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We re-examine the validity of the three-dimensional bulk thermody- 
namic description for the zinc-blende-to-diamond transition observed in 
(GaAs)l_zGezz alloys. We use interaction parameters extracted from first- 
principles local-density total-energy calculations for (GaAs)p/(Ge2)p super- 
lattices and a cluster-variation solution to the corresponding Ising-like hamil- 
tonian. The resulting phase diagram obtained with such a realistic energy 
model fails to account for the observed critical composition in the relevant 
temperature range, suggesting that, contrary to a previous view, the transi- 
tion is not driven by bulk thermodynamics. 

1. I n t r o d u c t i o n  

The (GaAs)l_zGe2t alloy is a member of the 
new class of non-isovalent (AIIIBV)I_zcIV semi- 
conductor solid solutions, which exhibits remark- 
able structural and optical properties. 1 Unlike the 
more common isovalent (III-V)/(III-V) or IV/IV 
alloys, the non-isovalent constituents AIIIB v and 
C TM are mutually insoluble in the solid state, 2 
even if they are size-matched (e.g., GaAs and 
Ge). This reflects the existence of local bond- 
ing arrangements that violate the octet rule, i.e., 
the Ga- -Ge  and Ge---As bonds (whose total num- 
ber of valence electrons deviates by AZv = +1 
from that in normal octet Ga--As and Ge- -Ge  
bonds) and possibly Ga - -Ga  and As--As ("wrong 
bonds" whose total number of electrons deviates 
by AZv=+2 from the octet  bonds). Despite their 
equilibrium segregating behavior, however, homo- 
geneous tAIIIDV~ f,IV alloys can be prepared by 
non-equilibrium growth methods. 3-e Such homo- 
geneous phases constructed from constituents of 
different lattice symmetries exhibit an interesting 
phase transition: The two interpenetrating fcc sub- 
lattices constituting the diamond-like structure of 
Ge can be occupied.in (GaAs)l_zGe2z either by Ga 
or by As atoms. If these sublattices are occupied 
equally by Ga and As we have the pseudo-diamond 
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(D) structure; if, however, a sublattice is preferen- 
tially occupied by one of the two species, we have 
the pseudo-zinc-blende (ZB) structure, manifested 
by a [200] diffraction peak, 6,7 forbidden in the dia- 
mond structure. Such a Z B ~ D  transition was ob- 
served in (GaAs)l_zGe~z at a composition xc~ 0.3 
for samples grown by molecular beam epitaxy 6 at 
430* C and at xe ~ 0.4 for samples grown by sput- 
tering techniques. 7 

In addition to the simple percolation approach, 8 
producing xc = 0.572, there are two other rather 
diverging points of view on the nature of the 
Z B ~ D  transition: growth models 9-11 and three- 
dimensional (3D) bulk thermodynamic models. 12,13 

In "growth models "9-11 one is attempting to di- 
rectly produce a description of the atomic struc- 
ture of the alloy without minimizing any explicit 
energy functional. This is done by defining a set of 
"growth rules" that dictate the preferences of in- 
coming atoms to bond to specific substrate atoms; 
once bonded, atoms are assumed immobile. These 
growth rules are not justified .a priori by way of an 
energy argument, but rather in terms of their suc- 
cess in producing an atomic structure that mimics 
ex post facto some of the properties of the experi- 
mentally observed structures. As a result, growth 
models produce structures that reflect the "deposi- 
tion history," are orientation-dependent but gener- 
ally temperature-independent. 

In 3D "bulk" thermodynamic models, 12A3 one 
defines an interaction hamiltonian that specifies the 
configurational dependence of the energy of the sys- 
tem and solves it in any of the available statistical- 
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mechanics lattice models. The basic premise is that  
the atomic structure at a given (x, T) reflects a (lo- 
cal or global) minimum of a physically recogniz- 
able hamiltonian. In this approach, the sequence 
of growth does not enter (as atoms are assumed to 
be sufficiently mobile to attain any lattice config- 
uration that leads to a minimum free energy) and 
the orientation of growth does not alter the results 
Cas a 3D symmetry is postulated). Hence, the re- 
suits depend naturally on temperature but not on 
orientation. 

Using this approach, Newman and collaborators 12 
have applied a mean-field solution to the three- 
species CGa, As, Ge) lattice-statistics problem re- 
taining only nearest-neighbor interactions between 
neutral atoms (isomorphic to the spin-1 Blume- 
Emery-Griffiths model14). If G a - - G a  and As--  
As bonds are allowed, an energy parameter of the 
model can be adjusted to give a ZB *-* D transi- 
tion at a~ = 0.3. Without such bonds, l~b how- 
ever, the order-disorder transition occurs only at 
z > 0.57. In this model, a critical concentration 
as low as 0.3 requires the presence of AZv  = 4-2 
bonds, but  independent evidence for their existence 
remains controversial. 1°,15,16 Indeed, extended x- 
ray absorption fine structure results for the re- 
lated (GaSb)1-zOe2z alloy can be fitted with 12b,e or 
without 17 the assumption of existence of AZv--4-2 
bonds. 

Three main questions surround the application 
of 3D thermodynamic models to (AIIIBV)I_zCIV 
alloys: 

(a) Selection of values for interaction energies. 
In the Newman et al. approach the hamiltonian is 
parametrized in terms of reduced energies (in units 
of kBT) so that specific values (or temperatures) 
remain unknown. However, a "cluster--Bethe- 
lattice" tight-binding calculation is and a pseudopo- 
tential structural-expansion model ]9 have obtained 
values of 0.15to0.16eV for the average energy of 
Ga- -Ge  and Ge---As bonds in (GaAs)l_=Ge2z. Us- 
ing this value in the thermodynamic models leads 
to a transition temperature that is an order of mag- 
nitude too high compared with the experimental 
growth temperatures. 

(b) .Physical content of the interaction hamilto- 
nian. In all previous applications 12'13'1s it has been 
assumed that the interactions in the system con- 
sist of short-range concentration-independent en- 
ergies between neutral atoms, so that the usual 
nearest-neighbor spin-1 Ising model 14 may be ap- 
plied. However, unlike isovalent alloys, where such 
approaches are appropriate, non.isovalent alloys 
can exhibit significant charge-transfer effects with 
their attendant electrostatic interactions, neglected 
previously. This becomes clear when one realizes 
that  a Ga- -Ge  bond has a deficiency of 1/4 of an 
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electron Chence, behaving as an acceptor) and that 
a Ge---As bond has an excess of 1/4 of an electron 
(hence, behaving as a donor) and that transfer of 
a charge q from donor to acceptor states can re- 
duce the  electronic energy by the effective band- 
gap energy qEg. Furthermore, the charge transfer 
produces an intra-bond Coulomb repulsion energy 
as well as an inter-bond long-range (Madelung) en- 
ergy. Previous models of the ZB~D transition have 
neglected all these electrostatic terms. This prob- 
lem is well known in the theory of non-isovalent 
impurities such as anti-sites in GaAs, 20 where such 
compensating charge transfer reduces the calcu- 
lated formation energy of an anti-site pair from 6.3 
to 1.TeV. 

(c) Accuracy of the statistical solutions to a given 
hamiltonian. The critical temperature for the 
spin-l/2 Ising model found from a simple (site- 
approximation) mean-field solution exceeds the 
near-exact series-expansion result 21 by as much 
as 48 %. This mean-field approximation can be 
considerably improved using the cluster-variation 
method. (CVM) pair approxima£ion, 22 which leads 
to a critical temperature in the spin-1/2 Ising model 
that  is just 6.7 % above the correct result. 

Since the appropriateness of a 3D bulk ther- 
modynamic description of the ZB*-* D transition 
in (GaAs)l_zGe2: is clouded by the factors (a)-  
(c) above, we decided to reinvestigate the prob- 
lem. The above mentioned problems (a)-(c) are 
treated as follows: C a) The interaction energies are 
extracted from first-principles self-consistent total- 
energy calculations 23 on prototype non-isovalent 
systems. (b) A realistic description of all three elec- 
trostatic effects is included. We use both Ising-like 
(palrwise) and electrostatic inter-bond (effective 
three- and four-body) interactions. The AZv=+2 
bonds are disallowed and isolated ions are permit- 
ted to occur. (c) The phase diagram is calculated 
in the CVM pair approximation. We find that the 
phase diagram resulting from the use of realistic 
interaction energies shows that a 3D equilibrium 
thermodynamic interpretation for the ZB~D tran- 
sition fails to account for the observed Xc in the 
relevant temperature range. 

2. S u p e r l a t t i c e  Energe t i c s  

We consider next the basic physical factors con- 
trolling non-isovalent interactions so that a real- 
istic alloy hamiltonian can be developed. While 
there is no experimental evidence for the pres- 
ence of AZv = +2 bonds, energy arguments sug- 
gest that if they occur in [AIIlDVx t'~IV alloys, VI. .o  ) l - z ~ 2 z  

they have a much smaller concentration than the 
A Z v - - + I  bonds. This can be estimated by con- 
trasting the calculated average formation energy W 
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of the G a - - G a  and As--As (AZv=+2)  bonds to 
the average energy 5 of the Ga- -Ge  and Ge--As 
(AZv=+I)  bonds. Different calculations 18,19,24 in- 
dicate W/5 ~ 3-4, with 5 > kBTo, where Tg is the 
growth temperature. Therefore, at thermodynamic 
equilibrium AZv=4-2 bonds should occur much less 
frequently than AZv=4-1 bonds. We hence omit 
them from the alloy hamiltonian. 

We model the energy of a non-isovalent system 
containing both normal and AZv = 4-1 bonds by 
considering (AIIIBV)p/(cI2V)p superlattices (SLs). 
The excess energies of such SLs were calculated 23 
using the first-principles self-consistent pseudopo- 
tential method 25 for several orientations and re- 
peat periods. The wave functions for semirelativis- 
tic pseudopotentials were expanded in plane waves 
with kinetic energies up to 15 Ry. The charge den- 
sity was evaluated at the equivalent of two special 
k-points 2e in the irreducible part of the fee Brioullin 
zone. (Larger equivalent sets were used for some 
of the longer-period SLs.) The excess energies 
can then be fitted by a sum of Ising-like nearest- 
neighbor interactions between neutral atoms and 
electrostatic terms due to charge transfer: 23 

A H  =(IV D + NA)5 - 1 ~(ND q- NA)Eo(O)q 
(1) 1 

+ 4(No + NA)(UO + UA)q + EM.d. 

(For simplicity, we assume all charge transfers to 
be the same.) 

The first term represents the total excess energy 
before charge transfer (q=O), where No and N A are 
the total number of donor and acceptor bonds in 
the structure (No = NA for stoichiometric systems) 
and 5 is the average excess energy of the AZv = 
4-1 bonds before charge transfer occurs. Previous 
models 12,13,18 have retained only this term. This 
predicts that the energy per 4p atoms of [001] and 
[110] SLs is 45 while that of [111] SLs is 25. The 
three remaining terms on the right-hand side of Eq. 
(1) represent charge transfer effects: 

(i) Transfer of a charge q from a donor to an ac- 
eeptor state initially separated by a band gap of 
Eg(q--O) produces to first order in q an energy gain 
of qEg(q=O). A total compensation energy gain of 
-I(N 0 + NA)Eg(O)q therefore arises. 

(ii) The excess or deficit of charges on the 
AZv=4-1 bonds now produces an excess intra-bond 
Coulomb energy, both due to electrostatic and to 
exchange-correlation terms. This raises the energy 
by ¼(ND+ NA)(UD-I-UA)q 2, where UD and UA are 
intra-bond Coulomb repulsions in the donor and 
acceptor bonds. 

(iii) Finally, an excess Madelung energy EMad re- 
sults from the sum of screened long-range electro- 
static interactions between compensating charges 
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{qi} (usually -I-1/4, in units of the electron charge) 
which we place at the mid-points of the AZv = 
4-1 bonds. These interactions are assumed to be 
screened, independently of distance, by the aver- 
age static dielectric constant of the two end-point 
components. 

It is convenient for a thermodynamic treatment 
of the problem to regroup the terms of Eq. (1) as 

AH = (ND + NA)J(q) + EMad, (2) 

where the effective palrwise energy is 

2 

J(q) = 5 - q  Eg(o)+ q-~4 (UD+UA) = 5+AJ(q) , (3) 

and AJ(q) is the "bond charge-transfer energy." 
Calculating EM~d by Ewald's method, the pa- 

rameters q (constrained to remain < 1/4), 5 and 
(UD + UA) of Eq. (1) were then obtained by fit- 
ting [for fixed values of Eg(0)] the formation ener- 
gies calculated by the self-consistent pseudopoten- 
tial method for eleven unrelaxed (GaAs)p/(Ge2)p 
SLs. (Relaxation can decrease the formation energy 
by 4-14 %; its effects are not included in the energy 
model.) The degree of arbitrariness in the choice of 
Eg(0) was of little consequence to the fit: Changes 
in Eg(0) were offset by changes in (UD + UA) so 
that both AJ(q) and 5 are relatively insensitive to 
Eg(0) over a reasonable range of values, indicated 
in Fig. 1 by the shaded areas. 

The resulting energy parameters for GaAs/Ge 
are 5 = 0.162 eV and, for a full charge transfer, 
J(q=l/4)  -- 0.109eV. The accuracy of the fit is 
illustrated in Fig. 1, where the formation energies 
of SLs calculated by the pseudopotential method 
are compared with those obtained by the model. 
We find that all SLs have positive formation en- 
thalpies AH,  i.e., they are unstable at equilibrium 
towards disproportionation into Ge and GaAs, due 
to the presence of a large number of AZv=+I bonds 
with their attendant energies 6 > 0. Charge transfer 
makes the SLs less unstable in that AH is below the 
q = 0 limits indicated at the far right side of Fig. 1. 

Analysis of the directly calculated pseudopoten- 
tial total energies in terms of this model permits 
assessment of the significance of various physical 
contributions. While the excess Madelung energy 
can be either positive or negative, the bond charge- 
transfer energy, AJ(q),  is always negative, due to 
the prevalence of the E~(0) (compensation gain) 
term in Eq. (3) over Coulomb repulsions. Even 
when the excess Madelung energy is positive, it is 
never large enough to offset the gain in energy due 
to the bond charge-transfer term. 

The energy of SLs with polar [001] interfaces can 
be lowered by reconstruction. 27 Four reconstruc- 
tions were considered involving swapping of atoms 
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FIG. 1. Pseudopotential calculated 23 (solid 
circles and triangle) and modeled [dashed lines 
and crosses, from Eq. (1)] (a) (GaAs)~/(Ge2)p su- 
perlattice formation enthalpies per 4p atoms and 
(b) inter-interface charge transfer. The recon- 
structed superlattiees are obtained by swapping 
atoms between interfaces, as described in the text. 
The horizontal lines on the far right give the results 
without charge transfer for [001] and [110] SLs (46) 
and for [111] SLs (26). The model energies and 
charges correspond to a range of the input param- 
eter Eg(q=0)  between 0.4 and 0.8. This gives a 
reasonably narrow spread in predictions, indicated 
by the shaded areas. 

for p = 6, but not for p = 3, similarly to what was 
found 23 for GaP/Si.  

In polar SLs the charge transfer decreases asymp- 
totically as 1/p [Fig. l(b)]. This can be explained as 
follows• Charge transfer between interfaces creates 
potential oscillations across the SL with amplitude 
proportional to the charge transfer q and repeat 
period p. Since this amplitude of oscillation should 
not exceed the band gap, q must scale with 1/p for 
large p. On the other hand, in structures where 
charged interfaces are absent, including non-polar 
[110] SLs and alloys, full charge transfer (q = 1/4) 
is expected. 

3. Alloy T h e r m o d y n a m i c s  

In (GaAs)l_zGe2x alloys no long-range order is 
expected to appear in the distribution of donor and 
acceptor bond, (even when the Ga and AS atoms 
are organized in the ZB structure). Therefore, we 
have truncated the infinite sum of the Madelung 
energy beyond a certain range, thus making the 
hamiltonidn of Eq. (2) amenable to an Ising-like 
description: 

A H  ~ (ND+NA)J(q)+EI+Ez+E3z+E3h,  (4) 

where El,  E2, E3z, and E3h are the contributions 
to the Madelung energy from first-neighbor bond 
pairs, second-neighbor bond pairs, third-neighbor 
bond pairs along a zigzag chain and third-neighbor 
bond pairs in the same distorted hexagon, indicated 
in Fig. 2. These energy parameters can be ex- 
pressed as 

in the following way: (i) Ga.-+Oe vertical, (ii) Ga+-* 
Ge staggered, (iii) Ge~As vertical, and (iv) Ge~As 
staggered swaps, where "vertical" ("staggered") in- 
dicates swaps between atoms directly (not directly) 
above one another. The pseudopotential calcula- 
tions found a value of 0.27 eV/(4 atoms) for the for- 
mation energy of the unreconstructed [001] p = 2 SL, 
compared to 0.20 to 0.23 eV/(4 atoms) for the four 
[001] p = 2 reconstructions. The average of these 
four reconstructions is represented by the solid tri- 
angle in Fig. l(a). The model correctly reproduces 
the energy lowering attendant upon reconstruction 
and shows that it results primarily from a lowering 
of the Madelung energy. For [111] SLs, reconstruc- 
tion is nor guaranteed to lower the energy since the 
energy gain due to a more effective charge com- 
pensation and lower Madelung energy is offset by 
an increase (by 50 %) in the number (NA + ND) 
of AZv==t=l bonds. Our model results indicate a 
marginal stabilization of the reconstructed struc- 
tures (with a G a u G e  or a Ge~As  vertical swap) 

E. = N. ~ -(") C (") (5) v(ij)(kO (ij)Ckl), 
i , j ,k,I  

where Nn is the total number of n-th neighbor bond 
pairs on the lattice. The sum is taken over the pos- 
sible occupations of n-th neighbor bond pairs by 
(i,3) on one bond, and (k,l) on the other. The 

FIG. 2. Types of bond pairs, corresponding to 
the electrostatic interactions of P,q. (4). 
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probability ~(n) is the average fraction of n-th l " ( i j ) ( k l )  
neighbor bond pairs occupied by (i, j) and (k, l), 
and C (n) is the corresponding inter-bond elec- (ij)(~0 
trostatie interaction, given by 

I K(n), for like AZv=+I bonds; 
C (") - -K(n), for unlike AZv=+I bonds; ( i j ) ( k l )  - -  

[ 0, otherwise. 
(6) 

The energy parameters K(") can be calculated ap- 
proximately from the average dielectric constant 
and the distances between bond centers; the re- 
sulting parameters for GaAs/Ge SLs or alloys are 
K0) =0.035, K(2) =0.020, and K(3) =0.017 eV. As 
a test for the validity of the truncation in Eq. (4), 
we find that for ideal zinc-bhnde or diamond alloys 
in the infinite-temperature limit, the contribution 
from E3h in Eq. (4) is typically only 5% of El,  so 
the truncation appears justified for alloys. This is 
due to the near charge cancellation of bonds in a 
shell of a sufficiently large radius. 

The bulk equilibrium thermodynamics of homo- 
geneous (GaAs)l_zGe2x solid alloys is described 
through the excess free energy A F  = A H  - TS, 
where the excess enthalpy AH includes the pair- 
wise and inter-bond electrostatic terms of Eq. (2) 
and the configurational entropy S is expressed in 
the CVM pair approximation 22 in terms of the 
pair probabilities {gij} for occupation of nearest- 
neighbor sites by atomic species i and j .  Con- 
straints among the pair probabilities are introduced 
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by requiring (i) a fixed Ge composition, (ii) no sub- 
lattice ordering of Ge, and (iii) no Ga--Ga or As-- 
As bonds [although similar results are obtained if 
requirement (iii) is relaxed and realistic values for 
AZv=+2 bond energies are used]. The number of 
independent variables is then reduced to three "cor- 
relation functions, "2s defined as appropriate linear 
combinations of the {Yij }. 

At a given concentration x and temperature T, 
the CVM free energy A F  is minimized with re- 
spect to the independent correlation functions to 
give their equilibrium values (and therefore any de- 
sired thermodynamic function). Since we include 
interactions of longer range than the size of the ba- 
sic cluster, a "superposition approximation "28,20 is 

used that relates the "(") of Eq. (5) to the {yij} P ( i j ) ( k l )  
by mean-field-like relations. 

The resulting phase diagrams are displayed in 
Fig. 3 for (a) the uncompensated (q = 0) and (b) 
the compensated (q = 1/4) cases. The uncom- 
pensated case corresponds t o  the Blume-Emery- 
Griffiths spin-1 Ising model with pairwise inter- 
actions, while the compensated case includes also 
three- arid four-site interactions. Phase diagrams 
for the uncompensated case have been presented 
previously by Gu et al. 12b with a temperature axis 
in units of the AIII--B V bond energy. We conclude 
the following from our results: 

(i) In the infinite-temperature limit, the problem 
is reduced to a three-species correlated percolation 
problem. A second-order phase transition occurs 
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FIG. 3. Equilibrium phase diagram for the 
(GaAs)l_xGe2z alloy (a) without and (b) with 
charge transfer. The region below the tricritical 
point (zte, Tie) and between the two full lines cor- 
responds to phase separation into GaAs-rich zinc- 
blende and Ge-rich diamond phases. The dashed 
line is the spinodal of the zinc-blende phase, while 
the dotted line is the unstable continuation of the 
second-order transition line. 
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between the ZB and the D phases at x ~ 0.57. 
In contrast, phase diagrams for models that in- 
clude AZu = +2 bonds 12,1a show that this transi- 
tion line terminates at x = 0 at a finite critical 
temperature To, so that only the D phase is sta- 
ble for T > To. This feature enabled a low (xe = 0.3 
or 0.4) order-disorder concentration to be fitted in 
previous approaches by adjusting ratios of temper- 
ature to interaction energies. It was not deter- 
mined, however, if the temperature where this fit is 
valid agrees with the experimental (growth) tem- 
perature (Tg ,~ 700 K). While we have excluded 
AZv=-t-2 bonds, we note that if their energy were 
3 to 4 times /~ (as suggested by Refs. 18,19,24) 
their inclusion in our model would lead to insignifi- 
cant changes in the phase diagrams below ,~ 2000 K. 
Hence, the much disputed existence 1°,15-1T of so- 
called "wrong" (AZv = +2) bonds is actually ir- 
relevant in a thermodynamic approach at the low 
temperatures where the ZB~D transition is estab- 
lished. 

(ii) As the temperature is lowered, xc increases 
gradually, until a tricritical point (xtc, Ttc) is 
reached, below which the transition becomes first- 
order. The presence of a tricritical point is a well- 
known characteristic of the Bhime-Emery-Griffiths 
model. 14 

(iii) Below the tricritical point, the first-order 
transition is reflected in an (x ,T)  diagram by a 
phase-separation region, whose concentration range 
increases rapidly as the temperature drops until 
at T = 0 it occupies the whole 0 < x < 1 in- 
terval. Two curves inside this phase-coexistence 
region are relevant for the discussion of possi- 
ble metastable states. (a) The dashed line from 
(x, T) = (0, 0) to (xte, Tte) is the ZB-phase spin- 
odal, where c92F/cOx ~ = 0. To the right of this line, 
the single-phase ZB solution, although still a mini- 
mum of the CVM free energy, does not satisfy the 
condition cgp/Ox > 0 of thermodynamic stability, 
where p = N-lcOF/cOx is the chemical potential of 
Ge measured with respect to the average chemical 
potential of Ga and As. (b) The dotted line extend- 
ing from (x ,T)  = (1,0) to (x,c,T,c) is the unstable 
continuation of the second-order phase transition. 
The ZB phase immediately to the left of this line 
is thermodynamically unstable (Op/ax < 0) with 
respect to long-range perturbations. Similar phase- 
transition lines have been denoted "metastable" in 
previous works 12a,b with the provision that long- 
range atomic interchanges are disallowed. We find 
that,  even then, the transition occurs only very 
close to x = 1, in conflict with experiment. 

(iv) The main change in the phase diagram with 
compensation (q = 1/4) is a scaling of the tri- 
critical temperature by a ratio of approximately 
J(q = 1/4)/6. The lowering of AH produced by 

charge transfer depresses therefore Tte from 3420 to 
2280 K and decreases the area of phase separation. 
A second, more subtle, change is a slight decrease 
in the tricritical concentration (from 0.727 in the 
q=0  case to 0.692 when q=1/4) .  This effect is a 
direct consequence of inter-bond Madelung inter- 
actions. The excess Madelung energy is larger in 
the ZB phase than in the D phase, due to the pres- 
ence of a larger number of Ga-Ge-Ga  and As-Ge-- 
As clusters, which have positive nearest-neighbor- 
bond repulsions. Madelung energy, therefore, in- 
creases the region of stability of the D phase, dis- 
placing the tricritical concentration to lower val- 
ues. These changes, however, are not sufficient to 
produce a significant modification of the phase di- 
agrams at temperatures below the eutectic point 2 
( T ~  1140 K) of the alloy. 

(v) The different contributions to the excess en- 
thalpy of the two phases are qualitatively similar 
to the ones found for (GaP)l-zSi2x, for which a 
detailed discussion is given in Ref. 28. In partic- 
ular, the Madehing and bond charge-transfer con- 
tributions reduce the D-phase excess enthalpy with 
respect to the ZB-phase result. 

The fact that the bond ~harge transfer does 
not overwhelm the positive values 19,23,24 of J(q) 
implies that phase separation between the usual 
zinc-blende and diamond structures is the equilib- 
rium state at low temperatures, in agreement with 
the known 2 near mutual insolubility of GaAs and 
Ge. It might be thought, however, that new or- 
dered structures could be stabilized if strong first- 
neighbor inter-bond electrostatic interactions, in 
excess of what the dielectric constant approxima- 
tion would grant, are introduced. Frustration ef- 
fects, however, preclude the appearance of any new 
minimum-energy ordered configuration. 

We do not find below ~ 2000 K any single-phase 
states that are metastable with respect to concen- 
tration fluctuations. In the CVM pair approxima- 
tion, single phases are unstable between the ZB 
spinodal and the unstable phase transition curves. 
Furthermore, below melting temperatures the (un- 
stable) phase transition occurs only very close to 
x = 1. These results lead us to conclude that a 3D 
bulk lattice thermodynamic approach is unlikely to 
explain the experimentally observed existence of ZB 
or D single-phase/AIII nv~ r, lV t~t D 11 - z~z  alloys, prepared 
at temperatures below 800 K and covering the whole 
composition range. 

Of course, a large number of configurations (in- 
cluding superlattices) that are intermediate in en- 
ergy between phase-separated and single-phase al- 
loys can be designed by placing arbitrarily sized 
domains of pure (or nearly pure) constituents in 
arrangements where most of the AZv = +1 bonds 
occur at the domain walls. High diffusion barriers 
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in the bulk imply that many of these structures are 
metastable in a broader sense than that considered 
in the previous discussion, i.e., they are likely to be 
local minima of the free energy in a configurational 
space constituted by all continuous degrees of free- 
dom of the system. Lattice statistical models, how- 
ever, independently of the mathematical approxi- 
mations used, are unable to describe this type of 
metastability. 

The failure of a three-dimensional bulk thermo- 
dynamic model opens the possibility that a two- 
dimensional surface thermodynamic model might 
be appropriate. Solid solutions of (AIIIBV)I_zCIV z 
alloys produced by epitaxial-growth techniques 
could correspond to a minimum-free-energy surface 
configuration that is frozen in by subsequently de- 
posited layers. This approach differs from 3D ther- 
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modynamic models 12'13 in that explicit surface ef- 
fects are included, so the resulting structure may 
depend on orientation. It differs also from previous 
growth models 9-11 in that minimum-energy struc- 
tures are sought explicitly. Recent studies of such 
models for isovalent alloys by Froyen and Zunger 30 
have shown that surface reconstruction (neglected 
in previous growth models) acts to select minimum- 
energy configurations that are absent in 3D thermo- 
dynamic models, but are observed experimentally. 
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