, a, ) (neglecting
small vibrational effects) and its scaling with p can be ap-
preciated from simple considerations as follows. In pure
Si and Ge, the nearest-neighbor bond lengths attain their
"ideal" values Rs; s;=as;v'3/4 and Ro, o, =ao, V 3/4,
and the bond angles have the "ideal" tetrahedral value
0 jk 109.5 . Imagine now forming the SL from its bulk
constituents in two steps: first without allowing charge
transfer, then with charge transfer.

The first contribution is termed microscopic strain"
and is constructed as follows. In the SL the bond lengths
[r;J ] and angles [8;~k] generally deviate from the ideal
values [R; ] and [0;.k ], respectively, because topological

constraints prevent simultaneous optimization of all
structural degrees of freedom. The energy cost of the
first step is the "microscopic strain" (MS) energy
AEMs 0, resulting from this inability to accommodate
in the SL the ideal bond geometry. SL's whose constitu-
ents are size matched (approximately true for, e.g. ,
GaAs-A1As) have' bEMs=0. Since SL's with different
layer orientations have different unit-cell structural pa-
rameters (e.g., types of interplanar spacings) compatible
with their symmetries, they differ in the degree to which
structural relaxations can relieve strain; hence
bEMs=bEMs(p, G, a, ). It is possible to partition EEMs
into "bulk" and "interface" contributions' by consider-
ing the limit p~ac. A (Si2) /(Ge2) SL has two inter-
faces per SL unit cell (containing 4p atoms); each inter-
face contributes an interfacial "strain-relief' (SR) energy
of IsR(p, G, a, )/2p per atom. In the p ~ ac limit these in-
terfaces contribute negligibly [-0(1/p)] to bH, hence
EEMs(p = ac ) is simply given by the elastic energy need-
ed to deform the two constituents A, =Si,Ge from their
cubic equilibrium structures [with lattice constants az
and energies Ez(az)] to the structure they attain inside
the SL. This "constituent-strain" (CS) energy is

bEcs(G, a, )—:EEMs( ~

[E~«u, )
—E~(u~))

A, e I si, Gej

where E&(G,a, ) is the energy of component A, con-
strained to have the lattice constant a, parallel to the sub-
strate and relaxed in the perpendicular direction. Hence,
for all p's the total microscopic strain energy (per atom)
of a SL with structure a= [p, G, a, ] is

sR(p, G, a, )~E"=~E (G a )+ '
2p

(3)

Note that AEcs ~0, since it represents deformation of
the equilibrium structures of the constituents, whereas
generally IsR ~ 0, since it usually corresponds to relaxa-
tion of strained bonds in the SI.. Note further that both
AEcs and IsR depend on the degree of size mismatch be-
tween the SL constituents. For binary (A2)~/(B2)~ SL's
of size-mismatched constituents (e.g. , Si and Ge) the two
contributions of Eq. (3) cancel exactly only when there is
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sufficient structural freedom to satisfy simultaneously the
constraints [r;JI =[R;J] and [0;JkI= [8;~kI. Such "to-
pologically unconstrained"' systems include the RH1 SL
with p =1 [Fig. 1(a)] and the zinc-blende (ZB) structure.
In contrast, all lattice-mismatched pseudobinary
(AC) /(BC)~ adamantine SL's with a common sublat-
tice C are "topologically constrained, " and so have

EMs &o
In the second step of forming a SL, one allows for

charge exchange (CE), associated with an energy
Ici, (p, G) per interface, or Ica(p, G)/2p per atom. This
primarily rejects the formation of Si—Ge bonds but also
the creation of altered chemical environments around
Si—Si and Ge—Ge bonds. This "chemical energy" of
isovalent SL's is hence

IcE(p G)
b,E,„, (p, G)]= (4)

2p

The total formation enthalpy of Eq. (1) can be thought
of as a sum of strain-energy and chemical-energy terms:

EH(p, G, a, ) =b EMs(p, G, a, )+bE,h, (p, G), (5)

or, alternatively, as a sum of bulklike and interfacelike
terms:

hH (p, G, a, ) =EEcs(G, a, )

+ [IsR(p, G, a, )+Ica(p, G)] . (6)
1

2p

While, in general, formation enthalpies could be parti-
tioned in a number of different ways, we will see below
that the definitions underlying Eqs. (2)—(6) are particular-
ly useful for describing the physical ingredients of SL sta-
bility. In particular, this analysis shows that (i) the rela-
tive stability of long-period SL's is governed by the con-
stituent strain energy [first term in Eq. (6)] and could
differ from that of short period SL's wh-ere the interface-
like terms [bracketed in Eq. (6)] may be important. (ii)
The asymptotic limit of b,H(p~ )=b,E&s(G, a, ) van-
ishes for size-matched SL s and is positive for size-
mismatched SL's. The limit could be approached either
from below or from above, depending on whether the in-
terfaces are attractive (IsR+Ic~ (0) or repulsive
(IsR+Ica )0).

The total formation enthalpy can be calculated quan-
tum mechanically directly from Eq. (1) using self-
consistent electronic-structure techniques, ' which
treat chemical and elastic interactions on an equal foot-
ing. This is currently feasible' ' computationally only
for SL's with a inodest number of atoms per cell (4p ~ 20)
and for p = ~ [deformed constituents, Eq. (2)]. Our pri-
mary aim here, however, is to analyze the factors govern-
ing stability, by considering a range of p's, Cx's, and a, 's.
We do this as follows.

(i) The microscopic strain energy AEMs is calculated
classically for a large range of p's by optimizing the elas-
tic energy of a SL as a function of its structure, given a
force field. We use a generalized form of Keating's
valence force field ' (VFF), which expresses b.EMs for
an arbitrary adamantine structure in terms of the ideal

IR;J], [S,jk], and a set of bond-stretching and bond-
bending force constants. Our generalized VFF model,
the details of which are presented in Sec. III 8, includes
anharmonic terms of both the bond-stretching and bond-
bending types. The parameters of this anharmonic VFF
(AVFF) model were obtained by fitting the results of
first-principles self-consistent pseudopotential total-
energy calculations (described in Sec. III A) for bulk and
epitaxially deformed Si, Ge, and zinc-blende-structure
SiGe to the model. The details of the fitting procedure
and specific values resulting from the fits are discussed in
Sec. III B. We calculate AEMs from this "first-principles
AVFF" for various a= [p, G, a, [ by directly relaxing the
coordinates of the 4p atoms per cell and any appropriate
cell-external degrees of freedom using a conjugate-
gradient optimization method. The results are de-
scribed in Sec. IV. (ii) The same calculation for the de-
formed pure constituents gives EEcs, the difference
b,EMs —b,Ecs then provides Isa/2p. (iii) First-principles
total-energy calculations for the topologically uncon-
strained (EEMs ——0) zinc-blende and RH1 (p=1) struc-
tures give directly AE,'h,' =EH' '. These are then used
to define a cluster expansion of bE,&, in terms of first-
and second-neighbor pair interactions. We will see below
that the charge-transfer effects underlying EE,h, give
rise to relatively short-range interactions, so that these
two terms are sufficient to give reasonably good conver-
gence. Having determined the cluster interactions from
the pseudopotential total energies, we can predict the
chemical energies of arbitrary structures. The details of
the cluster expansion and the determination of the
coefficients are presented in Sec. V.

To test the overall numerical accuracy of the model we
combine AE~s obtained from the AVFF model with

AE,'h,' obtained from the cluster expansion and compare
(for structures not used to deduce the interaction parame-
ters of the cluster expansion) the result to directly calcu-
lated first-principles formation enthalpies. We will see
below that the agreement is excellent, thus substantiating
the accuracy of the model. This analysis then permits
calculation of the three physical terms —AE&s, IsR, and

Ici, (or EE,h, )—governing the stability of these SL's.
Furthermore, this analysis allows us to predict hH for
structures that are too complicated to calculate directly
from first principles.

In addition to the formation enthalpies of the ordered
SL s, an analysis of thermodynamic stability requires the
mixing enthalpy of the random Si„Ge& „alloy. We cal-
culate the enthalpy of formation of a random alloy via
the "special-quasirandom-structure" (SQS) concept.
The basic idea is that within a relatively small supercell
with X atomic sites, we select the set of occupations by Si
and Ge that most closely mimics the short-range radial
correlation functions of a perfectly random infinite alloy.
This is done by determining the multisite correlation
functions of each possible structure within a given N, and
choosing the structure with the best match to those of a
random alloy. For the Si05Ge05 alloy, we use an eight-
atom SQS, shown in Fig. 1(c). This is a (2,2) SL along the
[110] direction on each of the two fcc sublattices of the
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diamond structure, with a particular choice of "phase"
between the two SL's. As a check of the quality of this
SQS, we also calculate the strain energy of a number of
large random supercells, where 1000 Si and Ge atoms are
distributed randomly on a diamondlike lattice, and the
relaxed energies are averaged over many distinct
configurations of the random system. We find that a cal-
culation on SQS-8, with just eight atoms per cell, closely
reproduces the results of this direct simulation with 1000
atoms per cell, thus substantiating the SQS construct.
These results are discussed in Sec. IV.

The complete analysis of SL formation enthalpies and
random alloy mixing enthalpies in terms of our model of
Eqs. (5) and (6) then permits assessment of thermodynam-
ic stability of various phases. This is discussed in Sec. VI.

III. METHOD OF CALCULATION

A. First-principles pseudopotential calculations

Our first-principles self-consistent plane-wave pseudo-
potential calculations were done in the local-density ap-
proximation with a plane-wave energy cutoff of 20 Ry,
using in all cases the equivalent of 10 special k points in
the irreducible part of the diamond Brillouin zone. The
use of equivalent basis sets, k-point sampling, and self-
consistency for all structures results in a relatiue precision
of AH's for near-equilibrium structures of about 0.1

MeV/atom (whereas absolute accuracy is not as good).
For determination of the AVFF parameters, we did

four sets of seven total-energy calculations for each of the
three materials, Si, Ge, and zinc-blende-structure SiGe:
one set scanning the volume (maintaining a cubic cell),
and three sets being done under coherent epitaxial condi-
tions, where the substrate lattice constant in the (001)
plane was held at approximately the equilibrium lattice
constant of Si, Ge, or their average, and the c/a ratio was
varied. The range of the cubic scans was about +15% of
the equilibrium volume, and that of the epitaxial scans
was +9%%uo in the c /a ratio.

In a number of the first-principles calculations the
structural distortions caused the materials to become me-
tallic. In addition, it is not possible to preserve absolute
equivalence in k-point sampling under the distortions in-
volved in the scans (we distort the sampling mesh along
with the unit cell, to preserve both the number of mesh
points and the topology of the mesh in the full Brillouin
zone). As a result of these and other sources of noise in
the first-principles scans, all fits of these results were done

with weights applied to the scan points, giving gradually
decreasing weight to points further from the energy
minimum, and reducing the weight for metallic cases by
an additional factor of 2. All fits were done using g
minimization.

Table I summarizes the results of the scans. The equi-
librium lattice constants were determined by fitting the
results of the volume (cubic) scans to a Birch equation of
state. ' The bulk moduli and epitaxial strain-reduction
factors

E(Ci, a„c,q ) —E(a,q )
q(G)= E (Cx, a„c=a, ) —E (a,q )

(7)

(where the subscript "eq" denotes equilibrium values, and
the c-axis dependence is made explicit for the epitaxial
energies) were determined from the second-order elastic
constants C» and C&2 resulting from fitting to a third-
order elastic model. The equilibrium c-axis lengths were
determined from fits of the individual epitaxial (c/a)
scans to a third-order elastic model including only terms
in C» and C&». We find that equilibrium c-axis lengths
determined from harmonic elasticity theory

c,q([001],a, ) =a,
q
—[2—3q([001])](a,—a,q)

agree to better than 0.1% with those given in Table I,
though the effects of anharmonicity would cause energies
calculated from harmonic elasticity theory to be consid-
erably less reliable. Note also that for any two substrate
lattice constants, [c,q(a 2 ) —c,q (a, ) ] /(a2 —a i ) (0, show-
ing the expected behavior that the c axis relaxes to com-
pensate changes in a„ thus tending to preserve the
volume of the equilibrium cubic structure.

Our determination of AE,h, in Sec. V utilizes the re-
sults of first-principles calculations for the bulk ZB and
RH1 p = 1 structures. Here we discuss those first-
principles results as well as the analogous epitaxial results
and those for the related RH2 p =1 structure, and corn-
pare them to previous calculations. Our pseudopotential
calculations for the equilibrium "bulk" ZB and RH1
p =1 structures give AH=9. 9 and 6.5 meV/atom. Mar-
tins and Zunger, ' in a pseudopotential calculation with a
plane-wave energy cutoff of 18 Ry, and the equivalent of
two special k points in the irreducible wedge of the dia-
mond Brillouin zone found 7.6 meV/atom and 6.6
meV/atom, respectively. In a separate 24 Ry, 10-k-point
calculation, they found for the ZB structure AH=8. 9
meV/atom. Dandrea, who used the same energy cutoff
and k-point sampling used here, found 6.8 meV/atom for

TABLE I. Pseudopotential-calculated bulk moduli B (GPa), epitaxial strain-reduction factors q [Eq.
0

(7)] for [001]-oriented substrates, equilibrium lattice constants a,q (A), and equilibrium unit-cell c-axis
length (A) for three [001]-oriented substrates with a, approximately equal to the lattice constants of Si,
Ge, and their average. ZB denotes zinc-blende-structure SiGe.

Si
ZB SiGe
Ge

96.0
86.6
76.0

q{[001])

0.40
0.41
0.42

&eq

5.3946
5.4799
5.5835

a, =5.3956

5.3937
5.5426
5.7169

Ceq

a, =5.4908

5.3185
5.4714
5.6487

a, =5.5861

5.2429
5.4004
5.5799
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RH1 p =1. For RH2 p = 1, we find 9.2 meV/atom, while
Dandrea found 9.5. On a (001) Si substrate, we find 14.9,
11.7, and 11.7 meV/atom for ZB, RHl p =1, and phase-
separated Si+Cxe, respectively. The corresponding
values found in Ref. 12 are 13.3, 10.9, and 13.0
meV/atom, respectively. While these differences are
small, there is a qualitative difFerence in that we find
strained RH1 p = 1 to be degenerate with its strained con-
stituents within the precision of our calculation, whereas
Ref. 12 finds strained RH1 p=1 to be more stable by
about 2 meV/atom.

B. The anharmonic VFF model

a i

E=2X X
i =1 j=1
N

+X X
i =1 j=1

M

n=2 72. 2

Mb

X X „,k=j+1 n =2

v'3
(n)gn
lJ 1J

n

p(n) gn
ijk ij k (9)

where N, is the number of atoms per unit cell, X; is the
number of nearest neighbors to atom i (always four in
adamantine structures), M, is the highest-order bond-
stretching term kept, Mb is the highest-order bond-
bending term kept, o.', "' is an nth-order bond-stretching
force constant, p';1k is an nth-order bond-bending force
constant, and the outer factor of —,

' in the bond-stretching
term compensates for double counting of the bonds. The
bond-stretching k's are

The microscopic strain energy of Eq. (5) is evaluated
from a purely elastic model that represents the increase
in energy due to stretching and bending of ideal bond
lengths and angles. The AVFF energy expression follows
the general form outlined by Keating, in being an ex-
pansion in terms of quantities

~'jki (rij rki R j
depending on interatomic displacement vectors r, , their
ideal values R;., and a length scale d of the order of an
ideal bond length, the subscripts being atom indexes.
Following Keating we keep only nearest-neighbor-pair
bond-stretching interactions (involving A, ,j =A, ;~;j) and
nearest-neighbor-triplet bond-bending interactions (in-
volving A, ,jk ——A, ;J;k), but we incorporate anharmonicity by
allowing terms higher than A, to be kept in the expan-
sion. The resulting expression for the elastic energy per
unit cell is

pound to the AVFF model, fixing the [R;.I at the values
determined by the Birch ' fits for the cubic systems and
the IO;jk I at the ideal tetrahedral angle. We found that
keeping terms beyond M, =Mb=4 provided little addi-
tional improvement in the fit to the first-principles ener-
gies near the minima of the scans. However, the use of
AVFF parameters derived from fits with M, =Mb=4 in
structural optimizations resulted in disintegration of the
structures, because the energy could become negative for
large atomic separations. By restricting Mb=3 (except
for Si, for which M& =4 could be used), we were able to
obtain stable structures with little deterioration of the
quality of the fits near the minima of the first-principles
scans. With AVFF parameters derived in this way (Table
II), the first-principles strain energies near the minima of
the scans were reproduced to within 0.25 meV/atom. To
demonstrate the quality of the fit, consider the four
geometries of epitaxial Ge: (1) a, =a, c/a =1.03, (2)
a, =a&„c/a =0.97, (3) a, =as;, c/i2 =1.03, and (4)
a, =a, c/a =0.97. Here as;, a, and aG, refer to the three
substrate lattice constants given in the heading of Table I.
(In all of these cases, pseudopotential calculations show
that Ge is nonmetallic, so our k-point sampling is ade-
quate. ) We calculated for each of these external con-
straints the pseudopotential and AVFF total energies
(given in parentheses). For (001) Ge, we find in meV:
5.3(5.4), 7.4(7.3), 31.8(31.9), and 38.2(38.1) for cases 1—4,
respectively. Since no (110) data was used in the fit, it is
interesting to examine the extent to which this AVFF
predicts (110) deformed energies. We use the VFF pa-
rameters of Table III to relax the cell-internal geometri-
cal parameters. We find for (110) Ge: 6.8(6.2), 9.4(9.3),
33.3(32.9), and 40.2(40.1) for cases 1—4, respectively.
While the fit is slightly worse than for (001), it is still
clearly quite good.

For comparison, Table III gives second-order elastic
constants and harmonic VFF parameters derived from

TABLE II. Parameters for the anharmonic VFF model [Eq.
(9)], derived from fits (described in Sec. III A) of pseudopoten-
tial total-energy calculations for Si, Ge, and zinc-blende-

0

structure SiGe. Equilibrium bond lengths R;, are in A, and
force constants aI,"' and /3', ,"k' are in X/rn"

Bond-stretching parameters
Atoms

R t'J

R;
(10)

Si
Ge
Ge

Si
Ge
Si

2.3359
2.4177
2.3729

46.28
38.57
42.71

—154.88
—128.58
—150.38

540. 13
260.25
381.62

and the bond bending A, 's are Bond-bending parameters

(r;J r;k —R,J R,k)
~i 'k

(RVR, )i/k2

where the scale d has been chosen to be the geometric
means of the ideal bond lengths of the two bonds. In the
usual (harmonic) VFF method, M, =M& =2.

The AVFF force constants were determined by fitting
the pseudopotential results of all four scans for each com-

Si
Ge
Ge
Si
Si
Si

Atoms

J
Si
Ge
Si
Ge
Si
Ge

Si
Ge
Ge
Si
Ge
Ge

12.83
10.59
12.14
12.14
12.49
11.37

46.28
57.35
20.80
20.80
33.54
39.07

(4)P,k

373.89

186.94
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Elastic constants and bond-stretching parameters
Atoms

J Ci2 R

TABLE III. First-principles-derived second-order elastic
constants C» and C&2 and harmonic VFF parameters, and
experiment-derived harmonic VFF parameters. Elastic con-

0
stants are in GPa, equilibrium bond lengths R;, are in A, and
force constants are in X/m.

and are presented only for reference. We note that the
ideal bond lengths determined by Froyen, Wood, and
Zunger in their series of pseudopotential calculations us-
ing a plane-wave energy cutoff of 12 Ry and six special k
points in the irreducible part of the diamond Brillouin
zone are less than 0.5%%uo larger than ours, their VFF
bond-stretching force constants are about l%%uo smaller
than ours, and their VFF bond-bending force constants
are 5—1 l%%uo larger than ours.

Si Si
Ge Ge
Ge Si

159.5
131.2
147.8

First principles
64.2 2.3359
48.4 2.4177
56.1 2.3729

47.49
38.58
43.29

IV. RESULTS FOR MICROSCOPIC STRAIN ENERGIES

A. Superlattices on lattice-matched substrates

Si Si
Ge Ge

Si
Ge
Ge
Si
Si
Si

Si
Ge

165.7
128.9

63.9
48.3

Experiment'
2.352
2.450

Si
Ge
Si
Ge
Si
Ge

Si
Ge
Ge
Si
Ge
Ge

Si
Ge

Si
Ge

Bond-bending parameters
Atoms

J

48.50
38.67

First principles
12.86
11.55
12.57
12.57
12.72
12.06

Experiment'
13.82
11.37

Figure 2(a) depicts b,EMs(p, Cx, a ) for Cx=[001], [110],
and [111] on a lattice-matched substrate whose lattice
constant a, is taken to be the average of the Si and Ge
lattice parameters (essentially the natural equilibrium SL
lattice parameter asL), describing free-standing bulk SL's.
The third and fifth columns of Table IV summarize the
results for IsR( oo ), bEcs(Cx, a ), and EEMs(p, Cx, a ).

Considering first the long period (p ~ ~ ) limit, we find
[Fig. 2(a)] the stability sequence

bH( oo, [001])& bH( ao, [110])& bH( ~, [111]), (12)

as in lattice-mismatched pseudobinary III-V and II-VI
SL's. ' This can be understood from harmonic elasticity
theory, ' ' where the energy density U of a coherently
strained film is written as a quadratic form in the strains

&~I and ej parallel and perpendicular to the substrate. The
condition dU j'de~=0 for fixed e~~ gives the constituent
strain energy of Eq. (2) per atom

'From compilation in Ref. 27.
~Ecs(o, &)=r —,'.q~«»~o~(o, —a~)' (13)

our first-principles results and from experimental data
compiled in Ref. 27. The derivation from the first-
principles results was done by fitting to a third-order elas-
tic model using y minimization with the same weights
used for the AVFF fits. The resulting second-order elas-
tic constants (Table III) were then used to determine the
VFF force constants, in the manner described by Keat-
ing. This procedure is very similar to that followed by
Froyen, Wood, and Zunger. We note that generally the
corresponding AVFF force constants are slightly smaller
than either the first-principles or experimental VFF force
constants. These harmonic VFF force constants are not
used in any of the calculations described in this paper,

where 8 = ( C» +2C, z ) /3 is the bulk modulus, C; are
elastic constants, and all orientation dependence lies in
the epitaxial strain-reduction factor

q(G)=l —8/[C„+y(Cr)b, ] . (14)

Here, b, =C~ —( C» —C,2 ) /2 is the elastic anisotropy,
and y([001])=0, y([110])=1,and y([ill])= —', . Note
that the coefficient 98&ai /16 appearing in hydrostatic
equations of state is replaced in the epitaxial case of Eq.
(13) by 9qi8iai/16. The "effective" epitaxial modulus
q&8i shows softening (q & 1), as illustrated in Table I.

TABLE IV. Constituent strain energy EEcs (meV/atom) and p~ ~ chemical (IcE), strain-relief
(IsR), and total (I) interfacial energies {meV/primitive-cell interface) of Eq. (6) for superlattices on
lattice-matched (a, =a) and lattice-mismatched (a, =as; ) substrates with orientation parallel to the su-
perlattice stacking direction.

System

(001)
(110)
RH1
RH2

rcE(~)
7.52
6.31

13.08
3.16

IsR(~)
—6.10
—9.47

—14.77
0.09

a, =a
I(oo)

1.42
—3.16
—1.69

3.24

~Ecs

5.89
7.05
7.47
7.47

Is~(~ )

—6.92
—5.21

—16.25
0.27

as =as;

0.60
1.10

—3.17
3.42

Ecs

11.70
12.07
14.43
14.43
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7.05

5.89
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FIG. 2. Strain energy of SiGe superlattices and the random alloy on (a) lattice-matched substrates a, =a =5.4&9O A and (b) Si su
0

strates a, =as; =5.3946 A.

Since 6)0 for Si and Ge, the order of Eq. (12) simply
refiects the order of the geometric factors y(G). Table
IV gives the AEcs values

For short-period SL's the microscopic strain energy
refiects [Eq. (3)] both interfacial relaxations (SR) and con-
stituent strain (CS). Considering our results at
a, =a —=asL, we see that (i) RH1 has AEMs =-0 for p =1
[Fig. 2(a)], i.e., it is indeed' a topologically uncon-
strained structure where the SR exactly compensates the
CS (the energy vanishes at a, =asL). This can be under-
stood geometrically by realizing that the mixed bilayers
that constitute the interfaces in RH1 [Fig. 1(a)] have the
Si—Ge bond lengths and angles fully relaxed at the SL
lattice constant (essentially the same as that of zinc-
blende-structure SiGe), and the bilayers are then free to
adjust along [111] until both the Si—Si and Ge—Ge
bonds joining them are fully relaxed, with no cost in
bond-angle strain, since these bonds are aligned along
[111].For p ) 1 some of the bilayers contain only a single
type of atom, so they must be strained (at the SL lattice
constant); thus the energy increases with p as the propor-
tion of pure bilayers increases. (ii) RH1 has lower strain
energy than (001) up through p =2; it has lower strain en-
ergy than (110) up through about p=7. (iii) (001) and
(110) SL's on lattice-matched substrates are geometrically
identical at p = 1; thereafter, the (001) SL consistently has
lower strain energy for all p's. (iv) RH2 has the highest
strain energy for all p's. This can be understood geome-
trically by contrasting it with RH1. In RH2 all the bi-
layers contain only a single type of atom [Fig. 1(b)], and
these bilayers are thus highly strained at the SL lattice
constant. Interbilayer relaxation successfully removes
essentially all strain from the Si—Ge bonds (oriented
along [111]),but this cannot affect the intrabilayer strain,
whose relaxation is determined by the balance between
bond-stretching and bond-bending forces within the bi-
layers themselves. Hence the strain energy is nearly in-

dependent of p, the proportion of pure bilayers being
100% for all p.

Since RH1 and RH2 have the same epitaxial strain-
reduction factor q (G ) [Eq. (14)], they also have the same
constituent strain energy EEcs (Table IV); hence the
difference in their strain energies, IsR/2p for finite p [Fig.
2(a)], must be refiected in more favorable interfacial
strain-relief energies (Isa) in the former. Our fit of the
AVFF results of Fig. 2(a) at a, =a to Eq. (3) (for large p)
shows (Table IV) that indeed the RH2 interface does not
relieve the constituent strain (IsR=—0), while the others
do so at least partially (IsR (0).

B. Superlattices on lattice-mismatched substrates

Figure 2(b) depicts the microscopic strain energies for
SL's on a Si substrate with orientation Cx, parallel to the
SL stacking direction Ci,' the Ge portion of the SL is now
strained, with energy proportional to ( ha ) = (a G,

—as; ),
whereas the Si part is unstrained (except near the inter-
face). This raises the constituent strain energy [Fig. 2(b)
and Table IV] relative to the case a, =a [Fig. 2(a)], where
both Si and Ge were strained, each with energy propor-
tional to (b,a) /4. The constituent strain energy for
(001), 11.7 meV/atom, agrees well with our pseudopoten-
tial calculations for the same orientation, which also give
11.7 meV/atom, and is in reasonable agreement with the
value of 13.0 meV/atom found by Martins and Zunger'
(it is in worse agreement with the value of 9.9 meV/atom
found by Ciraci and Batra' who used a smaller basis set
than was used here or in Ref. 12). On the Si substrate
[Fig. 2(b)], we find that RH1 has lower strain energy than
the (110) SL's only up through p =2 (compared to about
p =7 for a, =a); it has lower strain energy than the (001)
SL's only for p =1. The latter SL's have lower strain en-
ergy than (110) for all p's (including p = 1).

The interfacial strain-relief energies of these epitaxial
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SL's on Si substrates (Table IV) show similar trends to
those of the SL's on a, =a, RH1 having the largest (mag-
nitude) IsR( ~ ), RH2 the smallest, and the others inter-
mediate. Generally the magnitudes of IsR( ac ) are slight-
ly larger here than those extracted from the calculations
for the SL's on a lattice-matched substrate, an exception
being the (110) SL's.

C. Summary of strain energies ofp = 1

superlattices on dift'erent substrates

where all energies are per atom. We see from Eqs. (1),
(2), (6), and (15) that 5H =(IsR+IcE)/2p. Indeed, RH1
has the largest epitaxial stabilization on a Si substrate, re-
sulting in epitaxial formation enthalpies (including strain
only) of 5H((111))=—8. 1 meV/atom on (111) Si and
5H((001))= —6. 5 meV/atom on (001) Si. For the (001)
SL 5H((001))= —3.5 meV/atom, and for the (110) SL
5H((110)) = —2. 5 meV/atom. This is qualitatively

20—

18—

16—

SiGe on
lattice-matched

substrate

Compounds

SiGe on Si substrate

Compounds Constituents

Our AVFF results for p =1 are summarized in Fig. 3.
It shows that while all SL's have greater elastic energies
than equivalent amounts of bulk Si+Ge (the zero of en-
ergy), when strained epitaxially on Si their strain energy
is (except for RH2) lower than that of the coherent con-
stituents (far right column in Fig. 3). This effect has been
termed' ' "epitaxial stabilization. " The relevant epitax-
ial formation enthalpy here is taken with respect to pure
3 and pure B both coherent with the substrate:

5H (p, G, g, ) =EsL(p, G, a, ) ——,
' [Es;(a, )+Eo,(a, )],

(15)

difFerent from the behavior in lattice-mismatched pseudo-
binary III-V and II-VI SL's, ' where 5H (0 for (mixed-
cation) (001) and (110) SL's but not for (ill). Here the
RH2 SL's behave like the pseudobinary (111)SL's

We have also calculated the strain energy of RH1 p = 1

on a (001)-oriented Si substrate, finding b,EMs=5. 24
meV/atom. This is lower than the energies of all of the
(001) SL's on the same substrate (except the p =

—,
' zinc-

blende structure, which has bEMs=4. 96 meV), which
contradicts the pseudopotential results of Ciraci and Ba-
tra' who found that the p=2 (001) SL is more stable
than the p=1 RH1 SL (by about 3.4 meV/atom). We
will see in Sec. VI that this contradiction is not removed
even when the chemical contribution to the formation en-
ergy is included.

D. Random 50%-50% alloys on diferent substrates

We have calculated the microscopic strain energy of
the 50%-50% random (R) Sic 5Geo 5 alloy, using as a
model the eight-atom special quasirandom structure de-
picted in Fig. 1(c), obtaining EEMisi =2.42 meV/atom at
a [Fig. 2(a)] and 7.98 meV/atom on a (001)-oriented Si
substrate [Fig. 2(b)]. To test the quality of the SQS model
for SiGe, we have calculated the strain energy of large cu-
bic supercells with random distributions of equal num-
bers of Si and Ge atoms, using the AVFF model with re-
laxation of all cell-internal degrees of freedom as well as
the lattice constant (bulk alloy) or the c/a ratio [epitaxial
alloy on a (001) Si substrate]. The supercells contained
either 512 or 1000 atoms, and for each we calculated the
strain energy of 100 random configurations, all at 50%-
50% composition. The results, including the average,
minimum, and maximum energies for the 100 cases, as
well as their standard deviation, are shown in Table V,
and show the SQS to be a good model of the random al-
loy: The error in bEMs is only 0.2 meV/atom for a, =a
and 0.02 meV/atom for a, =as;, both substantially small-

E14
O

12
E
~10
CO

8
~~
P. 6
0)

RH2/(111) (Si+Ge)/(111)
' RH2/(001)

I
pI I

II
I

I
I

I II gI I
t I
lg

lg
Il
ll
tl I

jl I
r I

(Si+Ge)/(110)

(Si+Ge)/(001)

Random

(110)/(110)

(001)/(001)
RH2 Random

(001)
RH1/(111)

„',",' RH1/(001)
III' I'

I

)I I

(001), (110):,',",

TABLE V. Test of the SQS model. Here we compare the
strain energies of large cubic supercells containing random dis-
tributions of equal numbers of Si and Ge atoms with the strain
energy of the eight-atom SQS-8 structure. All cell-internal de-
grees of freedom as well as the lattice constant (bulk) or the c/a
ratio (epitaxial) are fully relaxed. For the large random super-
cells, the average EEMs, minimum AE;„, and maximum AE „
energies for 100 distinct configurations, as well as their standard
deviation rr, are shown. Note that the eight-atom SQS repro-
duces well the results of the large supercells.

0— RH1 Structure GEMS AE;„ AE,„

FIG. 3. Strain energy of p =1 superlattices and the random
alloy on lattice-matched substrates on Si substrates in various
orientations (shown following the slash). The third column
shows the strain energy of coherent constituents on Si sub-
strates, demonstrating that, except for RH2 p =1, the epitaxial
superlattices have lower strain energy than the coherent constit-
uents.

512 atoms
1000 atoms
SQS-8

Bulk cubic alloy
2.62 0.14
2.61 0.10
2.41

2.29
2.33

Epitaxial alloy on (001) Si substrate
1000 atoms 8.00 0.11 7.70
SQS-8 7.98

3.02
2.80

8.30



STRAIN ENERGY AND STABILITY OF Si-Gc COMPOUNDS, . . . 1671

er than the standard deviation of the large supercell re-
sults.

Comparison with the SL results of Figs. 2 and 3 shows
that, while a number of ordered epitaxial SiGe structures
on Si have lower strain energy than their strained constit-
uents, only the ZB and RH1 p =1 structures also have
lower strain energy than the random alloy (modeled by
the SQS) of the same composition.

V. FORMALISM AND RESULTS
FOR CHEMICAL ENERGIES

E,i„(cr)=g D~J~II~(o ),
F

(17)

Having described in Sec. IV the microscopic strain en-
ergies EEMs of the various Si/Ge SL's, we turn now to
the second component of the formation enthalpy hH of
Eq. (5), namely, the chemical energy EE,h, . We base
our calculation on the technique of cluster expansion,
wherein a lattice energy (here b,E,„, ) is represented as
an expansion in a complete orthogonal set of "cluster
functions, " with coefficients that represent the values of
that quantity for the clusters. The total chemical energy
(per atom) of a configuration o (i.e., a given arrangement
of Si and Ge atoms on the N sites of a basic lattice with
the diamond structure) is represented as

2Ã

E,„, (~)=y II~(cr)J~, (16)
f

where f denotes the clusters ("figures"), J& the chemical
energy associated with cluster f, and the cluster functions
II&(o ) are products of Ising spin variables for the atoms
in cluster f in configuration cr We .take the pseudospin
at a site to be —1 if it is occupied by a Si atom and + 1 if
by a Ge atom. There will, in general, be a number of
figures of a given type that are related by the space-group
operations of the diamond structure, and this symmetry
can be used to reduce the expansion to one involving only
symmetry-inequivalent clusters F:

For the empty cluster (denoted by F=O) IIO =—1 for all
configurations, while for single-atom clusters (denoted by
F= 1) II i(o') =II,(x )= 1 —2x. Also, for clusters contain-
ing an even number of atoms Il~(Si) = II+(Ge) = 1, and for
clusters containing an odd number of atoms—II~(Si)=II+(Ge)=1. As a consequence, for all cr,
Po(o )—:0, Pi(cr)—=0, P~(cr)=II+(cr) —1, for clusters con-
taining an even number of atoms, and Pz(o )

=II~(cr )
—(1—2x), for clusters containing an odd num-

ber of atoms.
It is convenient to separate the cluster-class index E

into two separate indices specifying the number of atoms
in the cluster (size, denoted by k), and the number of
nearest-neighbor distances separating atoms in the cluster
(interaction range, denoted by m). In this notation, the
empty cluster has F =(0,0), the single atom clusters have
F=(1,0), pair clusters have F =(2,m) with m ~ 1, and so
forth. Values of IIk [from which Pk is easily derived
via Eq. (20)] are given in Table VI for a number of
configurations of interest here.

In general, the expansion of Eq. (19) must be truncated
to some small number N, of clusters in order to be practi-
cal. Then X, periodic structures can be selected so that
the cluster energies JF can be obtained by solving the re-
sulting system of equations, using as input the N, values
of b E,h, obtained from first-principles calculations.
The cluster energies JF can then be used to predict
b.E,h, for other structures. Since Po(o )=P,(o )=0 for
all configurations, the first nonvanishing term in the ex-
pansion is that for the nearest-neighbor-pair cluster type
F=(2, 1). We choose to keep just two terms in the clus-
ter expansion, corresponding to nearest-neighbor pairs
and second-nearest-neighbor pairs [F= (2,2) ]. These
two cluster energies can be obtained by using just the
equilibrium zinc-blende and RH1 p = 1 structures, whose
formation enthalpies equal their chemical energies, since
they have b,EMs=0. From Table VI and Eq. (19) we
have (with energies in meV/atom)

where NDF is the number of clusters equivalent by sym-
metry to F, and AEehem = 3J2 ] 6J~ 2+ ' ' =6.54

(21)

so that the values for the cluster energies are then
(18)

1
II+(cr ) = g II/(o )

F f equivF J2j= 248

J2 2=0. 150 .

Having these JF, we then use them to predict AE,h,
for other structures, according to Eqs. (19) and (20), with
the assumption that the values so derived are indepen-
dent of a„since variations in the formation enthalpy
with a, are included in AEMs. This is tested in Sec. VI
and found to be appropriate. The results for interfacial
chemical energies (Ic~) of SL's are given in the second
column of Table IV and for EE,h, for selected struc-
tures in Table VII. Note that the small value of Icz+IsR
found for (001) SL's on a (001) Si substrate is consistent
with the finding of Froyen et a1.9 that bH(p) is constant
to within +1.5 meV/atom.

Other pairs of structures can be used to determine the

b,E,h, (o. ) —=E,h, (o )
W

—[xE,h, (Si)+(1 x)E,h, (Ge))—

=HFDF

JFPF(~),
F

(19)

where

P~(o ) =II~(o )
—[xli~(Si)+(1—x)ilz(Ge)] . (20)

is the average over the crystal of II&(cr ).
As with the strain energy and the total formation

enthalpy [Eq. (1)],we wish to refer the chemical energy to
the concentration-weighted average of the energies of the
Si and Ge constituents. Hence, the excess chemical ener-

gy (per atom) of Si„Gei „ in configuration cr is given by



1672 JAMES E. BERNARD AND ALEX ZUNGER

TABLE VI. Lattice-averaged pseudospin products IIk [Eq. (18)] for several structures on the diamond lattice. II2 give the pair
terms for atoms separated by an mth-neighbor distance, while H4 give four-body terms characterized by mth-neighbor separations.
For all structures Hp p= 1, and for all structures included in the table, Hk p=0, for k for odd. Also included is P», defined in Eq.
(20). For clusters containing an even number of atoms H+(Si)=HF(Ge)=1, and for clusters containing an odd number of atoms
IIF(Cxe) = —II+(Si)= l. Note that the II~ for the SQS-8 structure closely approximate those of the random alloy, for which all are
zero except Hp p. The first row gives the degeneracies DF of Eqs. (18) and (20).

+2, 1 H2i H22 H2q H2, s H26 II4, H42

Dz
ZB
RH1 p=1
RH1 p =2
RH1 p =3
RH2 p=1
RH2 p =2
RH2 p =3
(001) p=1
(001) p=2
(001) p=3
(110) p =1
(110) p=2
SQS-8

2

3/2
3/4
1/2
1/2
1/4
1/6

1

1/2
1/3

1

1/2
1

2
—1

—1/2
1/4
1/2
1/2
3/4
5/6
0

1/2
2/3
0

1/2
0

6
1

0
1/2
2/3
0

1/2
2/3

—1/3
1/3
5/9

—1/3
0
0

6
—1

1/2
1/4
1/2

—1/2
1/4
1/2
0

1/6
4/9
0

—1/6
0

3
1

—1

0
1/3
—1

0
1/3

1

1/3
5/9

1
—1/3
—1/3

6
—1

—1/2
—1/4
1/6
1/2
1/4
1/2
0

—1/6
2/9
0

—1/6
0

24
1

0
0

1/3
0
0

1/3
—1/3
—1/3
1/9

—1/3
0
0

4
—1

1/2
3/4
5/6

—1/2
1/4
1/2
0

1/2
2/3
0

—1/2
0

1

1
—1

0
1/3
—1

0
1/3

1

1

1

1
—1
—1

interaction parameters by simply solving Eq. (5) for
EE,h, , using the pseudopotential result for hH and the
AVFF result for bEMs. Several of these (e.g., ZB and
RH2 or RHl and RH2) give results of comparable quali-
ty to those in Eq. (22). The rapid decay of chemical in-
teractions with distance (J2, /J2 2

—16) and the fact that
Jk can be extracted from different sets of structures
with similar results suggests that the cluster expansion
for bE,h, converges rapidly (though it is not yet fully
converged with just two terms, as is evidenced by the
fact that the error in AH, d, &

is greater than the error in
the AVFF results). This rate of convergence is greater
than that found " for cluster expansions of the total for-
mation enthalpy in fcc-based (e.g., pseudobinary) sys-
tems. We believe that it will generally be true that, for
lattice-mismatched systems, cluster expansions of AE,h,
converge faster than those for AH. This probably reflects

the fact that the equivalence classes of clusters (denoted
F) are determined via the diamond space group (that be-
ing the symmetry of the underlying undistorted lattice
upon which the alloy is built), but some of these classes
split upon relaxation of individual structures. In our
model, the symmetry-breaking interactions are handled
via the AVFF, in which no symmetry-based cluster
equivalence is assumed, while the symmetry-preserving
chemical interactions are handled via a rapidly conver-
gent cluster expansion.

To demonstrate the effects of relaxation on the conver-
gence of cluster expansions of total formation enthalpies,
we have generated expansions (Table VIII) based on the
pseudopotential results of de Gironcoli, Baroni, and
Giannozzi, who used a plane-wave cutoff energy of 12
Ry and a k-point sampling equivalent to two special
points in the irreducible part of the diamond Brillouin

TABLE VII. Component and total formation enthalpies for a number of SiGe systems. AE,h, is
the prediction of our cluster expansion [Eqs. (19)—(22)] and is independent of a„bEMs is the AVFF-
predicted microscopic strain energy [Eq. (9)], and bH, d, i is the model-predicted value b.EMs+ bE,h,
[right-hand side of Eq. (5)]. bH~, is the directly calculated pseudopotential result [left-hand side of Eq.
(5)]. The random alloy values are those from the SQS-8 model. The results for as; are for the (001) sur-
face. Parenthesized values for AH, d, &

are those for structures used as input to the cluster expansion
for AE,h, , all others are predicted by the model. The accuracy of the model can be assessed by com-
paring these other values of AH, d, &

to hH~, .

ZB
RH1 p=1
RH2 p =1
(001) p=1
(001) p=2
Random
Si+Ge

AEchem

9.92
6.54
1.58
3.76
1.88
4.06
0.0

0.00
0.00
7.50
2.80
4.35
2.41
0.00

a =OsL
model

(9.9)
(6.5)
9.1

6.6
6.2
6.5
0.0

EHp,

9.9
6.5
9.2
6.8

6.1

0.0

AEMs

4.96
5.24

13.12
8.24
9.97
7.98

11.70

&s =aSI
~Hmodel

14.9
11.8
14.7
12.0
11.9
12.0
11.7

AHp,

14.9
11.7
14.9

11.5
11.7
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TABLE VIII ~ Results of cluster expansions based on the pseudopotential (PS) results of Ref. 40 for
11 SiGe structures in both the unrelaxed (ideal atomic positions) and relaxed configurations. Superlat-
tices are denoted by the orientation Cx (or RHn for the [111]SL's), in parentheses, the numbers of Si
and Ge monolayers, respectively. Values for those structures used as input for the determination of the
cluster energies are enclosed in parentheses; the rest are predictions and are to be compared with the
direct pseudopotential results. The unrelaxed systems are reproduced well by a three-term cluster ex-
pansion including only Jo, J», and J2 2, whereas the error in a similar three-term cluster expansion of
the relaxed systems is far larger. In order to achieve comparable convergence in the cluster expansion
for the relaxed systems, it is necessary to continue the expansion to six terms, including Jo, J», J»,
J2 5, J2 6, and J». The cluster-expansion predictions for the random 50%-50% alloy are also shown.
Both the three-term value for the unrelaxed alloy and the seven-term value for the relaxed alloy are in
good agreement with the best predictions shown in Fig. 1 of Ref. 40, and are in excellent agreement
with the most-converged cluster expansions we can generate from these 11 structures ( —4.2 and —8. 1

meV/atom, respectively), whereas the three-term prediction for the relaxed alloy is clearly under con-
verged.

PS'
Unrelaxed

Three terms PS'
Relaxed

Three terms Six terms

ZB
[001] (2,2)
[001] (3,1)
[001] (1,3)
[001] (3,3)
[110] (2,2)
[110] (3,1)
[110] (1,3)
RH1 (2,2)
RH2 (2,2)
RH3 (3,3)
Random

'From Ref. 40.

—6.5
—4.6
—3.9
—3.9
—3.2
—2.7
—2.5
—2.5
—5.7
—2.5
—3.0

(
—6.5)
—44
—3.9
—3.9
—3.1
—2.6

(
—2.5)
—2.5

( —5.7)
—2.6
—2.9
—4.2

—6.5
—9.7
—6.4
—6.5
—9.5

—10.7
—7.8
—7.9

—10.0
—6.3
—7.9

( —6.5)
—10.7
—7.8
—7.8
—8.3
—8.5

( —7-8)
—7.8

( —10.0)
—8.5
—7.3
—9.3

( —6.5)—9.7
—6.5

-( —6.5)
( —9.5)

(
—10.7)
( —7.8)
—7.8
—9.9
—6.3

( —7.9)
—8.1

zone. Their results for formation enthalpies of eight un-
relaxed (ideal) structures, taken with respect to the
binaries at a =a, can be reproduced to within 0.2
meV/atom with a cluster expansion including only Jo,
J2 „and J2 2, with interactions determined from three
other structures of their total set of 11. However, using
their analogous results for relaxed structures the max-
imum error jumps to nearly 2.2 meV/atom, for the same
structure-interaction combination. In order to reduce the
error to a level comparable to that for the unrelaxed
structures, one needs to include up to seventh-nearest-
neighbor pairs (J2 7) (requiring six structures as input and
leaving only five to serve as the measure of convergence).
Thus we see that the cluster expansion of AE,h, has a
convergence rate comparable to that of the cluster expan-
sion for total formation enthalpies of unrelaxed struc-
tures, which is considerably faster than that for relaxed
structures.

Note that the analysis of EE,h, given by Koiller and
Robbins, ' based on (nearest-neighbor) "bond energies"
alone, is equivalent to retaining just the single term J2 &

in the cluster expansion. ' We find that considerable im-
provement is afForded by the inclusion of the J2 2 term.
Nevertheless, the rough proportionality of AE,h, (Table
VII) to P2, (Table VI) is consistent with the expected
dominance of the nearest-neighbor-pair interactions.

VI. TOTAL FORMATION ENTHALPIES

Combining the chemical energy with the microscopic
strain energy b,E(M& then gives, according to Eq. (5), the

total formation enthalpy AH', 'd,
&

predicted by our mod-
el. This model energy and its components are surnma-
rized in Table VII both for equilibrium "free Boating"
SL's (a, =asi ) and for SL's on a (001) Si substrate. To
test the model we present in Table VII the results of our
direct first-principles calculations (denoted AH', ') where
available. Comparison of AH', 'd,

&
with hH', ' for the six

systems not used to extract AE,h, shows that the model
captures all trends underlying the directly calculated for-
mation enthalpies to within better than 0.5 meV/atom.
In view of this relatively small residual error, we can use
our model to predict b,H(p, Cx, a, ) for SL's that are too
large to calculate directly from first principles. This is
done in Table IX.

Tables VII and VIII demonstrate a number of features.
(1) The chemical energy constitutes a significant frac-

tion of the total formation enthalpy: e.g. , 60%%uo for the
random alloy, 20'~/o for RH2, and 100% for ZB and RH1.
For SL's, the trend in AE,h, with p usually opposes the
trend in b EMs (the interface energies have opposite
signs), so that the trend in b,H is not evident from con-
sideration of either AEMs or EE,h, alone.

(2) The model-predicted formation enthalpy of the bulk
random alloy, 6.5 meV/atom, is close to the directly cal-
culated pseudopotential value of 6.1 meV/atom. For
comparison, we note that Kelires and Tersoff found, us-
ing an empirical potential, b,H(random) =7.3 meV/atom,
while Qteish and Resta found from their first-principles
statistical model 11.3 meV/atom. Stringfellow found
experimentally 6.5 rneV/atom. We note also that the cal-
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culations of Qteish and Resta place the random alloy
2.0 meV/atom higher in energy than the zinc-blende
structure, whereas our first-principles results place it 3.8
meV/atom below ZB. This discrepancy may arise from
their use of only partial relaxation of the component
structures used in their random alloy model or from the
difference in cutoff energies (12 Ry used in Ref. 43 versus
20 Ry used here) and k-point sampling (the equivalent of
two special points in the irreducible wedge of the dia-
mond Brillouin zone used in Ref. 43 versus ten used
here).

(3) The formation enthalpies of the bulk random alloy
and bulk RH1 p =1 are quite close, suggesting that the
unstrained random aHoy is essentially equal in stability to
unstrained RH1 at zero temperature, and would thus be
favored over RH1 at finite temperature because of the
larger configurational entropy contribution to the free en-

ergy. The epitaxially strained RH1 structure is also
essentiaHy degenerate with the random alloy. One could
estimate corrections due to the underestimation of bond
lengths and Si/Ge lattice mismatch by the first-principles
calculations as follows. If we use in the AVFF for RH1
p= 1 on (001) Si and SQS on (001) Si, the experimental
(rather than pseudopotential) bond lengths used by Koill-
er and Robbins, ' the AEMs increase by 4.26 and 5.49
meV/atom, respectively, giving total formation enthal-
pies of 16.0 and 17.5 meV/atom, respectively The
difference of 1.5 meV/atom is still far too small to ac-
count for the transition temperature observed by Our-
mazd and Bean. '

(4) RH1 p = 1 on (001) Si is essentially degenerate with
the (001) p =2 SL on (001) Si, still in contrast to the re-
sults of Ciraci and Batra, ' who found RH1 to be higher
by about 3.4 meV/atom. This rejects some combination

TABLE IX. Model-predicted component and total formation enthalpies for a number of SiGe super-lattices. BE,h, is the prediction of our cluster expansion [Eqs. (19)—(22)] and is common to botha, =asL and a, =as;, AEMs is the AVFF-predicted microscopic strain energy [Eq. (9)], and AFI,z, ~
isthe sum AEMs+AE, h, [right-hand side of Eq. (5)]. The random alloy values are those from the SQS-gmodel.

GEMS
a, =a

hH, q, ) ~+MS
a, =as;

AH, q, ]

ZB
p= 1

p =2
p =3
p =10
p=oo

9.92
3.76
1.88
1.25
0.38
0.00

{001) superlattices
0.06
2.83
4.37
4.87
5.59
5.89

on (001) substrates
9.98
6.59
6.24
6.13
5.96
5.89

4.96
8.24
9.97

10.55
11.36
11.70

14.88
12.00
11.85
11.80
11.73
11.70

p=1
p —2

p —3

p =10

3.76
1.58
1.05
0.32
0.00

(110) superlattices on (110) substrates
2.81 6.57
4.53 6.10
5.49 6.55
6.58 6.90
7.05 7.05

9.54
10.68
11.21
11.81
12.07

13.30
12.26
12.26
12.13
12.07

p=l
p =2
p =3
p =10

6.54
3.27
2.18
0.6S
0.00

RH1 superlattices on (111) substrates
0.07 6.61
3.78 7.0S
5.01 7.19
6.73 7.39
7.47 7.47

6.29
10.37
11.72
13.62
14.43

12.83
13.64
13.90
14.27
14.43

p= 1

p =2
p =3
p =10

1.58
0.79
0.53
0.16
0.00

RH2 superlattices on (111) substrates
7.51 9.09
7.49 8.28
7.49 8.01
7.48 7.63
7.47 7.47

14.56
14.50
14.47
14.44
14.43

16.14
15.29
15.00
14.60
14.43

Random 4.06
Random alloy on (001) substrates

2.42 6.48 7.98 12.04

RHl
RH2

Rhombohedral p=l superlattices on (001) substrates
6.54 0.04 6.58 5.24
1.58 7.51 9.09 13.12

11.78
14.70
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of incomplete relaxation of RH1 by Ciraci and Batra, the
smaller basis set used by them, and residual errors in our
model calculation. A direct first-principles calculation of
RH1 on a (001) Si substrate yields a formation enthalpy
of 11.7 meV/atom, only 0.1 meV/atom below our esti-
mate given above (refiecting the residual errors in our
model calculation). Since the use of a smaller plane-wave
basis set appears to increase the lattice mismatch between
Si and Ge (see, e.g., Ref. 9), and this would increase the
strain energy of the p =2 (001) SL more than that ofp = 1

RH1 (since the former is more highly strained), we must
conclude then that the bulk of the discrepancy between
our results and those of Ciraci and Batra' is due to their
incomplete relaxation of the RH1 structure, a conclusion
also voiced by Koiller and Robbins' (though in their
case it was based entirely on elastic energies).

(5) Epitaxial RH1 p = 1 on (001) Si has an epitaxial for-
mation enthalpy [Eq. (15)]5H, =0. This differs from the
calculations of Martins and Zunger, ' who found
5H, = —2 meV/atom, probably because of the difference
in k-point sampling (see Sec. III A). On a (001) Ge sub-
strate, our model gives 5H= l. 1 meV/atom (i.e., epitaxi-
ally unstable), in contrast to the model results of Mader„
von Kanel and Baldereschi, who find RH1 p =1 to be
epitaxially stable on (001) Ge.

(6) The RH2 p = 1 structure, having hH =9.2
meV/atom and 5H=+3.2 meV/atom, is unquestionably
higher in energy than either the RH1 p = 1 structure or
the random alloy. It is clear also that this is so because
its much higher strain energy overwhelms the lower
chemical energy. Thus, we conclude that the RH2 p =1
ordering seen in bulk (unstrained) SiGe by LeGoues, Ke-
san, and Iyer' is not mandated by bulk thermodynamics
(through the difference in chemical energy) as they origi-
nally suggested.

VII. OTHER INTERFACIAL INTERACTIONS

Calculations of the energy of a SL on a substrate with
a, different from asL (the natural SL lattice constant in
the substrate plane) have traditionally [e.g., Sec. IV and
Fig. 2(b)] been done by imposing a biaxial strain on the
SL, thus enforcing lattice registry, i.e., confining the lat-
tice points of the SL to be in registry with their analogs in
the substrate. This constraint, which we term a "virtual
substrate, " does not account for other interactions with
the substrate through the requirement of atomic registry
at the substrate/SL interface (relevant when there are
more atoms than lattice points in the substrate interface
plane of the SL), relaxation of the atoms near the inter-
face, and charge transfer at the interface. The last two of
these depend on the identities of the atoms on both sides
of the interface, including those of the substrate. For ex-
ample, in the virtual substrate approach, a Ge, GaAs, or
ZnSe substrate would have the same effect on films grown
on them, insofar as these substrates have similar lattice
constants. Here we examine the microscopic interactions
at a (001) Si/SiGe interface, such as that between an epit-
axial SL film and the Si substrate on which it is deposited.
This will allow us to determine under what circumstances

the usual omission of all but the biaxial strain component
of that interaction is justified, as well as to investigate the
possibility that interface stabilization could have an effect
on spontaneous ordering of SiGe alloys, such as has been
observed by Ourmazd and Bean. ' In addition, we will
consider some other types of (001) interfaces with SiGe in
order to look for other possibilities for stabilization of
particle SiGe phases.

Our model system consists of a sequence of (001)-
oriented (Si4)~/(Si2Gez)~ SL s, with the SiGe layers in
the RH1 (p =1), RH2 (p =1), SQS-8, and (001) SL (with
maximal p =q/2) structures (the latter serving to model
the most completely phase-separated state possible within
the 2q SiGe layers). A virtual (001) Si substrate con-
straint is applied to these SL's in order to include the
biaxial-strain effect of a very thick Si substrate. For large
q the Si/SiGe interface within the SL then provides a
model of an isolated (001) Si/SiGe interface, such as that
between a relatively thick SiGe film and a thick real Si
substrate, including atomic registry at the interface, full
relaxation of the atomic positions of both the film and the
"substrate" (Si layers), and chemical interactions. In ad-
dition, for finite q (=28) the results give a direct indica-
tion of the effect of the interfaces on the energies of
Si/SiGe SL's similar to those investigated by Ourmazd
and Bean. ' Since the "constituents" of this system are Si
and SiGe, there is a nonzero contribution to the chemical
energy from the SiGe constituent even in the q~ ao lim-
it. In addition, both the strain and chemical energies de-
pend on the state of order a of the SiGe layers. Thus, Eq.
(6) must be modified in this case to read

bH(q, G, a„a)=bEcs(G, a„a)+DEC&(a)

1+ [IsR(q, G, a„a)+ICE(q, G, a)],
2p

(23)

where b,Ecc denotes the constituent (Si and SiGe) chemi-
cal energy. The number of double layers q is taken to be
a multiple of four, which allows an integral number of
complete primitive unit cells of all the SiGe structures to
be included in the SL, as well as being sufticient to limit
small-q interface-interface interaction effects that contrib-
ute to substantial small-q dependence of the interface en-
ergies. The strain-only results are shown in Fig. 4, and
the complete results for the interface and constituent en-
ergies [derived by fitting the large-q formation energies to
Eq. (23)] are shown in Table X, from which we note the
following.

In each case there are two (pairs of) variants (denoted
"a" and "b"), depending on the orientation of the SiGe
structure relative to the Si layer. The a variants can be
characterized as having uniform (3 Si and 1 Ge) coordi-
nation of the Si atoms at the Si side of the interface, and
mixed coordination (half of the atoms coordinated by 4 Si
and half coordinated by 2 Si and 2 Ge) of the Si and Ge
atoms at the SiGe side of the interface. For the b vari-
ants the pattern is reversed, with uniform coordination at
the SiGe side and mixed coordination at the Si side of the
interface. Since the Si layer is largely unstrained (except
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FIG. 4. Strain energy of [001]-oriented (Si2)q /(SiGe)q super-
lattices on a [001]-oriented Si substrate. The variants a and b

arise from symmetry breaking of the SiGe structures caused by
the presence of Si/SiGe interfaces and are described in the text.
The curve labeled "phase-separated" has maximally phase-
separated (along [001])SiGe alternating with Si.

near the interface), the strain energy per atom of the SiGe
layer alone is essentially twice that shown in Fig. 4. A
similar statement applies to the chemical energy AEcc
shown in Table X. In the q —+ao limit, the variants be-
come degenerate, and the formation enthalpy per atom of
SiGe is just the result obtained from a calculation of SiGe
on a virtual (001) Si substrate (Fig. 2). The total energies
of conventional virtual-substrate calculations are
recovered to within l%%uo by q =24. For all q, the RHla
variant has slightly lower strain energy than the RH1b
variant, though the largest splitting shown in Fig. 4, for
q =4, is less than 0.3 meV/atom, only about l%%uo of kT at
room temperature.

The variants are energetically distinguished only by
their interface energies, and the strain (SR) and chemical

(CE) contributions to these are always of opposite sign, so
that their sum is generally smaller in magnitude than ei-
ther contribution. Hence, the distinction between the
variants is smaller in the total interface energies than in
either contribution. We note the exceptionally large
(001) total interface energies of RH2a and RH2b. A
consequence of this is that in thin layers of SiGe on (001)
Si, the energy difference between RH1 and RH2 will be
reduced. This is especially evident for very small q, as is
shown in Table XI. Indeed, for q =1 we find that the to-
tal formation energy of the RH2a variant is very slightly
lower than that of RH1a, while the two b variants are de-
generate by virtue of being structurally equivalent. How-
ever, for q(4 the identities of the SiGe phases are not
well defined because the slab does not contain complete
unit cells of them.

We conclude that for sufficiently thick (large q) films
substrate interface effects are negligible in these struc-
tures when grown on (001) substrates, and will not alter
the conclusions drawn from calculations based on the use
of virtual substrates. Indeed, for the systems considered
in Fig. 4 and Table XI, the q =4 energy order is exactly
the same as that in the q~ac (virtual substrate) limit.
We also conclude that well-separated Si/SiGe interfaces
cannot help to explain the discrepancy between calculat-
ed order-disorder transition temperatures and that ob-
served by Ourmazd and Bean' in a structure similar to
our q =28 Si/SiGe SL.

It is useful to consider under what circumstances the
film-substrate interface interactions omitted by the com-
mon use of a virtual substrate might become more impor-
tant. In particular, we consider the fact that the lattice
registry imposed by a virtual substrate does not necessari-
ly imply atomic registry at the interface. This is of no
concern when lattice registry implies atomic registry, as
is the case for SL's grown on "native" substrates, i.e.,
substrates whose surface normal G, is parallel (or nearly
so) to the SL stacking direction G. However, for SL's
grown on "foreign" substrates, i.e., with G, not parallel
to G, such as (110) or (111) SiGe SL's grown on (001) Si
substrates, the number of interface atoms not lying at lat-

TABLE X. Interfacial chemical (IcE), strain-relief (IsR), and total (I) energies (meV/primitive-cell interface) in the q~ ~ limit
(i.e., isolated interfaces), constituent chemical energies EEcc (meV/atom), and constituent strain energies AEcs (meV/atom) for vari-
ous [001]-oriented A /B SL's on a (001) Si substrate. Here 2 consists of q double layers of Si, Ge, or SiGe in one of the phases RH1
or RH2, and B consists of q double layers of SiGe in one of the phases RH1, RH2, SQS-8 (quasirandom), or phase separated along
[001] with p=q/2 (PS). Hence, one or both of the "constituents" contributing to bEcc and bEcs here is SiGe. The interface unit
cell is 2X 1, and all interfaces are (001) oriented. Note that there is no a/b variant distinction for the Si/Ge interface (Si/PS) or the
RH1/RH2 interface. All rhombohedral structures included here are the p = 1 SL. APB denotes a (001)-oriented antiphase boundary.

Interface

Si/RH1
Si/RH2
Si/SQS-8
Si/PS
Ge/RH1
Ge/RH2
RH1 APB
RH2 APB
RH1/RH2

Ic(E)(M)

3.76
3.76
3.76

15.03
3.76
3.76
0.00
0.00
0.00

I'R(~)
—2.49
—9.81
—1.16

—13.84
—3.38

—10.14
1.19

—12.57
—2.78

I(~)( ~ )

1.27
—6.05

2.60
1.20
0.38

—6.38
1.19

—12.57
—2.78

Ic'E( ~ )

—1.20
8.72
8.72

—1.20
8.72

—9.92
9.92

IsR( ~ )

2.27
—15.28
—8.74

2.85
—14.66

11.95
—23.20

I(b)( ~ )

1.07
—6.56
—0.02

1.64
—5.94

2.03
—13.28

AEcc

3.27
0.79
2.03
0.00
3.27
0.79
6.54
1.58
4.06

aEcs

2.62
6.56
3.99
5.85

14.32
18.27
5.24

13.12
9.18
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tice points increases linearly with the repeat period (4p) of
the SL. Consequently, we expect that there would be a
significant p dependence of the omitted atomic-registry
contribution to the film-substrate interface energy of
(Si2)~/(Ge2)~ SL's grown on foreign substrates [hence
our omission of them from the results of Fig. 2(b)]. And
we expect that for large p the film thickness (q in our
model structure) required to make the film-substrate in-
terface energy unimportant could become large. Another
circumstance in which the film-substrate interface in-
teraction can be expected to become important is when
the film thickness is small enough that interactions be-
tween the film-substrate interface and the top surface of
the film become substantial. For example, in the small-q
limit of our model SL structure, where there is no real
top surface, but just another Si/SiGe interface, we ob-
serve substantial variations in the strain energies as a
function of q (Table XI).

Since we have seen that the (001) Si/SiGe interface can
be stabilizing (for RH2 p = 1), it would be of some in-
terest to consider other interfaces to see whether they
might also be stabilizing. By calculating the energies of
Ge/SiGe SL's on a (001) Si substrate, we obtain the
Ge/SiGe interface (and constituent) energies shown in
Table X. These are generally quite similar to those for
Si/SiGe, with the Ge/RH1 interface energies being posi-
tive, and the Ge/RH2 interface energies being negative.

Similarly, we have calculated the energies of SiGe/SiGe
SL's on (001) Si to obtain the interface energies of (001)
antiphase boundaries (APB's) in RH1 p = 1 and RH2
p= 1 and of the RH1/RH2 (both p =1) (001) interface.
These results are also shown in Table X. The energy of
the (001) RH2 p =1 APB is much more stabilizing than
any of the others. A natural question to ask then is
whether a high density of these APB's could make the
RH2 p = 1 structure epitaxially stable on (001) Si. A sim-
ple calculation based on Eq. (23) (but ignoring the q
dependence of the interface energy, i.e., ignoring
interface-interface interactions) suggests that for q = 1

(one double layer of RH2 p = 1 followed by a similar, but
phase-reversed, double layer) epitaxial stability should be
achieved. The predicted formation energy is 11.4
meV/atom. To check this, we calculated such a struc-
ture with our model, and found that its formation energy
(12.0 meV/atom, reduced from 14.7 meV/atom without
APB's is still higher than that of the coherent constitu-
ents (11.7 meV/atom) because of interaction between the
closely spaced interfaces. Thus, even in this extreme
case, the interfaces do not cause RH2 p = 1 to become ep-
itaxially stable.

VIII. Si/Ge INTERFACE STRUCTURE

Up to now our discussion of interfaces has assumed an
abrupt transition between Si and Ge, or between two

TABLE XI. Small-q and q~ ~ results for (Si4)~l(Si2Ge2)~ SL's on a (001) Si substrate. AH, d, ] is
the model-predicted value obtained by adding AEMs and bE,„, [right-hand side of Eq. (5)]. b,E,„,
[Eq. (19)] is common to both a, =a and a, =as;.

EEe] em

a variants
GEMS EH,d, ] AE,hem

b variants
AEMs ~Hmodel

q=l
q =2
q=3
q=4

4.21
3.74
3 ~ 58
3.50
3.27

1.96
2.29
2.41
2.46
2.62

RH1 p=1 SiGe layers
6.17
6.03
5.99
5.96
5.89

2.97
3 ~ 12
3 ~ 17
3.19
3.27

3.05
2.84
2.80
2.76
2.62

6.02
5.96
5.97
5.95
5.89

q= 1

q =2
q=3
q=4

1.73
2.50
1.10
1.02
0.79

4.37
3.88
5.74
5.95
6.56

RH2 p=1 SiGe layers
6.10
6.38
6.85
6.98
7.35

2.97
1.88
1.52
1.33
0.79

3.05
4.82
5.29
5.61
6.56

6.02
6.70
6.80
6.95
7.35

q=l
q=2
q=3
q=4

1.73
2.50
1.93
2.26
2.03

4.37
3.88
4.30
3.91
3.99

SQS-8 SiGe layers
6.10
6.38
6.23
6.18
6.02

2.97
3.12
2.34
2.57
2.03

3.05
2.84
3.87
3.44
3.99

6.02
5.96
6.21
6.02
6.02

q=1
q=2
q=3
q=4

4.36
1.88
1.25
0.94
0.00

2.42
4.12
4.70
4.99
5.85

Phase-separated Sio 75Geo»
6.78
6.00
5.95
5.93
5.85
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phases. There is, however, the possibility of
interdifFusion at such interfaces, resulting in a different
phase in the region of the (now finite) interface. Mader,
von Kanel and Baldereschi have recently studied this
possibility using a harmonic VFF model together with
the equivalent of a single-term cluster expansion for the
chemical energy. They pointed out that the dependence
of the interface energy on interface separation (indexed
by q in the model of Sec. VII, for example) could result in
(1) stability of a finite-width ordered region sandwiched
between Si and Ge even though the bulk phase is epitaxi-
ally unstable or (2) inability of an interdiffused ordered
region to form at low temperature because of instability
of thin layers, even though the bulk phase is epitaxially
stable.

Comparison of our formation energies of the RH1
p= 1, RH2 p= 1, and SQS-8 phases on (001) substrates
with the corresponding p ~ ae (001) SL formation energy
(Table IX) shows that none of them is epitaxially stable
on a (001) substrate with either a, =a or a, =as;. Thus,
we would not expect interdiffusion of Si and Ge into one
of these phases at a (001) Si/Ge interface, unless the for-
mation of SiGe/Si and SiGe/Ge interfaces stabilizes one
or more of them. From Table X we see that for
sufficiently widely spaced interfaces (i.e., ignoring
interface-interface interaction) only the RH2 p =1 and
the SQS-Sb structures have (001) interfaces with Si and
Ge that are more stable than the abrupt (001) Si/Ge in-
terface (while epitaxially constrained to a Si substrate).
Only interface-interface interaction (requiring thin layers
between interfaces) or a change of substrate could alter
this picture and produce epitaxial stability of one of the
ordered phases in a thin region.

To test these possibilities, we have applied our energy
model to a sequence of superlattices consisting of (001)-
stacked layers Si/SiGe/Ge/SiGe, with a (fixed) total of 64
double layers per period, q of these devoted to each of the
SiGe sections. Thus q=0 corresponds to two abrupt

Si/Ge interfaces per period, and q =32 corresponds to
pure SiGe with no interfaces. SL's with 0&q &32 have
two Si/SiGe and two Ge/SiGe interfaces per period. The
SiGe sections were constructed with RH1 p=1, RH2
p = 1, or SQS-g ordering, and the entire assembly was
subjected to a (001) virtual substrate constraint. The sub-
strate lattice constants used were as;, a, and ao, . The re-
sults for the as; substrate are presented in Table XII, and
show no tendency for thin ordered layers to be more stable
than the abrupt interface Our. results for a and ao, sub-
strates also show the abrupt interface to be more stable
than thin ordered regions in any of these three phases.

While we have obviously not considered all possible
phases for the SiGe regions, and have not considered
nonabrupt Si/SiGe and Ge/SiGe interfaces, it appears to
be generally true that the instability of the ordered SiGe
phases is not overcome by interface effects in the (001)
orientation, and the abrupt (001) Si/Ge interface is ener-
getically favored.

IX. SUMMARY AND DISCUSSION
OF SPONTANEOUS ORDERING

A. Summary of our results

We have decomposed the formation enthalpy of
(Si2)~/(Ge2)~ SL's into bulk and interfacial terms [Eq.
(6)j, where the bulk part is just the purely elastic energy
of the constituents (CS) strained to match the lattice con-
stant a„and the interfacial part is composed of strain-
relief (SR) and chemical energy (CE) terms. The strain-
related parts AEcs and IsR are calculated via an anhar-
monic valence-force-field model, with force constants and
equilibrium bond lengths determined from first-principles
pseudopotential calculations, and the chemical-energy-
related part ICE is calculated with a two-term cluster ex-

TABLE XII. Results for (Si4)» ~/(Si2Ge2)q/(Ge4)» ~/(Si2Ge2)~ SL's on a (001) Si substrate.
b,H, d, ~

is the model-predicted value obtained by adding EEMs and EE,h, [right-hand side of Eq. (5)].
The interface unit cell is 2X1. For q =0 (abrupt interface) and q =32 (no interface), there is no a/b
variant distinction.

AE,
a variants

GEMS ~~model AE rehem

b variants
EMs ~H triodel

q=0 0.12
Abrupt Si/Ge interface

11.60 11.71

q=1
q =2
q=3
q=4
q =32

q=1
q =2

=3
q=4
q =32

0.26
0.47
0.67
0.88
6.54

0.11
0.16
0.21
0.26
1.58

11.45
11.25
11.05
10.85
5.24

11.65
11.65
11.69
11.73
13.12

RH1 p=1 SiGe layers
11.71
11.72
11.72
11.73
11.78

RH2 p=1 SiGe layers
11.75
11.80
11.89
11.98
14.70

0.19
0.39
0.59
0.80

0.19
0.23
0.28
0.33

11.55
11.34
11.14
10.93

11.55
11.57
11.61
11.65

11.74
11.73
11.73
11.73

11.74
11.80
11.89
11.98
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pansion based on first-principles results for the two topo-
logically unconstrained structures ZB and RH1 p=1.
Values for these quantities are given in Tables IV and
VIII, the latter containing also directly calculated first-
principles results for selected structures. The epitaxial
formation enthalpy 5H(p, G, a, ) (taken with respect to
constituents coherent with the substrate) is given by Eq.
(15), and its sign depends on the signs and magnitudes of
its two components, both of which are purely interfacial
in nature.

Considering only the strain energy of (Siz)~/(Gez)~
SL's, we found that (i) for long perio-d SL's, the stability
sequence is like that in lattice-mismatched pseudobinary
III-V SL's (001)) (110)) (111), refiecting the
orientation-dependent constituent strain EEcs; yet (ii) for
short-period SL's the interfacial strain relaxation IsR
favors the RH1 form of the (111)SL over (001) and (110),
while the RH2 form has the highest energy; (iii) only the
ZB and p=1 RH1 structures have lower strain energy
that the random alloy, and this is so both for a, =a and

a, =a s, and (iv) straining the SL coherently on a sub-
strate leads to an epitaxial stabilization [largest for (111)]
through the strain that would be imposed on coherent,
phase-separated constituents, thus hindering phase sepa-
ration.

When the chemical energy is included, the picture
changes somewhat: (i) The RH1 form is no longer
favored over the (001) and (110) SL's for small p, being
nearly degenerate with them at @=1, and higher for
p ) 1. (ii) The (110) SL is slightly lower in energy at p =2
than the (001) SL, and is higher thereafter. (iii) The sign
of the interface energy in the (001) SL is now small and
positive, whereas it was substantial and negative in the
strain-only picture. This makes the (001) SL epitaxially
unstable on both a and as; (001) substrates, whereas it is
epitaxially stable in the strain-only picture. (iv) The sign
of the interface energy of the (110) SL becomes positive
on a (110) as; substrate, thus making it epitaxially unsta-
ble, whereas it is epitaxially stable on an a substrate, and
in the strain-only picture it is epitaxially stable on both
sub strates.

Consideration of the full range of interactions at a
film-substrate interface (Sec. VII) showed that (i) the in-
terface between a (111) (Si2)/(Gez) SL and a (001)-
oriented Si substrate partially breaks the energy degen-
eracy between the four different (111) SL orientations,
slightly stabilizing one pair of variants of the SL relative
to the other pair; (ii) the film-substrate interface energy
can safely be neglected for sufficiently thick films provid-
ed that the requirement of atomic registry at the interface
is not substantially violated for the particular crystal
structure of the film.

For several types of isolated Si/SiGe, Ge/SiGe, and
SiGe/SiGe interfaces we found negative (stabilizing) in-
terface energies, particularly those in which RH2 p =1
was one of the constituents. The most stable among
those we investigated is the (001) antiphase boundary in
RH2 p=1, but even a high density of these was not
sufficient to stabilize that phase epitaxially or to reduce
its energy below that of RH1 p = 1. Our search for
stable, thin ordered regions of SiGe between (001)-

oriented layers of Si and Ge, a possibility suggested by
Mader, von Kanel, and Baldereschi showed the abrupt
(001) Si/Ge interface to be favored over the ordered
interdiffused interface.

B. Summary of ordering trends

Before presenting our conclusions regarding the spon-
taneous ordering of SiGe alloys, we will briefly review the
experimental and theoretical work to date. These can be
divided into those appropriate to coherent (generally thin)
SiGe films [strained to match the lattice constant of a
substrate, in which case Eq. (15) applies], and those ap-
propriate to incoherent (generally thick, with substrate
strain relieved by misfit dislocations) SiGe layers [where
Eq. (1) applies].

Regarding first strained SiGe: Ourmazd and Bean'
discovered spontaneous ordering into a rhombohedral
phase in Si/SiGe SL's grown on (001) Si substrates,
though they were unable to determine whether the struc-
ture was RH1 p =1 or RH2 p =1. In their experiment
the SiGe film was sufficiently thin to create a coherently
strained SiGe structure having the Si lattice parameter
parallel to the substrate. They made two important ob-
servations: (i) the ordering was not present (or was only
very weak) following growth (at 550 C) but appeared
after annealing the samples (at about 450 C) and cooling
them slowly (rapid quenches from that temperature re-
sulted in little ordering), and (ii) they observed that the
transition was reversible with temperature cycling. Both
observations strongly suggest that the ordering they ob-
served reflects bulk thermodynamics rather than surface
thermodynamics or kinetic effects. Lockwood et al.
confirmed the observation of weak spontaneous ordering
in as-grown samples of both Si/SiGe SL s and single epi-
layers of SiGe grown on (001) Si substrates. They did not
observe any significant annealing effects in their experi-
ments. Martins and Zunger' (based on first-principles
calculations) and Littlewood' (based on harmonic VFF
calculations) attributed these observations to the RH1
p =1 phase, since they found the epitaxial formation
enthalpy 6H [Eq. (15)] of RH1 p = 1 on (001) Si to be neg-
ative, and since the strain energy of RH2 is much higher
than that of RH1. Koiller and Robbins' later reached
the same conclusion on the basis of a harmonic VFF cal-
culation. Both Littlewood' and Koiller and Robbins'
calculated estimates of the formation enthalpy of the ran-
dom alloy including only strain energy, and came to the
conclusion that the transition temperature so calculated
was much too small to account for the T, =700 K ob-
served by Ourmazd and Bean. '

Regarding unstrained Sioe, LeGoues, Kesan, and
Iyer' observed ordering in the RH2 p = 1 phase in thick,
unstrained SiGe, and speculated that the fact that the
chemical energy of RH2 is more favorable than that of
RH1 could stabilize it over RH1 even in bulk form.
LeGoues et al. ' later presented further studies suggest-
ing that the observation of RH2 ordering in unstrained
films was caused by surface thermodynamic processes
during growth, rather than by bulk thermodynamics.
While this is quite possibly the correct explanation of
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their observation of RH2 p=1 ordering in unstrained
SiGe, it cannot account for the reversible, post-growth
ordering observed in strained SiGe by Ourmazd and
Bean. ' Indeed Muller et al. have recently observed
that thin SiGe films grown on either Si or Ge substrates
show both RH1 p = 1 and RH2 p = 1 ordering in the as-
grown sample; on annealing the sample the RH2 order
vanishes, while subsequent cooling gives rise to a reversi-
ble order-disorder transition, with RH1 p =1 as the low-
temperature ordered phase. This shows the RH1 p=1
phase to be the most stable one thermodynamically.

C. Discussion of ordering

From our results, we come to the following conclusions
regarding ordering of SiGe. (i) In spite of its more favor-
able chemical energy, the overwhelmingly higher strain
energy of RH2 ensures that RH1 has a lower formation
enthalpy both in bulk and when strained coherently on
(001) Si. This suggests that the ordered coherent epitaxial
phase observed by Ourmazd and Bean after annealing
was RH1 p =1, rather than RH2. Since the reversibility
of this ordering has now been substantiated by Muller
et al. , we can conclude that the post-growth ordering
observed in these strained phases is not a result of the ir-
reversible surface-induced ordering during growth that
has been proposed by LeGoues et al. ' (ii) It also makes
clear that the observation of unstrained bulk RH2 p =1
by LeGoues et al. ' is not due to the low chemical energy
of that phase, as they originally suggested. Instead, our
results lend support to their more recent proposal ' of a
surface-induced ordering mechanism during growth that
favors RH2. Such a mechanism would likely also cause
initial formation of RH2 in as-grown coherent samples as

well, as has been con6rmed by Miiller et al. , but subse-
quent annealing for sufficient time at sufficiently high
temperature results in elimination of that high-energy
phase. (iii) Our calculations show that the chemical ener-
gy favors the random alloy over RH1 p = 1, in contrast to
the opposite trend in the strain energies, making the two
structures energetically indistinguishable both in bulk
and on (001) Si. If we apply a strain-energy correction
for the underestimation of bond lengths and lattice
mismatch by the pseudopotential results, the epitaxial [on
(001) Si] RH1 p = 1 structure is slightly more stable than
the epitaxial random alloy (which is, in turn, slightly
more stable than coherent constituents), but the forma-
tion energies are still much too close to account for the
order-disorder transition temperature observed by Our-
mazd and Bean' or Miiller et al. (iv) The microscopic
interactions at the interfaces of a Si/SiGe SL, such as
that grown by Ourmazd and Bean, ' do not substantially
alter the predicted order-disorder transition temperature
calculated on the basis of a "virtual" substrate calcula-
tion of strained SiGe on a (001) Si substrate. (v) Hence,
the Ourmazd and Bean' experiment remains quantita-
tively unexplained.
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