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First-principles pseudopotential calculations are reported for the structural properties, band
offsets, and single™particle electronic states of (GaP)„(GaAs)„(001) and (111) superlattices with

n 3. With the aim of developing a systematic theory to relate superlattice levels in these ultrathin
systems to those of their constituents, the superlattice is treated as evolving from a virtual-crystal
parent zinc-blende compound. A semiquantitative description of the resulting superlattice states
evolves from this theory, which is based on (i) the small perturbative nature of the superlattice or-
dering potential with respect to this parent compound, (ii) a generic n dependence found for the in-

tervalley coupling strengths, (iii) generic selection rules governing intervalley mixing, and (iv) obser-
vations of the dependence of coupling strengths on the anion versus cation character of the involved

states. Application of these principles to (110) and (201) GaAs/GaP, and to the previously studied
GaAs/AlAs systems, demonstrates their usefulness. Calculated energy gaps (and their direct versus
indirect and type-I versus type-II character) are presented for the superlattices studied.

I. INTRODUCTION

Since Esaki and Tsu' first suggested the development
of new semiconductor systems through the growth of two
different materials in a layer-on-layer geometry, semicon-
ductor heterostructures such as quantum wells and super-
lattices (SL's) have been one of the favorite modes of ac-
complishing band-gap engineering. The basis for the
band-gap variability provided by these layered structures
is largely due to the fact that the resulting one-
dimensional geometry causes a dipolar potential shift al-
ternating (as a constant) in the quantum wells and bar-
riers. For wide quantum-well structures (e.g. , long-
period SL's), where eff'ective-mass theory is applicable,
the resulting band-edge energy levels are then simply
those of the constituents, modified by (i) the band-offset
shift due to the dipolar potential, (ii) the confinement en-
ergy of the quantum well in which the state exists, and
(iii) a strain splitting (if the constituents are lattice
mismatched and the interfaces are coherent). The "en-
gineering" of the levels then comes about controlling the
amount of localization energy (by controlling the width
of the well, or by controlling the growth direction that
affects the pertinent eff'ective mass) and by controlling the
starting position of the constituent's band-edge energy
levels (for example, by controlling alloy compositions of
pseudobinary alloy constituents, or by controlling relative
volume proportions or substrate lattice constants in
coherent epitaxial growth of lattice-mismatched constitu-
ents). In the case of long-period strained-layer SL's, Os-
bourn has demonstrated how such systems allow in-
dependent variability of structural properties (the lattice
constant), optical properties (the band gap), and transport
properties (carrier mobilities).

In contrast to this, levels in ultrathin SL's
[(AB)„(A'B') with n+m ~6] cannot be described by
eff'ective-mass theory. Other empirical theories (such as

tight-binding or empirical-pseudopotential theories)
that incorporate the interface simply by averaging pa-
rameters from the bulk constituents describe such sys-
tems only approximately. In ultrathin SL's the interface
region is a significant fraction of the total volume, and
thus can cause strong mixings between different zinc-
blende valleys that are folded on top of each other in the
SL Brillouin zone. These mixings control the physics of
energy levels in ultrathin SL's They cause energy-level
splittings and repulsions (as large as 1 eV, as seen below)
and oscillator strength sharing (thus controlling the pseu-
dodirect versus direct nature of optical transitions). Such
effects are largely peculiar to very-short-period SL's, and
thus demonstrate the added flexibility these structures
bring to the art of band-structure engineering. Such ul-
trathin SL's have been studied recently both experimen-
tally and theoretically, especially with regard to the
GaAs/A1As (Refs. 10 and 11) and Si/Ge (Refs. 4 and 12)
systems. A careful analysis of the physics controlling
energy-level formation in such systems is particularly im-
portant, in light of the fact that spectroscopic analysis of
the changes in their optical gaps is frequently used' as a
probe in determining the extent of ordering in spontane-
ously ordered' ultrathin SL systems.

It is thus the purpose of this present work to apply
self-consistent first-principles methods to systematically
describe the physics of intervalley mixing and the result-
ing SL energy levels in short-period (GaP)„(GaAs)„(001)
and (111)SL's, with n ~ 3. Combining these results with
corresponding results on the (GaAs) „(A1As )„system
leads to the development of a general theory of energy-
level formation in ultrathin SL's. This theory demon-
strates, for example, that intervalley coupling strengths
(and their resulting level repulsions and oscillator
strength sharing) are very weak for even n period
(AC)„(BC)„SL's, and decay like 1/n for odd n periods.
It gives a quantitative understanding to the degree to
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which an optical transition in such systems is direct or
pseudodirect, and to the degree to which it can be labeled
type I or type II. We also present predictions for the op-
tical transition energies in (001) and (111)(GaP)„(GaAs)„
SL's (Tables I and IV).

Previous work on intervalley mixings in SL's has been
confined mainly to the (001) GaAs/Al Gai As
common-anion system. In such a (001) SL geometry, the
underlying zinc-blende X states are split into X' (which
folds to the SL zone center, and thus couples to the states
at I there), and X and X~ (which couple to each other
away from the SL zone center). Two basic questions have
been attempted to be answered: (i) what is the strength of
the I -X' coupling at the SL zone center, and (ii) are the
intervalley couplings experienced by X and X', such as
to cause the X'~ SL level to lie below the X' level (possi-
bly making the SL indirect in k space), in spite of the
transverse X ~ mass being lighter than its longitudinal X'
counterpart. Regarding (i), understanding the I -X' in-
tervalley coupling is important since it directly affects
measurable quantities such as optical efficiency, lumines-
cence decay lifetime, and gap temperature dependence,
which are used to assess the type-I versus type-II nature
of SL energy gaps. The magnitude of this coupling has
been extracted from the size of I -X' anticrossings in-
duced experimentally by varying applied electric' or
magnetic' fields, and theoretically ' ' by varying
layer thicknesses, alloy composition, or external hydro-
static stress. With regard to topic (ii), recent experimen-
tal' studies have found that for n =m ~ 3, X " lies
below X' (in agreement with earlier calculations by Wei
and Zunger"), whereas the effective-mass-determined or-
der of X' lying below X"~ holds for n + 4 In our discus-
sion below on the common-cation GaP/GaAs system, we
shall treat these same theoretical questions, and also gen-
eralize them to (111)-oriented SL's. As will be seen, com-
parison between the common-anion and common-cation
systems will shed light on some of the underlying physics
determining the answers to these questions.

There have been numerous experimental and theoreti-
cal studies of the (001) GaP/GaAs, P, system. Indeed,
these SL's were some of the very first ever to be grown.
By using a graded interlayer between the SL and a GaP
substrate, Gourley et al. have successfully grown
strained-layer SL s without misfit dislocations through al-
ternate metalorganic chemical-vapor deposition. Photo-
luminescence and absorption measurements were per-
formed on samples with individual layer lengths between
60 and 250 A (about 20—80 bilayers each), and As alloy
composition x between 0 and 0.6. The first theoretical
analysis of these strained-layer systems was given by Os-
bourn, ' using both Kronig-Penney effective-mass
theory and tight-binding calculations. Note that in such
calculations the band offset is required as an input param-
eter. Osbourn, Biefeld, and Gourley originally found
that their experimental data could be well characterized
by such calculations that assumed a vanishing
conduction-band offset of the unstrained constituents
[i.e., that I „(GaAs) lines up with X„(GaP)]. However,
similar analysis of subsequent experimental data lead
Gourley and Biefield to arrive at a valence-band-offset

value of 0.60 eV (giving a conduction-band-ofFset value of
0.23 eV). In the short-period SL regime, Armelles
et al. ' and Recio et a/. have grown on GaAs sub-
strates a set of (GaP)„(GaAs) SL's with (n, m)=(2, 6),
(3,6), (4,6), and (5,7) by atomic-layer molecular-beam epi-
taxy. Type-I and type-II optical transitions were found
from photoreAectance and photoluminescence measure-
ments, respectively, while the E& and E, +b

&
transitions

were obtained from ellipsometric measurements. Using
the band offset as a fitting parameter, a multiband
Kronig-Penney calculation was used to model the result-
ing measured SL transitions, from which a 0.4-eV
conduction-band offset of the unstrained constituents was
extracted. A subsidiary purpose of the present work is
thus to resolve the disagreement between these experi-
mental band-offset values through first-principles calcula-
tions.

The discussion will proceed as follows. The method
used to perform the first-principles calculations will be
described in Sec. II. Section III will outline the present
theory of SL levels in ultrathin systems. Sections IV and
V will demonstrate this theory for (001) and (111)
SL's, respectively, with comparisons given between
the common-cation GaAs/GaP and common-anion
GaAs/A1As systems. Section VI will explore briefiy the
nature of SL levels in [110] and [201] growth directions.
A summary of our conclusions will be presented in Sec.
VII.

II. METHOD OF CALCULATION

A self-consistent first-principles method is used in our
calculations in order to be able to accurately describe the
electronic charge rearrangement that occurs near the in-
terface. This is crucial for a realistic description of the
resulting intervalley mixing in the ultrathin SL systems
considered here. In particular, we use density-functional
theory ' " with a local-density approximation for the
exchange-correlation potential. A pseudopotential
scheme is used to project out the core-electron degrees of
freedom, with ab initio nonlocal semirelativistic pseudo-
potentials being generated by the method of Kerker.
With no corelike electronic wave functions to represent, a
simple plane-wave basis set can be used to represent the
pseudovalence wave functions and corresponding
density-functional potential. In the present calculations,
wave functions are expanded in plane waves with kinetic
energies up to 15 Ry, resulting in about 150 basis func-
tions per atom. Brillouin-zone integrations are per-
formed using Fourier quadrature, with SL k point Nets

chosen to be equivalent to one of the special k point
sets of 2, 6, 10, or 28 points in the irreducible zinc-blende
zone. Cell-external degrees of freedom are obtained
through total-energy minimization, while cell-internal de-
grees of freedom are obtained by relaxing calculated
Hellmann-Feynman forces.

Apart from providing an accurate description of the
interface, the first-principle methods used here also en-
able us to calculate reliable band offsets. This is impor-
tant, as the band offset is one of the input parameters
used in empirical theories that are needed for calculations
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on longer-period SL's. The band offset is obtained by
adding to the dipolar potential shift across the interface
(which, in our calculations, is obtained from the self-
consistent SL charge density), the relevant band energies
of the strained binary constituents.

The price to be paid for the use of these first-principles
methods that provide accurate interfacial charge densi-
ties and valence-band energies is, as is well known, ' an
underestimation of band gaps by roughly 50%. This is
due to the difference between the local-density-functional
single-particle potential and the self-energy operator
that describes the true quasiparticles of the system. This
problem is largely irrelevant for calculations of SL
valence-band levels and Ualence-band offsets. In order to
provide fairly accurate conduction-band information,
however, we shall leave the realm of first principles and
add to our calculated conduction-band states an energy
shift that corrects for this band-gap problem. In order to
present accurate conduction-band offsets, we will add the
appropriate (different) shift for each conduction-band-
edge level considered, thus circumventing the band-gap
problem. Such a complete correction cannot be done for
the SL conduction-band levels, however, since they are
composed in general of states from both constituents and
from different band edges within a single constituent. Al-
though using a weighted-average gap correction" can
partially correct for this, in this study we shall simply
add a single constant gap correction to all SL
conduction-band states. As our calculated gaps for GaP
(at X&, ) and GaAs (at I &, ) underestimate experimental
values by 0.82 and 0.92 eV, respectively, we have simply
added a constant shift of 0.85 eV to obtain the
conduction-band levels reported below. The variation
of this gap correction between the two constituents, and
within the Brillouin zone of a given constituent, adds a
total uncertainty of up to 0.15 eV to the energies of our
resulting conduction-band levels. For example, the
GaAs/A1As SL levels we report below are all shifted by a
constant gap correction of 0.92 eV from the originally
calculated values. This allows their maximum difference
with respect to the same levels calculated using a self-
energy formalism (that lacks the problem of band-gap
underestimation) for the n =1 and 2 (001) SL's to be less
than 0.10 eV. The small uncertainty in conduction-band
levels does not, however, greatly affect our major con-
clusions regarding the analysis of the origin of these
states.

Empirical theories are critical for considering longer-
period SL's (with more than 30 atoms per cell), which are
beyond the scope of the first-principles methods used
here. Such empirical theories, however, describe the in-
terface by averaging parameters of the bulk constituents.
Furthermore, the overlimitation of the basis set can lead
to incorrect results. The problem with nearest-neighbor
tight binding (giving an infinite transverse X mass) is one
prominent example, Also, both a one-band Wannier
model' and an empirical-pseudopotential method that
obtains the SL ordering potential from the difference of
the constituent's form factors have resulted in an in-
correct description of the degeneracy and symmetry of
the X levels in (001) GaAs/A1As SL's. These examples,

and the discussion above on the band-gap problem,
demonstrate the strengths and weaknesses of both the
first-principles and empirical methods. For the problem
at hand, however, the first-principles method has been
chosen in order to obtain an accurate description of inter-
valley mixings and splittings, in spite of the small uncer-
tainty in conduction-band levels that it introduces.

III. GENERAL DESCRIPTION OF BAND-EDGE
STATES IN ULTRATHIN SUPERLATTICES

In this section we present the general features of a
theory that allows for semiquantitative understanding of
the band-edge levels in ultrathin SL s. Its basic aim is to
explain the physics of intervalley mixing, since this is
largely what determines SL levels in ultrathin systems.
We draw heavily on previous Wei and Zunger" in de-
veloping this theory. We shall consider the case of the
band-edge levels of the (001) SL as an example. In the
present section we shall not show any calculated SL lev-
els, however. Rather, we demonstrate how the concepts
developed here allow for an understanding of these states
(i.e. , their position with respect to the potential well
formed by the constituent band edges, their degree of lo-
calization, and their degree of oscillator strength shar-
ing), even without their actual calculation. In Secs. IV
and V, the SL states resulting from actual first-principles
calculations will be analyzed in terms of this general
theory, in order to demonstrate its validity and useful-
ness.

A. Folding and coupling of the VCA states

Our present analysis of single-particle levels in ul-
trathin SL's is based on the observation that these levels
are related closely to those of a virtual-crystal-
approximation (VCA) parent binary Ga(AsP) compound.
The physics underlying this is as follows: First, the pseu-
dopotential of the virtual (AsP) anion is obtained from
the appropriate weighted average of the As and P pseu-
dopotentials. Second, the unit cell of (GaP)„(GaAs) SL
can be decomposed into n+m unit cells of the binary
Ga(AsP ) VCA compound, where the interface plane lat-
tice constant is the same in the SL and VCA, and where
the VCA constant in the SL growth direction is
I/(n+m) that of the SL (so that the VCA will be de-
formed from a a simple zinc-blende structure if the SL is
not cubic). The VCA binary can be transformed into the
SL by changing the virtual anion into As or P, and by al-
lowing the appropriate distortions in each or the GaAs
and GaP regions. We shall refer to this gedanken trans-
formation of the VCA binary into the SL as "SL order-
ing" and the resulting difference 6V= VsL —VvcA be-
tween the self-consistent SL potential and that of its VCA
parent as the "SL ordering potential. " According to the
above description of SL ordering, 5V(r) can be decom-
posed into a chemical and a strain component:

~~chem+~+str. Hence, 6Vchem is the difference be-
tween the VCA self-consistent potential and that of an
unstrained SL whose nuclear coordinates exactly match
those of the underlying VCA binary structure (a "chemi-
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We say that these (n +m) k vectors are folded onto the
SL wave vector q, by the effect of the SL ordering poten-
tial. In the discussion below, we will, for simplicity, limit
ourselves to the equal-period case n =m. In this case, if
the shortest reciprocal-lattice vector of the VCA binary
compound parallel to the SL growth direction is Cx, then
the 2n VCA k vectors folded to the SL point q are

k =q+ G (j= n+—1, . . . , n) .
2n

Plotting the bands of the VCA binary compound along
the line from q —G/2 to q+ Cx/2 then shows all the VCA
states that form the SL states at q.

As a concrete example we consider the band edges of
(001) SL's, where G/2=X'=(2~/a)(0, 0, 1). The 001
SL's with n =m have space group D 2d (P4m 2). As
shown in Fig. 1., their Brillouin zone is simple tetragonal.
We shall use a notation where k points in the SL zone are
described with an overbar (e.g. , I ). Consideration of the
coordinates of the SL k points given in Fig. 1 implies
[from Eq. (2)] that the 2n zinc-blende k points folded
onto each SL point are as follows:

n

r+ ~ x'=r+x'+
j=—n+1

(3)

BZ for (001) SLs

M 2
a

X =2+
a

(100)

(+z 0)
R= (

———
)

2& & 1 1

27t (0 0

FIG. 1. Simple tetragonal Brillouin zone of (001)
(GaP )„(GaAs)„SL's.

cal" transformation of the virtual (AsP) anion into As
or P being the only perturbation here), and 5V„, is

simply the remaining perturbation due to the distor-
tions in each region of the SL (it is defined by
5 V„,=5 V —5 V,i„).

One immediate consequence of the commensurability
of the SL and VCA unit cells is that, by Bloch's theorem,
any SL state iraq&) with wave vector q in the SL Brillouin
zone can be represented as a sum of VCA binary states
~Pz ) with exactly n +m diff'erent k vectors in the large
binary Brillouin zone. (a and P are band indices here. )

Formally, this can be expressed as

n+m
~e„)= y y~(k~;qP)~y, .) .

x + Jx'=x +x&+
j=—n+1

n

L = $ L + X—'=L +L —+111»1j=—n+1

(4)

Since L1» is folded to two different points in the SL zone
depending on whether n is odd or even, we use the nota-
tion in Eq. (5) that L =R for odd n, while L =X for even
n. Figure 2 shows the cubic VCA bands involved in the
a =a (001) SL band edges in their entirety. As an ex-
ample, note that a zone-center state of an (n, m)=(2, 2)
SL in the (001) orientation will be composed of states at
four k points in the parent binary Brillouon zone at I,

—,'X', and X', which are all shown in Fig. 2(a). Similarly,
the VCA states that fold to M in the SL zone are shown
in Fig. 2(b), while those that evolve into L SL states are
shown in Fig. 2(c). The three main zinc-blende band
edges at I, X, and I are thus seen to fold to the three SL
points I, M, and L.

Note the manner in which strain splitting of the parent
VCA levels affects the resulting SL states. For example,
an equal-period SL will have a bulk equilibrium lattice
constant very nearly at the average a of the two constitu-
ents. It will thus have a unit cell that is approximately
cubic, and a VCA parent that is therefore just a zinc-
blende structure. However, if one allows for the growth
of only a very thin film (before the onset of misfit disloca-
tions), such a SL can be grown away from a by coherent
growth on a substrate with a different lattice parameter.
The noncubic SL will have a VCA parent that is then de-
formed from its zinc-blende structure, resulting in a
strain splitting of certain VCA band edges that are nor-
mally degenerate by cubic symmetry [e.g., X splits from
X' in (001) SL's]. Figure 3 demonstrates the effect of
such substrate lattice control on the VCA states of
Ga(AsP) in both [001] and [111]growth directions. As
we have described in detail elsewhere, the main result of
an increase in the substrate lattice parameter is a strong
decrease in energy of the VCA I folding states (1 „and
X'&, for [001], I &, and L&, for [111]),while the non-I
folding states remain comparatively higher in energy.
This generic biaxial deformation-potential behavior im-
plies that increasing the substrate lattice parameter
strongly favors a transition to a more direct-gap SL.

A crucial result (to be demonstrated below), which al-
lows for a straightforward relationship between the SL
and VCA band edges, is that for the ultrathin SL's con-
sidered here, the SL ordering potential 5V is sufficiently
weak that within the infinite band sum of Eq. (1), only a
very few (1—3) VCA states nearby in energy have
significant expansion coefticients. We stress, however,
that the smallness of this perturbation is only true in the
ultrathin limit: due to the GaP-GaAs lattice mismatch of
4%, once a constituent's layer thickness becomes larger
that just a few layers, the VCA to SL transformation
would required changing a nuclear coordinate into a posi-
tion of very dissimilar charge density (at n =25, for ex-
ample, cations are changed into anions, and vice versa).
This would spread the spectral weight A(ka;qP) of SL
wave functions over a much broader energy range of
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GaAs05 P05 VCA bands for [001] on as„b = a

(a) [001] 1=X, (b) [001] X„-X 111 111

X, X„ X„
[QQ1] Direction

y L111

FIG. 2. Bands of the VCA Ga(AsP) zinc-blende compound with lattice constant a along the (001) lines between the principal
band-edge valleys. The bands in (a) are folded to I, in (b) to M, and in (c) to L, in the SL zone.

VCA bands a.
The perturbative connection between ultrathin SL's

and their parent VCA binary compound is the basis for
the analysis of SL states to be presented below. This al-

lows for an immediate estimate of the strength of the in-
tervalley mixing in the SL band edges simply by con-
sideration of the energy separation of the involved VCA
states shown in Fig. 2. Figure 2(a) shows that the SL

(a)

2.5—

()
VCA Deformation Potentials

xy=
X3c

3c

X

1c

Z
3c

2.0—

Z

tc

ric

(001)

~GaAs

Substrate lattice parameter

~GaAs

FIG. 3. Dependence of the VCA Ga(AsP ) conduction-band edges on substrate lattice constant.
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valence-band-maxima states at I will evolve from within
a single VCA valley (since the nearest X' states is over 2
eV away), but that both conduction- and valence-band
edges at M and L, will evolve from states from two degen-
erate VCA valleys (and will thus have potentially large
first-order splittings). Similarly, the conduction-band-
edge states at I will also show strong intervalley mixing
(and oscillator strength sharing) because of the closeness
in energy of the VCA I and X' conduction-band valleys.

Consider, furthermore, the degree of involvement in
the SL band edge of VCA states at intervening k points
also included in the folding when n ~ 2 [i.e., the points —,

'

(for n =2) or —,
' and —,'(for n = 3) the way between the

main valleys]. When the (001) band dispersion is quite
fiat [as it is for the valence-band maxima between L»,
and L» &, see Fig. 2(c)], refiecting a heavy-mass VCA
band edge, these intervening states will be strongly mixed
into the resulting SL level. However, when the VCA
band edge is of light mass [e.g. , the conduction-band edge
at X" in Fig. 2(b)], these intermediate k points will give
rise to too-large energy denominators to be involved in
the SL band-edge state. The implication of this to the de-
gree of localization of the resulting SL state is straightfor-
ward: 1ocalization in a given region of the SL requires
mixing of VCA states, which are at the minima/ nearby
distance 6k=G/2n in k space. This follows from stan-
dard concepts of Fourier analysis: if a SL wave func-
tion 4 is composed of several VCA wave functions g, , so
that

%(r)= g u, (r)e

where u;(r) is periodic in a VCA binary unit cell, then
the maximum period of its squared norm

~ql(r)~ = g u;(r)u*(r)e

is 2~ times the reciprocal of the minimum value of
6k=k, —k . In the present case of equal-period (001)
SL's with total period of length na, SL wave functions are
made [see Eqs. (3)—(5)] of VCA states separated by
6k=X'/n =2m/na, and thus require these neighboring k
states to localize in one-half of the SL. For example, a I
state in an n = 3 (001) SL cannot be localized by mixing I
and X', but must result from mixing I and +—,'X', or X'
and +—', X'. This, of course, is the origin of the standard
result from effective-mass theory: heavy-mass states lo-
calize readily in their quantum wells, while light-mass
states remain more delocalized.

It is worth mentioning the complementarity of the
present VCA-based representation of SL states, and the
frequently used "slab" representation, where an
(AB)„(A'B') SL state is described in terms of both
propagating and evanescent AB binary states in the AB
part of the SL, and of similar A'B' states in its region of
the SL. This slab representation is the basis for
envelope-function-based effective-mass theories, and of
other empirical theories that use a small localized basis
set (such as tight binding or Wannier orbitals' ). In our
current discussion, however, we shall describe SL states

~ %q&) in terms of VCA states
~ gk ) that extend

throughout the whole SL. This representation of SL
states is complementary to the slab representation: for
the ultrathin SL's considered here (with layer widths not
longer than evanescent state decay lengths), the VCA
representation is preferable, while for longer-period SL's,
the slab representation more directly provides the con-
nection between the states of the SL and those of its con-
stituents.

Finally, we stress the VCA states (which we currently
treat as the SL parent states because they minimize the
SL ordering perturbation) are approximately at the aver-
age energies of the two zinc-blende constituents. These
average energies can thus simply be used in future practi-
cal applications of this current theory.

B. Single-valley states

Our foregoing discussion shows that SL states that
evolve from within a single VCA band-edge valley (like
the valence-band-maxima states at I ) will qualitatively
obey the long-period Kronig-Penney effective-mass
theory. The intravalley mixing of VCA states separated
by minima1 5k=Can/2n results in an envelope-function na-
ture to their wave function, which allows the band-edge
levels of the strained constituents to act as an actual po-
tential well. With increasing period n, their energy levels
will thus fall from their parent VCA energy (which is ap-
proximately at the center of the potential well ) to the
energy of the well bottom. Concomitantly, their wave
functions will become increasingly localized on that SL
partner whose band edge acts as the potential well, and
not the barrier. Note that knowledge of the actual band
offsets is needed to describe these single-valley SL levels,
because they have begun to Kronig-Penney-localize.

C. Multiple-valley states

In contrast to these single-valley states, most of the
other band-edge levels in these ultrathin SL's will experi-
ence substantial intervalley mixing. As seen in Fig. 2,
this will occur in the conduction-band levels at I
[Fig. 2(a)], and in both conduction- and valence-band
edges at M and L [Figs. 2(b) and 2(c)]. The strength
of this coupling between two VCA states g, (k) and
$2(k+Cx/2) from valleys separated by Cx/2 is deter-
rnined by the magnitude of the matrix element
U = (l/J, (k) ~5vjl//2(k+a/2) ).

Consider first the behavior of SL states made from two
band-edge VCA states separated by Cx/2, without much
involvement of the VCA states from the intervening k
points. This behavior will occur frequently in ultrathin
SL's because of the fairly large energy differences between
VCA band edges and states 5k =G/2n away when n ~ 3
or 4. (These energy diff'erences will of course vanish as n
increases and 5k decreases, and the states from the inter-
mediate k points will become involved in the then
Kronig-Penney-type SL state. ) The SL states are thus
determined by the 2X2 Hamiltonian matrix whose off-
diagonal term is U. If the diagonal elements are just the
VCA energies E, and Ez (Appendix A explains the near
vanishing of the diagonal elements of 5V), the resulting
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SL energies are just

0+ ~0
1 2+

2

0 0 2
E)

1/2

In the case of mixing two nondegenerate VCA levels, U
determines the magnitude of the level repulsion, while the
ratio 2U/(Ez —E, ) determines the amount of wave-
function mixing. In the case of the mixing of two degen-
erate VCA states (i.e., E&=E&), the magnitude of the re-
sulting first-order level splitting is just b, 8=2~ U~, while
the SL wave function is always just the equally weighted
even or odd combinations of the two VCA states g& and

Pz, regardless of the size of U.
A major result (derived in Appendix A) is that there is

a universal n dependence to this intervalley coupling
strength U: it is comparatively small for even n, while for
odd n it is found to decay from its maximal n = 1 value
like 1/n. This behavior results from the manner in which
the e' '~ phase factor (due to the product of two VCA
wave functions separated by G/2) couples to the SL or-
dering potential 5V, which is approximately odd with
respect to inversion about an interface. This generic n

dependence is seen both when symmetry forces interval-
ley mixing between two degenerate VCA states [e.g., be-
tween X" and X~ in Fig. 2(b) or between L

& & &
and L

& & &
in

Fig. 2(c)] and in cases of intervalley mixing between non-
degenerate VCA states [e.g., between I and X' in Fig.
2(a)]. In the former case the level splittings will oscillate
with n, nearly vanishing for even n, while decaying like
1/n for odd n. This result is symmetry imposed, and has
previously been noted by Froyen et ah. In the case of
the interaction between nondegenerate VCA states, this
results in a level repulsion that oscillates similarly with n,
and in a commensurate oscillation in the degree of oscil-
lator strength sharing.

The effects on the symmetry-imposed mixing between
two degenerate VCA states are particularly striking. In
this case, since the SL states are made of equally weight-
ed portions of VCA binary states separated by 5k=Cd/2,
their wave functions segregate into every second VCA
unit cell [see Eq. (7)], and Wei and Zunger" have thus la-
beled such SL states segregating levels. We distinguish
here the behavior of euen versus odd n. For even n, the
SL states will be completely delocalized, and the two de-
generate VCA levels will remain unsplit because the even
and odd combinations P, +gz are equally delocalized
(both having half their norm in each half of the SL). The
unsplit levels will lie just at the middle of the potential
well formed by the band-edge levels of the strained con-
stituents, because this midpoint is just the energy of the
parent VCA levels. For odd n, their partial degree of
localization will decay like 1/n, with some remnant of lo-
calization existing due to the partial commensurability of
their every-second VCA cell segregation pattern with a
SL half-period when n is odd. (This localization behavior
will be demonstrated pictorially in Sec. IV.) Since the
disparity in the degree of partial localization between the
even and odd combinations also decays like 1/n, the SL
level splitting also behaves proportionately.

For n ~ 2 (even or odd), such states are resonant

throughout the SL, because they are not composed of
VCA states separated by minimal 5k=G/2n, and thus
cannot localize in one-half of the SL unit cell. Nonlocal-
izing SL states such as these are frequently referred to as
resonant levels, and the analysis above explains why such
resonant levels generally lie near the midpoint of the po-
tential well made by the constituent's band edges: at that
energy they are resonant with their VCA zinc-blende
parent states, leading to a spectral decomposition that
rejects this, and a resulting periodicity that is more
zinc-blende-like than that required to localize in one-half
of the SL unit cell.

This characteristic n dependence is also approximately
seen in the intervalley mixing of nondegenerate VCA
states that are not forced to mix by symmetry. In the
case of the mixing of the VCA conduction-band-edge lev-
els at I and X', it means that the level repulsion will be
comparatively small for even n period SL's and will decay
like 1/n for odd n periods, and that the amount of oscilla-
tor strength sharing will be similar. This explains the ob-
servation ' ' of a decrease with n in the I

&
-X& cou-

pling strength found in (001) GaAs/Al& Ga As.

D. Selection rules

Understanding the coupling between VCA states re-
quires knowledge of the selection rules governing the ma-
trix elements (f,(k)~6V~1lz(k+G/2)). These are de-
rived in Appendix B. As an example, we simply mention
two of the more important ones appropriate to (001) SL's.
With regard to the intervalley mixing at I between the
VCA I and X' conduction-band-edge states, Appendix B
shows that in common-cation (-anion) systems, it is only
the lower (upper) X' conduction-band minimum ' that
mixes for odd n, while the reverse mixing is only allowed
for even n. With regard to the mixing of the degenerate
VCA X" and X conduction-band-edge states at M, Ap-
pendix B shows that in common-cation (-anion) systems
only the lower (upper) X" levels split for odd n, while for
even n exactly the reverse is true.

E. Magnitude of intervalley coupling strengths

The magnitude of the splittings and level repulsions re-
sulting from intervalley mixing of symmetry-compatible
states rejects the properties of the perturbation 5 V.
In a lattice-matched common-anion system such as
G-aAs/AlAs, 5V„,=O, and 5V,h, is largely an s-like
function centered on the mixed cation sublattice.
Hence states with a large amount of cation-s character
will couple strongly to this 5V. We thus expect large
repulsions and mixings between the VCA I &, and upper
X' conduction-band minimum at I, and large first-order
splittings of the upper X" conduction-band minima at M
and of the VCA L „states at L. In a common-cation sys-
tem such as (001) GaAs/GaP, however, 5V has both a
chemical piece 5V,h, that is anion-s centered and a
strain piece 5V„, that has p, character on both sublat-
tices. The level splittings and repulsions mentioned
above (now involving the lower X conduction-band states,
however) are thus expected to be smaller than in
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GaAs/A1As. As will be shown in Sec. IV, this is indeed
found in our calculations, with 1-eV splittings at M and I.
in GaAs/A1As, but only 0.1 —0.5-eV splittings in
GaAs/GaP (with a similar comparison holding for the
I -X' coupling strength at I ).

F. Summary of the model

In summary, our present theory of the band-edge levels
in ultrathin SL's is as follows: Noting that the SL order-
ing potential 5V only mixes VCA parent states that are
nearby in energy (less than about 0.5 —1 eV), the nature of
the SL band-edge states at wave-vector q can be predict-
ed simply by observation of the dispersion of the VCA
bands along the line q —G/2 to q+Cx/2. There are two
generic cases. (i) When only one VCA valley is involved
in the band edge at q, the resulting SL states will qualita-
tively obey the Kronig-Penney effective-mass theory: as
n increases, the SL levels will fall from the average energy
of the strained constituent band edges (which is just the
parent VCA energy at the well center) down into the well
bottom, with a commensurate localization of the SL wave
function. For the small n values considered here, howev-
er, the qualitative amount of confinement energy will of
course not simply be the particle-in-a-box value
A m /2m *I, because the length scale is not large
enough to allow for a complete envelope-function locali-
zation of the SL wave function. Rather, from the exam-
ples considered below, we will see that by n=3 the SL
level will generally fall from the middle height in the well
(50%) to the 25 —40 % level (depending on how heavy the
VCA mass is). (ii) The other generic type of state seen in
these ultrathin SL's arises from mixing between VCA val-
leys separated by G/2. This intervalley mixing is quite
strong in these short-period SL's because of the propor-
tionately large effect of the interface, and thus gives rise
to level splittings and repulsions as large as 1 eV, and
similarly large oscillator strength sharing. As will be
demonstrated in Secs. IV —VI, such physical manifesta-
tions of this mixing can be predicted semiquantitatively
with the aid of the knowledge of the generic n depen-
dences, selection rules, and common-anion versus
common-cation differences that were explained above.

IV. RESULTS FOR (001) SUPKRLATTICES

In this section we present the results for the structural
properties, band offsets, and SL electronic levels for (001)
(GaP)„(GaAs)„SL's, with n= 1, 2, and 3. The results
will be analyzed in terms of the model advanced in Sec.
III.

A. Structural properties

Equilibrium lattice constants of the constituent zinc-
blende compounds are obtained by standard total-energy
minimization. For GaP, a value of 5.406 A is calculated
(0.8%%uo error), compared to an experimental value of
5.4505 A. For GaAs, we calculate 5.614 A (0.7% error),
while experiment gives 5.6537 A.

Throughout this study, we use the calculated equilibria

of the zinc-blende constituents in order to obtain the lat-
tice constant of the SL's and of the strained binary con-
stituents. We assume that the in-plane SL lattice con-
stant a,~ is simply its equilibrium value, which is (since
we consider only n =m equal-period SL's) just the aver-

0

age a =5.510 A of the calculated equilibrium lattice spac-
ings of the two constituents. (See, however, Fig. 3 for
the results of coherent SL growth on a substrate with lat-
tice parameter different from the equilibrium SL lattice
constant a. ) The spacings of the atomic planes in the z
direction are obtained as follows. First, the equilibrium
atomic configurations of the "epitaxially constrained"
binary constituents are calculated, by minimizing the to-
tal energy of the binary compounds with respect to (001)
tetragonal distortions, keeping the in-plane lattice con-
stant a„=a fixed. This results in calculated tetragonal
distortions of c/a=0. 966 for GaP and c/a=1.034 for
GaAs, in good agreement with harmonic elasticity
theory. Note that the smaller GaP, being extended in
the xy plane, reacts by a tetragonal compression in the z
direction, and vice versa for GaAs. The (001) SL's are
then constructed simply by layering together slabs of
these epitaxially constrained binary constituents. Since
the average of the tetragonal distortions of the binaries is
unity, the resulting n =m SL's will always be cubic (and
the parent VCA compound will simply be a zinc-blende
structure with lattice constant a ). The layer spacings
constructed by the above method were then tested by cal-
culations of the resulting Hellmann-Feynman forces on
the atoms in the SL. These forces were always found to
be negligible, demonstrating the validity of the above
construction.

As we have pointed out in a previous publication, no
further interfacial relaxations are found here due to the
symmetry of interfacial atoms in this (001) geometry with
a common atom (in our case, Ga). In that same study,
we also reported the small positive formation energies of
these (001) and (111) GaP/GaAs SL's; no further refer-
ence to the stability of these SL's will be given here.

B. Band oft'sets

The band offset is extracted from a straightforward
analysis of the self-consistent charge density of the n = 3
(001) SL. We find that the charge density in that part of
the SL that is not within about 1 A of an interface is ex-
actly the same as that of the isolated (but strained) con-
stituent binary compound (there being a small amount of
charge relaxation constrained to the interface region).
This means, because of the one-dimensional geometry of
the SL, that the potential in this noninterface region is
the same as that of the strained constituent, apart from a
constant which represents the alternating dipolar poten-
tial shift. Analysis of the classical Coulomb potential re-
sulting from the charge density of the n=3 SL then al-
lows this dipolar potential shift to be evaluated, whence
the bands of the strained binary constituents can then be
put on a common energy scale. The resulting band line-
ups are shown in Fig. 4, where the spin-orbit splittings
have been included in the valence-band edges.
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hc„=e(l „)—E(I 3„)

and the average energy is

(9)

(10)

Neglecting spin-orbit effects results in a triply degen-
erate I &5, zinc-blende valence-band maximum being split
by the crystal field into a I 5, doublet and a I 3, singlet in
the strained binary compounds. The crystal-field (CF)
splitting is

the quasicubic model of Hopfield. In this approxima-
tion, the heavy-hole state is

e(1 6 „)=e,„+—,'(b, , +b,c„),
while the light-hole and spin-split states mix to form two
states at

e(r7, )=E,„——,'(b...+b,cF)

(12)

Aligning these strained binary states on an absolute ener-

gy scale as explained above, we find the following ener-
gies (all in eV): for GaAs, I ~, =0 and I 3„=—0.20, while
for GaP, I ~,

= —0.52 and I 3„=—0.34 [see also Fig. 2(b)
of Ref. 42]. Including spin-orbit effects, the zinc-blende
valence-band maxima are composed of a I 8, doublet
(light-hole plus heavy-hole states) and a rz, spin-orbit
split-off state. The I 8, -I 7, energy separation is defined
as b... (where s.o. denotes spin orbit). The strain caused
by lattice mismatch then splits the I 8„light- and heavy-
hole doublet and mixes the light-hole state with the I 7„
spin-split state. To quantitatively describe the interplay
of noncubic crystal fields and spin-orbit splittings, we use

(QQ1) Band Offsets: a,„b = a
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FKx. 4. Calculated band offsets of the (001) GaAs/CsaP
coherent interface, for the strain conditions appropriate to
equal-period SL's (i.e., a ~=a). The offsets of the unstrained
constituents are obtained from these strained binary offsets
through the absolute deformation-potential model of Ref. 60,
which is used only to line up the valence-band maxima at I .

Comparison of these model energies with fully relativistic
all-electron calculations show them to err by less than 5
meV. We thus use these model energies to incorporate
spin-orbit effects into our calculated valence-band offsets.
We use spin-orbit splittings 6, , =0.34 eV for GaAs and
5, , =0.08 eV for GaP.

The resulting band-offset diagram of Fig. 4 shows that
the overall valence-band offset is 0.44 eV between the
GaAs heavy-hole state and the upper GaP light-hole plus
spin-split state. The overall conduction-band offset is
0.09 eV between the GaAs I and GaP X' conduction-
band minima. We stress that these calculated offsets are
for the bands of the strained constituents, because the
n=3 SL from which they were extracted is a strained-
layer SL with coherent interfaces. Both constituents thus
have a =a, while the GaP has undergone a tetragonal
compression with c /a =0.966, and the GaAs has
c /a = 1.034.

There have been four experimental attempts to deter-
mine the GaP/GaAs band offsets. Two of these have
been on thin strained-layer SL's, while the other two have
used systems with incoherent interfaces (any strain being
relieved by misfit dislocations), resulting in unstrained
constituents. The first attempt, by Davis et aI. , was
done by analyzing current-voltage transport data of an
interface obtained by growing a thick film of GaAs on
GaP (resulting in unstrained constituents). They found a
vanishing conduction-band offset b,E, =0 (giving a
valence-band offset AE„=0.83 eV). Such an offset is con-
sistent with electron affinity data. ' An indirect mea-
surement of the unstrained offset was done by Katnani
and Margaritondo, who performed photoemission mea-
surements of GaAs and GaP on Si and Ge, and then used
a transitivity assumption to extract a G aP/GaAs
valence-band offset of b,E„=0.55 eV (GaAs higher) for
the unstrained constituents (which gives b,E, =0.28 eV).

With regard to measurement of the offset at the
coherent strained-layer interface, Gourley, Biefeld, and
Osbourn ' have performed photoluminescence and
excitation (absorption) experiments on (001)
(GaP)„(GaAs„P, „)„SL's with n in the range 20—80
and x ~0.5. Because the lattice mismatch of GaP with
these x ~ 0.5 alloys is less than half that with pure GaAs,
the layer widths here are sufFiciently short to allow this
mismatch to be accommodated by a small strain. Origi-
nally, the vanishing conduction-band-offset value from
electron affinity and transport measurements was as-
sumed in the theoretical analysis of their Ineasurements.
More recently, however, Gourley and Biefeld have
modeled their measured SL energy levels using Kronig-
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Penney theory, using the valence-band offset as a fitting
parameter. However, rather than report the offsets of the
strained constituent bands, they used an absolute
deformation-potential model to relate these levels to
those of their zinc-blende equilibria parent compounds.
Furthermore, they interpolated the offset to x=1 alloy
composition (i.e., GaP/GaAs). They thus reported a
valence-band onset hE, =0.60+0.05 eV (with GaAs be-
ing higher) for the unstrained binary constituents. (This
gives a conduction-band offset EE,=0.23 eV. ) Recio
et ah. have performed a very similar analysis on their
spectroscopic measurements of short-period
(GaP)„(GaAs) SL's with n between 2 and 5 and m
equal to 6 or 7. Rather than present offset data for the
strained constituents, they similarly report offsets only
with respect to the unstrained constituents. They find a
conduction-band ofFset 4E, =0.40 eV, with the GaAs I
state being lower than the GaP X conduction-band
minimum. (This gives b,E, =0.43 eV. )

Note that all four experimental analyses have reported
offsets only with respect to the unstrained constituents,
regardless of the particular strain state of the GaP and
GaAs in the actual sample that was used. There seems to
be two reasons that some type of absolute deformation-
potential analysis is frequently used to "back out" of the
actual strained-layer offsets those of the unstrained con-
stituents. First, there is a simple "bookkeeping" reason:
the variability in the n /I ratio allows for a multitude of
different strain states of the constituents, and further
variability results from the alloy composition x. All these
n/m and x-dependent olfsets should, however, be con-
sistently related to the same unstrained x = 1 offset by a
common model, and it is thus easier to tabulate this latter
offset value. Second, there seems to be a belief that the
resulting unstrained offset value that is extracted from a
thin strained-layer SL is identical to the value obtained
from a thick-layered unstrained sample with an in-
coherent interface. Whatever the reasons, this practice of
reporting only offsets for the unstrained constituents is,
as seen in the present example, quite prevalent. In order
for us to compare our calculated ofFsets with experiment,
we are also forced to extract from them their unstrained
values. We do this using the same absolute deformation-
potential model as used by Gourley and Biefeld. In this
model, the absolute shift in the average energy of the
three valence-band-maxima states in going from the equi-
librium zinc-blende to the strained binary structure is due
only to the isotropic component of the strain, it being as-
sumed that the shear component only shifts these three
levels relative to each other. In the present case the iso-
tropic strain component is —0.0074 for GaAs and
+0.0077 for GaP. Within this model, the GaAs
compression results in the I 8, and I 7, valence-band
states decreasing 0.042 eV in energy (in an absolute
sense), while the GaP tension causes these states to raise
0.043 eV. These shifts are used to present the offsets of
the unstrained constituents shown in Fig. 4 The resulting
valence-band ofFset of 0.56 eV is in excellent agreement
with the experimental results of Gourley and Biefeld
(0.60 eV) and of Katnani and Margaritondo (0.55 eV),
but the conduction-band offset of 0.27 eV is in small

C. Superlattice energy levels

We now present the analysis of the calculated single-
particle electronic energy levels of the (001) SL's in terms
of the model of Sec. III. Table I gives our calculated en-
ergy gaps for the n=1, 2, and 3 SL's.

The analysis of energy levels of ultrathin SL's present-
ed in Sec. III was based on the perturbative connection
between such levels and those of their VCA parent com-
pound. The smallness of the perturbation caused by the
SL ordering potential 5V can be clearly seen in Fig. 5,
where the I -X bands of the VCA zinc-blende structure

GaAs/GaP: YCA vs SUperlattice Bands

2-

~ Q
Cl)

C

(a) Folded VCA (b) n=1 (001)

-3

FIG. 5. Band structure of (a) the VCA Ga(AsP) zinc-blende
parent compound, and (b) the (001) (GaAs}&(GaP)& SL for sub-
strate lattice constant a,„b =a. In (a), the bands folded into the
SL zone are shown as dashed lines. Doubly degenerate bands
are marked "X2."

disagreement with the 0.40-eV value of Recio et al. ,
and in strong disagreement with the 0.0-eV value from
the early transport and electron affinity measurements.
We stress, however, that our calculations really only per-
mit an accurate description of the offsets of the strained
constituents. The absolute deformation-potential model
used here is quite crude, there being much recent work
in improving these models. ' It was used only to permit
a consistent comparison to the experimental work of
Gourley and Biefeld, who used the same model. A more
accurate analysis of the unstrained ofFsets for an in-
coherent interface would require the inclusion of the
effects of misfit dislocations on the dipolar potential shift.
Such a calculation is beyond our present scope.

There has been, to the authors' knowledge, only one
other theoretical calculation of the GaP/GaAs band
offset. Tersoft has used a model whereby the midgap
neutrality levels of the unstrained constituent zinc
blendes are aligned to predict a valence-band offset of
0.31 eV (GaAs higher). This is 0.25 eV smaller than that
calculated here.
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TABLE I ~ Principal conduction-band edges of the (GaP)„(GaAs)„(001) SL's in relation to their
parent VCA levels. In the cases of M and L, Ac, is the splitting of the two degenerate VCA levels that
fold there. All energies are in eV, and are measured with respect to the respective valence-band-
maximum state at I or I, neglecting spin-orbit effects. (These can be included by subtracting 0.07 eV
from all energies here. ) The asterisk in each column denotes the conduction-band minimum. A gap
correction of 0.85 eV was added to all calculated conduction-band energies here. [Note that in our pre-
vious study of the n= 1 SL (Ref. 42), a shift of only 0.75 eV was applied to the same values. The results
in this table are thus 0.1 eV larger than those in Ref. 42.]

Origin
VCA

Anion

I „=2.22
X),=2.28
X3, =2.52

n= 1

Anion

I l, =2.17
I i, =2.34
I „=2.44

n=2
Cation

I „=2.21*
I"3, =2.24
I ic =2-32

n=3
Anion

I",=2.15*
I i, =2.15
I l, =2.19

X)~ =2.28

X3~=2.52

M2, =2.01*
Ml, =2.54

2M5, =2.50

2M', =2.26

Mi, =2.486
M2, =2.487

M), =2.16
M„=2.33

2M', =2.47

0.522 0.001 0.173

L '"=2.25
L

&
=2.25

R3, =2.19
R i, =2.28

Xi, =2.223
X3, =2.225

R i, =2.19
R3, =2.22
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are compared to the corresponding I -M and I -Z bands
of the n= 1 (001) SL. (The VCA zinc-blende bands have
been folded into the SL Brillouin zone for ease of com-
parison. ) Except for the large (0.5-eV) first-order split-
tings at M and Z (+—,

'X' are folded onto Z ), and the rath-
er smaller energy shifts due to second-order level repul-
sions elsewhere in the zone, the two sets of bands are ex-
tremely similar. The maximum 0.5-eV shifts between the
VCA and SL bands in Fig. 5 reAect the fact that only
VCA states within about 0.5 eV are mixed by the SL or-

dering potential. It is this basic fact that allows the
straightforward connection between VCA and SL levels.

Figure 2 shows that the SL valence-band edge will
evolve completely from within the VCA I &z, valley,
while the conduction-band-edge states could arise from
any of the VCA I, X, or L conduction-band minima be-
cause of the near degeneracy of all these states. Further-
more, these conduction-band states will experience strong
intervalley mixing. At M =X"+X~ and L =L», +L»„
this is due to symmetry-forced degener acies; at
I =I +X', it is due to an accidental near degeneracy.
The resulting SL conduction-band-edge levels are shown
in Fig. 6. The n=1 SL is found is to be indirect at M,
while for n =2 and 3, the direct-indirect energy difference
(0.01—0.02 eV) is too small to enable a reliable prediction
of the nature of the fundamental gap. The general trend,
however, is that of a strong downward bowing from the
VCA levels at n = 1, a negligible shift at n =2, and a
moderate downward shift at n=3. This is in agreement
with the general n dependence of intervalley mixing de-
scribed in Sec. III, where we postulated that intervalley
couplings (and their resulting energy-level splittings and
repulsions) would be minimal for even n, and would de-
cay like 1/n for odd n. We now demonstrate this in de-
tail for the SL levels at each of I, M, and L.

FIG. 6. Conduction-band-minima states of the (001) SL's on
a,„b =a, in relation to their parent VCA levels and the average
(av) of the equilibrium zinc-blende levels of the GaP and GaAs
constituents. All energies (in eV) are with respect to the respec-
tive valence-band maxima at I or I . Note that the dashed lines
connecting the states at k=0 are not fully significant, since the
SL states at I also have varying amounts of X' character.

1. Valence-band levels at I

Figure 7 shows the calculated SL levels at I (neglect-
ing spin-orbit efFects), together with the band-offset wells
(of the strained constituents) that these states exist in.
Also shown is the degree of localization of each SL state
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in the two halves of its unit cell, and the squared projec-
tions of the SL states onto those of their parent VCA
compound. Note that the VCA basis is used only to ana-
lyze the already calculated (in a very complete plane-
wave basis) SL wave functions. The SL levels at n=3
were set in relation to the constituent's band-edge levels
by the band-offset calculation done for the n=3 SL. No
such band-offset calculation was done for n = 1 or 2, how-
ever, due to the thin layers involved there. In those
cases, we have simply related the SL levels to those of the
strained constituents by aligning the n=1 and 2 SL
valence-band maximum with that at n=3. (This same
alignment procedure was done in Fig. 5 also. ) The small-
ness of the error involved in this approximation can be
seen by considering the valence-band-edge levels shown
in Fig. 7. As n increases from 1 to 3, these three
valence-band-maxima states develop only a sma11 amount
of kAO character, evolving only from 58% to 69% local-
ized in the GaAs well. Being composed almost entirely
of the VCA I I5„ the SL I 5„and I 3, states remain near
the center of the band-offset wells in the n =3 calculation
[see Fig. 7(c)], falling only slightly down into the GaAs
half. Since the degree of localization does not change
much between n = 1 and 3, the resulting error is expected
to be small [the n= 1 I z, state perhaps lying 0.05 eV
lower in energy than assumed, putting it more at the
center of its well than shown in Fig. 6(a)]. In summary
then, because of the involvement of only a single VCA

valley, the SL valence-band-maxima states at I evolve
qualitatively like Kronig-Penney states. Because of the
fairly light mass of the VCA I,5, dispersion, however,
the amount of GaAs localization and the degree to which
the SL levels fa11 from well center are both quite smaH for
n 3.

2. Conduction-band levels at I

and

&x;, Invlx'„) =o . (14)

These imply that only the X'„VCA state mixes with I „:
for odd n only the lower X' conduction-band-edge state
mixes, while for even n it is only the upper state that can
mix. (Common-anion systems such as GaAs/AIAs have
just the opposite behavior. ) For n= 1 and 2, Fig. 7 shows
the I conduction-band-edge states to evolve mainly from

Contrary to this valence-band-edge behavior, Fig. 7
shows that the I conduction-band-edge states do, as ex-
pected, experience a fair amount of I -X' intervalley mix-
ing. These mixings are controlled by the following selec-
tion rules, derived in Appendix 8 from point-group sym-
metries [that require a symmorphic space group, and
thus require a cation (anion) origin for even (odd) n]:
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As As As P P P

FIG. 8. xy planar average of the squared norm of the
conduction-band minimum (a) and valence-band maximum (b)
wave functions of the n=3 (001) SL at a,„b =a. The planes of
Ga atoms are represented by hatches along the abscissa. The
dashed vertical line denotes the position of the interface.

functions and in terms of the magnitude of the resulting
level repulsion. A nonmonotonic energy versus n behav-
ior is seen in Table I, which is typical of ultrathin period
SL's: the I conduction-band minimum has energies 2.17,
2.21, and 2.15 eV for n=1, 2, and 3, respectively. By
n=3, however, the heavy longitudinal X' mass allows for
the SL I minimum to develop from within the VCA X'
valley, resulting in two SL states [I 3,

" and I I,' in Fig.
7(c)] that Kronig-Penney-localize in the GaP X1, well.
The wave functions of the conduction-band- and
valence-band-edge states of the n =3 SL are shown in Fig.
8, which demonstrates the approximate type-II localiza-
tion behavior resulting from Kronig-Penney-type en-
velope functions. Note that the degree of localization is
much stronger in the conduction-band-edge state, due to
the near degeneracy (and thus much stronger intravalley
mixing) of the +—',X' and X' states involved.

Table I summarizes the calculated transition energies
at I, and demonstrates the quantitative manner in which
these SL energies are related to those of the VCA parent
compound: at n=1, for example, the two I &, SL levels
have an average energy the same as that of their VCA
parent levels I &, and X&„with the SL energy separation
of 0.17 eV having increased from the VCA value of 0.06
eV due to an intervalley coupling strength U=0.08 eV
[see Eq. (8)].

the 2 X 2 Hamiltonian with off-diagonal element
(I &, 5VIX&, ). According to the discussion of Sec. III,
we thus expect strong intervalley mixing at n=1, but
much weaker mixing at n=2. This is indeed seen in Fig.
7, both in terms of the VCA decompositions of SL wave

3. Conduction-band levels at M

Consider now the SL levels at M, where the folding
M =X +X~ implies symmetry-forced intervalley mixings
between exactly degenerate valleys. Figure 9 shows the
SL levels at M, together with their VCA decompositions
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TABLE II. Hamiltonian matrix (Xf~z»3, ~5 V~X;,~z»3, ) that
determines the (001) SL conduction-band-edge levels at M. The
zero entries are the result of symmetry-imposed selection rules,
as derived in Appendix B.

Xl,
X~1,

X3,
X~3,

Xl,

0
0

b
a
0
0

X3, X3c

and the X strained constituent band-edge levels. Note
from the (001) dispersion of the VCA conduction bands
between X and X» shown in Fig. 2(b) that the extremely
light transverse X masses suggest the absence of VCA
states from k points between the main X" and X~ valleys
in these SL states for n 3. This is indeed seen in the
VCA decompositions shown in Fig. 9. This means that
the SL conduction-band edge at M will consist of four
levels, which are made entirely from four VCA levels:
the degenerate pair X&, and X~&, and the separate degen-
erate pair X3, and X3,. The resulting M levels can thus
be obtained by diagonalizing the 4X4 Hamiltonian ma-
trix &Xf,y~3, laVlX&,';3

As shown in Table II, many elements of this matrix are
required to vanish by symmetry. First, there is no mixing
between X&, and X3, states in general, splitting the 4 X 4
matrix into two 2 X 2 submatrices. Second, the off-
diagonal part of the X3, submatrix is required to vanish,
meaning that the two X3, and X3, states remain degen-
erate (and thus evolve into an M~, doublet). Understand-
ing the behavior of the conduction-band levels at M,
shown in Fig. 9, is now straightforward: When n is odd
there is an anion origin and the lower conduction-band
X ~ levels, having X, symmetry, split into M„and Mz„
while the upper conduction-band X ~ levels, having X3
symmetry, remain unsplit and become the M~, doublet.
When n is even, there is a cation origin and the lower
conduction-band X" levels are of X3 symmetry, thus
evolving into the M5, doublet, while the upper X levels
are of X, symmetry and can thus split into M &, and Mz, .
Table I summarizes the calculated conduction-band lev-
els at I, and shows that the SL levels are positioned ex-
actly as described in Sec. IIIC: the splittings approxi-
mately vanish for even n, while for odd n they decay like
Iln (being 0.522 eV at n=1 and 0.174 eV at n=3). The
unsplit doublets lie just at the parent VCA energy (the
middle position in their respective wells; see Fig. 9), while
the levels that do split have their average energy at this
midwell position. (At n= 1, the M5, doublet misses this
midwell energy by 0.05 eV due to the approximate posi-
tioning of the absolute energy scale there, as was men-
tioned above. ) Furthermore, the spatial localization be-
havior of the SL states behaves similarly: the unsplit lev-
els are perfectly nonlocalized, while the partial localiza-
tion of the split levels decays like Iln This beh. avior has
been explained previously by Froyen et al. according to
the segregation pattern of the resulting SL states. This is
demonstrated pictorially in Fig. 10, where we plot the SL

(001) Conduction Edge Levels at M

~ =As

N

n=1 M2

M1

z distance along (001)

M5
I

M5

W
I

I

W

n=3 M)
I

M2

FIG. 10. xy planar average of the squared norm of the SL
wave function made from the equally weighted combination of
the lowest VCA conduction-band states at X" and X~. Vertical
hatches represent planes of Ga atoms, while circles represent
anion planes. This same wave function forms the two lowest M
conduction-band minima of the n=1, 2, and 3 (001) SL's, the
only diA'erence in each case being the diferent identities of the
anion planes, which are thus shown below the wave function.

state made from the equally weighted combination of X&,

and X„. Note that its repeat period of two VCA zinc-
blende unit cells is commensurate with even n SL's,
where 50% of the wave-function norm exists in each half
of the SL unit cell. Similarly, in odd n period SL's, the
degree of partial localization is seen to decay like 1/n
from its maximal n=1 value. The splitting between the
even and odd combinations X&, +X&, reAects the dispari-
ty in the localization behavior between these two SL
states, and will thus have a similar n dependence.

4. Valence-band levels at M

Consider now the valence-band levels at M. Figure 9
shows their behavior to be qualitatively similar to that of
the conduction-band levels described above. Note from
their VCA projections that they evolve almost entirely
from the X5, doublets at X" and X~, without much in-
volvement of VCA states from intervening k points (just
as in the conduction band). They are thus described by a
4 X 4 Hamiltonian whose basis states X5, and X~, are all
degenerate. Consideration of selection rules (see Appen-
dix B) gives a matrix with zeros positioned exactly as in
Table II. Therefore, two of the four VCA levels remain
unsplit (making the M~„doublet), while the other two
split into M3, and M4, levels, the magnitude of the split-
ting behaving just as the conduction band (vanishing at
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n=2, while being one-third as large at n=3 as at n=1).
The relation of these SL levels to the potential wells
formed by the band edges of the strained constituents is
just as noted above: the unsplit levels remain at the
center of the well, while the split levels maintain their
average also at that central position, because the well
midpoint is the energy of the degenerate VCA levels from
which these SL levels evolve.

5. Levels at I.

The SL levels at L are described by a combination of
both of the complementary small n resonant level and
large n Kronig-Penney pictures. This is expected from
the (001) dispersion of the VCA bands between L»& and

L»& shown in Fig. 2(c), which shows two light-mass de-

generate valleys forming the L conduction-band edge
(just at M), while the SL valence-band edge is seen to
evolve from a similar pair of light-mass valleys together
with a nearly Aat band that will lead to strongly localiz-
ing Kronig-Penney states. The midwell centered splitting
pattern and its generic n dependence is indeed seen in the
calculated L conduction band shown in Fig. 11 and Table
I. [The 0.05-eV error in the positioning of the absolute
energy scale for n= 1 is apparent in Fig. 11(a).] Note the
VCA decompositions there show the absence of involve-
ment of VCA states from between the main two valleys,
leading to the resonant character of the states shown.

The L valence-band levels in Fig. 11 show the existence
of two resonant-type levels at the center of the potential
well whose splittings behave as predicted and whose VCA
projections show only L»& and L»-, contributions. To-
gether with these states is another set of Kronig-Penney-
type levels whose VCA decomposition shows them to be

composed of the Rat-band VCA states of neighboring k
(with minimal 6k), thus allowing them to localize their
wave functions nearly completely in the alternate halves
of the SL, and causing their energy levels to lie at the ex-
tremes of the Iz, well (i.e., just at the energies of the
strained constituents, apart from a small amount of
confinement energy). The nearly infinite (001) L&&& mass
explains the observation of Recio et aI. that the E, and
E& +6& transitions show much less quantum confinement
than the near-band-gap transitions. The separation of the
SL levels into nonlocalizing (resonant) levels evolving
from two degenerate light-mass states and localizing
(Kronig-Penney) levels arising from a nearly Aat band has
its origin in the symmetry-imposed block diagonal form
of the pertinent Hamiltonian matrix ( Pk, ,

I
5 Vl Pk ) . As

shown in Appendix B, one state of the L3, doublet of the
VCA zinc blende is prohibited by symmetry to mix with
either its same-k degenerate partner or with any of the
Oat-band states at intervening k between L&» and L»-, ~

A 2 X 2 subblock of the Hamiltonian matrix is formed by
one such state from each of L», and L»& giving rise to
the resonant L„and L3, SL levels that lie at the center
of the potential well. The rest of the Hamiltonian matrix
is of like symmetry and mixes completely (due to the van-
ishing energy denominators), giving rise to the L2, and
L4, Kronig-Penney-type levels described above.

The envelope-function nature of these Kronig-Penney-
type levels is shown in Fig. 12. There we plot the xy pla-
nar average of the squared norm of the top three SL
valence-band states of the n=3 SL at L, labeled R 4", ,
R 2„', and R 4,

' in Fig. 11(c). As shown there, these states
lie, apart from a small amount of confinement energy, at
the bottom of the I2, GaAs potential well. Their VCA
projections show them to be composed of neighboring
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FIG. 12. xy planar average of the squared norm of the top
three valence-band wave functions of the n=3 (001) SL at R.
Note the extreme GaAs localization, due to the nearly infinite

mass of the (001) L»& L»l dispersion. Note also that the usual

Kronig-Penney ground-state envelope function (being nodeless)
is now just the second lowest level, while the first and third
states arise from even and odd single-node envelope functions,
due to the intervalley mixing.

6. Comparison to GaAs/AlAs

It is instructive to compare these present results on
(GaP )„(GaAs )„SL's to similar results on the
(A1As)„(GaAs)„system. There are three reasons for this.

zinc-blende states with minimal 6k, resulting in their be-
ing 96%, 100%, and 93% localized in the GaAs half of
the SL, respectively. The reason such extreme Kronig-
Penney-type behavior is seen even in these ultrathin
n=1 —3 systems here is because of the near-infinite mass
of the band involved, resulting in near-vanishing energy
denominators. The wave-function plots of Fig. 12 show
the extreme GaAs localization of these states, but also
demonstrate a manner in which they do not behave as
typical single-valley Kronig-Penney states. This new be-
havior, due to two interacting heavy-mass valleys, is sim-
ply that the usual Kronig-Penney ground state (having a
nodeless envelope function) is now just the second-lowest
SL state R z, ', whereas the first- and third-lowest SL lev-
els R 4", and R 4,

' arise from a splitting of two states that,
in the Kronig-Penney sense, would be first excited states
(having one node in their envelope functions). This is in
contrast to the typical singley-valley behavior of the I
band-edge states shown in Fig. 8.

First, as was mentioned in the Introduction, there is a
significant amount of published work on this system
(both experimental and theoretical), and application of
the principles enunciated above will clarify some of the
established (and debated) results. Second, this compar-
ison will demonstrate some important generic differences
between common-anion and common-cation systems.
Third, the brief application of the present theory to
AlAs/GaAs serves both as a further exercise in its im-
plementation and as a further demonstration of its useful-
ness.

For these reasons we show in Table III, in exact analo-
gy with Table I, the energies of (001) (AIAs)„(GaAs)„SL
states in relation to the energies of their parent VCA lev-
els. These SL levels were calculated by the same methods
used above for GaP/GaAs. Note that although the
minimum conduction-band level in the VCA compound
is at X (by over 0.14 eV), the conduction-band minimum
of the SL is calculated to be at L at n = 1 and at I or M at
n=2 and 3 (the I -M difference of less than 0.03 eV in
these latter two cases being smaller than our calculational
uncertainty). These results are in agreement with those
of previous self-consistent calculations. " ' This be-
havior can be understood as follows. First, note that the
splittings Ac at M and L have the exact n dependence we
have predicted, and that the average of the split levels lies
at approximately the same energy as the VCA parent lev-
el. Note, however, how the selection rules have been re-
versed compared to the common-anion GaP/GaAs case,
due to the fact that even (odd) N systems now require an
anion (cation) origin to keep the space-group symmorph-
ic. At M, this means that for odd n the lower
conduction-band X"~ levels remains unsplit (forming the
M~, doublet), while the upper X"~ levels split strongly
there into M&, and M2, . As has been noted elsewhere,
this is in agreement with other semiempirical calcula-
tions' ' that find the opposite result. Note further that
at n = 1 this explains why the conduction-band minimum
does not occur at M as it does in GaP/GaAs. Rather, in
spite of the fact that the VCA conduction-band minimum
occurs at X, the SL minimum occurs at L, there being a
huge splitting of 0.96 eV there (similar in size to the
0.91-eV splitting of the upper X ~ conduction-band level
at M ). The much greater magnitude of these splittings as
compared to the corresponding ones in GaP/GaAs (0.52
and 0.09 eV, respectively; see Table I) is the other major
generic difference between common-cation and common-
anion systems. It can be explained by noting that, for a
lattice-matched system like A1As/GaAs, the SL ordering
perturbation is mainly an s-like function centered about
the noncommon atoms. (The s character results from the
difference in the bare nonlocal pseudopotentials lying
mainly in their s components. ) The zinc-blende L„
conduction-band state is mainly cation s-like (with a
smaller amount of anion-s and -p character). The lower
zinc-blende X conduction-band state is anion-s plus
cation-p, while the upper state is the reverse (cation-s plus
anion-p). ' This means that in a common-anion system
like A1As/GaAs, L &, and the upper X"~ conduction-band
state will couple strongly to the SL ordering potential 6 V,
causing a large energy splitting. For a common-cation
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TABLE III. Principal conduction-band edges of the (AlAs)„(GaAs)„(001) SL s, in relation to their
parent VCA levels. In the cases of M and L, Ac is the splitting of the two degenerate VCA levels that
fold there. All energies are in eV, and are measured with respect to the respective valence-band-
maximum state at I or I, including spin-orbit efFects. The asterisk in each column denotes the
conduction-band minimum. A gap correction of 0.92 eV was added to all calculated conduction-band
energies here. Note that the levels here differ slightly from those calculated in Ref. 22 (by less than 0.10
eV) and from those in Ref. 11 (by less than 0.14 eV) due to the different gap corrections performed in

each case. (The states labeled I &„M&„and R &, here were labeled I 4„M4„and R4, in those two refer-
ences. )

Origin

VCA
Anion

X;,=2.14*
I ), =2.28
Xq, =2.71

n=1
Cation

I ), =2.06
I ~, =2.22
I I, =2.97

Pl =2
Anion

I „=2.09*
I „=2.21
I ~, =2.65

fl = 3
Cation

I,=2.05*
I ), =2.15
I"I, =2.48

X)~=2.14*

Xq~ =2.71

2M', =2.16

M(, =2.27
M2c =2.18

M2, =2.12

Mi, =2.15

2M5, =2.70

2M5, =2.08

Ml, =2.53
Mq, =2.83

0.905 0.031 0.296

L111 2 39
L ] =2.39

R I, = 1.95*
Rq, =2.91

X),=2.35
X~, =2.37

R I, =2.19
Rq, =2.49

0.961 0.027 0.301

system like GaP/GaAs, however, the chemical part of
the SL ordering potential, 6V,h, , is anion centered, and
the strain piece 5V„, due to the lattice mismatch adds p,
character to 5V. This results in a much smaller splitting
at i.„,while the X" state that does split (the lower one
now) splits only half as much as in AIAs/GaAs (because
its anion-s character is only half of the cation-s character
of the upper X ~ state, which splits in the common-anion
case). These arguments are very approximate, and are
meant only to suggest a probable connection between the
orbital character of various states and their resulting
splittings in common-anion or common-cation SL order-
ing.

At I, Table III shows that the three lowest SL
conduction-band levels evolve straightforwardly from the
three VCA states I „,X&„and Xz, for n = 1 and 2, just
as in GaP/GaAs, except that the dependence of the I -X'
mixings on even versus odd n is now reversed. For exam-
ple, at n = 1, the I z, level is just the lower VCA
conduction-band X' level, while the two I &, states result
from mixing the VCA I &, and upper X' states. Note
that the average energy of the two SL levels is just the
average energy of the two component VCA levels, while
the widening of the energy difference from
hc. =2.71 —2.28=0.43 eV to Ac=2. 97—2.06=0.91 eV
in going from VCA to SL states is due to a large interval-
ley coupling strength U=0.40 eV [see Eq. (8)]. This
strong interaction between two VCA states that are 0.43
eV apart, which results in significant oscillator strength
sharing [the lower (upper) I &, state being a 70:30 (30:70)
mixture of the VCA I „and upper X' states], is due to

the strong coupling between the large cation-s character
of these states and the cation centered SL ordering poten-
tial. At n=2, the SL I &, state is just the upper VCA X'
state, while the two I &, levels now evolve mainly from
the VCA I &, and lower X' states (with negligible level
repulsion between the two states due to the even n

period). At n=3, the I &, state is mainly the lower VCA
X' level (just as for n = 1). Unlike at n = 1, however, it is
now the lowest I level, because the strong intervalley
mixing between the VCA I „and upper X' states, and its
commensurately large level repulsion, is now only one-
third as strong. In general, the strong intervalley cou-
pling in this common-anion system is seen by the large
n= 1 intervalley matrix elements U, equal [from Eq. (8)]
to 0.40„0.45, and 0.48 eV at I, M, and L, respectively,
while for GaAs/GaP the corresponding values (0.08,
0.26, and 0.04 eV) are much smaller. In summary, com-
parison of the GaP/GaAs and A1As/GaAs systems has
verified the characteristic n dependence to the intervalley
mixings, and has demonstrated some generic differences
between common-cation and common-anion SL's.

V. RESULTS FOR (111)SUPERLATTICES

In this section we present the results for the structural
properties, band offsets, and SL electronic levels for (111)
(GaP)„(GaAs)„SL's, with n= 1, 2, and 3. Having con-
sidered these subjects in great detail for the (001) SL's in

the preceding section, we concentrate here mainly on the
differences between [111]and [001] growth directions.
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A. Structural properties

The nuclear coordinates in the (111) SL's are deter-
mined by a method analogous to that used for the (001)
systems. We again consider the SL in its bulk equilibri-
um configuration: its lattice constant a j perpendicular to
(111)is assumed to be equal to the average a of the lattice
constants of the GaP and GaAs zinc-blende equilibrium
structures, since we are again only considering equal-
period systems. A first guess at the nuclear coordinates
within the SL is then obtained by first finding the equilib-
rium structures of the strained binary compounds (epitax-
ially constrained to a~ =a ), and then layering these
strained binaries along [111]to form a SL. Calculation of
the self-consistent Hellmann-Feynman forces on the nu-
clei in the SL then allows for any correction to the cell in-
terval degrees of freedom, while analysis of the stress on
the SL unit cell similarly prescribes whether any further
[111] unit-cell distortion need be introduced. In the
present case, both of these checks implied that no further
relaxation of nuclear coordinates was required, and as in
the (001) case, the SL was exactly made simply of layers
of strained binary constituents [the common Ga atom
and the polar nature of (111)atomic planes making such
a construction possible].

The nuclear coordinates of the strained binaries were
found as follows. After imposition of the epitaxial con-
straint a~ =a, there are two degrees of freedom left deter-
mining the structure of these binary compounds. One is
the lattice constant a», of the unit cell in the [111]direc-
tion, which we shall describe by a trigonal distortion pa-
rameter t)=a», /aj. The other is a cell internal degree
of freedom g that describes the relative position of the
two atoms in the unit cell, their separation being given by
the vector (g, g, g)a~ /4. Minimizing the total energy of
the binary compounds with respect to r) and g (with
a~=a fixed) gives, for GaAs, g=1.032 and /=1.024,
while for GaP we obtain q=0.978 and /=0. 986. Note
that since the two q values average 1.005, there is [unlike
in the (001) case] a very small (0.5%%uo) overall distortion of
the SL unit cell along the growth direction. In summary,
the g and a~ values given here completely determine the
strain configurations of the elastically deformed G-aP and
GaAs constituents of these (111)SL's.

(111) Band Offsets: s,„b —'a
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tioned above results in the following energies (all in eV):
for GaAs, I 3, =0 and I &,

= —0.24, while for GaP,
I 3„=—0.57 and I"„=—0.42. As in the case of the (001)
interface, the GaAs forms the quantum wells while the
GaP forms the barriers. The SL valence-band-maxima
states will thus be localized to the GaAs region.

We introduce spin-orbit effects using the quasicubic
model described in Sec. IVB. The resulting levels of
the strained GaP and GaAs are shown in Fig. 13. To-
gether with these calculated valence-band offsets shown
are conduction-band offsets obtained by shifting the cal-
culated conduction-band levels by a state-dependent gap
correction that is the same as that needed to fix the calcu-
lated zinc-blende equilibrium levels to their experimental
values. The resulting offsets are very similar to their
values for the (001) SL: the valence-band off'set is 0.52 eV
between the GaAs heavy-hole and GaP upper light-hole
plus spin-split state [(001) value was 0.44 eV] while the
conduction-band offset is 0.16 eV between the GaAs I
and GaP X conduction-band minima [(001) value was
0.09 eV]. Note also that the noncubic crystal field due to
the trigonal shear component of the strain splits the four-
fold point-group degeneracy of the zinc-blende L states
into a threefold-degenerate set of states (at L»„L,»,

B. Band offsets
-0.2- LH

In this section we present the results of our first-
principles calculation of the valence-band offsets of the
coherent (111)GaP/GaAs interface. As in the (001) case,
the bands of the strained binary constituents are put on a
common energy scale by a straightforward analysis of
the self-consistent charge density of the n = 3 SL.

We begin by reporting the valence-band offsets of the
strained constituents neglecting spin-orbit effects. In that
case, the triply degenerate I &5-, valence-band maximum
of the equilibrium zinc-blende compounds is split by the
noncubic crystal field into a I 3, doublet and a I &, singlet
in the strained binaries. [The point group of the strained
binaries, and that of all the (111) (GaP)„(GaAs)„SL's, is
C3„(3m). ] Aligning these states by the method men-

~ 37
p4 7V

0 6 a

-.46
SO

-.66
18V

0 8 e —.72 r7V

FIG. 13. Calculated band offsets of the (111) GaAs/GaP
coherent interface, for the strain conditions appropriate to
equal-period SL's (i.e., a&=a). The offsets of the unstrained
cons'tituents are obtained from these strained binary offsets
through the absolute deformation-potential model of Ref. 60,
which is used only to line up the valence-band maxima at I .
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TABLE IV. Principal conduction-band edges of the (GaP)„(GaAs), (111) SL's, in relation to their
parent VCA levels. All energies are in eV, and are measured with respect to the respective valence-
band-maximum state at I or I, neglecting spin-orbit eft'ects. (These can be included by subtracting
0.07 eV from all energies here. ) The asterisk in each column denotes the conduction-band minimum. A

gap correction of 0.85 eV was added to all calculated conduction-band energies here. [Note that in our
previous study of the n=1 SL (Ref. 42), a shift of only 0.75 eV was applied to the same values. The re-
sults in this table are thus 0.1 eV larger than those in Ref. 42.]

n —3

I „=2.22*
Ll, =2.25

I „=2.12
l „=2.22

I „=2.09*
I „=2.12

I „=2.02*
l „=2.05

X L„=2.25
Xl, =2.28

X3, =2.52

Xi, =2.08
Xl, =2.24
Xl, =2.49

X„=2.12
X„=2.17
X„=2.36

Ml, =2.06
M „=2.11
M„=2.29

and L» , ) plus -a separate state at L», . The threefold
point-group degeneracy of the zinc-blende X states
remains, however (i.e., X =X~=X'), unlike in the (001)
case. As with the (001) offsets presented earlier, we also
show the offsets for the unstrained zinc-blende equilibri-
um compounds by using an approximate absolute
deformation-potential model. The results are again
quite similar to the (001) offsets, being 0.64 and 0.19 eV in
the valence and conduction bands, respectively. [The
(001) values were, respectively, 0.56 and 0.27 eV.j

C. Superlattice energy levels

We now present the analysis of the single-particle elec-
tronic energy levels of the (111) SL's. These calculated
energies, and those of their VCA parent levels, are sum-

marized in Table IV.
Consider first the folding relationship appropriate to

these (111)SL's. As shown in Fig. 14, the Brillouin zone
of the n = 1 and 2 (111)SL's is simple trigonal, while that
of the n=3 SL is simple hexagonal. From the coordi-
nates of the SL k points shown there, we see that the
three major band edges of the VCA parent structure (I,
X, and L) are folded to just two points of the SL zone. If
we generalize the definition of the X point to coincide
with the M point of the n = 3 zone, then the simple result
is that the VCA I and L

&&&
points are folded to the SL I

point, while the VCA X' and L», points are folded to X
in the SL zone (two other equivalent X points result from
the folding of the other two VCA X and L points). In-
cluding the intermediate k points along the (111)adjoin-
ing line between the two main valleys (which are involved
in the folding when n ~2) gives the following relation-
ships:

BZ for (111)SL's

Trigonal; 3 4 integer
j=—n+1

I + L]]]+I +L&&& +J

2z 1 1 1

a 4n 4n 4n GaAs0. 5 P0.5 VGA bands for [111) on asub —a

&x'

Hexagonal,
= integer3

2-

(a) [111] I-L»&

Q

(b) [111]L --X

—7—2x I

a 4n 4n 4n

a n n n

111 z

[111]Direction

FIG. 14. Brillouin zone of the (111)(GaP)„(CzaAs)„SL's. (a)
Simple trigonal zone for the case of n not being a multiple of 3.
The z' axis is along the [111]direction. (b) Simple hexagonal
zone for the case of n being a multiple of 3.

FIG. 15. Bands of the VCA Ga(AsP) zinc-blende com-
pound along the (111)lines between the principal band-edge val-
leys. The bands in (a) are folded to I in the SL zone, while
those in (b) are folded to X (for n = 1 and 2) and to M for N=3.
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n

X= g X + Limni
=X +L +

j=—n+1
(16)

Figure 15 shows the (111)dispersion of the VCA bands
between the main band-edge valleys. Figure 15(a) shows
the states that are folded to I in the SL, while Fig. 15(b)
shows the VCA states folded to X. From the analysis of
Sec. III, the following general observations can be made
simply from these VCA band plots. First, consider the
top valence bands in Fig. 15. They both show only one
valley being involved (the VCA I for I, and the VCA
L

& & &
for X ), and are thus expected to give rise only to

standard Kronig-Penney-type SL states. The 1 -L
& & &

dispersion of about 1 eV is only one-third of the (001) I-
X' dispersion shown in Fig. 2(a). We thus expect the
(111)I valence-band-edge states to localize in their GaAs
well much faster than they did for (001), due to the
heavier mass now involved. Consideration of the conduc-
tion bands in Fig. 15, however, suggests that there might
be strong intervalley mixing both at I and at X, due to
the nearness in energy of all three of the main VCA
conduction-band valleys. We thus do not expect to see
there the typical Kronig-Penney-type behavior that is ex-
pected in the SL valence-band-edge states.

Figures 16 and 17 show the SL states at I and at X, to-
gether with their VCA decomposition, degree of localiza-
tion, and position with respect to the pertinent band-edge
levels of the strained GaP and GaAs constituents. Note
that the SL valence-band-maxima states behave just as
predicted above: they are typical single-valley Kronig-
Penney states that localize in their respective GaAs wells.
Because the (111) VCA I mass is heavier than its (001)
counterpart, the n =3 valence-band-maximum wave func-
tion at I is much more GaAs localized than in the (001)

case (86% versus 69%), and its energy level has fallen far-
ther down into the GaAs well from its starting position at
the well center. Note that, as in the (001) case, the SL
levels are accurately put on a common energy scale with
the band-edge levels of the strained constituents (which
form the wells and barriers) only for the n = 3 case, where
a band-offset calculation is performed. For n= 1 and 2,
however, these levels were positioned on this absolute en-
ergy scale simply by aligning the SL valence-band maxi-
ma at I . The error involved in this approximation is
clear in Figs. 16 and 17: at n = 1 the SL levels are almost
entirely composed of a single VCA state, and should thus
sit at the center of their respective potential wells, which
is about 0.1 eV lower in energy than they are positioned
in these two figures. (This is also seen in Table IV, where
the average energy of the two lowest n= 1 I levels is 0.07
eV lower than the average of their VCA I &, and L»& &,

parent states, when a common zero-energy valence-band
maximum is assumed. )

Figures 16 and 17 show that the SL conduction-band-
edge states at I and X indeed show a fair amount of in-
tervalley mixing, as expected. However, because of the
common-cation nature of GaAs/GaP, the resulting level
repulsion is small. For example, Table IV shows that the
VCA I &, and L», &, states involved in the SL states at I
have an energy difference hc. =0.03 eV, while the two
n=1 SL states are split only by DE=0.10 eV, due to a
very small intervalley coupling strength U=0.05 eV Isee
Eq. (8)j. Furthermore, note that the smallness of b, s
leads to a fair amount of wave-function mixing even in
the n=2 SL at 1. The argument given in Appendix A
explains why the magnitude of U should be small for even
n. However, the translation of this principle into one of
much weaker wave-function mixing for even X relies on
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the resulting U value being smaller than 2b, E . [See the
discussion following Eq. (8).] In the present case, the
original VCA splitting Ac. is so small that there remains
at n=2 a fair amount of wave-function mixing, even
though the level repulsion (controlled by the size of U) is
still quite small. By n=-3 the heavy-mass VCA L&&&

conduction-band valley leads to a SL conduction-band-
edge state made from intravalley mixing within this VCA
valley, which is thus localized in the GaP L &, well. Simi-
lar behavior holds for the conduction-band states at X,
due to the similarity of their parent VCA bands with
those involved at I [compare Figs. 15(a) and 15(b)].

Comparison to the GaAs/A1As system is again
worthwhile: Table III shows that the VCA (A1Ga)As
L

&
and I

&
states are split by AE =2. 39—2.28 =0.1 1

eV. Our calculations at n=1 show two SL states at 1.86
and 2.86 eV. Their average energy is at the average of
the component VCA energies, while the large level repul-
sion (compare Ac, =1.00 eV to b, E =0.11 eV) is due to a
large intervalley matrix element U=0.50 eV, as expected
in this common-anion system. The VCA decompositions
of these SL states show them to be made of 50:50 mix-
tures of the I &, and L„states. At n=2, however, we
find two SL I states at 2.01 and 2.18 eV, showing much
less level repulsion. The VCA decompositions of these
states show them to have almost zero mixing of I &, and
L

&
as expected from our general theory in the case

2U (Ac .
Summarizing, in the (111) SL's the three main VCA

band edges at I, X, and L are folded to just two SL
points, I and X. The main difference between these fold-
ing relationships and those of (001) SL s is that there is,
in the present (111)case, no intervalley mixing of degen-
erate states as there was at M and I. in the (001) case.
This results in the SL valence-band-edge states having as

typical single-valley Kronig-Penney states, localizing into
their respective GaAs wells, while the SL conduction-
band-edge states experience some intervalley mixing due
to the nearness in energy of the corresponding VCA
parent levels. By n=3, however, the conduction-band
edge at I does localize into the GaP L„well, giving rise
to a type-II SL. Consideration of the band ofFsets shown
in Figs. 13 or 16 thus predicts a type-II —to —type-I transi-
tion to occur for suSciently large repeat period n, in ex-
act analogy with the well-known (001) GaAs/AlAs exam-
ple. Note that the calculated SL conduction-band mini-
ma at both I and X all lie, for n= 1, 2, and 3, within the
energy range 1.9—2.0 eV, with the direct-indirect energy
difference being less than 0.05 eV. We are thus unable to
predict the nature of the absolute conduction-band-
minimum state in these (111)SL's, because such small en-

ergy differences are beyond the present calculational un-
certainty.

VI. [110]AND [201]GROWTH DIRECTIONS

Although the [001] and [111]directions are the most
popular for SL growth, SL's are occasionally grown (and
sometimes spontaneously order'@') in the [110] and
[201] directions also. For this reason, we present in this
section the following relationships that determine the SL
levels in [110] and [201] systems. We present no actual
calculations of such SL's. Rather, we simply show the
VCA bands that determine the SL levels in these systems,
and employ the model of Sec. III to predict the character
of the resulting SL states.

Consider first the (110) SL's. A SL state at a given
point k in the SL zone will be composed of VCA zinc-
blende states along the line k+(2'/a)(1, 1,0)=k+ 4K&&o.

Consideration of the point-group symmetry of the (110)
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SL then yields the following result: the three main band
edges of the parent zinc-blende compound (I, X, and L)
are folded to four points in the SL zone. The resulting
folding relationships, shown in Fig. 18, are similar to
those of (001) SL's, except for the fact that there are now
two inequivalent I points. In particular, the VCA I and
X' points are folded on top of each other, as are X" and
X~, Liii and Liii (which fold to L ), and Liii and L

i&&

(which fold to L ). Consideration of the band dispersions
along the (110) lines adjoining these two main valleys
then suggests the following behavior for the resulting SL
states: The zone-center SL states will behave much like
in the (001) case, except for the fact that the lighter (110)
Xi, mass [in comparison to the heavy longitudinal mass;
compare Figs. 18(a) and 2(a)] will delay the onset of local-
ization into the GaP X' conduction-band well, while the
heavier (110) I t&, mass will accelerate the localization
into the GaAs I valence-band well.

Comparison of Figs. 18(b) and 2(b) shows that the (110)
SL conduction-band states made from the X -X folding
will be nearly identical to those for (001), showing typical
well-centered resonant behavior due to intervalley mixing
between two degenerate light-mass valleys. In particular,
for even n, SL doublet states will exist nearly exactly at
the energy of the VCA X"„and X3, conduction-band
states (i.e., at their well centers); for odd n, there will exist
a splitting of the lower of these doublets that is propor-
tional to 1/n. Because of the common-cation nature of
the SL ordering potential, the upper doublet (of cation-s
and anion-p character) will remain largely unsplit for all
n. The SL X ~ valence-band edge will, however, behave
quite differently from the (001) case for n ~2. In that
case, it will be composed not of the X ~ VCA valence-
band edge as in (001), but rather VCA states from the val-
ley midway between X and X~, which is the zinc-blende
k point 2/3K»o=(vr/a)( —1,1,0). These two degenerate
light-mass valleys [see Fig. 18(b)] will give rise to well-
center resonant states, just as in the conduction band.

Comparison of Figs. 18(c), 18(d), and 2(c) show that the
(110) SL conduction-band states at L and L' will behave

just as in the (001) case, showing the well-center resonant
level behavior characteristic of two interacting degen-
erate light-mass valleys. The extreme light mass of the
two L' valleys means that this resonant level behavior
will persist for longer repeat periods n before the
Kronig-Penney localization behavior eventually sets in.
We expect similar resonant level behavior in the valence-
band edge at L', but the dispersion of the VCA states
forming the L valence-band edge is sufficiently fiat [see
Fig. 18(c)] that the SL states will probably fall down from
their well centers and become somewhat localized, even
in the ultrathin limit. Note that the purely Aat dispersion
seen in Fig. 2(c) is not seen here, however.

Consider now the case of (201) SL's [we consider here
(201) for convenience]. A SL state at a given point k in
the SL zone will be composed of VCA zinc-blende states
along the line k+(2m/a)(2, 0, —1)=k+2M . As far as
the main VCA I, X; and L points are concerned, the re-
sulting folding relationships are just as in the (001) case:
the I and X' points are folded on top of each other, as
are X and X, and L»i and L

i i i [L =L '
by point-group

symmetry now, unlike in the (110) case]. The full band
foldings are shown in Fig. 19. It is seen that the SL
valence-band edge at I will, as in every case, behave like
a single-valley Kronig-Penney state. Note that the ex-
treme lightness of the (201) I &s, masses will, however,
substantially delay (with increasing n) the onset of GaAs
localization of the I SL valence-band-edge states. A
similar conclusion holds for the conduction-band-edge X'
states: the (201) X' conduction-band mass is enormously
lighter than its (001) or (110) counterparts, which will
greatly delay the localization into the GaP X' well. Note
that the general n dependence of intervalley mixing (see
Appendix A) implies a weak I -X' coupling in ternary
chalcopyrite systems, since these are n=2 (201) SL's.
This has in fact been observed for several systems by Wei
and Zunger. ' The SL states evolving from the folding
of the X VCA valleys will behave just as in the (110)
case: the conduction-band levels mimic the (001) levels,
while for n ~ 3, the SL valence-band edge will result from

GaAsos Po& VGA bands for [110l on as„b — a
~

V V

(a) [110] I -X
f:

p

(b) [11 0] XX Xy {c)[1't0] L&&&-L«s - - (d) [110]L«&-L

—X
Z X, X„ X„ Xy L111

[110]Direction
111 111 L111

FICx. 18. Bands of the VCA Cxa(AsP ) zinc-blende compound along the (110) lines between the principal band-edge valleys.
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GaAso5 PO5 VGA bands for [201] on a»b = a

(a) [201] 1-X, - . (b) [201] X„-X„ (c) [201]L«, -L«-,

—XZ XzX, X„

[201] Direction

Xy L111

FICx. 19. Bands of the VCA Ga(AsP ) zinc-blende compound along the (201) lines between the principal band-edge valleys.

two degenerate intervening light-mass valleys 2 eV above
the X ~ VCA valence-band-edge states. [These valleys
occur at the zinc-blende k point 9~Ate& =(2m /3a)(1, 0, 1).]
The SL conduction-band edge at L will again show the
well-center resonant level behavior, while the L valence-
band edge will behave as in (110), showing some Kronig-
Penney localization even in the ultrathin limit of small n.

VII. CONCLUSION

Our major goal of this work has been to use the
GaAs/GaP and GaAs/A1As systems as paradigms for
describing the physics of the evolution of SL levels in ul-
trathin systems. We begin by noting that using the VCA
binary compound (at a lattice constant commensurate
with that of the SL) as a parent compound from which
the SL evolves gives rise to a SL ordering potential 6V
which is perturbatively small for these ultrathin systems.
Since the VCA levels are approximately just the average
of the constituents' band energies, this explains the com-
mon use of the average "alloy" levels as the parent ener-
gies from which the SL states evolve. Combining the fact
that SL states at a point k in the SL zone are composed of
VCA zinc-blende states along the line k+ —,'G (where G is

a VCA binary reciprocal-lattice vector along the SL
growth direction) with the fact that the smallness of 5V
means that only VCA states nearby in energy (within
about 1 eV) are mixed, then allows one to predict the be-
havior of the resulting SL states. In particular, when n is
sufficiently large or the VCA dispersion sufficiently fIat
that the SL band-edge state is composed of VCA states at
neighboring 6k =G/2n from within the same valley, the
resulting SL level has the typical Kronig-Penney behav-
ior: its energy falls from its parent VCA's starting well-
center position, and its wave function localizes a propor-
tionate amount in one-half of the SL. Such behavior is
generally found at the valence-band edge at I for all
growth directions because of the involvement of only a
single VCA valley. The amount of VCA dispersion away

from I »„which increases for the different growth direc-
tions in the order (111)& (110)& (001) & (201), shows that
the (111) I levels will localize into their quantum well
most quickly (with increasing n), while the (201) I
valence-band-edge levels will remain more resonant at the
well center. Localized states similarly arising from intra-
valley mixing were also found for n ~ 3 in the SL
conduction-band levels arising from the heavy mass (001)
Xf, and (111)L&, valleys.

In general, however, most SL states in these ultrathin
n 3 systems show a strong degree of intervalley mixing
of VCA states. These arise both because of symmetry-
forced intervalley degeneracies [e.g., due to the (001) fold-
ing relationships M ='X +X~ and L =L»t +L t » ], and
due to the fact that the conduction-band edges of a typi-
cal zinc-blende compound at I", X, and L are frequently
within 1 eV of each other and thus can mix according to
the folding relationships given in Eq. (2). Because the in-
terface region is a significant portion of the total volume
in these ultrathin SL's, such intervalley mixings can lead
to large (up to 1 eV) level splittings and repulsions, and
are thus a significant factor in determining the band
structures of such systems. Furthermore, because such
mixings generally occur without the involvement of VCA
states from k points between the main two valleys (be-
cause the typical VCA dispersion is such that these states
are too far away in energy for n & 3), the SL states evolve
from a simple 2X2 Hamiltonian with off-diagonal ele-
ment U = (g&(k)~5V~$2(k+G/2) ). The resulting SL
states will thus be resonant throughout the SL cell, and
will evolve mainly from a well-center energy.

Analysis of the matrix element U leads to the following
generic results regarding intervalley mixing in small n

systems and the resulting well-center energy-level behav-
ior. First, there is a generic n dependence to the coupling
strength U, which is independent of the states involved.
Its magnitude is very small for even n, and decays like
1/n for odd n from its maximal n=1 value. This holds
true both for intervalley mixings away from the SL zone
center between levels that are degenerate by symmetry,
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FIG. 20. Superlattice ordering potential 6V for the (001)
(GaAs), (GaP)& and (111) (GaAs)&(A1As)~ SL's, averaged in
planes orthogonal to the SL growth direction.

and for the SL zone-center mixings between nondegen-
erate VCA states. The resulting level split tings and
repulsions will thus have a similar n dependence. This
explains the frequently seen strong downward bowing of
n=1 SL levels from their average "alloy" level, and the
generally much smaller bowing seen for n =2. It explains
why the I -X' coupling is small in ternary chalcopyrite
systems, they being n=2 (201) SL's. For the case of
zone-center mixings of nondegenerate VCA states, the
amount of wave-function mixing (i.e., oscillator strength
sharing) will also follow this n dependence (as long as the
original VCA level splitting is not so small that one finds
strong wave-function mixing even when U is small, as in
the case of mixing degenerate VCA states). A second set
of generic results we present is with regard to symmetry-
imposed selection rules that govern the intervalley mix-
ing. These control, for example, which of the two VCA
conduction-band X minima mixes with I at the (001) SL
zone center, and which of them splits at M. (See Appen-
dix B for these results. ) A third generic result we ob-
tained was regarding the differences between common-
anion and common-cation ternary SL systems. For one,
the above-mentioned selection rules are opposite for the
two cases. This explains the occurrence of the n= 1 (001)
SL conduction-band edge at L in GaAs/A1As (but at M
in GaAs/GaP), since in this common-anion (common-
cation) system only the upper (lower) X ~ conduction-
band states split for odd n. Also, we noted much larger
conduction-band intervalley coupling strengths U (and
commensurately larger level splittings and repulsions) in
the common-anion GaAs/A1As system, as compared to
the common-cation GaAs/GaP case, because of the cat-
ion character of the conduction-band states involved.
The combination of all these principles of intervalley
mixing allows for a semiquantitative description of SL
levels in ultrathin systems.

Finally, we also reported calculations on the (001) and
(111) GaAs/GaP band offsets, appropriate to the
coherent a~ =a interface. A large range of experimental
values has been previously reported (varying by 0.4 eV),
and our aim was to clarify these discrepancies. We
found, for the strained constituents, that the difference in
overall energy gaps was split in the valence-
band —to —conduction-band ratio of 83:17 for (001) and
76:24 for (111). If a. crude absolute deformation-potential
model is used to relate these strained binary energy lev-
els to those of their unstrained parent compounds, these
ratios become 67:33 for (001) and 77:23 for (111).
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APPENDIX A: DEPENDENCE
OF INTERVALLEY MIXING ON REPEAT PERIOD

where L, is the SL period, and where

F(z')= f dx'dy'u
&

(r)uz(r)5V(r) . (A3)

Limiting ourselves to the case of a ternary ( AC)„(BC)„
SL with a common C atom, let us choose the z'=0 origin
to lie at the interface midway between the two noncom-
mon atoms. For a (001) SL, this will just be on a plane of
common C atoms; for a (111)system, however, it will not
lie on any atomic plane. Then the dependence of the ma-
trix element U on the SL period n follows simply by not-
ing that F(z') is approximately odd in z'+-+ —z' with
respect to this origin. Since the u, uz product in Eq. (A3)
is periodic in VCA binary unit cells [there being n such
cells both left and right of the origin in the z' integral of
Eq. (A2)], the approximate oddness of F (z') follows from
the appropriate oddness of the x'y' planar average of
5V(r), which we denote 5 V(z').

This function 6V(z') is plotted in Fig. 20 for the (001)
(GaAs)~(GaP)~ and (111) (GaAs)z(AIAs)z SL's. It is ob-
tained by subtracting the self-consistent VCA binary po-
tential from the self-consistent SL potential, and then
averaging the result in planes orthogonal to z '. As

In this appendix we analyze the n dependence of the
matrix element U = {g&(k) ~5Vtgz(k+G/2) } that con-
trols the mixing of VCA states from valleys separated by
half a reciprocal-lattice vector. Noting that the VCA
states can be expressed as g=e'"'u (r) with u (r) periodic
in a VCA binary unit cell, this matrix element is

U= dru& ru2re' ' 6V r (Al)
SL cell

Defining the z' axis as parallel to the SL growth direction
CJ, this is

i Gz'/2~ (A2)—L/2
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shown, it is indeed approximately odd with respect to the
interfacial origin. The approximate oddness of the func-
tion 5V(z') can be understood in terms of the decomposi-
tion of 5V(r) into a chemical and a strain component (see
Sec. III A). Note that the bare perturbation 5V,h,

" caus-
ing 5 V,h, is exactly odd in the z'~ —z' VCA point-
group operations. This follows because the definition
of the bare pseudopotential of the virtual ( AB )
ion, V& „s&

=( V„+Vs )/2, immediately implies
V„—V& „s&

= —( Vs —
V& „s&

). Relating the self-con-
sistent 5V,h, to its bare counterpart by generalized
linear and nonlinear VCA susceptibilities, so that

(A4)

we see that the screened 5 V,h, is also approximately odd
in the z'~ —z' operations of the VCA point group. (The
only approximate nature of this oddness is due to the
small nonlinear contribution to the screening. ) The sub-
sequent small elastic distortions along z' (in the case of
lattice-mismatched constituents) give rise to a bare strain
perturbation 5V„'," that is also approximately odd in
z'+-+ —z', because moving an ion at z =0 to its left
changes the bare potential at z(0 opposite to the change
at z&0, to first order in this change. The self-consistent
5V„, is furthermore only approximately odd because
even the pertinent linear susceptibility relating it to its
bare counterpart is based on the unstrained SL, not on
the VCA binary compound. In summary, apart from
small nonlinearities in the screening process [i.e., X' ' in
Eq. (A4)j and further nonlinearities due to the two-step
nature of the chemical-plus-strain SL ordering process,
the perturbations involved in creating 5V(r) are approxi-
mately odd in the z'~ —z' point-group ~oerations, and
this results in an approximate oddness to 5V(z').

Having explained the origin of the oddness of F(z') in
Eq. (A3), we now note that this oddness immediately im-
plies the U(n) dependence noted in Sec. III. Since the
two VCA states at k and k+G/2 are a zone face distance
apart (i.e., half a reciprocal-lattice vector), their relative
phase factor e' ' oscillates with a period of two VCA
binary unit cells, and the beating of this phase factor
against the odd function F(z') in Eq. (A2) leads to a
U(n) matrix element that nearly vamshes for even n and
decays like 1/n for odd n. Note that this holds both for
the case of mixing two VCA states that are degenerate by
some space-group symmetry, and in the case of mixing
two nondegenerate states (as occurs at the SL zone
center), since no special requirements were made on the
identities of g, (k) and $2(k+G/2) above. Note also that
this same reasoning explains the near vanishing of the di-
agonal matrix elements ( l(j&(k) ~5 V~ g&(k) ) of 5 V:
without the phase factor e' ' in Eq. (A2), the resulting
integral approximately vanishes for all n, because of the
approximate oddness of F(z').

elements ( gk. , ~5 V~ Pk ) are mandated to vanish by
space-group symmetries, where ~gk ) are the principal
band-edge VCA states involved, and 6V is the SL order-
ing potential.

TABLE V. The point group D2d, together with its character
table. The particular realization shown here is for the point
group of k at X' in the zinc-blende Brillouin zone, and at 1 and
M in the (001) SL zone.

Class

E
C2
2C2
2S4
20d

Operations

C2, =x yz
C2~ —xy z; C2y =xyz
JC4, =yx z; JC4, =yxz
JC2~~ =y xz; JC2„=yxz

C2 2C2 2S4

1. (001) superlattice levels at I

For the conduction-band states at I, there are three
main VCA states involved: I

~ X& and X3 . The SL
ordering potential 6V has, of course, the full symmetry of
the SL space group Dzd=P4m2. Furthermore, since
this space group remains symmorphic if the coordinate
origin is fixed on a central anion (midway between the Ga
interface planes) for odd n and on a central cation for
even n, 6V also has the full symmetry of the point group
D2d=42m with this choice of origin. In that case, the
selection rules can simply be determined by understand-
ing the symmetry properties of the I &„X&„and X3,
VCA states under the point-group operations of D2d.
Understanding the symmetry properties of the VCA X'
states under D2d is particularly easy, since the point
group of k there is simply D2d itself. Table V shows the
operations of the point group D2d, along with the charac-
ter table of its irreducible representations. Note that the
VCA I &, state is purely s-like, and is thus completely
symmetric under D2d. The lower (upper) conduction-
band-edge state ' at X', however, is anion-s plus cation-p,
(cation-s plus anion-p, ), and is thus even or odd, depend-
ing on the origin, in D2d operations that change z into
—z. Note from Table V that the X, (X3) representation
is even (odd) in the two classes 2Cz and 2S4 of Dzd that
change z into —z. Therefore, with an anion origin the
lower X state is X„and the upper one is X3„while for a
cation origin this labeling is reversed (the lower X state
now being odd in z~ —z, being labeled X3, ). Since X3, is
odd in the z+ —z operations of Dzd, while I &„X&„and
6V are even in them, the selection rules governing the in-
tervalley mixing at I are simply

APPENDIX 8: DERIVATION OF SELECTION RULES

This appendix is devoted to the derivation of the selec-
tion rules that control the intervalley mixing discussed in
the main text. In particular, we determine which matrix

1

1

1

1
—2

1

1
—1
—1

0

1
—1
—1

1

0

1
—1

1
—1

0
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and

(X;,iSViX;, ) =0 . (B2)
Class X operations X~ operations

TABLE VI. Realizations of the point group D,d as the point
group of k at X"and X~ in the zinc-blende Brillouin zone.

2. (001) superlattice levels at M

In this section we derive the selection rules governing
the band-edge states at the M point in the (001) SL zone.
The conduction-band edge at M is determined from the
4X4 Hamiltonian matrix (X&,&~3, ~5V~xf, &~3, ), and it is
our present purpose to determine which of these matrix
elements are forced to vanish by symmetry. As noted
above, if the coordinate origin is fixed on a central anion
for odd n and on a central cation for even n, 6V has the
full symmetry of the point group D2d shown in Table V.
Furthermore, the VCA basis states X„and X3~ also have

D2d as their point group of k, their particular realizations
of this group being given in Table VI, and their transfor-
mation properties under these operations being given in
Table V. The first selection rule we derive is that

(x, svx, &=0, (B3)

this holding regardless of the x or y origin of either of the
X& or X3 states involved. Note that the operation C2, is
common to the 2C2 class of all three realizations of D2d
given in Tables V and VI. Equation (B3) then follows
simply by noting that 5 V and any X, state are even under
C2„while any X3 state is odd under it. The second selec-
tion rule we derive is that

(B4)

This follows simply by noting that 5V and X3 are even
under Cz, while X~3 is odd under it. (Notice that Cz, be-
longs to different classes in the X and X» realizations of
D2d given in Table VI.) These two selection rules result
in the structure of the 4 X4 Hamiltonian matrix shown in
Table II. Equation (B3) forces the two 2 X 2 off-diagonal
blocks to vanish, while Eq. (B4) forces the two off-
diagonal elements of the X3 subblock to vanish (this
latter requirement leading to the X3~M5 compatibility
relation).

The valence-band maxima levels at M evolve from four
degenerate states: the X&, doublet and the X~, doublet.
These M states are thus determined by the 4 X 4 Hamil-
tonian (Xs~ ~5V Xs„). Because of the two dimensional-
ity of the X5 representation, the selection rules here are
much more easily derived if we allow for an infinitesimal
tetragonal distortion of the VCA zinc-blende cell, in or-
der to split the X5, doublets. When this is done, the
point group of k at X" and X~ is D2(222). It is a four-
element —four-class group made of the operations E, C2„,
C2&, and C2, . The Xs, doublet (of D2d ) is split into X2,

E
C2
2C2
2S4
2CT d

E
C2
C2, C2,
JC4, JC4
JC2y„JC2,

E
C2y

C2x ~ Czz
JC4, JC4
JC~„z,JC~,

and X3, singlets (of D2), while the X~s, doublet is split
into X2, and X4, . This immediately implies a 4X4 Ham-
iltonian matrix with zeros positioned exactly as in Table
II, since the two X2, states form a 2X2 subblock, while
the other two X3, and X4, states form two 1X1 sub-
blocks (no interactions allowed between states of different
Dz representations because 5 V is totally symmetric under
all four D2 operations).

3. (001) superlattice levels at L

Superlattice levels at L evolve from VCA zinc-blende
states at L

& & &
and L

& & &, plus, if n ~ 2, states from k points
on the (001) adjoining line. The point group of k at L

&&&

and L
I & &

is the six-element group C3, ~ The only noniden-

tity element common to both the L»& and L»-, realiza-
tions of this group is, however, the reAection JC2 . This2'
operation is also a member of the (001) SL point group
D2d (see Table V), and the SL ordering potential 5V thus
has it full symmetry. The conduction-band edge at L
evolves from the two degenerate L»i &, and L»» zinc-
blende states. These two states are allowed to mix by
symmetry because they, like 6V, are even under JC2
Symmetry-imposed selection rules do, however, block di-
agonalize the Hamiltonian pertinent to the valence-
band-edge levels at L. These levels are composed of two
separate doublets L

&&& 3, and L
&&& 3, plus states along the

liat band connecting these two [see Fig. 2(c)]. The L3,
doublet is composed of both an even and odd state under
JCz (this being most easily seen by creating an
infinitesimal tetragonal distortion of the zinc-blende cell
to split this doublet), while the Rat band connecting L»&
to L

& & &
is purely odd under JC~ . Thus the even states

within the L3„doublets cannot mix with any of the odd
states along the Bat band connecting them. For this
reason these even states form the resonant states at the
center of the potential well, as described in Sec. IV C 5.
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