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Predictions of the equilibrium crystal structure of simple compounds, e.g., within 
first-principles total energy methods are usually carried out by searching for the 
lowest energy among a small number, O(10), of intuitively selected candidate 
structures. We show how calculations of the total energies of O(10) structures can 
be used instead to define a first-principles, multi-spin Ising Hamiltonian, whose 
ground state structures on a fixed lattice can be systematically searched using 
lattice theory methods. This is illustrated for the intermetallic compounds CuAu, 
CuPd, CuPt, and CuRb, for which tim correct ground states are identified out of 
more than 65,000 possible structures. 

1. I n t r o d u c t i o n  

Recent advances 1,2 in first-principles self-consist- 
ent implementations of the local density formalism 3 
have produced a wealth of information on the ground 
state properties of ordered intermetallic I and semicon- 
ducting 2 compounds. To find the stable crystal con- 
figuration, one repeats the total energy calculation for 
a few assumed crystal structures that by analogy with 
related compounds or by "chemical intuition" are ex- 
pected to be likely competitors for the stable ground 
state. Comparison of total energy vs volume curves for 
such a set of "intuitive structures" permits the identifi- 
cation of the stablest structure in this set and possible 
phase-interconversions among them. While generally 
successful,l,2 the predictive value of this approach does 
depend on one's ability to guess correctly at the.outset 
a canonical set of structures which includes the "win- 
ning" (minimum energy) configuration. One wonders, 
however, if a different, hitherto unexpected structure 
could have yet lower energy, or whether linear combi- 
nation of two other structures with compositions z~, 
and x# (and za  < z~, < z#)  could have a lower en- 
ergy than a (hence, a will disproportionate into a + 3). 
Addressing this problem, even for binary A,,Bra com- 
pounds on a fixed lattice requires, in principle, calcu- 
lation of the total energies of the 2 N atomic configura- 
tions for each type of lattice (fcc, bcc...). Even limiting 
N to O(1O) - O(102), this is a formidable task for first- 
principles electronic structure methods, s This problem 
can be circumvented to some extent by using simplified 
electronic Hamiltonians (e.g., minimal basis set tight 
binding) in conjunction with perturbation theory 4 or 

by replacing the quaaaturn mecharfical total energy by 
phenomenological effective pair potentials. 5 It is the 
purpose of this paper to demonstrate how one can effec- 
tively perform such a ground state search among many 
[O(2 N)] atomic configurations in a first-principles man. 
ner, using directly calculated (locM density s) total en- 
ergies of only ~ 10 crystal structures. We illustrate 
this method for the intermetallic systems Cu1-zAuz, 
Cul-=Pdz, Cua-,Pt=, and Cu1_,Rh~. These form an 
interesting set in that while in elemental form, Cu, Pd, 
Pt, mad Rh are all fcc metals, their 50%-50% equimo- 
lax compounds exhibit at low temperatures a range 
of symmetriesS: CuAu has the fcc-based (L10) struc- 
ture, CuPd has a bcc-based (B2) structure, CuPt has 
a rhombohedral (Lll) structure, and CuRia does not 
exists (it phase separates into pure Cu + Rh) . We 
show that an extensive ground state search (of ~ 65,000 
configurations) within the local density forrnMism does 
predict in all cases the correct ground state symmetries. 
This opens a practical way for identifying stable crys- 
tal structures directly from first-principles calculations, 
without resort to coherent potential or tight-binding 
approximations. 

2. Approach 

Our approach is based on standard lattice theories 
of statistical mechanics,L s where a given lattice type 
(e.g., fcc, bcc) with N sites is discretized into a set of 
"figures" f, each being a particular selection of k I sites 
(a k-vertices figure) out of the totM N sites. The lattice 
can exist in 2 N configurations a, each corresponding 
to a different occupation of the N sites by A arid B 
atoms. Labeling each site i by a fictitious spin variable 
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Si (+1 if occupied by B , - 1  if occupied by A), we define 
for each figure f in configuration a the spin product 
HI(a)  = SItS2t...Sk,. The energy E(~) of any lattice 
configuration can then be rigorously expanded 7 into an 
Ising-like series 

2 N 

E(a) = ~ l'I/(a) J! , (1) 
! 

where Jl is the energy of figure f ,  defined, through the 
orthogonality relationship, T by averaging over all the 
configurations as, 

2 N 

J1 = 2-~' ~ E(~) ni(~) • (2) 
a, 

These sums can be reduced by symmetry noting that 
for a space group operation ~ of the lattice, we have 
E(~a) = E(a) and II~l(~a) = Il l (a) ,  hence, from 
Eq.(2) J~!  = 3"/ so all ND! symmetry-related fig- 
ures have equal interaction energies. Consequently, the 
sum in (1) can be limited to the prototype (symmetry- 
unique) figures F: 

E(~) = N ~ Z)r fIF(~) J~ , (3) 
F 
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where the "lattice averaged products" rIF(a) are 
II~F(a)/Ngo and Ngo is the number of operation 

R 

in the space group of the lattice. 
While the cluster expansion of Eq.(3) is exact, its 

utility in practical applications rests on it representing 
a fairly rapidly convergent series. In practice, many ap- 
plications of Ising-like theories to phase stability have 
postulated the dominance of just a few (e.g., nearest 
neighbors) interactions, r-9 often s without calculating 
them or actually verifying convergence, r-9 Within the 
spirit of a first-principles approach, we set to calculate 
the parameters of Eq. (3) from an ab initia electronic 
Hamiltonian (here, the local density formalismS). We 
do this by selecting (separately for fee and bee) a hier- 
archy of NF figures {F} and a set of N, >_ NF periodic 
crystal structures for which the total excess energies 
{E(s)} axe directly calculated self-consistently in the 
local density approximation (LDA), as implemented by 
the linearized augmented plane wave (LAPW) methodJ ° 
The Ns = 12 structures selected here (Table I) cover a 
range of compositions and ordering vectors; the NF = 8 
figures F = (k,m) that we use include k-body terms 
separated by up to the rn-th neighbors. We use the 
hierarchy: (i) the empty (0,0) and site-only (0,1) fig- 

TABLE I. Comparison of the directly calculated (LAPW) and the cluster-expanded 
[Eq.(4) using NF = 8 and N, = 12] unrelaxed excess energies (in meV/atom) for 
the fee-based structures. The structural symbols are from Ref. 6 except for El,  Z2 
that axe AB2, A2B2 superlattices, respectively, along the [001] direction, whereas 
"40" is a A2B2 superlattice along the [2011 direction. The last two lines show 
the standard deviation r/ of the fit for both unrelaxed and relaxed structures. 
Similar calculations were done for CuPd using 12 bee-based structures yielding 
r/,.~et. = 3.7 meV. 

CuAu CuPd CuPt 

Struc. LAPW Eq.(4) LAPW Eq.(4) LAPW Eq.(4) 

LI2 (AaB) -35.1 -38.2 -85.0 -79.2 -115.8 -112.7 

D022 (AaB) -30.8 -29.8 -75.5 -77.4 -96.7 -97.6 

~1 (A2B) 59.9 61.0 -36.4 -42.5 -40.8 -34.6 

Llo (AB) -33.4 -32.7 -75.9 -78.4 -83.3 -91.1 

LI~ (AB) 68.1 68.1 -66.8 -66.8 -111.9 -111.9 

"40" (A2B2) -15.2  -15.9 -76.4 -74.8 -63.8 -61.3 

Z2 (A2B2) 155.3 154.6 -4 .3  -3 .6  34.7 31.7 

f12 (AB2) 46.4 46.7 -48.6 -43.9 --31.2 -31.5 

D022 (AB3) -9 .1  -8 .7  -46.4 -47.7 -65.9 -69.8 

L12 (AB3) -16.1 -17.2 -53.4 -49.5 -96.3 -84.7 

r/,n,e|. 1.0 3.1 4.3 

~r~i.~d 15.2 12.2 4.8 
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ures, (ii) the pair terms (2,1), (2,2), (2,3), and (2,4) for 
1st, 2nd, 3rd, and 4th fcc neighbors (Sth in bcc), and 
(iii) the 3-body (3,1) and 4-body (4,1) terms [replaced 
by (3,2) and (4,2), respectively, for bcc structures]. As 
shown by connolly and Williams, ~ since rIF(s) and DR 
are known for such periodic configurations, H we can 
obtain the values of the NF functions {JR} from a 
least-square fit 9 of {E(s)} to Eq (3); the fit error (Ta- 
ble I) already provides some measure of the adequacy 
of the truncation. Note that since E(s) is obtained 
from a first-principles (LAPW) calculation in which 
all lattice sums are calculated to convergence, the ef- 
fective interactions Jl of Eq. (2) represent a renormal- 
ization of all potentially long range terms; J! is hence 
a sum of total energies, not an interaction potential, s 
Since E(s) is generally a function of volume H-12 V, 
the interactions J~ depend on V, too. It is useful (see 
below) to transform these { JF(V)} into another expan- 
sion in terms of volume-independent interactions Y~-. 
This can be done by the "e - G" expansion L1 in which 
we replace the equation of state E(~, V) for structure 
a by the function U(o, V) which has the same value 
for the first three volume derivatives at equilibrium as 
E(a, V), yielding 

E[~, V(~)] ~ Vie, V(~)] = G(~)+N ~ Z)F fIF(~) VF, 
F 

(4) 
where G(z) is a closed-form function 1. of the alloy vol- 
ume V(x), the bulk modulus B(x) and its pressure 
derivative B'(x). [Reference 11 illustrates that Eq. (4) 
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reproduces Eq. (3) with excellent precision]. Equation 
(4) shows that the excess energy of any configuration 
a can be separated into a configuration-independent 
"elastic energy" G(z) of the medium (zero only when 
all atomic species have the same molar volume) plus a 
sum of chemical "substitution energies" (the standard 
generalized Ising problem 8) which represents configu- 
rationally dependent fluctuations about this medium. 
The relative stability of phases at the same z is hence 
determined by their substitution energies, while G(z) 
controls disproportionation of a single phase into mul- 
tiple phases of unequal molar volumes. In many pre- 
vious studies, size differences, measured by G(~), were 
neglected. As shown in Ref. 11, this can lead to sub- 
stantial errors in the calculated formation enthalpies 
of compounds whose constituents are size mismatched. 
To test the transferability of {Yf} we recalculate it 
from a 3mailer set of 10 (rather than 12) structures, 
then, using Eq.(4) we predict the energies {E(s')} of 
the remaining structures {s'} # {s}. Comparing these 
predictions from the cluster expansion to those directly 
calculated via LAPW gives the "prediction error" (Table 
II); this is then minimized by increasing the number of 
figures in the underlying cluster expansion. In addi- 
tion, we use {Yk,m} and G(x) to predict via Eq.(4) the 
energy AHR of the random alloy [for which (1~,,~) -- 
(2z - 1)k]; the standard deviation in the AHR val- 
ues obtained from different expansions is also shown in 
Table II. The procedure is carried out for both "unre- 
laxed" geometries (i.e., when *.he cell volume is varied, 
but the A and B atoms are assumed to reside on their 

Table II. Using different combinations of 10 structures {s} (out of 12, see Table 
I) we calculate G(x) of Eq.(4), then fit E(s) - G(x,) to find different sets of 
.N'F = 8 interactions {12F}. These are then used to predict via Eq.(4) the energies 
AH,, of the two remaining ordered structures s'  (not included in the fit), and the 
energy/XHIz of the random alloy at x = 1/2. This Table gives (in meV/atom) the 
average ] LAPW - predicted I error for AHe ("AHs'error") and the predicted 
AHR obtained from different sets {PF}. The last row gives the standard deviations 
7;. The same procedure yields for CuPt ~ = 2.2 and 0.9 meV for unrelaxed and 
relaxed &HR. Note that even using only 10 structures, the error in predicting the 
energies of any combination of two indendent structures is rather small. 

CuAu CuPd 

Structures AH,, Pred. Pred. AHs, Pred. Pred. 

not in error &Hi~ AHR error AHR &HR 

fit unrel, unrel, relax unrel, unrel, relax 

ill, D2 1.4 68.4 -6.1 5.5 --47.7 -78.4 

LI2, Llo 2.4 68.3 -8 .8  6.0 -47.2 -79.1 

L12,L12 3.7 68.3 0.9 8.6 -47.9 -73.5 

D022, D022 3.7 69.2 2.4 8.6 -50.0 -77.4 

D022,~I 2.9 68.9 -1 .7  7.9 -49.3 -77.5 

2.9 0.4 4.2 7.4 I . I  2.9 
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cubic fee or bcc sites) and for ~relaxed" geometries (en- 
ergy minimized with respect to all structural degrees 
of freedom consistent with their respective space group 
symmetry).  

3. R e s u l t s  

Table I shows that  the cluster expansion with 
N,  = 12 structure and NF = 8 figures describes the 
energies of the unrelaxed ordered structures to within 
the underlying LAPW accuracy, l° Hence, we will use 
this expansion to search for the ground state among 2 N 
lattice configurations. Table II shows a robust predic- 
tion of the energies of the random alloy (both relaxed 
and unrelaxed) using different sets of {PF} and that 
the energies of unrelaxed ordered structures are pre- 
dicted for these systems to within 10 meV/atom even 
if we use N,  = 10. To meet this criteria it was nee- 
essa.,'y to extend the interactions up to the 4th and 
5th pair terms for fee and bcc lattices, respectively. 
We find that  the cluster expansion converges well in 
these cases, in that  the products D~,,,]Yk,m generally 
decay with cluster size: for CuAu for example, the pair 
(k = 2) terms are (in meV) 270.3, -4 .7 ,  14.6, and -3 .0  
for r e = l ,  2, 3, and 4 neighbors, while the 3 and 4 body 
terms are -19 .6  and 1.8 meV respectively. The cluster 
expansion converges, however, considerably slower for 
relaxed ordered structures (compare rlr,l~.d in Table I 
to r / ~ , l ) .  These trends are understandable considering 
that  truncation of the expansion of JF in Eq.(2) does 
not guarantee that  J~l = Jl. Since relaxation can 
alter the sizes of the symmetry-related figures (which 
have the same size in the unrelaxed lattice), trunca- 
tion of Eq.(2) for relazed configurations could make JR 
different from "If, leading to a slower convergence of 
Eq.(3) for the same number of figures. This is less of a 
problem in the random alloy because in this case only 
the configurationally averaged JF's are relevant. 

Our strategy will hence be to perform a ground 
state search using the cluster expansion (4) for the con- 
verged expansion in uurelazed configurations, assum- 
ing that relaxation does not alter the symmetrieJ of 
the structures on the ground state line (GSL). Hav- 
ing identified out of the many (2 N) candidate struc- 
tures a few that  are ground states, we will calculate 
their relazed energies directly from LAPW, without a 
cluster expansion. Notice that  we give up at the out- 
set the possibility of distinguishing structures whose 
energy difference is smaller than our truncation error 
(e.g., long-period CuPd superstructures stabilized by 
very weak 8-th neighbor interactionsla). 

Having established a converged Ising-like expan- 
sion, the problem of finding its ground state is a classic 
problem of magnetism of spin lattices, v'14'1~ The most 
complete ground state search for fcc lattice was car- 
ried out by Kanamori mad Kakehashi 14 (KK)(retaining 
pair interactions up to I/4,2) and for bcc lattices by 
Finel and Ducastelle. Is However, these authors make 
a number of simplifying assumptions on {Yt~,,,} which 
are not supported by our actual local-density calcula- 
tions. For example, they neglect the many-body terms 
Y3,1 and 1/4,1 , assume that  ~22,1 ~;~ P~,2, ~'2,3, P2,4 
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(hence, L l l  ordering is disallowed) and take G(x) = 0 
(hence, neglect strain energies resulting from A - B 
size-mismatch). Such simplifying approximation can 
not he used here. We have hence conducted a ground 
state search of 2 8 lattice configurations using our full 
{~,,~} sets, but  limiting N to 16 fcc (bcc) sites per 
primitive unit cell. Structures with larger cells could 
be missed. We hence search 2 ~e .~ 65,000 structures 
for each compound. 

Our predicted T = 0 GSL's are shown in Fig. 1; 
they consist of straight line segments between "break- 
ing points" (denoted by solid diamond-shaped sym- 
bols) that  indicate the globaly stable ordered struc- 
tures. The symmetries established clearly from experi- 
ment ° are also found theoretically, even though we have 
purposely omitted from the basis set used to extract VF 
some of the structures which axe known to be ground 
states. 

For CuPt,  we find the established 6 Cu3Pt (L lz )  
and CuPt ( L l l )  phases, i.e., we correctly describe the 
competit ion between rhombohedral ( L l l )  and tetrag- 
onal (L10) symmetries. Two additional ground state 
fcc structures CuzPt and CuPt¢ (D1 and D7 in Fig. 
la) ,  having twice the primitive fcc lattice vectors are 
also identified; these were not included in the "basis 
set" as they were unsuspected by the normal method 
of guessing to be ground states. We tested this re- 
sult by calculating the energy of CuTPt directly from 
LAPW ( A H  = -65 .5  meV/atom for the unrelaxed 
structure), confirming the cluster expansion prediction 
( A H  = -62 .6  meV/atom).  Indeed we found that  an 
early z~ investigation did propose the existence of the 
CuPtr  (D7) structure on the basis of electric measure- 
ments, (however, this was not directly confirmed by 
X-ray studies). 

For CuPd (Fig. lb) ,  we find the observed fee-type 
Cu3Pd (L12) and bee-type CuPd (B2) structures show- 
ing that  our theory correctly reproduces the delicate 
balance between fcc and bcc interactions. The cluster 
expansion also predicts that CuPd3 (L12) is (with a 
numerical uncertainty of 5 meV/atom) a ground state. 
The D1 and D7 structures (not observed) are predicted 
to be candidates for low temperature stable structures. 

For CuAu (Fig. lc)  we correctly find Cu3Au (L12), 
CuAu (L10) and CuAu3 (L12) to be on the GSL, how- 
ever, inclusion of structural  relaxation (which is very 
large for Cu-Au) moves CuAu3 away from the GSL. For 
CuRh (not shown) we find that the GSL consists only 
of phase-separation, as observed. ~ Figure 1 also shows 
the calculated excess free energy A F ( z , T )  of disor- 
dered alloys at T >_ 800 K, obtained from a cluster- 
variation sb,ll solution (including folded interactions 11 
up to ~24,~) with the relaxed cluster energies. We find 
a reasonable agreement with the measured 6a A F ( z ,  T) 
values. 

4. S u m m a r y  

The major  advance here over previous first-prin- 
ciples calculations of phase stability involves a thor- 
ough study of the convergence of the Ising series (in- 
stead of an arbi t rary and convenient trucation), corn- 
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Fig. 1: Ground state lines (solid line segments connecting diamond-shaped sym- 
bols) for Cu-based intermetallics. The symmetries are obtained from the unrelaxed 
cluster expansion, while the energy values displayed (except D1 and D7 for CuPd) 
are from relaxed LAPW calculations. For CuRh (not shown) the ground state line 
gives only phase separation. Open symbols shows the LAPW energies of struc- 
tures that are above the ground state line. The cluster expanded values D1 and 
D7 for CuPd are slightly above the line connecting the end point and/'.12 (LAPW 
values). Also shown is the calculated a~d measured ~a free energy AF(z ,T)  of 
the disordered alloys at T = 1350, 1350, and 800 K for CuPt, CuPd and CuAu, 
respectively. 
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parison of different lattice (fcc, bee) and use of "ground 
state search" within the context of LDA calculations. 
A similar approach 17 that uses directly Eq. (3) [with 
volume-dependent JR(V)] rather than e - G approxi- 
mation produces nearly identical results. We conclude 
that such first principles total energy calculations on a 
small number of periodic structures can be used along 
with lattice models to effectively search among many 

configurations for the global ground state structures 
of intermetalllc compounds. This removes the need to 
correctly guess at the outset a set of candidate crystal 
structures that includes the stablest. 
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